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ABSTRACT 
 
 
 

INCORPORATING GRAIN SIZE EFFECTS IN 

TAYLOR CRYSTAL PLASTICITY 
 
 
 

Bradley S. Fromm 

Department of Mechanical Engineering 

Master of Science 
 
 
 

A method to incorporate grain size effects into crystal plasticity is presented.  The 

classical Hall-Petch equation inaccurately predicts the macroscopic yield strength for 

materials with non-equiaxed grains or materials that contain unequal grain size 

distributions.  These deficiencies can be overcome by incorporating both grain size and 

orientation characteristics into crystal plasticity theory.  Homogenization relationships 

based on a viscoplastic Taylor-like approach are introduced along with a new function, 

the grain size and orientation distribution function (GSODF).  Estimates of the GSODF 

for high purity α-titanium are recovered through orientation imaging microscopy coupled 

with the chord length distribution.  A comparison between the new method and the 

traditional viscoplastic Taylor approach is made by evaluating yield surface plots. 
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1 Introduction 

Predicting the yield strength of engineered materials based on their grain size is 

common practice within the materials community.  During the early 1950’s, E.O. Hall 

and N.J. Petch independently established what is known as the Hall-Petch relationship [1-

2].  Through experimentation, they discovered that the macroscopic yield strength of a 

material is proportional to the inverse square root of the average grain size.  This robust 

relationship has been documented for many materials [3].  It indicates that yield strength 

can be increased by simply reducing grain size.  However, as represented in Figure 1.1, it 

does not hold true for materials with non-equiaxed grains or materials that contain 

unequal grain size distributions.  The relationship has also been shown to breakdown for 

ultrafine grained materials [4].  A further weakness to the relationship is that it does not 

take into account the grain orientation or crystal anisotropy within the microstructure.  

Similarly, crystal plasticity theory dates back to 1938 when G.I. Taylor postulated 

his uniform strain model in order to predict yield strength [5].  This method calculates the 

stresses in individual grains of a material by resolving the strain rate for each grain in 

terms of slip rates on individual slip systems.  The microscopic stress of each grain is 

then volume averaged to obtain an upper-bound estimate for the macroscopic yield 

strength.  Although this method takes grain orientation into account and is valid for non-
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equiaxed and anisotropic materials, it does not distinguish the effect of local grain size on 

the local yield properties. 

 

 

Figure 1.1:  Deformed and partially recrystallized iron aluminide illustrating non-equiaxed grain 
shapes and unequal grain size distributions often found in engineered materials (image courtesy of 
Oxford Instruments) 

The purpose of the research described in this paper is to extend crystal plasticity 

theory to incorporate both grain orientation and grain size effects into the model, thus 

overcoming current deficiencies in yield strength calculations.  A new approach that 

incorporates a Hall-Petch type relationship into a rigid-viscoplastic model is described.  

This new methodology is then implemented for a high purity α-titanium material and a 

comparison is made between the old and new methods to determine the extent to which 

grain size affects the mechanical strength of the material.  
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2 Hall-Petch Relationships 

2.1 Macroscopic Hall-Petch equation 

Relation (2.1) is the well known Hall-Petch equation where yσ  is the 

macroscopic yield strength, 0σ  is the stress required to initiate dislocation movement 

(incorporating all strengthening effects except the grain size effect), K is the Hall-Petch 

slope, and D  is the average grain size of the material 

0y
K
D

σ σ= +     (2.1) 

This empirical relationship has been established for numerous metal alloys, 

including high purity α-titanium, which is studied in this paper.  Values for both 0σ  and 

K  are obtained through mechanical testing.  Values of 0.53 and 0.671 MN/m3/2 for the 

slope were found in the literature for α-titanium [6-7].  These large values of slope 

indicate that grain size effects are important when modeling the yield stress of titanium. 

2.2 Microscale Hall-Petch correlation 

The macroscopic Hall-Petch relationship has been successfully extended to the 

microscale by studying slip transmission across grain boundaries [8-9].  In this method, 
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nano-indentation is employed to determine the applied shear stress, aτ , necessary to force 

dislocations across a grain boundary according to  

0a
k
D

τ τ= +  ,    (2.2) 

where 0τ  is the intrinsic frictional shear stress and D  is the average grain size, as 

delineated by the distance between the indenter and the adjacent grain boundary.  Further, 

12 ck m rτ−=   is the equation for the slope where m  represents the misorientation 

between the slip systems on each side of the grain boundary, cτ  is the critical shear stress 

required to initiate slip across the boundary, and r  is the distance to the dislocation 

source in the neighboring grain. 

