
Almandil et al. BMC Chemistry           (2019) 13:14  
https://doi.org/10.1186/s13065-019-0522-x

RESEARCH ARTICLE

Indole bearing thiadiazole analogs: 
synthesis, β-glucuronidase inhibition 
and molecular docking study
Noor Barak Almandil1†, Muhammad Taha1*† , Mohammed Gollapalli3†, Fazal Rahim2†, Mohamed Ibrahim1†, 
Ashik Mosaddik1† and El Hassane Anouar4†

Abstract 

Background: Indole based thiadiazole derivatives (1–22) have synthesized, characterized by NMR and HREI-MS and 
evaluated for β-Glucuronidase inhibition. All compounds showed outstanding β-glucuronidase activity with  IC50 
values ranging between 0.5 ± 0.08 to 38.9 ± 0.8 µM when compared with standard d-saccharic acid 1,4 lactone  (IC50 
value of 48.1 ± 1.2 µM). The compound 6, a 2,3-dihydroxy analog was found the most potent among the series with 
 IC50 value 0.5 ± 0.08 µM. Structure activity relationship has been established for all compounds. To confirm the bind-
ing interactions of these newly synthesized compounds, molecular docking study have been carried out which reveal 
that these compounds established stronger hydrogen bonding networks with active site residues.

Keywords: Synthesis, Indole, Thiadiazole, β-Glucuronidases, Molecular docking, SAR

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/
publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
β-Glucuronidases enzymes belong to family glycoside 
hydrolase GH1, GH2 and GH79, and reduce glucuronic 
acid sugar moiety from non-reducing termini. It has 
been used in disease diagnosis, gene manipulation and 
food industry. Recently it has drawn more attention to 
enhance the efficacy by modifying natural glucuronides 
[1–5]. β-Glucuronidase present in microsomes and lys-
osomes and eliminate from body through urinary track 
[6]. Activity of β-glucuronidase increases in many dis-
eases like AIDS, inflammation, cancer and hepatic dis-
ease [7]. Cholelithiasis is originated in human bile due to 
endogenous biliary β-glucuronidase which is related with 
deconjugation of bilirubin glucuronidase [8]. Increase 
level of this enzyme is associated with some urinary dis-
order like active pyelonephritis, cancer of kidney bladder 

and acute renal necrosis [9]. β-Glucuronidase in humane 
has resulted in mucopolysaccharidosis type VII (MPS 
VII; Sly syndrome), which is characterized by growth 
of glycosaminoglycans in cells of most tissues [10, 11]. 
Indole is an important class of compounds with wide 
range of application in medicinal chemistry [12, 13]. 
Variety of compounds having indole is the basic unit pos-
sesses antitumor applications [14, 15]. Many compounds 
containing indole scaffold have effect in many physiologi-
cal processes. Indole with 5-HT receptor activity as ago-
nist and antagonist is the most recent synthetic interest 
in medicinal chemistry [16, 17].

The thiadiazole skeleton constitutes an important 
central template for a wide variety of biologically active 
compounds, having many pharmacological applications 
2-amino-1,3,4-thiadiazole and certain structurally related 
compounds have been known for 50 years to have antitu-
mor activity [18]. Compounds of this class are uricogenic 
agents in man [19]. Both the antitumor and the urico-
genic activities can be prevented or reversed by nicotina-
mide [20, 21]. Variety of thiadiazole derivatives possess 
interesting biological activities and are of great interest 
to chemist [22]. Many bioactive molecules in the field of 
drugs and pharmaceuticals contained thiadiazole moiety 
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[23–25]. Thiadiazole derivatives biological applications 
include antibacterial, anticonvulsant, anti-leishmanial, 
anticancer, antidepressant, anti-inflammatory, anti-
oxidant and anti-tuberculosis [26–34]. The indole and 
related heterocyclic compounds have also great impor-
tance in the field of chemistry [35].

Keeping in view the great biological potential of 
indole and thiadiazole analogs here in this study we have 
planned to synthesize the hybrid molecules of indole 
based thiadiazole derivatives with the hope that it may 
showed greater potential. After evaluation for biologi-
cal potential we have found outstanding results which 
support our previous hypothesis. Here we are reporting 
synthesis of indole based thiadiazole derivatives, its char-
acterization, β-glucuronidase inhibition and molecular 
docking studies.

Result and discussion
Chemistry
A series of indole based thiadiazole were synthesized by 
refluxing ethyl 1H-indole-5-carboxylate (a) with hydra-
zine hydrate in ethanol for 2  h to afford 1H-indole-
5-carbohydrazide (b) refluxed with Lawesson’s reagent in 
toluene yielded corresponding thio-analogue (c). Thiohy-
drazide (c) was then treated with various aryl aldehydes 
to form cyclized adducts 1–22 (Table  1) in the pres-
ence of  POCl3 (Scheme 1). Upon completion of reaction 
(monitored with TLC), product was recrystallized from 
methanol and purified by washing. Spectral data includ-
ing 1H-NMR, 13C-NMR, and HREI-MS for all synthe-
sized compounds were recorded. 

