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ABSTRACT 
 
 
 

NUMERICAL STUDY OF FULLY DEVELOPED LAMINAR AND 

TURBULENT FLOW THROUGH MICROCHANNELS 
 

WITH LONGITUDINAL MICROSTRUCTURES 
 
 
 

Kevin B. Jeffs 

Department of Mechanical Engineering 

Master of Science 
 
 
 

Due to the increase of application in a number of emerging technologies, a 

growing amount of research has focused on the reduction of drag in microfluidic 

transport.  A novel approach reported in the recent literature is to fabricate micro-ribs and 

cavities in the channel wall that are then treated with a hydrophobic coating.  Such 

surfaces have been termed super- or ultrahydrophobic and the contact area between the 

flowing liquid and the solid wall is greatly reduced.  Further, due to the scale of the 

micropatterned structures, the liquid is unable to wet the cavity and a liquid meniscus is 

formed between ribs.  This creates a liquid-vapor interface at the cavity regions and 

renders surfaces with alternating regions of no-slip and of reduced shear on the 

microscale.  This thesis reports the numerical study of hydrodynamically fully-developed 

laminar and turbulent flows through a parallel plate channel with walls exhibiting micro-  



 



 

ribs and cavities oriented parallel to the flow direction, where fully developed turbulent 

flow is considered in a time-averaged sense.  Three laminar flow models are implemented 

to investigate the liquid-vapor interface and to account for the effects of the vapor motion 

in the cavity regions.  For each of the laminar flow models, the liquid-vapor interface was 

idealized as a flat interface.  As a benchmark for following laminar flow models, the first 

model considers the case of a vanishing shear stress at the interface between the liquid 

and vapor domains.  Effects of the vapor motion in the cavity are then accounted for in a 

one-dimensional cavity model where the vapor velocity is considered to be dependent on 

the wall normal coordinate only, followed by a two-dimensional cavity model that 

accounts for the vapor velocity�s dependence on the transverse coordinate as well.  The 

vapor cavity is modeled analytically and is coupled to the liquid domain by equating the 

fluid velocities and shear stresses at the liquid-vapor interface.  In the turbulent flow 

model the liquid-vapor interface is idealized as a flat interface with a zero shear stress 

boundary condition.  In general the numerical predictions show a reduction in the total 

frictional resistance as the cavity width is increased relative to the channel width, the 

channel height-to-width aspect ratio is decreased, and the vapor cavity depth is increased.  

The frictional resistance is also reduced with increased Reynolds number in the turbulent 

flow case.  In the range of parameters examined for each fluid flow regime, reductions in 

drag as high as 91% and 90% are reported for the laminar flow and turbulent flow 

models, respectively.  Under similar conditions however, the turbulent flow results 

indicate a greater reduction in flow resistance than for the laminar flow scenario.   Based 

on an analysis of the obtained data, analytical expressions are proposed for both laminar 

and turbulent flow which facilitates the prediction of the frictional resistance. 
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1 Introduction 

In fluid dynamic applications drag reduction is often a primary objective and 

concern.  Even a small reduction in the viscous drag can have significant benefits, such as 

increasing performance and reducing operation costs.  In some applications, drag 

reduction may even facilitate advancements in technology.  Such is the case as advancing 

technologies look to utilize fluid motion on the microscale.  Application such as �Lab on 

a Chip� or the use of microscaled heat exchangers, etc. [1-2] could be facilitated by 

implementing a method of reducing the significant friction resistance associated with 

microscale fluid flow.  Although the topic discussed has application in both internal and 

external flow scenarios, the focus of the current study is on an internal flow application.  

Therefore, further discussion will focus primarily on the limiting case of confined flows. 

1.1 Internal Flow 

In confined flow applications the pressure required to induce fluid motion is 

inversely proportional to the diameter raised to the third or forth power, depending on the 

geometry.  For a channel hydraulic diameter of order microns, this driving pressure can 

becomes excessive, making it very difficult to develop and produce such micro-fluidic 

devices [3-8].  If one could reduce the resistance exerted against the fluid at the solid 

boundary, a decrease in the required driving pressure could be obtained.  The total 
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frictional resistance is equivalent to the integral of the product of the liquid-solid contact 

area and the local shear stress exerted by the solid boundary on the fluid.  Further, the 

local shear stress is the product of the local viscosity and the velocity gradient of the fluid 

at the boundary.  If one could influence one or more of these factors that contribute to the 

total frictional resistance (the liquid-solid contact area, the local viscosity, and/or the 

velocity gradient), a significant reduction in the drag and thus the driving pressure could 

be obtained.    In recent literature a method of reducing the drag has been presented that 

successfully minimizes the liquid-solid contact area at the boundaries, thus achieving 

significant drag reduction in microfluidic flows.  This method is described in detail in the 

following section. 

1.2 Ultrahydrophobic Surfaces 

A novel approach to eliminating frictional resistance reported in the recent 

literature looks to utilize the same principle that causes water droplets to simply roll off a 

lotus leaf and inhibits them from �wetting� the surface of the leaf.  This is done by 

fabricating micro-structures on the walls of a confined liquid flow.   