2.3 New mesoscale Hall-Petch relationship 

The general nature of the Hall-Petch relationships suggests the possibility of 

extending them to the concept of a critical resolved shear stress in rate-insensitive 

plasticity, and to the reference shear stress in viscoplasticity theory.  Although Relation 

(2.2) appears simple at first, implementation is problematical due to the grain boundary 

character dependence of both *τ  and r  within the slope equation.  Further, 

homogenization procedures used to connect the two relationships are not well 

understood.   

A new relationship is necessary to integrate grain size information into the 

viscoplasticity model,  

0

*( )
*( ) ( )

S
S S k

D
τ τ= + ,    (2.3) 
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Where *( )Sτ is the reference shear stress or slip resistance and *( )Sk  is the Hall-Petch like 

slope, resolved on each slip system of the model.  It should be noted that D , which has 

been substituted in the place of D , is no longer the average grain size of the bulk 

material but the actual grain size for each individual grain within the material; this is 

allowed to vary within the crystal plasticity model.   
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3 Taylor viscoplastic model for high purity α-titanium 

3.1 Power law equation 

The crystal plasticity model utilized in this research is the standard power-law 

viscoplasticity approach of Asaro and Needleman [10] as implemented by Kalidindi et al 

[11-14].  The power law,  

1

S
(S) (S)

ij ij
s

ε γ μ
=

=∑& & ,    (3.1) 

relates strain rates ijε&  in terms of slip rates γ& on individual slip systems S , with the 

geometry of the slip system defined by the geometric slip tensor ijμ , according to 

( )( ) ( ) ( ) ( ) ( )1 ˆ ˆˆ ˆ
2

S S S S S
ij i j j ib n b nμ = + .   (3.2) 

Here ( )ˆ Sb and ( )ˆ Sn are defined as the unit slip and normal directions respectively.  By 

assuming isotropic hardening, the slip rates can be expressed as: 

( )
1

( )
( ) ( )

0 ( )

S m
S S

S
R

signτγ γ τ
τ

=& & ,     (3.3) 

where ( ) ( )S S
ij ijτ σ μ′=  is the resolved shear stress associated with each slip system, ( )S

Rτ is 

the slip resistance, m  is the strain rate sensitivity factor, and ijσ ′  is the deviatoric 

component of the local Cauchy stress. 
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3.2 Yield strength calculations 

The power law equation can be re-written in terms of the viscoplastic compliance 

[15], M , as 

ij ijkl klMε σ ′=& .     (3.4) 

By applying the Taylor assumption wherein the local and macroscopic strain rates are 

equal [5], Equation (3.4) can be solved for the local stress, and volume averaged for each 

grain in the polycrystal to obtain  

1
kl kl kl

V

dV
V

σ σ σ′ ′ ′= = ∫∫∫ .    (3.5) 

Relation (3.5) estimates the macroscopic deviatoric stress klσ ′  in a sample that 

occupies a region of volume V comprising a representative volume element of the bulk 

polycrystalline sample.  Instead of directly volume averaging the local stresses to obtain 

the macroscopic yield strength, the classical approach can be taken – this requires the 

Taylor factor.  The deviatoric stress can be expressed in terms of the local Taylor factor, 

klm , to obtain the relationship 

 or  σσ τ
τ
′

′ = = kl
kl kl R kl

R

m m .    (3.6) 

The Taylor factor expresses the efficiency by which deformation is affected by 

the lattice orientation of crystallographic slip and is thus a function of orientation, strain 

rate sensitivity parameter, and slip resistance.  By simply volume averaging the local 

Taylor factor and scaling it by the reference shear stress, an alternative means of 

calculating the average macroscopic deviatoric stress can be expressed as  

( )S
kl kl Rmσ τ′ = .     (3.7) 
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4 New grain size differentiated Taylor-type model 

4.1 Modified power law equations 

Equations (3.1)-(3.7) represent the traditional Taylor-like viscoplastic approach to 

crystal plasticity.  They are not grain size dependent and thus require modification.  By 

inserting *( )Sτ  from the newly defined mesoscale Hall-Petch Relation (2.3) into Equation 

(3.3), the slip rate equation becomes  

( )
1

( )
( ) ( )

0 *( )

S m
S S

S signτγ γ τ
τ

=%& & .    (4.1) 

A new power law relationship can now be formulated that contains the grain size 

differentiated slip rate equation as represented in Equation (4.2).  