Biological activity
In the continuation of our effort for enzyme inhibi-
tion [36], we have synthesized series of indole based 
thiadiazole derivatives, a new class of β-glucuronidase 
inhibitors. All the compounds (1–22) were screened 
for β-glucuronidase activity. All the compounds 
showed outstanding inhibition when compared with 
standard d-saccharic acid 1,4 lactone with  IC50 value 
48.1 ± 1.2  µM (Table  1). Structure activity relation-
ship (SAR) has been established mainly based on the 
substitution pattern on phenyl ring attached to thia-
diazole. The compound 6, a 2,3-dihydroxy analog was 
found the most potent among the series with  IC50 
value 0.5 ± 0.08  µM. The greater potential shown by 
this compound is seems mainly due to the hydroxyl 
group on phenyl ring which might be involve in hydro-
gen bonding with the active site of enzyme. If we com-
pare analog 6 with other dihydroxy substituted analogs 
like 5, a 2,5-dihydroxy analog  (IC50 = 1.82 ± 0.01  µM), 
7, a 3,4-dihydroxy analog  (IC50 = 1.1 ± 0.08  µM), and 
8, a 2,4-dihydroxy analog  (IC50 = 2.30 ± 0.1  µM), the 

analog 6 is superior. The slight difference in the potential 
of these analogs is seems due to the difference in posi-
tion of substituent. The mono-hydroxy analogs like 3, a 
2-hydroxy analog  (IC50 = 3.1 ± 0.01  µM), 4, a 3-hydroxy 
analog  (IC50 = 7.1 ± 0.05  µM), 9, a 4-hydroxy analog 
 (IC50 = 5.3 ± 0.1  µM) and 13, a 2-hydroxy-4-methoxy 
analog  (IC50 = 12.3 ± 0.3  µM) also showed outstand-
ing potential. The dihydroxy analogs are superior when 
mono-hydroxy analogs. The reason for greater poten-
tial of dihydroxy analogs is mainly due to greater num-
ber of hydroxyl group. This shows that number of 
hydroxyl group also paly critical role in this inhibition. 
In nitro substituted analogs like 10, a 2-nitro analog 
 (IC50 value 24.38 ± 0.3  µM) is predominating over 11, 
a 3-nitro analog  (IC50 value 35.30 ± 0.5  µM) and 12, 
a 4-nitro analog  (IC50 value 28.2 1 ± 0.4  µM) which 
shows that position of substituent plays an important 
role. Similar pattern was also observed in other sub-
stituted analog like flouro analogs 18, a 2-nitro analog 
 (IC50 value 4.6 ± 0.2  µM) with 19, a 3-nitro analog 
 (IC50 value 9.9 ± 0.4  µM) and 20, a 4-nitro analog  (IC50 
value 6.2 ± 0.3  µM) and chloro substituted analogs 
like compound 21, a 4-chloro analog (12.0 ± 0.30  µM) 
is more potent than 22, a 4-chloro analog  (IC50 value 
19.28 ± 0.3  µM)and 15, a 3-chloro analog  (IC50 value 
19.8 ± 0.3  µM). It was concluded form this study that 
position, nature and number of substituents on phenyl 
ring plays a critical in this inhibition.

Molecular docking study
The concentration inhibition  IC50 values of thiadiazole 
synthesized derivatives as β-glucoronidase inhibitors are 
presented in (Table 1). As shown in Table 1, the inhibi-
tory potency of the tilted compounds depends mainly on 
the type, number and positions of the functional group 
in the substitute group R of the synthesized deriva-
tives. According to inhibitory  IC50 values (Table  1), the 
synthesized derivatives may be subdivided into highly 
active group with low  IC50 values (e.g., 6, 7, 3), moder-
ate active group (e.g., 4, 9, 20) and low active group (e.g., 
1, 2). For a better understanding of the observed results 
and to rationalize the highest activity of 6 compared to 
4, and the low activity of 1 with regards to 4, molecular 
docking study has been carried out to shed light on the 
established binding modes of the three chosen synthe-
sized compounds 6, 4 and 1 to the closest residues in the 
active site of β-glucoronidase enzyme. Table  2 summa-
rized the calculated binding energies of the stable com-
plexes ligand- β-glucoronidase, number of established 
intermolecular hydrogen bonding between the synthe-
sized compounds (1, 4 and 6) and active site residues of 
β-glucoronidase.
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Table 1 Synthesis of indole based thiadiazole analogs and their β-glucuronidase potential

S. No R IC50 ± SEMa

1 12.60 ± 0.1

2
Me

11.1 ± 0.1

3
HO

3.1 ± 0.01

4
OH

7.1 ± 0.05

5

HO

OH

1.82 ± 0.01

6
HO OH

0.5 ± 0.08

7
OH

OH 1.1 ± 0.08

8 OH

HO

2.30 ± 0.1

9 OH 5.3 ± 0.1

10
O2N

24.38 ± 0.3

11
NO2

35.30 ± 0.5

12 NO2 28.2 1 ± 0.4

13

HO

O

12.3 ± 0.3
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Table 1 (continued)

