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Abstract 

The development of room temperature gas sensors having response towards a specific gas is attracting researchers 
nowadays in the field. In the present work, room temperature (29 °C) ethanol sensor based on vertically aligned ZnO 
nanorods decorated with CuO nanoparticles was successfully fabricated by simple cost effective solution process-
ing. The heterojunction sensor exhibits better sensor parameters compared to pristine ZnO. The response of the 
heterojunction sensor to 50 ppm ethanol is, at least, 2-fold higher than the response of the ZnO bare sensor. Also 
the response and recovery time of ZnO/CuO sensor to 50 ppm ethanol are of 9 and 420 s whereas the values are 16 
and 510 s respectively for ZnO sensor. The vertical alignment of ZnO nanorods as well as its surface modification by 
CuO nanoparticles increased the effective surface area of the device and the formation of p-CuO/n-ZnO junction at 
the interface are the reasons for the improved performance at room temperature. In addition to ethanol, the fabri-
cated device has the capability to detect the presence of reducing gases like hydrogen sulfide and ammonia at room 
temperature.
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Introduction
The effective detection and removal of toxic gases in the 
atmosphere is important for human as well as any liv-
ing organisms. The uncontrolled release of toxic gases 
such as CO,  H2S,  NH3,  CH3CH2OH, etc. from automo-
biles, industries, laboratories, etc. cause severe health 
problems and they may even cause death [1–3]. The use 
of nanostructured materials for fabricating gas sensors 
with high sensitivity and selectivity is attracting attention 
of researchers nowadays because these materials can be 
easily synthesized and integrated into low cost portable 
gas detection devices [4, 5]. Among the various nano-
structured materials, metal oxide nanostructures belong 
to the widely accepted category for fabricating gas sen-
sors especially because of their chemical and thermal sta-
bility, tunable electrical and optical properties, etc. [6, 7].

Numerous metal oxide nanomaterials such as ZnO, 
 TiO2,  SnO2,  WO3 etc. [8–11] are commonly used in 
the field of gas sensing. Nanomaterials are already 
established in the field of gas sensing especially 
because of their high sensitivity originated due to their 
large surface to volume ratio [11]. One dimensional 
ZnO nanorods are attractive candidates for gas sen-
sor applications because of their increased surface to 
volume ratio compared to other morphologies of ZnO 
and most importantly they provide an easy path way 
for electron transfer. There are several techniques 
such as doping, forming hierarchical structures, etc. 
which can be employed to improve the gas sensing 
properties especially to lower the operating tempera-
ture of metal oxide nanostructure based gas sensors. 
Among the various methods available, forming hier-
archical structures using metals (Au, Ag, Pt, Pd, etc.) 
or metal oxides (CuO,  Cu2O,  TiO2,  SnO2, etc.) [12–14] 
is an effective way to enhance the various properties 
of metal oxide gas sensors. Researchers have already 
found the enhanced gas sensing characteristics of 
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metal oxide/metal oxide hierarchical structures [15–
17]. The hierarchical structure can form either p–n, 
n–n or p–p type semiconductor junctions depending 
on the nature of the material under consideration. In 
the present study we have investigated the enhanced 
gas sensing characteristics of n-ZnO/p-CuO hierar-
chical structures. Vertically aligned ZnO nanorods 
were grown by seed mediated hydrothermal method 
and CuO nanoparticles were loaded on the surface of 
ZnO nanorods via simple wet chemical method. ZnO 
is a well known n-type semiconductor having a direct 
band gap of 3.37  eV [18]. Various nanostructures of 
ZnO are used in several application such as photovol-
taic [19], gas sensors [20], spintronics [21], etc. CuO is 
a p-type semiconducting material with a band gap of 
1.35 eV which is widely being used in the fields of solar 
energy conversion [22], gas sensors [23], batteries [24], 
magnetic storage media [25], transparent electronics 
etc. p-CuO and n-ZnO can be combined in different 
ways to utilize the advantages of p-n heterojunction 
in gas sensor applications. The improvement in sens-
ing performance of these composites have been attrib-
uted to many factors, including electronic effects [26] 
such as: band bending due to Fermi level equilibration, 
charge carrier separation, depletion layer manipula-
tion and increased interfacial potential barrier energy. 
The chemical effects [27] such as decrease in activa-
tion energy, targeted catalytic activity and synergistic 
surface reactions; and geometrical effects [28] such 
as grain refinement, surface area enhancement, and 
increased gas accessibility also leads to the improve-
ment in sensing. In addition to achieving better sensor 
characteristics, minimization of operating temperature 
and power consumption are the current trends in gas 
sensor technology. Most of the gas sensors based on 
metal oxides operate at temperatures above 150  °C 
which increase the power consumption of the gas sen-
sor. Also the high temperature operation inhibits the 
use of sensors in explosive environments. In this con-
text the development of room temperature gas sensors 
with enhanced gas sensing performance have signifi-
cant importance in the gas sensor industry.