( )

1

S
S (S)

ij ij
s

ε γ μ
=

=∑% %& &      (4.2) 

Thus the power law relationships have become modified to allow grain size to vary for 

each individual grain in the Taylor-type viscoplasticity model.  

4.2 Selected approach to yield strength calculation 

Just as the power law was modified to allow grain size to vary, it is necessary to 

adjust the macroscopic yield strength to elucidate the grain size effect within the Taylor 

model as defined in the following relation: 
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0kl klmσ τ′ = % .     (4.3) 

Although Equation (4.3) appears similar to Relation (3.7), it differs in several ways.  

First, the slip resistance has been replaced by ( )0 0 0 0
1
3

bas pris pyrτ τ τ τ= + +  that represents the 

average values of intrinsic frictional shear stress in the basal, prismatic, and pyramidal 

slip systems for hexagonal titanium.  A further difference is the introduction of a new 

variable, klm%  , that is related to the familiar Taylor Factor in Equation (3.7), but has been 

adjusted for grain size.  Thus klm%  is not only a function of the crystallographic 

orientation, the ratio of intrinsic frictional shear stresses, and the strain rate sensitivity 

parameter, but also of grain size.  Moreover, this new variable can be calculated from the 

local Cauchy stress as demonstrated in Equation (4.4). 

0
0

 or  kl
kl kl klm m σσ τ

τ
′

′ = =% %    (4.4) 

4.3 Grain size and orientation distribution function 

It is proposed that a new distribution function, called the grain size and 

orientation distribution function (GSODF), be defined so that the Taylor factor can be 

evaluated explicitly.  This function is similar to the orientation distribution function 

(ODF) in that it contains volume fractions of grain orientation occurrences, but differs in 

that it also includes the grain size.  It is expressed as 

( , ) dVf g D dgdD
V

= ,    (4.5) 
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and is defined as the probability density of finding an occurrence of grain size D  with an 

orientation g  inside a single phase polycrystalline material sample.  If the GSODF is 

integrated over the full range of grain size, it returns the familiar ODF: 

max

0

( , ) ( )
D

f g D dD f g=∫  .    (4.6) 

On the other hand, if the GSODF is integrated over the full range of possible lattice 

orientation (i.e., the fundamental zone, FZ), then the overall grain size distribution of the 

microstructure ( )f D is recovered: 

( , ) ( )
FZ

f g D dg f D=∫∫∫ .    (4.7) 

Lastly, the following normalization condition must hold: 

max

0

( , ) 1
D

FZ

f g D dgdD =∫ ∫∫∫ .    (4.8) 

4.4 New grain size dependent Taylor factor 

Next, a new factor similar to the macroscopic Taylor factor is defined by 

integrating the local grain size dependent Taylor factor with the GSODF to yield: 

max

0

( , ) ( , ) ( , )
D

kl kl
FZ

m g D f g D m g D dgdD= ∫ ∫∫∫% % .  (4.9) 

Whereas the original Taylor factor expresses the efficiency by which deformation is 

affected by the lattice orientation of crystallographic slip, this new grain size dependent 

Taylor factor expresses the same efficiency as a function of both lattice orientation and 

grain size.  By inserting Relation (4.9) into Equation (4.3), the macroscopic yield strength 

can be evaluated as both a function of orientation and grain size. 
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4.5 Chord length distribution 

A second distribution, called the Chord Length Distribution function (CLDF) [16-

17], must be introduced to recover the GSODF experimentally.  The CLDF is defined as 

the probability that a random chord traversing a grain will sample a grain of orientation 

g with a chord length of  / 2D dD± within invariant orientation measure dg and along an 

infinite line containing the vector ( )scr . 

( )( , | )sp g D c dgdDr .    (4.10) 

The superscript s is used to indicate that we have chosen to resolve chord lengths in 

directions that correspond to the intersection of slip planes with the metallographic 

section plane.  The direction of the chord, ( )scr , for each slip system is obtained by taking 

the cross product between the section plane normal N̂ and the slip plane normal ( )ˆ sn , 

( ) ( )ˆ ˆs sc N n= ×
r .    (4.11) 

Because the chords traverse a grain from one side to the other, they are closely 

related to the grain’s size, D .  Hereafter, we shall make no distinction between the term 

“chord length” and the term “grain size.” Additionally, because multiple slip systems 

within each grain are sampled, a distribution of chord lengths will result for each grain. 