15
Cl

19.8 ± 0.3

16
N

19.7 ± 0.5

17 N 15.8 ± 0.4

18
F

4.6 ± 0.2

19
F

9.9 ± 0.4

20 F 6.2 ± 0.3

21
Cl

12.0 ± 0.30

22 Cl 19.28 ± 0.3

Standard D-Saccharic acid 1,4 lactoneb 48.1± 1.2

14
F

Br

38.9 ± 0.8

a standard error mean
b standard drug

H
N

O

O

NH2NH2. H2O

ethanol

H
N

H
N

O
H2N

H
N

S

N N
R

a b

1-22

Lawesson's reagent

toluene, Reflux

H
N

H
N

S
H2N

c
Substituted
aldehydes

POCl3, 
pyridine

Scheme 1 Synthesis of indole based thiadiazole derivatives 1–22 
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As can be seen from the docking results shown in 
Table  2 and Fig.  1, the highest activity of synthesized 
compound 6 compared to low active compounds 4 and 1 
is mainly return to (ii) the stability of the formed complex 
between the docked compounds and β-glucoronidase, 
and the (ii) number of hydrogen bonding established 
between the docked ligands and the active site resi-
dues of the β-glucoronidase. However, it can be con-
cluded that the number of closest residues to the docked 
ligands where all of them are surrounded by almost the 
same number of residues into the active site (Table 2 and 
Fig.  1) has no effect on the observed activities. Indeed, 
the formed complex between 6 and β-glucoronidase has 
the lowest binding energy of − 8.6 kcal/mol compared to 
4 and 1 with binding energies of the stables complexes 
between the two compound and β-glucoronidase are of 
− 8.3 and − 7.7 kcal/mol, respectively (Table 2). In addi-
tion, four hydrogen bonding are established between res-
idues of β-glucoronidase and compound 6 into the active 
site (Fig.  1c). The strongest hydrogen bond is formed 
between GLU45 amino acid and the hydrogen atom of 
hydroxyl group of catechol moiety of a 6 with distance 
of 1.66 Å. The second hydrogen bond is relatively weaker 
than the first one and is established between hydrogen 
atom of hydroxyl of catechol oxygen in ortho position 
of catechol group and GLU287 with a distance of 2.2 Å. 
The two other hydrogen bonds are relatively weak than 
the previous ones. The first one is established between 
ASN80 amino acid and the oxygen atom of the hydroxyl 
group of catechol moiety of 6 with a distance of 2.82 Å. 
The second one is established between HIS327 and 
hydrogen atom of hydroxyl group of catechol moiety of 
6 with a distance of 2.96 Å. In a similar way, the higher 
activity of 4 compared to 1 may be explained by the 
above effects (i) and (ii) (Table 1 and Fig. 1). For instance, 
the complex formed between 4 and β-glucoronidase has 
a binding energy of − 8.3  kcal/mol and two hydrogen 

bonding of distance 1.95  Å, which are formed between 
amino acids ASP105 and TYR243 and hydrogen of NH 
and hydrogen atom of hydroxyl group of phenol group 
of 4, respectively. While, for the synthesized compound 
1, the formed complex has energy binding of − 7.7 kcal/
mol, and only one hydrogen bond that is formed between 
HIS241 amino acids and NH group of compound 1.

Materials and methods
NMR experiments were performed on Avance Bruker 
AM 300 MHz machine. Electron impact mass spectra (EI 
MS) were recorded on a Finnigan MAT-311A (Germany) 
mass spectrometer. Thin layer chromatography (TLC) 
was performed on pre-coated silica gel aluminum plates 
(Kieselgel 60, 254, E. Merck, Germany). Chromatograms 
were visualized by UV at 254 and 365 nm.

Molecular docking details
The interaction binding modes between the active site 
residues of β-glucoronidase and docked synthesized 
indole derivatives have been carried out using Autodock 
package [37–39]. X-ray coordinates of β-glucoronidase 
and the originated docked ligand N-alkyl cyclophellitol 
aziridine were downloaded from the RCSB data bank web 
site (PDB code 5G0Q) [40–45]. Water molecules were 
removed; polar hydrogen atoms and Kollman charge 
were added to the extracted receptor structure by using 
the automated tool in AutoDock Tools 4.2. The active 
site is identified based on co-crystallized receptor-ligand 
complex structure of β-glucoronidase. The re-docking of 
the original ligand N-alkyl cyclophellitol aziridine into 
the active site is well reproduced with a RMSD value less 
than 2 Å. The molecular structures geometries of indole 
synthesized derivatives were minimized at Merck molec-
ular force field 94 (MMFF94) level 44. The optimized 
structures were saved as pdb files. Nonpolar hydro-
gens were merged and rotatable bonds were defined for 
each docked ligand. Docking studies were performed by 
Lamarckian genetic algorithm, with 500 as total number 
of run for binding site for originated ligand and 100 run 
for the synthesized derivatives. In each respective run, 
a population of 150 individuals with 27,000 generations 
and 250,000 energy evaluations were employed. Operator 
weights for crossover, mutation, and elitism were set to 
0.8, 0.02, and 1, respectively. The binding site was defined 
using a grid of 40 × 40 × 40 points each with a grid spac-
ing of 0.375  Å. The docking calculation have been car-
ried out using an Intel (R) Core (TM) i5-3770 CPU @ 
3.40 GHz workstation (Additional file 1).