Here, we have grown vertically aligned ZnO nanorods 
on ITO/glass substrates by a seed mediated hydrother-
mal method. The growth of ZnO nanorods oriented 
along c-axial direction by seed mediated hydrother-
mal method have already reported in literature [29]. 
ZnO/CuO hierarchical structures were synthesized by 
depositing CuO nanoparticles on ZnO by a wet chemi-
cal method followed by annealing at 250  °C in air. The 
n-ZnO/p-CuO heterojunction device was used to 
detect ethanol, hydrogen sulfide and ammonia at room 
temperature (29 °C).

Experimental
Materials
All the reagents used were analytically pure and used 
without further purification. Zinc acetate dihydrate 
(Zn(CH3COO)2·2H2O), sodium hydroxide (NaOH) and 
copper acetate hydrate (Cu(CO2CH3)2H2O) were pur-
chased from fisher scientific. Ammonia solution, iso-
propyl alcohol and ethanol were purchased from Merck 
Millipore. De ionized water was obtained from an ultra 
filter system. ITO/glass substrates were purchased from 
Sigma Aldrich (surface resistivity 15–25 Ω/sq). The sub-
strates were cleaned by standard cleaning procedure.

Synthesis and characterization
A thin layer of ZnO seed layer was deposited by immers-
ing the cleaned ITO/glass substrate in a solution con-
taining zinc acetate (0.025  M) and sodium hydroxide 
(0.05 M) in 100 ml ethanol. The substrate was immersed 
in the solution for 5  min and the dipping process 
repeated for 8 times to obtain a uniform ZnO layer over 
a considerable area of the substrate. In between each dip-
ping process the sample was kept at 80 °C on a hot plate. 
The annealing of the substrates at the optimized tem-
perature 250  °C in air results in the formation of ZnO 
nanoparticles. The ITO/glass substrate with ZnO nano-
particle seed layer will act as a lattice matched substrate 
for the hydrothermal growth of aligned ZnO nanorods. 
The precursor solution for hydrothermal experiment was 
prepared by dissolving zinc acetate (0.1  M) and ammo-
nia (25%) in 100  ml de-ionized water. The solution was 
transferred into a Teflon lined autoclave with the seed 
layer coated substrate immersed horizontally facing up 
and kept at 180  °C for 1  h in a laboratory oven. After 
hydrothermal experiment the samples were taken out 
and sonicated in iso propyl alcohol for few seconds to 
remove the unaligned nanorods lying over the vertically 
aligned nanorods. CuO nanoparticles were deposited by 
a wet chemical method. 0.05 M copper acetate solution 
was prepared in ethanol at room temperature and ZnO 
sample was immersed in the solution for 1 h. After depo-
sition the sample was annealed at 250 °C for 2 h in air to 
form ZnO/CuO heterostructure.

The crystal phase and crystallinity of ZnO/CuO hier-
archical structure was investigated by glancing angle 
X-ray diffraction taken using PANalytical X’pert PRO 
high resolution X-ray diffractometer (HRXRD) with 
CuKα (λ = 1.5418 Å). The detailed microstructure of the 
samples was analyzed using JEM2100 transmission elec-
tron microscopy (TEM) measurements. Raman spec-
tra were recorded using Horiba Jobin–Yvon LABRAM 
HR Raman spectrometer excited with the 514  nm line 
of an  Ar+ laser. The surface morphology of the samples 
was analyzed using Carl Zeiss field emission scanning 
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electron microscopy (FESEM). The absorption spectra of 
the samples were recorded using JASCO V-570 spectro-
photometer. Room temperature photoluminescence (PL) 
of the samples were measured using Horiba Jobin–Yvon 
Fluoromax-3 spectrofluorimeter using Xe lamp as the 
excitation source. The p–n junction characteristics of the 
device were studied using Keithley 4200 Semiconductor 
analyzer.