 

 

Figure 1-1 Schematic of alternating ribs and cavities 

 



3 

These structured surfaces consist of evenly spaced features, such as micro-ribs or posts, 

which are separated by cavity regions and are treated with a hydrophobic coating, see 

Figure 1-1.  The hydrophobic coating alters the surface chemistry of the solid boundary 

and reduces the ability of the liquid water to �wet� the surface.  The degree to which a 

liquid �wets� a surface is measured by the contact angle of a discrete liquid droplet when 

placed on a solid surface as shown in Figure 1-2, where θ is represents the contact angle.   

 

 

Figure 1-2 Illustration of the contact angle for a discrete water droplet 

 

The hydrophobic coating attempts to repel the liquid and causes the contact angle of a 

water droplet to increase.  With an increased contact angle the contact area between the 

liquid droplet and the solid is decreased and thus the water droplet is less inhibited in its 

movement across the surface.  Further, the hydrophobic coating prevents the liquid from 

penetrating the cavity regions as long as the structures are spaced close enough together.  

Penetration of the liquid into the cavity is dependent on what is known as the Laplace 

pressure and is defined as 

 

( )
c

L w
P θπσ −= cos4         (1-1) 

 

θ 

Water Droplet
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where σ is the surface tension of the liquid, and wc distance between the micro-structures.  

Calculating Equation 1-1 for a given surface feature configuration provides a maximum 

allowable pressure difference between the liquid and the vapor that cannot be exceeded 

without the liquid entering the cavity.  Examination of this expression shows that as the 

spacing between structures increases, the pressure difference required for the liquid to 

penetrate the cavities decreases.  Therefore a larger cavity width will wet at a much 

smaller pressure difference.  In addition to the liquid being unable to wet the inside of the 

cavity, the surface tension of the liquid causes a meniscus to be formed suspended 

between the micro-features as illustrated in Figure 1-1.  In this manner, the surface 

contact area between the flowing liquid and the solid wall is significantly reduced. 

As long as the pressure difference between the liquid and the vapor in the cavities 

remains sufficiently low, this effect is maintained and the typical liquid-solid boundary is 

replaced above the cavity with a liquid-vapor interface.  Further, at the liquid-vapor 

interface the resistance to liquid motion is much smaller than that existing at the liquid-

solid interface due to the much smaller viscosity of the vapor.  The result is walls with 

alternating no-slip and nearly shear-free regions on the micro-scale.  Such surfaces are 

commonly referred to in the literature as super- or ultrahydrophobic.  Figure 1-3 is an 

image of an ultrahydrophobic surface taken with an electron scanning microscope by 

Woolford et al. [30].  The presented surface consists of alternating ribs and cavities and 

has been cut to better illustrate the geometry of the structures, since the cavity regions are 

typically open only at their upper boundary.    The micro-structures on this surface were 

cut into the silicon substrate by Deep Reactive Ion Etching (DRIE).  After fabrication the 

surfaces were spin-coated with a mixture of PEL1604A and MQ000 FluorPEL 
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hydrophobic solutions produced by Cynotonix.  In this specific example the cavity is 

approximately 20 µm deep and 30 µm wide, and the ribs are 10 µm wide.  

Ultrahydophobic surfaces such as this one have been reported in recent literature to 

significantly reduce the drag.     

 

 

Figure 1-3 Electron scanning microscope image of a ultrahydrophobic surface 

 

The focus of the presented work is to examine through numerical modeling the 

physics of fully-developed laminar and turbulent flow through microchannels with 

ultrahydrophobic walls.  The ultrahydrophobic walls studied consist of alternating, 

rectangular ribs and cavities as illustrated in Figure 1-3, with the liquid flowing parallel 

to the structures.  The potential reduction in the total frictional resistance is predicted as a 

function of the cavity geometry and the channel dimensions, and compared to classical 



6 

no-slip channel flow solutions.   Further, the effect of the ultrahydrophobic surfaces on 

the liquid velocity and shear stress in the near wall region is also examined. 

1.3 Division and Topics of the Remaining Chapters 

In the proceeding chapter a detailed review of the previous research is presented.  

Chapter 2 presents a detailed literature review for three different areas of work that are 

relevant to the current study of ultrahydrophobic surfaces: discrete liquid droplets, fully-

developed laminar flow, and finally turbulent flow over ultrahydrophobic surfaces.  

Chapter 3 provides a full description and breakdown of the developed analytical 

expressions and the numerical models used in the current study.  The computational 

domain is introduced and the boundary conditions and the varied relevant dimensionless 

parameters are defined.  Additionally, details of how the three laminar flow models and 

the turbulent flow model were conducted are presented.  Contained in Chapter 4 are the 

results to the three laminar flow models in addition to the parametric studies associated 

with each model.  Results are shown to illustrate the potential reduction in the total 

friction resistance and its dependence on the relevant dimensionless parameters.  Results 

are also presented to illustrate the effect of ultrahydrophobic surfaces on the flow 

dynamics, particularly in the near wall region.  Chapter 5 continues with a presentation of 

the turbulent flow model predictions.  Results are shown to quantify the potential 

reduction of frictional drag in the turbulent flow regime.  An examination of the turbulent 

liquid flow dynamics near the ultrahydrophobic surface is also presented and discussed.  

The thesis then closes with Chapter 6, which consists of a summary of the important 

results and the conclusions drawn from the entire study. 
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2 Previous Work 

An increasing amount of research has been conducted to explore the physics and 

the potential reduction in frictional resistance associated with the application of 

ultrahydrophobic surfaces.  Previous research ranges from droplet motion on such 

surfaces to continuous laminar flow through micro-channels; and it has recently extended 

to the turbulent flow regime.  These previous investigations have shown that significant 

reductions in the measured flow resistance are possible and demonstrate a potential 

breakthrough for the application of microfluidic technologies.  This chapter will examine 

the relevant contributions that have recently been made in the study of ultrahydrophobic 

surfaces. 