Thus, even a single grain will present a range of grain sizes that can be utilized for the 

purpose of distinguishing grain size effects within the methodology of this paper.   

The reader will note the similarity between the GSODF and the CLDF.  In fact, 

they are essentially the same function for equiaxed grain structures.  However, for 

microstructures with peculiar grain shapes, differences would be expected between the
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 two functions.  The normalization of the CLDF is obvious from its definition: 

max
( )

0

( , | ) 1
D

S

FZ

p g D c dgdD =∫ ∫∫∫
r .     (4.12) 

Clearly, the CLDF is very similar to the GSODF that is desired to modify Taylor 

viscoplasticity.  In fact, the CLDF is essentially the GSOD, but specific to each slip 

system.  This is an important difference since individual slip systems (such as 

{ }1010 1120  versus { }1011 1123  in some hexagonal materials) may sample grain size 

differently.  This is especially true for grains of unusual morphologies which contain 

crystallographic orientations that can be linked to processes such as solidification or grain 

growth.  For that which follows in this paper, we shall not distinguish local grain size 

among the differing slip systems, but only the variation of grain size with grain 

orientation.  In this case the GSODF will be expressed in terms of the CLDF as an 

average over the total number of slip systems, S : 

( )

1

1( , ) ( , | )
S

S

s
f g D p g D c

S =

= ∑ r .   (4.13) 

Consequently, the output of the GSODF contains for any given orientation, g , a 

range of grain sizes, and this distribution is affected not only by the distribution of sizes 

of grains of a particular class, but also by the specific chord length distribution of that 

class. 
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5 Experimental methods on high purity α-titanium 

5.1 High purity α-titanium background information 

The high purity α titanium material used in this study was supplied by the Alta 

Group of Johnson Matthey Electronics, Inc. (Spokane, WA).  The received plate was 

99.9998% pure and measured 352 mm in diameter by 12 mm in thickness.  The material 

was heat treated at 530° C for one hour and water quenched to produce a recrystallized 

grain structure with an average grain size of 11 µm.  As detailed in previous research 

[6,7,11,13,18] and shown in the [0 0 0 1] pole figure of Figure 2, the material exhibits a 

strong fiber texture with the c-axes of the grains distributed uniformly within 20-35° of 

the plate normal (ND) following heat treatment. 

 

 

Figure 5.1:  Pole figure plots illustrating texture of heat treated α-titanium plate with c-axis of grains 
distributed around ND direction 
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5.2 Oblique sectioning and sample preparation 

 In order to recover the CLDF and GSODF of the high purity α titanium in a 

statistically-unbiased way, an oblique sectioning technique was employed. The sphere of 

directions in Figure 5.2(a) represents the surface normal directions for the 13 oblique 

section cuts along with their inverses.  The points circled in black are found on the front 

of the sphere, while the points circled in gray are located on the back side of the sphere.  

Figure 5.2(b) is a rendering of the titanium sample with the section cuts removed and a 

coordinate system that defines the ND, TD, and RD directions of the sample.  The 

spherical coordinates for each section cut normal along with their associated Euler angles 

are tabulated in Table 5.1.  

Table 5.1:  Section plane normal spherical coordinates and associated Euler angles 

Section # Polar Angle 
(α) 

Azimith 
Angle (β) 

Euler Angle 
(phi1) 

Euler Angle 
(PHI) 

Euler Angle 
(phi2) 

1 0° 0° 0° 0° 270° 
2 45° 0° 90° 45° 270° 
3 90° 0° 90° 90° 270° 
4 135° 0° 90° 135° 270° 
5 45° 45° 135° 45° 270° 
6 90° 45° 135° 90° 270° 
7 135° 45° 135° 135° 270° 
8 45° 90° 180° 45° 270° 
9 90° 90° 180° 90° 270° 
10 135° 90° 180° 135° 270° 
11 45° 135° 225° 45° 270° 
12 90° 135° 225° 90° 270° 
13 135° 135° 225° 135° 270° 
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Figure 5.2:  (a) Sphere of directions representing surface normal directions for oblique section cuts, 
(b) Rendering of titanium plate with 13 section cuts removed and ND, RD, and TD directions defined 

The samples were electrical discharge machined from the heat treated titanium 

plate and carefully polished to remove deformation incurred from the sectioning process.  