Gas sensors were fabricated by depositing circular gold 
electrodes on the top of the samples by thermal evapora-
tion technique. The gas sensing measurements were done 
in a homemade stainless steel chamber by applying con-
stant voltage. The applied voltage was 1 V for ZnO alone 
and 8  V for ZnO/CuO structure. Initially we measured 
the current through the sensor in synthetic air until it 
reaches a stable value. For all the sensing measurements 
commercially available high purity sample gases with 
moisture content less than 2 ppm have been used. Vari-
ous concentrations of target gas have been injected into 
the chamber and the corresponding variation in the cur-
rent through the sample was measured using Keithley 
source measure unit. After each measurement the cham-
ber opened and samples have been exposed to air to 
attain the initial resistance. The response of the sensor 
can be defined as

where Ig and Ia are the current measured in the presence 
of the target gas and synthetic air respectively. We have 
taken Ia as the average value of first 50 points measured 
in the presence of air which is used for calculating the 
sensor parameters. The response time and recovery time 
of the sensor can be defined as the time taken for the 
sensor to reach 90% and 10% of the maximum response 
respectively.

Results and discussion
The crystal structure as well as crystallinity of the sam-
ples was analyzed using high resolution glancing angle 
X-ray diffraction shown in Fig.  1. The highly dispersed 
small CuO nanoparticles were not identified with X-ray 
diffraction. All the observed diffraction peaks correspond 
to wurtzite hexagonal ZnO and no peaks correspond-
ing to CuO have been observed in the spectra. The high 
intensity of the peak along (0002) direction confirms the 
c-axial growth of ZnO nanorods [30].

The microstructure of the samples was further analyzed 
using TEM measurements. The TEM image in Fig.  2a 
shows the one dimensional morphology of the nanorods 
and the observed lattice planes in Fig.  2b matches with 
(0002) plane of ZnO with a lattice spacing of 2.6 Å. The 
CuO nanoparticles can be seen on the surface of ZnO 

(1)S =
Ig − Ia

Ia

nanorods in Fig.  2c which make the nanorod surface 
rough. The presence of bright spots in the SAED pattern 
in Fig.  2d indicates the crystalline nature of ZnO/CuO 
structure [30]. In addition to (0002), 
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)

 and 
(
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)

 
planes of wurtzite hexagonal ZnO, 

(

1̄11
)

 lattice plane of 
monoclinic CuO can also be observed in the SAED pat-
tern confirming the formation of ZnO/CuO hierarchical 
structures.

Micro Raman spectroscopy is a non destructive tech-
nique used for analyzing the vibrational properties of 
materials. The Raman spectra of both ZnO and ZnO/
CuO are displayed in Fig.  3. All the observed vibra-
tional modes such as  E2L (98  cm−1),  A1TO (381  cm−1), 
 E2H (437  cm−1), and  E1LO (580  cm−1) corresponds to 
wurtzite hexagonal structure of ZnO. Monoclinic CuO 
exhibit three Raman active modes (Ag + 2Bg) which are 
assigned respectively at 278  cm−1  (Ag), 333  cm−1  (B1g) 
and 620  cm−1  (B2g) [31, 32]. Along with the vibrations 
of ZnO,  Ag mode corresponding to monoclinic CuO 
has been observed for ZnO/CuO heterostructure. The 
Raman vibrations of CuO are highly dependent on the 
method of preparation and this may be the reason for the 
absence of  B2g vibration. The co-existence of ZnO and 
CuO Raman modes in the Raman spectra confirms the 
formation of ZnO/CuO hierarchical structure.

The surface morphology of all the samples was ana-
lyzed using FESEM images depicted in Fig. 4. The verti-
cal alignment of nanorods against the substrate surface 
forms a porous network which makes the gas diffusion 
in and out easier [30]. The sonication has effectively 
removed the unaligned nanorods lying over the vertically 
aligned nanorods shown in the inset of Fig. 4a. The diam-
eter and length of the nanorods are approximately 95 nm 

Fig. 1 Glancing angle X-ray diffraction pattern of ZnO and ZnO/CuO 
hierarchical structure
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and 2  μm respectively. The presence of CuO on ZnO 
nanorods can be clearly seen in Fig. 4d. The attachment 
of CuO increases the interfacial area and correspondingly 
an enhanced gas sensing behavior can be observed.