2.1 Droplets 

Several researchers have investigated the dynamics of discrete liquid droplets on 

ultrahydrophobic surfaces [9-16].  In these studies, the droplet�s contact angle is 

determined when placed on an ultrahydrophobic surface and is compared to the measured 

contact angle when placed on a non-treated surface.  The contact angle is measured as 

shown in Figure 1-2 and is a direct indication of the degree of the hydrophobic or 

hydrophilic characteristics of the surface.  Typical hydrophilic surfaces exhibit water 

droplet contact angles of approximately 10-30°.  Onda et al. [9] measured contact angles 
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of discrete water droplets on a fractal surface.  A fractal surface is a surface that has been 

treated so that a random degree of surface roughness is formed.  For surfaces where a 

hydrophobic material was used to create the fractal surface, contact angles as large as 

174° are reported.  Chen et al. [10] reports contact angles for discrete water droplets 

measured on ultrahydrophobic surfaces consisting of various micro-post configurations 

and hydrophobic treatments.  Contact angles ranging from 140° to 177° were measured.   

Water droplet research has also extended to measuring the enhanced droplet 

motion on ultrahydrophobic surfaces.  Miwa et al. [11] conducted a study where the 

water droplet contact angle and sliding angle were measured using ultrahydrophobic 

surfaces with varying degrees of non-uniform surface roughness.  The sliding angle was 

measured by placing a discrete water droplet of a specified volume on an 

ultrahydrophobic surface and measuring the angle at which droplet motion is induced.  

Therefore a low sliding angle would represent low frictional resistance.  Results indicate 

that surface structures that are able to trap the air produce lower sliding angles.  Similar 

studies have also been conducted with uniformly structured ultrahydrophobic surfaces.  

In a study performed by Kim et al. [12] the contact angle and the reduction of flow 

resistance is measured for discrete water droplets on flat and inclined ultrahydrophobic 

surfaces.  Several different surface configurations were used; flat surface, non-structured 

surface, surfaces with rectangular micro-ribs oriented both parallel and transverse to 

droplet motion, surfaces with micro-posts, and finally ones with what is termed as nano-

posts.  Contact angles were measured on each surface to serve as a reference and are 

reported to be as high as 175° for the nano-post configuration.  The reduction in the flow 

resistance associated with each microstructure configuration was quantified by measuring 
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the droplet sliding angle on the structured surface and comparing it to the measured 

sliding angle when placed on the smooth, non-structured surface.  This was done both 

with open surfaces and confined surfaces where the droplet was placed into a 

microchannel consisting of two ultrahydrophobic surfaces spaced 1µm apart.  Flow 

resistance is reported to have been reduced by over 99% for the open surface case and 

over 95% for the microchannel cases.   

An additional study performed by Yoshimitsu et al. [13] (a continuation of the 

Miwa et al. report) looked to examine the dependence on surface structure with sliding 

behavior.  In this study various ultrahydrophobic surfaces were prepared with uniform 

micro-rib and post structures and were used to examine the sliding behavior of discrete 

water droplets.  It is reported in this study that the hydrophobic tendencies of the surface 

increased with increased post height.  It was also shown that for water droplet motion it is 

more important to design a surface where the liquid droplet is continuously in contact 

with the solid structure than to simply increase the spacing between structures.  This 

same conclusion is made in a study performed by Oner et al. [14], where water droplet 

motion was measured on ultrahydrophobic surfaces consisting of micro-posts with 

various cross sectional shapes. 

Although these studies have provided an understanding of the effect 

ultrahydrophobic surfaces have on discrete liquid droplets, they do little to indicate the 

potential reduction in frictional resistance that such surfaces could provide in continuous 

fluid flow applications. 
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2.2 Laminar Flow 

An increasing amount of research has been conducted to quantify the reduction in 

drag in pipes and channels with ultrahydrophobic walls for a continuous, steady, laminar 

flow [19-35].  Watanabe et al. [20] examined flow through a macro-scale pipe (D = 16 

mm) with non-uniform rough walls which were treated with a hydrophobic coating.  Drag 

reductions of up to 14% were measured when compared to the case where there was no 

hydrophobic coating and the water was allowed to wet the pipe wall.  In a study 

conducted by Yong-Sheng et al. [21], the drag reducing effect of hydrophobic materials 

is explored by measuring the laminar boundary layer flow over flat plates.  Plates with 

different wetting and roughness properties were explored.  It was observed that the 

hydrophobic properties of the surfaces could be attributed to the existence of attached air 

bubbles that did not appear in flows over hydrophilic surfaces.  The conclusion is made 

that the drag reduction over hydrophobic surfaces is due to the apparent slip of the liquid 

as it flows over the bubbles.  

Ou et al. [22] conducted experiments in which the pressure drop was measured as 

a function of flow rate through a rectangular channel flow with hydraulic diameters 

ranging from 152 to 508 µm, with a single ultrahydrophobic surface.  Surfaces that 

exhibited both micro-rib and post configurations were tested.  When compared to 

classical laminar channel flow, pressure drop reductions as high as 40% were observed.  