Table 2 Concentration inhibition  IC50, docking binding 
energies and  number of  closest residues to  the  docked 
ligand in  the  active site of  synthesized derivatives (1, 4 
and 6) within the active binding site of β-glucoronidase

No. 
of compound

Free 
binding 
energy 
(kcal/mol)

H-bonds 
(HBs)

Number 
of closest 
residues 
to the docked 
ligand 
in the active 
site

IC50 ± SEM

1 − 7.71 1 7 12.60 ± 0.1

4 − 8.29 2 8 7.1 ± 0.05

6 − 8.59 4 7 0.5 ± 0.08
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Fig. 1 3D (right) and 2D (left) closest interactions between active site residues of β-glucuronidase and synthesized compounds a 1, b 4, and c 6 
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General procedure for the synthesis of compounds (1–22)
Thiadiazole derivatives 1–22 were synthesized by reflux-
ing ethyl 1H-indole-5-carboxylate (a) with hydrazine 
hydrate in ethanol for 2  h to afford 1H-indole-5-carbo-
hydrazide (b) refluxed with Lawesson’s reagent in toluene 
yielded corresponding thio-analogue (c). Thiohydrazide 
(c) was then treated with various aryl aldehydes to form 
cyclized adducts 1–22.

Compound 1: 2‑(1H‑indol‑5‑yl)‑5‑(p‑tolyl)‑1,3,4‑thiadiazole
Yield 90%, 1H-NMR (500  MHz, DMSO-d6): δ 11.75 (s, 
1H), 8.18 (s, 1H), 7.68 (d, 1H, J = 8.0  Hz), 7.60 (d, 2H, 
J = 6.5 Hz), 7.45 (t, 2H, J = 8.0 Hz), 7.26 (d, 2H, J = 7.0 Hz), 
6.53 (s, 1H), 2.38 (s, 3H); 13C-NMR (125 MHz, DMSO-
d6): δ 173.8, 173.4, 133.3, 131.4, 130.3, 130.1, 129.5, 129.4, 
128.4, 127.4, 127, 124.1, 119.4, 116.2, 111.2, 102.2, 21.1, 
EI-MS: m/z calcd for  C17H13N3S  [M]+ 291.0830, Found 
291.0818.

Compound 2: 2‑(1H‑indol‑5‑yl)‑5‑(o‑tolyl)‑1,3,4‑thiadiazole
Yield 87%, 1H-NMR (500  MHz, DMSO-d6): δ 11.70 (s, 
1H), 8.23 (s, 1H), 7.80 (d, 1H, J = 6.0  Hz), 7.68 (d, 1H, 
J = 8.0  Hz), 7.48-7.45 (m, 2H), 7.29-7.26 (m, 3H), 6.55 
(s, 1H), 2.43 (s, 3H); 13C-NMR (125  MHz, DMSO-d6): 
δ 173.8, 173.1, 137, 136.7, 135.3, 129.8, 129.4, 128.4, 
128.3, 127.7, 126.3, 124.7, 119, 116.2, 111.2, 102.2, 18.5, 
EI-MS: m/z calcd for  C17H13N3S  [M]+ 291.0830, Found 
291.0813.

Compound 3: 2‑(5‑(1H‑indol‑5‑yl)‑1,3,4‑thiadiazol‑2‑yl)phenol
Yield 83%, 1H-NMR (500  MHz, DMSO-d6): δ 11.90 
(s, 1H, NH), 8.52 (s, 1H, OH), 8.20 (s, 1H), 7.68 (d, 
1H, J = 8.0  Hz), 7.59 (d, 1H, J = 8.0  Hz), 7.52 (d, 2H, 
J = 7.5 Hz), 6.50 (d, 2H, J = 8.0 Hz), 6.57 (s, 1H); 13C-NMR 
(125 MHz, DMSO-d6): δ 173.8, 173, 155.5, 134.5, 130.3, 
130, 129.3, 128.5, 124.0, 123.4, 121.5, 118.7, 117.5, 116.2, 
111.3, 102.1, EI-MS: m/z calcd for  C16H11N3OS  [M]+ 
293.0623, Found 293.0609.