The UV–visible absorption spectra of ZnO and ZnO/
CuO hierarchical structures are shown in Fig.  5. The 
spectra of pure ZnO nanorods possess an absorption at 
around 370  nm corresponding to the band gap of ZnO 
whereas the band gap absorption edge get slightly red 
shifted to 374  nm in the case of ZnO/CuO hierarchical 
structure similar to that observed in previous reports 
[33, 34]. Also the ZnO/CuO sample has a high value of 
absorbance in the visible region compared to pristine 
ZnO. These factors confirm the formation of CuO loaded 
ZnO hierarchical structures.

The defects such as oxygen vacancies, zinc intersti-
tials, etc. in ZnO nanostructures affects the electronic 

and surface properties of the semiconductor [35, 36]. The 
presence of these defect states are in correlation with the 
performance of a semiconductor gas sensor. Photolumi-
nescence (PL) is a non destructive technique to analyze 
the defect states in materials. The room temperature PL 
emission spectra of ZnO and ZnO/CuO heterostructures 
excited at 325 nm are shown in Fig. 6. For both the sam-
ples emissions bands are observed in the UV as well as 
in the visible region of the electromagnetic spectrum. 
The UV emission shoulder at 378 nm corresponds to the 
characteristic emission closely related to the band gap 
of ZnO. The emission bands in the visible region can be 
attributed to the transitions between various defect levels 
within the band gap of ZnO [37, 38]. Oxygen vacancies 
are one of the important defect states especially in metal 
oxides which make most of them n-type semiconductors. 
The emission band at 564  nm in both ZnO and ZnO/

Fig. 2 a TEM and b HRTEM images of ZnO nanorod, c TEM image and d SAED pattern of ZnO/CuO hierarchical structure
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CuO samples corresponds to the presence of oxygen 
vacancies which make them suitable for the fabrication 
of gas sensors [39] because gas sensing is solely a sur-
face phenomenon which depends mainly on the exposed 
surface area and the presence of oxygen vacancies in the 
sensing material. Thus both Raman and PL confirm the 
presence of considerable amount of oxygen vacancies in 
ZnO and ZnO/CuO structures. The intensity of defect 
related emissions got reduced in ZnO/CuO which can be 
attributed to the formation of p-CuO/n-ZnO junctions 
suppressing the recombination of carriers. The increased 
intensity of band edge emission in ZnO/CuO is due to 
the annealing of the sample at 250 °C.

The room temperature (29  °C) ethanol sensing char-
acteristics of ZnO and ZnO/CuO nanostructures were 
monitored by measuring the change in current upon 
exposure to different concentrations of the target gas. 
The response of ZnO and ZnO/CuO to various con-
centrations of ethanol is shown in Fig.  7. The room 

Fig. 3 Micro Raman spectra of ZnO and ZnO/CuO hierarchical 
structure

Fig. 4 FESEM images of a as grown ZnO nanorods (inset shows the image of sonicated sample), b magnified view of the sonicated sample, c CuO 
attached ZnO nanorods and d magnified view of ZnO/CuO
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temperature response of the sensor increases in etha-
nol ambient due to the redox reactions taking place 
between the metal oxide and the target gas which 
will be discussed later. The room temperature (29  °C) 
operation of the sensor prevents the grain growth in 
the sensing material and also reduces the power con-
sumption of the device. Both ZnO and ZnO/CuO 
samples exhibit very good response to ethanol even 
for 5  ppm concentration at room temperature. The 
response of both the sensors increases with increase in 
concentration of the target gas. Compared to pristine 
ZnO, ZnO/CuO exhibit improved response values for 
all the concentrations used in the present study. The 
vertical alignment as well as the attachment of CuO 

nanoparticles on ZnO nanorod surface increases the 
exposed surface area of the sensor contributing to the 
enhanced sensing characteristics. More importantly the 
p–n junctions formed at the interface of n-ZnO and p-
CuO significantly improve the gas sensor performance. 
The detailed mechanism of the heterojunction device 
will be discussed later.