In a later publication, Ou et al. [23] reported PIV measurements for a micro-scale channel 

flow with ultrahydrophobic surfaces consisting of micro-ribs oriented longitudinally to 

the streamwise direction.  The PIV data clearly illustrate that the regions of reduced shear 

at the liquid-vapor interface are responsible for the measured reduction in pressure drop, 
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revealing an enhanced liquid velocity at the liquid-vapor interface.    In a more recent 

publication by Chang-Hwan et al. [24], a study of laminar flow through a �nanograted� 

ultrahydrophobic microchannel is presented.  What they term as �nanograted� is 

essentially micro-ribs that are brought to a point at the liquid-solid boundary.  In this 

study, the structures were oriented both longitudinally and transversely to the fluid flow 

direction.  The results show that the slip length increases as the micro-structure spacing 

increases and that the reduction in pressure drop decreases as the channel height is 

increased.  Further, the observed flow enhancement was found to be more significant for 

the longitudinally oriented �nanogrates.� 

An analytical study was performed by Philip [25] for creeping viscous flow 

through a two dimensional channel with surfaces exhibiting alternating section of no-slip 

and no-shear boundary conditions.  One case consisted of alternating strips (which could 

be represented as rib and cavity microstructures on an ultrahydrophobic surface) oriented 

parallel to the flow direction.  This work demonstrates an increase in the effective slip-

length with increasing relative cavity width.  The effective slip-length refers to the 

apparent macro-scale slip that exists at the surface and is defined as the wall-normal 

distance where the streamwise velocity would vanish based on the gradient of the local 

velocity distribution.  Lauga and Stone [26] analytically explored circular pipe flow with 

alternating regions of no-slip and no-shear, oriented both longitudinal and transverse to 

the flow direction, with similar results to those of Philip.  The analysis shows a decrease 

in the overall flow resistance in both rib orientations, although it was found to be greater 

for the longitudinally oriented ribs.  Another analytical study conducted by Sbragaglia et 

al. [27] examines the effects of the liquid meniscus that is formed in between the 
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rectangular microstructures of an ultrahydrophobic surface.  For this study the rectangular 

microstructures were oriented parallel to the flow direction.  It is shown that the flow rate 

is increased as the meniscus expands into the cavity region while the slip length is 

decreased. 

Significant flow enhancement is reported in a numerical study performed by 

Salamon et al. [28] for three-dimensional fluid flow through microchannels with 

ultrahydrophobic walls.  In this study a micropost configuration was used in the 

construction of the ultrahydrophobic surface.  The reduction in frictional drag is 

quantified by calculating the flow enhancement, which in this study is defined as the 

percent difference between the flow rate for a no-slip channel and the flow rate for the 

ultrahydrophobic channel for the same pressure drop.  The flow enhancement was 

observed to increase when the relative cavity size was increased, either by increasing the 

post spacing or decreasing the post size.  Flow enhancements as high as 175% are 

reported for a no-shear to no-slip ratio of 98%.  Although not identified, the researchers 

recognize that another parameter is required in addition to the no-shear to no-slip ratio to 

completely illustrate the flow enhancement dependency on the surface configuration.  

Davies et al. [29] conducted a numerical study for non-creeping channel flow with 

rectangular ribs and cavities oriented perpendicular to the streamwise direction.  Two 

models for the vapor cavity where implemented; these include a zero shear stress 

approximation at the liquid-vapor interface, and a coupled cavity model where the liquid 

and vapor velocity and shear stress are matched at the liquid-vapor interface.  This study 

also reports significant reduction in the frictional resistance.  This reduction was found to 

increase with increased cavity-to-rib length ratio and for decreased hydraulic diameters.  
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Further, the cavity depth was observed to have a significant influence on the predicted 

frictional resistance. This dependence on the cavity depth was seen to vanish once the 

cavity depth was increased to more than 25% of its width.  Results also show that the slip 

length and the predicted reduction in frictional resistance exhibit a dependence on the 

Reynolds number. 

Predictions obtained in the current work for laminar flow show similar trends to 

those reported in the previous work reported above.  Further discussion of the results will 

be presented in later chapters. 

2.3 Turbulent Flow 

All of the previous work focusing on the laminar flow regime has shown that 

significant reductions in the frictional resistance are possible for microscale channel and 

pipe flows with ultrahydrophobic walls.  A minimal amount of research has been 

conducted on turbulent flow over hydrophobic surfaces without microstructures [43-45].  

Min et al. [43] performed a direct numerical simulation of a turbulent channel flow with 

hydrophobic walls.  The hydrophobic condition at the walls was modeled with a slip 

condition where the slip length was specified.  In this study the research examined three 

different cases: streamwise slip, spanwise slip, and a combination of both streamwise and 

spanwise slip.  Results show that streamwise slip does contribute to frictional drag 

reduction; however, only for slip lengths higher than 0.2 were the reductions noticeable.  

It is also concluded that the reduction in drag is a direct effect of the slip velocity at the 

surface.  More recently, Fukagata et al. [44] conducted an analytical analysis based on the 

results of Min et al. for hydrophobic walls.  The focus of this study was to present a 
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theoretical prediction of the drag reduction rate achieved with the use of a slip boundary 

condition at the surface in the same three slip orientations presented by Min et al.  The 

resulting expressions relate the drag reduction and the slip length, and are shown to 

match the Min data well.   