This included successive polishing from an initial abrasive of 320 grit SiC to a final 

polish with a 0.05 µm γ-alumina suspension.  Next, the samples were immersed in an 

agitated solution of Keller’s reagent (2 ml HF, 3 ml HCl, 5 ml HNO3, and 190 ml 

distilled water) for 45 seconds to remove any remaining oxides and surface deformation 

caused by polishing. 

5.3 OIM analysis and results 

Orientation imaging microscopy (OIM) was performed on a Philips XL-30SFEG 

scanning electron microscope for each of the 13 samples in order to obtain the orientation 

and grain size statistics.  A hexagonal grid with a 1 µm step size yielded 208,247 scan 

points within the 300 µm x 600 µm scan window.  Inverse pole figure maps for oblique 

sections 1, 2 and 3 are shown in Figure 5.3 along with their corresponding    [0 0 0 1] 

pole figures. 
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Figure 5.3:  Inverse pole figure maps and pole figures for section 1 (a), section 2 (b), and section 3 (c) 

A summary of the maximum, minimum, and average grain size, as well as 

standard grain size deviation can be found in Table 5.2 for each of the 13 oblique 

sections.  The α-titanium material in this study had an overall average grains size of 11.09 

with a standard deviation of 5.64 µm, as measured by the equivalent diameter method in 

OIM.  A total of 19,642 grains were resolved but since edge grains were excluded from 

the analysis, only 17,437 were included in the statistics.  A combined grain size 

distribution plot for all 13 sections is shown in Figure 5.4. 

(a) (b) (c)
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Table 5.2:  Grain statistics obtained from analysis of OIM data 

Section 
Number 

Number 
of Grains 

Number 
of Non-

Edge 
Grains 

Minimum 
Diameter 

(µm) 

Maximum 
Diameter 

(µm) 

Average 
Grain 

Size (µm) 

Standard 
Deviation 

(µm) 

1 1540 1352 3.321 50.655 10.960 5.590 
2 1517 1341 3.321 42.304 11.068 5.477 
3 1524 1352 3.321 39.820 11.033 5.642 
4 1496 1328 3.321 44.153 11.025 5.771 
5 1700 1525 3.321 44.166 10.426 5.270 
6 1581 1411 3.321 37.392 10.868 5.512 
7 1280 1122 3.483 46.215 12.028 6.084 
8 1800 1614 3.321 35.377 10.254 4.906 
9 1535 1364 3.321 49.231 11.019 5.446 
10 1499 1308 3.321 38.839 11.195 5.649 
11 1646 1480 3.321 36.315 10.669 5.133 
12 1262 1105 3.321 50.184 11.952 6.435 
13 1292 1135 3.321 51.827 11.720 6.430 
  19,672 17,437 3.321 51.827 11.094 5.642 
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Figure 5.4:  Grains size distribution from OIM analysis 
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5.4 Chord length distribution plots 

A chord length distribution plot is presented in Figure 5.5 for three of the primary 

hexagonal slip systems of titanium.  In this way the CLDF was used to calculate the 

average grain size for each of the 17,437 grains examined with orientation imaging 

microscopy.  However, the complete subset of primary slip systems totaling 18 were 

sampled and then averaged to obtain the grain size values input into the Taylor model. 

 

 

Figure 5.5:  Chord length distribution plot 

5.5 Comparison between OIM and CLDF grain size statistics 

The overall average grain size for the α-titanium material as calculated by the 

CLDF method was 7.72 µm with a standard deviation of 4.35 µm.  This compares nicely 

to the OIM value of 11.09 ± 5.64 µm.  The difference between the two methods is due to 

the grain geometry and how grain size is calculated.  If the two methods returned the 

same results, we would assume the grains were equiaxed since the OIM approach 

calculates the equivalent grain diameter from the area of the grain.  Because they are 
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different, we can assume that the grains are slightly non spherical.  This was verified by 

calculating the average grain’s shape within OIM.  The results show that the grains are 

elongated with an average major diameter of 7.24 µm vs. a minor diameter of 5.24 µm 

using the least squares method.  Table 5.3 summarizes the important grain size statistics 

as calculated by both methods. 