Figure  8 shows that the response of ZnO/CuO struc-
ture is higher than the response of ZnO for all target gas 
concentrations. The response and recovery time of the 
fabricated sensors are depicted in Fig.  9. It can be seen 
that the response time decreases with increase in concen-
tration whereas the recovery time increases with increase 
in target gas concentration. This can be attributed to the 
number of molecules having minimum required energy 
for the reaction increases at high concentrations hence 
more and more target gas molecules react with adsorbed 
oxygen ions resulting in faster change in resistance. 
Whereas the adsorption takes place slowly at low concen-
trations due to the lower coverage of gas molecules hence 
the change in resistance also takes place slowly. The sig-
nificance of the present work is that even at room tem-
perature both the sensors respond to 5 ppm ethanol gas 
within less than 100 s. The response time calculated is 98 
and 30 s for ZnO and ZnO/CuO respectively and almost 
complete desorption of the target gas takes place espe-
cially at lower concentrations within a few minutes. A 
good sensor should have high value of response and low 
value of response time. The complete solution processed 
p-n heterojunction sensor fabricated in the present 
study exhibit very good values of gas sensor parameters 
at room temperature compared to the previous reports 
[40, 41]. The high value of recovery time of the devices is 
due to the slow desorption rate of ethanol at room tem-
perature [42]. The incorporation of suitable noble metal 
additives such as Ag, Au, Pd, Pt, etc. is an effective way to 
improve the response time of metal oxide based gas sen-
sors [43, 44].

The selectivity of ZnO/CuO nanostructure has been 
studied by testing the response of the device to differ-
ent types of target gases. Figure  10 shows the response 
of ZnO/CuO sensor to 40 ppm concentration of ethanol, 
hydrogen sulfide and ammonia. The response value is 
5.08 for ethanol whereas it is 2.091 and 0.772 for hydro-
gen sulfide and ammonia respectively indicating good 
selectivity towards ethanol. This is because the electron 
donating effect of different types of gas molecules is dif-
ferent which depends on the nature of the gas as well as 
the sensor material.

Table  1 compares the gas sensing characteristics of 
ZnO/CuO gas sensor with the present work. The sim-
ple processing technique and better gas sensing param-
eters make the fabricated device in the present work a 

Fig. 5 UV–visible absorption spectra of ZnO and ZnO/CuO structures

Fig. 6 Photoluminescence emission spectra of ZnO and ZnO/CuO 
heterostructures
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Fig. 7 Schematic representation of the a device structure and b–f room temperature ethanol sensing characteristics of ZnO and ZnO/CuO 
nanostructures

Fig. 8 Comparison of ethanol response of ZnO and ZnO/CuO 
structures

Fig. 9 a Response and b recovery time of ZnO and ZnO/CuO 
structures to ethanol
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promising candidate for the development of room tem-
perature gas sensors.

CuO hierarchical structure exhibit good response to 
various reducing gases and the fabricated devices are 
more selective to ethanol at room temperature (29  °C). 
The basic gas sensing mechanism of metal oxide semicon-
ductors relies on the interaction between the adsorbed 
oxygen molecules on the surface of the sensor material 
and the target gas [5, 7, 48–51]. Generally O2

− at tempera-
ture < 100 °C and O− and O2− at temperature > 100 °C are 
the dominant oxygen species adsorbed on the semicon-
ductor. The adsorption of oxygen ions on the surface of 
oxide semiconductor forms an electron depletion region 
by withdrawing electrons from the conduction band. The 
interaction between the adsorbed oxygen ions and etha-
nol gas release electrons back to the semiconductor con-
sequently the depletion layer width and resistance of the 
semiconductor decreases.

The reasons for the improved sensing behavior of 
ZnO/CuO hierarchical structures can be attributed to 1) 
increased number of active sites for gas adsorption [52] 
and 2) the formation of p-n heterojunctions at the inter-
face of p-CuO and n-ZnO [15, 53, 54]. The high surface to 
volume ratio of nanorods and the presence of CuO nano-
particles together increased the number of gas adsorption 
sites. Also the nanogaps in the nanorod array make more 
target gas molecules to penetrate into the sensing mate-
rial. The schematic energy band diagram of p-CuO/n-
ZnO heterojunction at thermal equilibrium is shown in 
Fig. 11b. Generally oxygen deficient ZnO exhibit n-type 
and oxygen excess CuO exhibit p-type conductivity. 
When there is a difference in Fermi energy between the 
materials forming a junction, electrons from the higher 
energy will flow across the interface to the lower energy 
until the Fermi energies have equilibrated. This leads to 
the formation of a depletion region and a potential bar-
rier at the interface. The presence of a number of p–n 
junctions at the interface results in a remarkable increase 
in the resistance of the heterostructure compared to pris-
tine ZnO or CuO. The total resistance of the heterostruc-
ture will be contributed by the depletion layer on ZnO, 
accumulation layer on CuO and the depletion region at 
the junction and the increased resistance is clear from the 
current–voltage (I–V) characteristics in Fig. 12. Because 
of this increased resistance of the heterojunction we have 
chosen a voltage (8 V) higher than the turn on voltage of 
the diode for sensing measurements. The response time 
and recovery time of the sensor depends on the activa-
tion energy for gas adsorption and desorption and rate 
of gas desorption. Both these factors depend on the mor-
phology and composition of the sensing material. In the 
present work the one dimensional morphology of ZnO as 
well as the attachment of CuO nanoparticles increase the 
number of adsorption sites for oxygen and may decrease 
the activation energy for gas adsorption and desorption 