Beyond the mentioned studies of turbulent flow over hydrophobic surfaces, very 

little attention has been given to the characterization of frictional drag reduction for the 

turbulent flow regime in ultrahydrophobic channels.  Research conducted by Henoch et 

al. [45] has observed laminar to turbulent flow transition in a macroscale water tunnel 

with a single ultrahydrophobic surface.  In their work two surface pattern configurations 

were used for their ultrahydrophobic test surface; these patterns include what has been 

termed �nanograss� and �nanobricks.�  Although reference is made to further research that 

will more fully examine the effect of ultrahydrophobic surface on turbulent flow 

structures, a reduction in the frictional drag is reported to have been observed but is not 

quantified.   

At this point in time no further research has been reported in the literature for 

turbulent flow through ultrahydrophobic surfaced channels.  The current work looks to 

rectify this gap in the study of microfluidic drag reduction.     

2.4 Contribution of Current Work 

In light of the current available research it has become apparent that there are still 

holes in the understanding of continuous fluid flow through ultrahydrophobic 

microchannels.  In summary, very little has been done to examine the effects of the liquid 

meniscus that is formed between solid structures.  Also, the effects of the air or vapor 
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motion in the cavity region as well as the cavity geometry have not been considered in 

any of the previous studies other than that presented by Davies et al. [29] for a transverse 

orientation of the ribs and cavities.  And finally, very little has been done to extend the 

study of continuous flow through ultrahydrophobic microchannels in the turbulent flow 

regime.   

The focus of the presented work is to examine the impact and physics of fully-

developed laminar and turbulent flow through microchannels with ultrahydrophobic 

walls, where the fully developed turbulent flow is considered in a time-average sense.  

Several numerical models have been employed to characterize the reduction of frictional 

resistance for laminar and turbulent flow through a rectangular channel with 

ultrahydrophobic walls consisting of alternating micro-ribs and cavities oriented parallel 

to the streamwise direction.  These models include a study of the liquid meniscus effect 

for continuous laminar flow, as well as coupled vapor cavity models where the full 

effects of the vapor cavity on the frictional drag are studied in detail.  The reduction of 

the total frictional resistance is quantified as a function of specific dimensionless 

parameters that are based on the micro-structure geometry, and will be fully discussed in 

later chapters.  Additionally, analytical expressions are also developed based on the 

physics observed from both the laminar and turbulent flow predictions which 

successfully predict the total frictional resistance as based on the relevant parameters. 
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3 Methodology 

3.1 Laminar Flow Models 

Consider continuous, steady, fully developed laminar flow through a rectangular 

microchannel with ultrahydrophobic top and bottom walls.  The microstructures on the 

ultrahydrophobic surfaces consist of alternating rectangular ribs and cavities oriented 

longitudinal, or parallel to the streamwise direction.  Referring to Figure 1-1 and Figure 

1-3, the fluid flow direction is perpendicular to, or into the image.  The working fluid in 

consideration is liquid water and the fluid properties are considered to be constant.  The 

spacing between ribs is small enough so that the pressure difference between the liquid 

and the vapor does not exceed the Laplace pressure (Equation 1-1), and therefore the 

liquid does not enter the cavity regions.  As the liquid passes over the structured surface, 

and is unable to �wet� the cavity, a meniscus is formed and is suspended between the ribs.  

For the laminar flow models implemented in this study, the liquid-vapor interface at the 

cavity regions is considered in an ideal manner, as a flat interface.  In actuality, this liquid 

meniscus continuously changes as the static pressure of the fluid diminishes in the flow 

direction.  The influence of this meniscus was explored and will be addressed in more 

detail in a later chapter.  Further, the microchannel is modeled as infinite parallel plates 

since the channel width is much larger than the channel height and the effects of the side 
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walls can be neglected.  For the given scenario, the classical Navier-Stokes equations are 

implemented.  For a two-dimensional, incompressible laminar flow with no body forces, 

the dimensional continuity equation and momentum equation in the streamwise direction 

(x-direction) can be written as follows. 
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In the above expression, ul is the liquid streamwise velocity component, vl is the wall-

normal velocity component, ρl is the liquid density, µl is the liquid viscosity, P is the 

static pressure, t is the time dimension, x is the streamwise coordinate, and y is the wall-

normal coordinate.  It can be seen in Equations 3-1 and 3-2 that since the fluid flow is 

considered two-dimensional, the velocity component in the transverse direction is 

neglected.  It is also assumed in the current study that the liquid flow is steady and fully-

developed, allowing for further reduction by eliminating the unsteady term and the 

streamwise velocity gradients.  Further, elimination of the streamwise velocity gradient in 

Equation 3-1 reveals that the wall-normal velocity must be a constant.  Since v = 0 at the 

liquid-solid boundaries, it therefore must be zero everywhere and can also be removed 

from the governing equations.  With these reductions and by moving the pressure 

gradient to the opposite side of the equality, Equation 3-2 can be written as follows. 