Table 5.3:  Comparison of grain size statistics calculated from OIM and CLDF 

Grain Size Statistics OIM CLDF 

Minimum Grain size (µm) 3.321 0.335 

Maximum Grain size (µm) 51.827 38.126 

Average Grain Size (µm) 11.094 7.715 

Standard Deviation (µm) 5.642 4.346 

5.6 Chord length spacing sensitivity 

In order to understand the influence spacing between chords plays in the chord 

length distribution function, a test was conducted to determine the average grain size for 

a 10 µm circle.  For spacings between 0.01 µm and 1 µm the average chord length, L was 

calculated and compared to the theoretical value of 7.8540, as obtained from the 

equation, 
2
rL π

=  [19].   The error plot shown in Figure 5.6 illustrates the need to 

carefully choose the spacing between chords.  An average chord length of 7.8553 was 

calculated for a spacing of 0.01 µm which equates to an error of 0.016%.  This value of 

spacing was used in our calculations to ensure precise measurements of the CLDF. 
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Figure 5.6:  CLDF chord spacing error plot 

5.7 ODF and grain statistics plots 

 Plots of the orientation distribution function, maximum grain size, mean grain size, 

and standard deviation calculated from the CLDF are found in Figure 5.7.  Six cross 

sections were taken through the HCP fundamental zone at 0°, 60°, 120°, 180°, 240°, and 

300° respectively.  The peak intensity of the orientation distribution function was 6.36.  

The maximum grain size within any of the bins was 38.126 microns and the mean grain 

size for all bins was 7.7153 microns with a standard deviation of 3.76 microns.  

 It is noteworthy to mention that the variation of maximum grain size to average 

grain size is approximately 5 for α-titanium.  This is substantial considering the grains 

were nearly equiaxed.  Additionally, a comparison between the ODF plots and mean 

grain size plots demonstrate that crystal orientations and grain size do not necessarily 

correlate.  Although a particular orientation is strongly present in a material, it is not 

guaranteed that the mean grain size distribution of that orientation is also large.  We can 

conclude that the mechanical properties of α-titanium can vary substantially according to 



23 

its orientation distribution as well as its grain size distribution.  Furthermore, titanium 

materials that contain acicular grain types or distribution with different grain sizes would 

result in an even larger change in variation that could substantially affect the overall 

strength of the material. 

 

 

 

5.8 True  stress – true strain  plots 

In order to calibrate and verify the accuracy of the Taylor model predictions, 

uniaxial compression testing was performed for titanium test samples electrical discharge 

Figure 5.7:  Orientation distribution plots, maximum grain size, mean grain size, and standard 
deviation plots are presented for several cross sections of the fundamental zone 
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machined from the plate in the RD, TD, and ND directions.  The testing was performed at 

room temperature with a constant strain rate of 10-2 s-1.  During the test, Teflon sheets, 

high pressure grease, and regular lubrication were used to negate frictional effects.  The 

raw load and displacement data was corrected for machine compliance before true stress 

–true strain curves were calculated.  As plotted in Figure 5.8, the uniaxial compressive 

yield strength in the ND, RD, and TD directions was 352 MPa, 192 MPa, and 174 MPa 

respectively.  Because the yield strength in the RD and TD directions is nearly the same, 

it was necessary to perform a fourth test to properly calibrate the model.  A plane strain 

compression test in the ND direction was conducted and resulted in a yield strength of 

199 MPa. 

 

 

Figure 5.8:  True stress - true strain curves from uniaxial and plane strain compression testing 
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6 Calibration and evaluation of model 

6.1 Calculation of reference shear stresses 

Reference shear stresses for the three primary slip families (basal, prismatic, and 

pyramidal) of hexagonal close pack titanium are necessary to calibrate the crystal 

plasticity model presented in this paper.  These values were determined by curve-fitting 

the predicted yield strengths in simple deformation modes to the experimentally obtained 

curves shown in Figure 5.8 by trial and error until the predictions match the measured 

values.  The values obtained through this process were 200 MPa, 10 MPa, and 120 MPa 

respectively for basal, prismatic, and pyramidal.  Additionally, values of 57.1 MPa, 5.4 

MPa, and 44.4 MPa for the basal, prismatic, and pyramidal intrinsic frictional shear stress 

were estimated based on the work of Churchman [20].  By substituting the 

abovementioned shear stresses along with the average value of grain size into Relation 

(2.3), we can calculate the values of the mesoscale Hall-Petch slope that are tabulated in 

Table 6.1. 