Compound 4: 3‑(5‑(indol‑5‑yl)‑1,3,4‑thiadiazol‑2‑yl)phenol
Yield 81%, 1H-NMR (500  MHz, DMSO-d6): δ 9.60 
(s,1H, NH), 8.34 (s, 1H, OH), 8.18 (s, 1H), 7.67 (d, 
1H, J = 8.0  Hz), 7.48 (t, 2H, J = 7.5  Hz), 7.32 (d, 1H, 
J = 7.5  Hz), 7.24 (d, 1H, J = 7.5  Hz), 7.10 (d, 1H, 
J = 7.8), 6.83 (d, 1H, J = 7.5 Hz), 6.59 (s, 1H); 13C-NMR 
(125  MHz, DMSO-d6): δ 174.0, 174.0, 157.3, 151.4, 
134.7, 130.4, 129.7, 128.0, 126.6, 123.3, 121.6, 115.7, 
113.7, 112.6, 46.6, 30.4, EI-MS: m/z calcd for  C16H12N3S 
 [M]+ 293.0623, Found 293.0608.

Compound 5: 2‑(5‑(1H‑indol‑5‑yl)‑1,3,4‑thiadiazol‑2‑yl)
benzene‑1,4‑diol
Yield 80%, 1H-NMR (500  MHz, DMSO-d6): δ 11.92 (s, 
1H, NH), 10.62 (s, 1H, OH), 8.42 (s, 1H, OH), 8.31 (s, 
1H), 7.70 (d, 1H, J = 8.0 Hz), 7.49 (d, 2H, J = 8.0 Hz), 6.75 
(s, 1H), 6.65 (s, 1H), 6.55 (d,1H, J = 8.0  Hz), 6.73 (d,1H, 
J = 8.0  Hz), 6.56 (s, 1H); 13C-NMR (125  MHz, DMSO-
d6): δ 174.0, 174.0, 150.0, 147.5, 135.3, 129.5, 128.5, 125.0, 
124.1, 118.8, 117.6, 117.1, 116.2, 114.1, 111.4, 102.2, 
EI-MS: m/z calcd for  C16H11N3O2S  [M]+ 309.0572, 
Found 309.0554.

Compound 6: 3‑(5‑(1H‑indol‑5‑yl)‑1,3,4‑thiadiazol‑2‑yl)
benzene‑1,2‑diol
Yield 88%, 1H-NMR (500  MHz, DMSO-d6): δ 12.08 
(s, 1H, NH), 9.14 (s, 1H, OH), 8.55 (s, 1H, OH), 8.20 
(s, 1H), 7.70 (d, 1H, J = 8.0 Hz), 7.55 (d, 1H, J = 8.0 Hz), 
6.90 (d, 1H, J = 7.8 Hz), 6.85 (d, 1H, J = 7.8), 6.76 (t, 1H, 
J = 7.0 Hz), 6.60 (d, 1H, J = 2.0 Hz); 13C-NMR (125 MHz, 
DMSO-d6): δ 174.0. 174.0, 145.4, 143.7, 135.3, 129.5, 
128.5, 125.0, 124.1, 123.0, 121.3, 118.8, 117.1, 116.2, 
111.4, 102.2, EI-MS: m/z calcd for  C16H11N3O2S  [M]+ 
309.0572, Found 309.0550.

Compound 7: 4‑(5‑(1H‑indol‑5‑yl)‑1,3,4‑thiadiazol‑2‑yl)
benzene‑1,2‑diol
Yield 77%, 1H-NMR (500 MHz, DMSO-d6): δ 9.32 (s, 1H, 
NH), 9.21 (s, 1H, OH), 8.32 (s, 1H, OH), 8.6 (s, 1H),7.71 
(d, 1H, J = 8.0 Hz), 7.42 (d, 2H, J = 8.0 Hz), 7.23 (s, 1H), 
6.91 (d, 1H, J = 7.0 Hz), 6.74 (d, 1H, J = 8.0 Hz), 6.56 (d, 
1H, J = 2.0 Hz); 13C-NMR (125 MHz, DMSO-d6): δ 174.0, 
174.0, 147.1, 145.7, 135.4, 129.5, 128.5, 127.3, 124.1, 
121.3, 118.8, 116.2, 116.0, 14.1, 111.4, 102.2, EI-MS: m/z 
calcd for  C16H11N3O2S  [M]+ 309.0572, Found 309.0559.

Compound 8: 4‑(5‑(1H‑indol‑5‑yl)‑1,3,4‑thiadiazol‑2‑yl)
benzene‑1,3‑diol
Yield 73%, 1H-NMR (500 MHz, DMSO-d6): δ 11.80 (s,1H, 
NH), 9.92 (s, 1H, OH), 8.53 (s, 1H, OH), 8.18 (s, 1H), 7.71 
(d, 1H, J = 8.0  Hz), 7.47 (d, 2H, J = 8.0  Hz), 7.44 (t, 1H, 
J = 6.0 Hz), 7.25 (d, 1H, J = 8.0), 6.34 (d, 1H, J = 8.0 Hz), 
6.31(d, 1H, J = 6.0 Hz); 13C-NMR (125 MHz, DMSO-d6): 
δ 174.0, 174.0, 159.7, 156.4, 135.3, 130.1, 129.5, 128.5, 
124.1, 118.8, 116.2, 116.1, 111.4, 108.9, 105.4, 102.2, 
EI-MS: m/z calcd for  C16H11N3O2S  [M]+ 309.0572, 
Found 309.0558.