 



19 









∂
∂

+
∂
∂

=







∂
∂

2

2

2

2

z
u

y
u

x
P ll

l

µ        

 (3-3) 

 

The above expression can be normalized by dividing the wall-normal and transverse 

coordinates by the hydraulic diameter, hDyY =  and hDzZ = , respectively.  The 

hydraulic diameter is defined as wch PAD 4= where cA  is the channel cross sectional 

area and wP  is the nominal liquid perimeter.  For parallel-plate channel flow where the 

channel width goes to infinity, the hydraulic diameter can be reduced to HDh 4= , where 

H is half the channel height.  Normalization of the streamwise velocity is accomplished 

with the pressure gradient, liquid viscosity and the hydraulic diameter, 

( )( )lhlll dxdPDuU 2µ= .  Therefore the nondimensional x-momentum equation can be 

reduced to Poisson�s equation as shown. 
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In the above equation, Ul is the normalized x-velocity of the liquid, and Y and Z are the 

normalized wall-normal coordinate and the normalized transverse coordinate, 

respectively.     

 For the given scenario, a two-dimensional liquid computational domain can be 

confined to a small repeating section consisting of a single rib and cavity and limited to 

half the total channel height due to symmetry conditions, as shown in Figure 3-1.  The 

nondimensional liquid domain extends from 0 ≤ Y ≤ H/Dh, where H/Dh = 1/4, and from 0 
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≤ Z ≤ Wm. Wm represents the nondimensional width of the repeating module, 

hrcm DwWWW =+= , where w is the total dimensional width of the cavity and rib 

sections, rc www += .  

 

 

Figure 3-1 Schematic of computational domain 

 

In solving Equation 3-4 for the liquid domain the boundary conditions were set as 

follows.  At the channel centerline, Y = 1/4 and for 0 ≤ Z ≤ Wm, a symmetry condition 

was applied, meaning the normal velocity gradient was set to zero, 0=∂∂ YU .  Since 

the computational domain consists of a repeating section, a periodic boundary condition 

was implemented at Z = 0 and Z = Wm for 0 ≤ Y ≤ 1/4, requiring the liquid velocity to be 

equal at identical vertical locations along both sides of the domain.  Additionally, the 

classical no-slip boundary condition was enforced at the rib, for Wc ≤ Z ≤ Wr at Y = 0.  

For the region above the cavity, 0 ≤ Z ≤ Wc and Y = 0, three different boundary 
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conditions, and thus three different models, where utilized in the current study.  These 

boundary conditions can be classified into two different types.  The first model makes the 

assumption that there is zero shear stress at the liquid-vapor interface located over the 

vapor cavity.  The other two models, with increasing accuracy, look to model the 

influence of the vapor motion and the cavity geometry.  Further discussion of the liquid-

vapor interface boundary will be reserved for later sections where each model is 

explained in more detail.   

 

 

Figure 3-2 Illustration of the recirculation of the vapor flow in the cavity region that is induced by 
the interfacial liquid velocity 

 

Although the zero shear stress model is a good initial approximation of the 

ultrahydrophobic surfaces, it is possible to create a model that more fully predicts the true 

physics of the flow.  In reality the calculated frictional resistance is dependent upon the 

flow conditions and geometry of the vapor cavity.  As the liquid passes over the cavity, 
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momentum is transferred to the vapor through viscous diffusion, thus inducing motion.  

In other words, the liquid will pull the vapor as it moves downstream as shown in Figure 

3-2.  Since the vapor cavity is presented to be capped at the entrance and the exit of the 

microchannel, a circulation cell is induced in the cavity.  To facilitate the computation of 

the vapor domain, the vapor motion is assumed to be a steady, fully-developed laminar 

flow.  By fully-developed it is to be understood that the cavity is much longer than the 

cavity height, allowing the end effects to be neglected.  With negligible end effects, it can 

therefore be assumed that the two-dimensional vapor velocity profile is the same for the 

entire length of the channel.   

The nondimensional vapor domain extends from 0 ≤ Y ≤ -δ and from 0 ≤ Z ≤ Wc as 

illustrated in Figure 3-1.  The nondimensional cavity depth is represented by δ = d/Dh, 

where d is the dimensional cavity depth.  The classical Navier-Stokes equations can also 

be applied to obtain a solution in the vapor domain.  Likewise, the same simplifications 

used to reduce Equation 3-2 to Equation 3-4 can be applied to the vapor cavity.  

Therefore, the nondimensional momentum equation in the x-direction is also reduced to 

Poisson�s equation as follows. 
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In the above expression, Uv is the dimensionless streamwise vapor velocity defined as 

( )( )lhlvv dxdPDuU 2µ= , vµ  represents the vapor viscosity, and ( )vdxdP  is the 

streamwise vapor pressure gradient.  Due to the motion of the liquid-vapor interface 
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induced by the liquid motion, a pressure gradient develops in the vapor that acts to 

oppose the fluid flow at the interface. This pressure gradient is dependent on the 

magnitude of the spatially varying velocity at the liquid-vapor interface and cavity 

geometric parameters, as well as the viscosities of both the liquid and vapor phases.  The 

streamwise pressure gradients in the liquid and vapor phases are unequal due to the 

existence of the liquid-vapor interface.  The viscosity of the vapor was assumed to 

constant and be that of air at standard conditions in all laminar flow models implemented 

in the current study.  The vapor cavity was modeled using two different methods, both of 

which will be examined in more detail in upcoming sections.   

 For the laminar flow models, three significant nondimensional parameters were 

varied.  These consist of the relative module width, hm DwW = , the cavity fraction, 

mccc WWwwF == , which provides the fraction of the channel wall that is occupied by 

the vapor cavity, and finally the relative cavity depth, hc Dd=δ .  The relative module 

width was varied from 0.1 - 1, and the cavity fraction from 0 - 0.97.   The range of 

relative cavity depth values examined in the current study differs for each model and will 

be specified in future sections.  The relative cavity depth is obviously not relevant to the 

initial zero shear stress model however, since the model consists only of the liquid 

domain. 