6.2 Numerical challenges  

Solving the Taylor viscoplastic equations for thousands of grains is 

computationally demanding.  These five dimensional equations are known to converge 

poorly due to their stiff, non-linear nature.  The situation becomes even more complex 
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when grain size effects are incorporated into the equations, as the calculations must be 

repeated for multiple grain sizes.  A computationally efficient method is therefore needed 

that will eliminate the need to repeatedly solve the equations for every combination of 

grain orientation and size. 

Table 6.1:  Mesoscale Hall-Petch parameters 

Slip System *( )Sτ  (MPa) 
( )
0

Sτ  (MPa) *( )Sk    (MN/m3/2) 

Basal 200 5.40 12.777 

Prismatic 10 57.10 396.925 

Pyramidal 120 44.40 209.999 
 

6.3 Database approach  

Knezevic et al [16] has developed a database approach where the necessary 

variables are computed only once and then stored for later retrieval.  The strain rate 

equation can be written in terms of a single angular variable, θ , when expressed in its 

principal frame [17].  This is illustrated in Equation (6.1) where the reference value of 

strain rate, 0ε& , has a value of 0.001 sec-1.  By working in the principal frame, only the 

diagonal terms of the strain rate space need to be sampled, and the time necessary to 

probe the entire five dimensional strain rate space is conserved. 

The database is computed by tessellating θ  into uniform intervals and solving for 

the deviatoric stresses at the centroid of each fundamental zone bin, which have also been 

tessellated into uniform bins. Because our model allows for variation of grain size, these 
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calculations must also be repeated for intervals of grain size uniformly distributed 

between zero and the maximum grain size. 

0

2 cos 0 0
3 3

20 cos 0
3 3

20 0 cos( )
3

πθ

πε ε θ

θ

⎡ ⎤⎛ ⎞−⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥

⎢ ⎥⎛ ⎞⎢ ⎥= +⎜ ⎟
⎝ ⎠⎢ ⎥

⎢ ⎥
⎢ ⎥−
⎢ ⎥⎣ ⎦

%& &    (6.1) 

Discrete values of deviatoric stress in the principal frame, P
klσ ′ ,  are thus stored for 

each value of theta between 0 and 2π .  Nevertheless, we are interested in resolving the 

stresses in the sample frame, S
klσ ′ , of our titanium plate.  Therefore, a method is required 

to enable the sample frame strain rate space to be uniformly sampled over all possible 

crystallographic orientations and θ  increments to resolve the deviatoric stress in the 

sample frame.  This is done by taking combinations of orientation and θ  in the sample 

frame strain rate space, and decomposing them into their eigenvalues and eigenvectors.  

The eigenvalues give us the strain rate in the principal frame that corresponds to the 

sample frame strain rate that was input, whereas the eigenvalues give us a transformation 

matrix , 
S P
g
→

, which allows us to move back and forth between the principal and sample 

stresses.  The database can thus be searched for the value of principal stress that 

corresponds to the principal strain rate obtained from the eigenvalues.  Once the principal 

stress is know, the transformation matrix is used to convert it into the sample frame 

according to Equation (6.2). 

TS P S P
S Pg gσ σ

→ →⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
     (6.2) 
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6.4 Discretization scheme 

A tessellation scheme of ten degrees for orientation space and three degrees for θ  

intervals was used for this project.  The fundamental zone for hexagonal close pack 

materials such as α-titanium, as illustrated in Figure (6.2), is defined with Bunge – Euler 

angles in Euler space as ( ) ( ) ( )1 20, 2 , 0, / 2 , 0, / 3ϕ π π ϕ π∈ Φ∈ ∈ [21].  Additionally, the 

grain size interval was incremented by a distance of 1 µm between adjacent centroids. 

 

 

Figure 6.1:  Discretized HCP fundamental zone shown for 10 degree bin sizes 
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7 Discussion of Results 

7.1 Deviatoric stress subspace 

Figure 7.1 represents one of numerous combinations of deviatoric stress 

subspaces that can be extracted from the full five dimensional deviatoric stress space and 

illustrated as a three dimensional object.  In this case,  11 , 22 , 12and σ σ σ′ ′ ′ were selected and 

the other two values of stress, 23 , 13and σ σ′ ′ , were allowed to vary over all possible values.  

However, any three of the five stresses could have been selected here.  