Fig. 10 Response of ZnO/CuO hierarchical structure to various 
reducing gases (40 ppm) at room temperature

Table 1 Evaluation of the development of gas sensors based on ZnO/CuO structures

a S =
Vg(5000mV−Va)

Va(5000mV−Vg)

b S =
Ra
Rg

c S =

(

Ig−Ia
Ia

)

× 100

d S =

(

Ig−Ia
Ia

)

Method of synthesis Sensor working 
temperature (°C)

Target gas concentration (ppm) Response Response 
time (s)

Recovery 
time (s)

References

Hydrothermal 220 Ethanol 100 25.5a 6 42 [45]

Hydrothermal 300 Ethanol 100 98.8b 7 9 [46]

Solid state reaction Room temperature Ethanol 150 2.3b 70 88 [41]

Pulsed laser deposition Room temperature Hydrogen sulphide 15 78c 180 15 [47]

Hydrothermal Room temperature Ethanol 5 0.53d 30 63 Present work

50 5.87d 9 420
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processes at room temperature resulting in enhanced gas 
sensing performance.

In the energy band diagram shown in Fig.  11, Eg1 
(1.35  eV), χ1 (4.07  eV) and Eg2 (3.37  eV), χ2 (4.35  eV) 
represents band gaps and electron affinities [16, 23, 46, 
55] of CuO and ZnO respectively. The barrier height of 
conduction band (�EC = χ2 − χ1) and valence band 
[

�EV =
(

Eg2 − Eg1
)

−�EC
]

 at the p–n junction were 
0.28 eV and 1.74 eV respectively. The generated free elec-
trons on adsorption of ethanol gas in ZnO can easily 
transport through the p–n junction due to the low value 
of �EC and at the same time the holes in CuO will accu-
mulate at the valence band of p–CuO due to the large 
value of �EV  . At low temperatures the dissociation of 
ethanol into aldehyde  (CH3CHO) and  H2O are promi-
nent than the formation of  CO2 and  H2O [41, 56, 57]. At 
room temperature the dehydrogenation of ethanol mol-
ecules generate OH− ions (breaking of C-O bond) and 
[CH3CH2O]− ions (breaking of O–H bond) due to the 
lower bond breaking energy of C-O and O–H bonds. 
Ethanol vapor can be easily attached to metal oxide 
surfaces in the form of dehydrogenated ionic fragment 
[CH3CH2O]− through the interaction of adsorbed oxy-
gen on metal oxide surfaces represented by the Eq.  (2). 
Also at the interface of ZnO/CuO junction ethanol mol-
ecules react with holes in CuO [51, 58–60] followed by 
the Eq. (3).

These reactions release free electrons resulting in the 
enhanced room temperature gas sensing performance 
of p-CuO/n-ZnO heterojunction device.

Conclusions
ZnO/CuO heterojunction gas sensor has been suc-
cessfully fabricated by low temperature solution pro-
cessing and its room temperature (29  °C) response to 
various reducing gases has been investigated. Working 
at room temperature, the response to ethanol gas of 
the fabricated device is higher than to hydrogen sulfide 
or ammonia gases. All the gas sensor parameters have 
been improved by the incorporation of CuO nanoparti-
cles on ZnO nanorods. The easy preparation technique 

(2)

CH3CH2OH(g) +O−

2(ads) →

{

[CH3CH2O]
−

(ads) +OH−

(ads)

CH3CHO+H2O+ e−

(3)
CH3CH2OH(g) + 2h+ + e− +O−

2(ads)

→ CH3CHO+H2O+ e−

Fig. 11 Energy-band diagram of a CuO and ZnO and b ZnO/CuO 
heterojunction device at thermal equilibrium

Fig. 12 Current–voltage characteristics of ZnO/CuO hierarchical 
structure (Inset shows the I–V characteristics of ZnO alone
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and room temperature gas sensing of the samples will 
make the practical use of these devices with reduced 
power consumption a reality.
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