 Conducting an integral momentum analysis in the streamwise direction on the 

computational liquid domain shows that the induced pressure gradient must be balanced 

by the wall shear stress when the flow is fully developed.  That is to say 
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where wτ  is the average wall shear stress, As and Ac are the channel wall surface area and 

the channel cross sectional area, respectively, and Pinlet and Poutlet are the static pressures 

at the channel inlet and outlet. The surface area is defined as the product of the channel 

width and the channel length, As = WL, and the cross-sectional area is the product of the 

channel height and width, Ac = WH.  Substituting these definitions into Equation 3-6 and 

rearranging terms yields 
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 Recalling that the hydraulic diameter is defined as HDh 4= , the average wall shear 

stress can then be expressed as follows. 
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The average normalized shear stress, defined as ( )( )lhww dxdPDT τ= , is therefore equal 

to -1/4 for all the laminar flow models presented here.   

To quantify the reduction of frictional resistance produced by using 

ultrahydrophobic walls, it is convenient to calculate the Darcy friction factor-Reynolds 

0 (steady) 0 (fully-developed)
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number product, fRe, where the Reynolds number is based on the hydraulic diameter.  

One can then compare the predicted value to that calculated for a classical parallel plate 

channel flow, fRe = 96.  Any reduction from this value, therefore, represents a reduction 

in the total frictional resistance.  The Darcy friction factor can be expressed in the 

following manner. 
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Using Equation 3-8 to replace the pressure gradient in the above expression, and 

multiplying by the Reynolds number yields 
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In this expression, lU  represents the average normalized liquid velocity.  Further, since 

4/1−=wT  the friction factor-Reynolds number product can be calculated simply as 

lUf 2Re =  for each of the laminar flow models implemented in this study.  This 

illustrates that the predicted reduction in the frictional resistance is a direct result of the 

enhanced liquid velocity induced by the regions of reduced shear stress. 

 As discussed previously, the no-slip condition is satisfied at the liquid-solid 

interface, however at the liquid-vapor interface a non-zero, spatially varying velocity 

exits.  Therefore, on a macroscopic level the liquid exhibits a slip velocity at the channel 
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walls.  Davies et al. [29] developed a relation between the slip length, λ, and the friction 

factor-Reynolds number product. 
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This expression allows for the conversion from one measure to the other.  Lauga and 

Stone [26] have analytically examined fully developed laminar flow through a parallel 

plate channel where Re →  0 and 0→nK , with zero shear stress at the liquid-vapor 

interface.  This study shows that the fluid slip can be expressed as follows. 
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By combining Equations 3-11 and 3-12 one can then develop an expression for fRe in 

terms of the relevant dimensionless parameters used in the presented study.  

Simplification yields the follow. 
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The above expression indicates that the fRe predictions can be quantified by a single 

curve for the limited case where the vapor cavity is neglected and the liquid-vapor 
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interface is modeled as a zero shear stress boundary.  As an exact solution, Equation 3-13 

provides a benchmark for the laminar flow models.  

3.1.1 Zero Shear Stress Model 

The initial laminar flow model implemented in the current study is confined 

simply to the nondimensional liquid domain, as shown in Figure 3-1.  The conditions at 

the boundaries of the liquid domain are maintained as defined in the previous section.  At 

the channel centerline, Y = 1/4 and for 0 ≤ Z ≤ Wm, a symmetry condition was applied, 

0=∂∂ YU .  A periodic boundary condition was implemented at Z = 0 and Z = Wm for 0 

≤ Y ≤ 1/4, requiring the liquid velocity to be equal at identical locations along both sides 

of the domain.  Additionally, the classical no-slip boundary condition was enforced at the 

rib, for Wc ≤ Z ≤ Wr at Y = 0.  For the region above the cavity, 0 ≤ Z ≤ Wc and Y = 0, 

where the liquid-vapor interface exists, a zero shear stress assumption is made.  Since the 

vapor viscosity is much smaller than that of the liquid, it can be argued that the vapor 

exerts negligible resistance to the liquid motion. Although this assumption is recognized 

as an idealization of what is actually occurring physically, the model still provides a good 

estimate of the potential reduction of frictional resistance.  Since an exact solution exists 

for this limiting case (Equation 3-13), the zero shear stress model becomes a benchmark 

and a validation for the numerical approach presented.   

The liquid computational domain was discretized with node clustering at the 

regions where high velocity gradients are expected, primarily in the transverse direction 

at the rib edges were the boundary condition transitions to that of no-slip to no-shear, and 

in the wall normal direction near the liquid-vapor and liquid-solid interfaces.  The 
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commercial software package FluentTM was implemented to solve the governing 

equations.  A heat transfer analogy was used to obtain a solution to the liquid domain 

since FluentTM is not capable of solving the two-dimensional momentum equation for the 

scenario where the fluid streamwise direction is perpendicular to the two-dimensional 

plane.  This solution approach was facilitated by the fact that the nondimensional 

momentum equation in the x-direction (Equation 3-4) is in the form of Poisson�s 

equation, as stated in the previous section.  FluentTM was therefore set to solve a scalar 

diffusion equation with a single source and with boundary conditions consisting of a 

specified value of the scalar and its wall-normal gradient as opposed to those of the 

velocity and the shear stress, respectively.  The wall-normal scalar gradient was set to 

zero at the channel centerline, and the scalar magnitudes were set to be equivalent at 

equal wall-normal positions on the periodic side boundaries.  Further, the magnitude of 

the scalar was assigned to zero at the liquid-solid interface to model the classical no-slip 

condition at the rib, and a vanishing gradient was employed at the liquid-vapor interface 

to model the zero shear stress condition.   