 

 

Figure 7.1:  Deviatoric stress subspace plot for high purity α-titanium (all units are in MPa) 



30 

7.2 Yield surface plots  

Yield surface plots were chosen as a convenient way to visually compare the 

results found in this paper.  The yield loci in Figure 7.2 represents yield surfaces in the 

π -plane for the α-titanium material.  Using the definition for the rate of plastic work, 

pW& , as expressed in Equation (7.1), we have chosen to normalize the stresses plotted in 

each yield surfaces such that the rate of plastic work is constant for each point on the 

yield surface.  A value of 3.52 MPa/s was enforced for each point; it represents the value 

resulting from the simple case of uniaxial compression in the ND direction. 

3 3

1 1
p ij ij

i j

W σ ε
= =

′=∑∑& &      (7.1) 

The red surface in Figure 7.2 represents the Von-Mises or isotropic case, the blue 

curve corresponds to the new grain size adjusted Taylor model, the green curve 

represents the traditional Taylor viscoplastic solution, and the black triangles show the 

experimentally obtained yield points. It is observable that the traditional method, which 

only accounts for variations in texture, accurately predicts the yield surface in the 

11 22 and σ σ′ ′  directions but substantially underestimates the yield surface in the 33σ ′  

direction of the material.  The new grain size differentiated model on the other hand 

slightly over-predicts the yield surface in the 11 22and σ σ′ ′  direction but does a reasonable 

job in predicting the anisotropic yield response of the material in the 33σ ′  direction.  The 

empty regions between the two Taylor models of Figure 7.2 substantiate the idea that a 

material’s grain size distribution contributes significantly to its yield strength.  We would 

expect this effect to be even more pronounced for materials with a large Hall-Petch slope, 
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materials with large grain size variations, partially recrystallized textures, or materials 

with elongated grain structures. 

 

 

Figure 7.2:  Pi-section yield surface comparing Von-Mises yield surface in red, traditional Taylor 
model in black, and the new grain size dependent model in blue (all units are in MPa) 

7.3 Effect of numerical methods on yield surfaces 

The coarseness of the discretized bins had a noticeable effect on the yield surface 

calculations.  Several studies were conducted to determine what parameters affected the 

yield loci.  It was found that grain size binning had the biggest effect.  Figure 7.3 shows 
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yield surfaces for the following three cases: 1 grain size bin (black), 10 grain size bins 

(green), and 40 grain size bins (blue).  The yield surface was underestimated for the case 

with only one grain size bin and was overestimated for the case with 10 grain size bins.  

In order to avoid numerical effects, it is necessary to utilizing sufficient grain size bins to 

accommodate the grain size distribution of the material. 

 

 

Figure 7.3:  Effect of grain size bins on size of yield surface where the black curve was calculated 
with a single grain size bin, the green curve incremented grains size into 10 segments, and the blue 
curve represents the curve calculated with 40 grain size bins (all units are MPa)   
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A second effect worth mentioning is the difference in yield surface shape caused 

by varying the number of points sampled to create the yield surface.  Figure 7.4 compares 

three yield surfaces: (a) 768 points in black, (b) 1,500 points in green, and (c) 4,500 

points plotted in blue.  A minimum of 1,500 points is recommended to ensure a 

uniformly sampled yield surface.  

 

 

Figure 7.4:  Effect of number of yield points on yield surface.  The black curve was calculated using 
768 points, the green with 1,500 points, and the blue curve with 4,500 individual points (all units are 
in MPa) 
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8 Conclusions 

The goal of this work has been to introduce a new methodology whereby the grain 

size distribution can be introduced into crystal plasticity. A new distribution function, 

similar to the orientation distribution function, but adjusted for grain size, has been 

defined. This new grain size and orientation distribution function can be recovered 

through orientation imaging microscopy that simultaneously recovers the chord length 

distribution.  The methodology has been demonstrated for a high purity sample of α-

titanium.  Experimental methods used to calibrate the new model were described and 

results were presented as yield surfaces in deviatoric stress space.  The following 

conclusions and observations can be drawn from this study: 

• Grain size and its distribution have a significant impact on the yielding 

characteristics of α-titanium, in that both the size and shape of the yield surface 

were affected 

• The chord length distribution is an effective tool in recovering grain size statistics 

• A mesoscale Hall-Petch relationship can be successfully incorporated into Taylor 

viscoplasticity 

• Introducing grain size as a variable in Taylor viscoplasticity more accurately 

predicts the anisotropic yield loci of hexagonal close pack α-titanium as compared 

to the traditional approach  
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