Compound 9: 4‑(5‑(1H‑indol‑5‑yl)‑1,3,4‑thiadiazol‑2‑yl)phenol
Yield 79%, 1H-NMR (500  MHz, DMSO-d6): δ 11.59 
(s, 1H, NH), 8.39 (s, 1H, OH), 8.16 (S, 1H), 7.65 (d, 1H, 
J = 8.0  Hz), 7.54 (d, 2H, J = 8.0  Hz), 7.45-7.42 (m, 2H), 
6.80 (d, 2H, J = 8.0 Hz), 6.55 (s, 1H); 13C-NMR (125 MHz, 
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DMSO-d6): δ 174.0, 174.0, 158.3, 135.3, 129.5, 128.7, 
128.7, 128.5, 126.0, 124.1, 118.8, 116.2, 116.2, 116.2, 
111.4, 102.2, EI-MS: m/z calcd for  C16H11N3OS  [M]+ 
293.0623, Found 293.0627.

Compound 10: 2‑(1H‑indol‑5‑yl)‑5‑(2‑nitrophenyl)‑1,3,4‑ 
thiadiazole
Yield 81%, 1H-NMR (500  MHz, DMSO-d6): δ 12.10 (s, 
1H, NH), 8.23 (s, 1H), 8.14 (d, 1H, J = 7.0 Hz), 8.05 (d, 1H, 
J = 8.0  Hz), 7.82 (t, 1H, J = 7.0  Hz), 7.70 (d, 1H, J = 8.0), 
7.65 (t, 1H, J = 7.0  Hz), 7.51-7.48 (m, 2H); 6.72 (s, 1H); 
13C NMR (125  MHz, DMSO-d6): δ 174.0, 174.0, 146.7, 
135.3, 135.1, 131.4, 129.5, 129.4, 128.5, 128.2, 124.2, 
124.1, 118.8, 116.2, 111.4, 102.2, EI-MS: m/z calcd for 
 C16H10N4O2S  [M]+ 322.0524, Found 322.0510.

Compound 11: 2‑(1H‑indol‑5‑yl)‑5‑(3‑nitrophenyl)‑1,3,4‑ 
thiadiazole
Yield 89%, 1H-NMR (500  MHz, DMSO-d6): δ 12.08 
(s, 1H), 8.59 (d, 2H, J = 8.5  Hz), 8.25-8.22 (m, 2H), 8.14 
(d, 1H, J = 7.0  Hz), 7.74 (t, 1H, J = 8.0  Hz), 7.70 (d, 1H, 
J = 8.0  Hz), 7.50-7.46 (m, 2H), 6.63 (s, 1H); 13C NMR 
(125 MHz, DMSO-d6): δ 174.0, 174.0, 148.2, 137.0, 135.3, 
134.2, 130.0, 129.5, 128.5, 124.1, 123.7, 122.6, 118.8, 
116.2, 111.4, 102.2, EI-MS: m/z calcd for  C16H10N4O2S 
 [M]+ 322.0524, Found 322.0507.

Compound 12: 2‑(1H‑indol‑5‑yl)‑5‑(4‑nitrophenyl)‑1,3,4‑ 
thiadiazole
Yield 91%, 1H-NMR (500  MHz, DMSO-d6): δ 12.03 
(s, 1H, NH), 8.30 (d, 2H, J = 8.0  Hz), 8.22 (s, 1H), 8.15 
(d, 1H, J = 8.0  Hz), 8.01 (d, 2H, J =8.0  Hz), 7.70 (d, 1H, 
J = 8.0  Hz), 7.49-7.46 (m, 2H) 6.62 (s, 1H); 13C NMR 
(125 MHz, DMSO-d6): δ 174.7, 174, 148.1, 139.2, 135.2, 
129.5, 128.6, 128.7, 128.2, 124.8, 124.5, 124, 119.3, 116, 
111.2, 102, EI-MS: m/z calcd for  C16H10N4O2S  [M]+ 
322.0524, Found 322.0509.

Compound 13: 2‑(5‑(1H‑indol‑5‑yl)‑1,3,4‑thiadiazol‑2‑yl)‑4‑ 
methoxyphenol
Yield 90%, 1H-NMR (500  MHz, DMSO-d6): δ 12.08 (s, 
1H, NH), 11.41 (s, 1H, OH), 8.23 (s, 1H), 7.70 (d, 1H, 
J = 8.0  Hz), 7.49-7.46 (m, 2H), 7.09 (d, 1H, J = 8.0  Hz), 
6.90 (d, 2H, J = 2.0 Hz), 6.84 (d, 1H, J = 7.5 Hz), 3.78 (s, 
3H); 13C NMR (125  MHz, DMSO-d6): δ 174.7, 174.0, 
153.5, 147.1, 135.8, 129.9, 128.6, 124.9, 124.4, 119.3, 
117.2, 116.2, 115.4, 112.5, 111.3, 102.2, 55.4, EI-MS: m/z 
calcd for  C17H13N3O2S  [M]+ 323.0728, Found 323.0711.

Compound 14: 2‑(3‑bromo‑4‑fluorophenyl)‑5‑(1H‑indol‑5‑yl)‑ 
1,3,4‑thiadiazole
Yield 88%, 1H-NMR (500  MHz, DMSO-d6): δ 11.94 (s, 
1H), 8.20 (s, 1H), 8.02 (d, 1H, J = 7.0 Hz), 7.75 (s, 1H), 7.67 

(d, 2H, J = 7.0  Hz), 7.48-7.45 (m, 3H), 6.65 (s, 1H); 13C 
NMR (125 MHz, DMSO-d6): δ 174.4, 174.3, 165.2, 135.3, 
134.4, 131, 129.4, 128.5, 128.8, 124.7, 119.3, 118, 116.3, 
111.3, 110.4, 102.2, EI-MS: m/z calcd for  C16H9BrFN3S 
 [M]+ 372.9685, Found 372.9661.

Compound 15: 2‑(3‑chlorophenyl)‑5‑(1H‑indol‑5‑yl)‑1,3,4‑ 
thiadiazole
Yield 90%, 1H-NMR (500 MHz, DMSO-d6): δ 9.72 (s, 1H, 
NH), 8.20 (s, 1H), 7.78 (d, 1H, J = 7.0 Hz), 7.48-7.45 (m, 
2H), 7.35-7.31 (m, 2H), 7.12 (d, 1H, J = 7.0 Hz), 6.82 (d, 
1H, J = 8.0 Hz), 6.62 (s, 1H); 13C NMR (125 MHz, DMSO-
d6): δ 174.7, 174.4, 135.3, 135.1, 134.5, 129.5, 129.4, 129.3, 
128.5, 128.3, 127.2, 124.1, 119.3, 116.2, 111.7, 102.9, 
EI-MS: m/z calcd for  C16H10ClN3S  [M]+ 311.0284, Found 
311.0280.

Compound 16: 2‑(1H‑indol‑5‑yl)‑5‑(pyridin‑3‑yl)‑1,3,4‑ 
thiadiazole
Yield 81%, 1H-NMR (500  MHz, DMSO-d6): δ 11.90 (s, 
1H), 8.62 (s, 1H),8.58 (d, 1H, J = 5.0  Hz), 8.24 (s, 1H), 
8.12 (d, 1H, J =6.5 Hz), 7.70 (d, 1H, J = 8.0 Hz), 7.46-7.42 
(m, 3H), 6.58 (s, 1H); 13C NMR (125 MHz, DMSO-d6): δ 
174.4, 174, 149.3, 148.1, 135.2, 134.3, 133.2, 129.5, 128.4, 
124.4, 124.3, 119.2, 116.2, 111.4, 102.6, EI-MS: m/z calcd 
for  C15H10N4S  [M]+ 278.0626, Found 278.0612.

Compound 17: 2‑(1H‑indol‑5‑yl)‑5‑(pyridin‑4‑yl)‑1,3,4‑ 
thiadiazole
Yield 80%, 1H-NMR (500  MHz, DMSO-d6): δ 12.01 
(s, 1H), 8.62 (d, 2H, J = 6.5  Hz), 8.48 (s, 1H), 7.70 (d, 
1H, J = 8.0  Hz), 7.68 (d, 2H, J = 8.0  Hz), 7.57 (d, 1H, 
J = 4.5 Hz), 7.50 (d, 1H, J = 8.0 Hz), 6.66 (s, 1H); 13C NMR 
(125 MHz, DMSO-d6): δ 174.5, 174, 150.1, 149.5, 143.5, 
135.3, 129.4, 128.4, 124.1, 121.4, 121.2, 119.2, 116.2, 111.4, 
102.7, EI-MS: m/z calcd for  C15H10N4S [M] + 278.0626, 
Found 278.0614.

Compound 18: 2‑(2‑fluorophenyl)‑5‑(1H‑indol‑5‑yl)‑1,3,4‑ 
thiadiazole
Yield 89%, 1H-NMR (500  MHz, DMSO-d6): δ 11.88 (s, 
1H, NH), 8.22 (s, 1H), 8.08 (s, 1H), 7.70 (d, 1H, J = 8.0 Hz), 
7.50 (d, 1H, J = 8.0 Hz), 7.42 (t, 1H, J = 6.5 Hz), 7.38 (t, 1H, 
J = 6.5 Hz), 7.29 (d, 2H, J = 8.0 Hz), 6.68 (s, 1H); 13C NMR 
(125 MHz, DMSO-d6): δ 174.4, 174.2, 158.1, 135.2, 130.1, 
129.5, 129.4, 128.6, 124.7, 124.4, 123.4, 119.1, 116.5, 
114.8, 111.4, 102.2, EI-MS: m/z calcd for  C16H10FN3S 
[M] + 295.0559, Found 295.0574.

Compound 19: 2‑(3‑fluorophenyl)‑5‑(1H‑indol‑5‑yl)‑1,3,4‑ 
thiadiazole
Yield 83%, 1H-NMR (500  MHz, DMSO-d6): δ11.84 
(s, 1H, NH), 8.44 (s, 1H), 8.20 (s, 1H), 7.68 (d, 1H, 
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J = 8.0 Hz), 7.47-7.42(m, 4H), 7.26 (t, 1H, J = 8.0 Hz), 6.66 
(s, 1H); δ 13C NMR (125 MHz, DMSO-d6): δ 174.6, 174.2, 
162.4, 135.8, 135.6, 129.5, 128.4, 127.3, 126.2, 124.1, 
119.3, 116.2, 116.2, 115.3, 111.4, 102.2, EI-MS: m/z calcd 
for  C16H10FN3S [M] + 295.0579, Found 295.057.

Compound 20: 2‑(4‑fluorophenyl)‑5‑(1H‑indol‑5‑yl)‑1,3,4‑ 
thiadiazole
Yield 88%, 1H-NMR (500  MHz, DMSO-d6): δ 11.82 (s, 
1H, NH), 8.15 (s, 1H), 7.64 (d, 2H, J = 8.0 Hz),7.49 (t, 1H, 
J = 8.0 Hz),7.47 (t, 2H, J =5.5 Hz), 7.31 (t, 2H, J = 8.0 Hz), 
6.58 (s, 1H); 13C NMR (125  MHz, DMSO-d6): δ 174.4, 
174.2, 162.7, 135.2, 129.4, 129.4, 129.2, 129, 128.5, 124.1, 
119.6, 117.2, 116.7, 116.2, 111.4, 102.2, EI-MS: m/z calcd 
for  C16H10FN3S [M] + 295.0579, Found 295.0574.

Compound 21: 2‑(2‑chlorophenyl)‑5‑(1H‑indol‑5‑yl)‑1,3,4‑ 
thiadiazole
Yield 83%, 1H-NMR (500  MHz, DMSO-d6): δ 12.03 (s, 
1H, NH), 8.23 (s, 1H), 8.05 (s, 1H), 7.70 (d, 1H, J = 8.0 Hz), 
7.50 (t, 1H, J = 8.0 Hz), 7.47 (d, 1H, J =8.0 Hz), 7.42 (t, 1H, 
J = 5.0 Hz), 7.39 (d, 2H, J = 6.5 Hz), 6.56 (s, 1H); 13C NMR 
(125 MHz, DMSO-d6): δ 174.7, 174.3, 137.1, 135.3, 132.0, 
130.3, 129.5, 129.5, 129.2, 128.5, 127.1, 124.2, 119.1, 
116.2, 111.4, 102.2, EI-MS: m/z calcd for  C16H10ClN3S 
 [M]+ 311.0284, Found 311.0267.

Compound 22: 2‑(4‑chlorophenyl)‑5‑(1H‑indol‑5‑yl)‑1,3,4‑ 
thiadiazole
Yield 81%, 1H-NMR (500  MHz, DMSO-d6): δ 11.80 
(s, 1H, NH), 8.20 (s, 1H), 7.74 (d, 2H, J = 7.8  Hz), 7.68 
(d, 1H, J = 8.0  Hz), 7.52 (d, 2H, J =8.0  Hz), 7.48 (d, 1H, 
J = 8.0 Hz), 7.43 (t, 1H, J = 6.0 Hz), 6.58 (s, 1H); 13C NMR 
(125 MHz, DMSO-d6): δ 174.6, 174.3, 135.3, 134.1, 131.4, 
129.5, 129.4, 129.2, 129.0, 128.7, 128.4, 124.1, 119.3, 
116.2, 111.4, 102.2, EI-MS: m/z calcd for  C16H10ClN3S 
 [M]+ 311.0284, Found 311.0260.

Conclusion
In conclusion we have synthesized 22 derivatives of 
indole based thiadiazole hybrid analogs due to greater 
biological importance of indole and thiadiazole and 
evaluated for β-glucuronidase inhibition. All compounds 
showed outstanding β-glucuronidase activity ranging 
between 0.5 ± 0.08 to 38.9 ± 0.8 µM when compared with 
standard d-saccharic acid 1,4 lactone. Structure activ-
ity relationship has been established for all compounds 
which reveal that the number, nature and position of 
substituents on phenyl ring play of thiadiazole play a 
vital role in this inhibition. Molecular docking study have 
been performed which revealed that these compounds 

established stronger hydrogen bonding networks with 
active site residues.
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