For a grid-independent solution, a grid of approximately 30,000 nodes was 

implemented.  Additionally, each case was allowed to run until the nondimensional shear 

stress was within 0.01% of the value of -1/4 and the average nondimensional velocity had 

ceased to change by more than 0.005%.  Predicted fRe values were calculated using 

Equation 3-10 and compared to the classical parallel plate value of 96 as well as to the 

exact solution, Equation 3-13. 
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3.1.2 Liquid Meniscus Study 

In the laminar flow models, the liquid vapor interface is represented ideally as a 

flat interface between the ribs.  In reality, as discussed previously, the liquid forms a 

meniscus suspended between the ribs which slightly penetrates the cavity region.  A 

parametric study was conducted in conjunction to the zero shear stress model with the 

purpose of determining the significance of the meniscus shape at liquid-vapor interface.  

A two-dimensional liquid computational domain was created consisting of a meniscus at 

the cavity region as illustrated in Figure 3-3.  In order to determine the influence of only 

the meniscus shape, the liquid-vapor boundary was modeled as having a zero shear stress.  

All other boundary conditions were maintained as defined for the laminar flow models.  

The relative meniscus depth, hm Dd=ξ , where dm is the maximum dimensional 

meniscus depth, was varied within the range of 0.0-0.1.  However, the relative module 

width was maintained at a value of 1.0 and the cavity fraction at a value of 0.87.  It is 

important to note that the meniscus depth was arbitrarily assigned and not solved for. 

 

 

Figure 3-3 Computational domain implemented in the meniscus study 
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For a grid-independent solution, a grid of approximately 30,000 nodes was 

implemented.  Convergence was monitored in similar manner as was done in the zero 

shear model with the exception that with the meniscus included, the average 

nondimensional shear stress is not equal to -1/4.  This is a direct result of the increased 

surface area created by the inclusion of the meniscus.  Each case, therefore, was allowed 

to run until the nondimensional shear and the average nondimensional velocity had 

ceased to change by more than 0.005%.  Each case in the meniscus study was initialized 

using the solution obtained for the zero shear stress model for the same relative module 

width and cavity fraction values. 

3.1.3 One-Dimensional Cavity Model 

For the zero shear stress model the assumption was made that the vapor exerts a 

negligible amount of resistance to the liquid flow.  In reality however, a finite friction 

exists since the fluids are of differing viscosities.  Although this may be small in 

comparison to that experienced at the liquid-solid boundary, the purpose of the cavity 

models is to more closely represent the true physics of the flow by accounting for the 

influence of the vapor cavity.  As with the other laminar flow models, at the channel 

centerline, Y = 1/4 and for 0 ≤ Z ≤ Wm, a symmetry condition was applied, 0=∂∂ YU ,  

and a periodic boundary condition was implemented at Z = 0 and Z = Wm for 0 ≤ Y ≤ 1/4.  

Additionally, the classical no-slip boundary condition was enforced at the rib, for Wc ≤ Z 

≤ Wr at Y = 0 (see Figure 3-1).  At the cavity, 0 ≤ Z ≤ Wc and Y = 0, the influence of the 

vapor is accounted for by using a one-dimensional cavity velocity model.  In this model, 
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the assumption is made that the influence of the cavities side walls is negligible and that 

the vapor velocity in the cavity is only a function of the wall-normal coordinate (y-

direction).  This allows for the vapor cavity to be modeled as an infinitely wide, lid- 

driven cavity as shown in Figure 3-4.   

 

 

Figure 3-4 Schematic of the vapor cavity as a one-dimensional lid driven cavity 

 

Applying Equation 3-3 to the one-dimensional lid-driven cavity one can obtain an 

expression for the vapor velocity as a function of the wall-normal coordinate.  

Eliminating the dependence on the transverse coordinate, Equation 3-3 is reduced to 
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where uv is the vapor velocity, y is the wall normal coordinate measured from the bottom 

surface of the vapor cavity, and ( )vdxdP  is the streamwise vapor pressure gradient.  

Integrating Equation 3-14 twice and simplifying the resulting expression reveals an 

expression for the dimensional vapor velocity as a function of the wall normal coordinate.   
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In the equation above, d is the dimensional cavity depth and the interface velocity at the 

liquid-vapor interface is represented as iu  (see Figure 3-4).  For the one-dimensional 

cavity model, the average interfacial velocity is assumed to be a constant value and is 

obtained by averaging the liquid velocity at the liquid-vapor interface in the transverse 

coordinate, for 0 ≤ Z ≤ Wc and Y = 0.  Additionally, because of the convection cell in the 

vapor cavity, the average vapor velocity in the cavity must equal zero to satisfy 

conservation of mass, as shown in the following expression. 
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The vapor pressure gradient can then be obtained by substituting Equation 3-15 into 

Equation 3-16 and integrating. 

 

 ( ) 2

6
d
u

dxdP vi
v

µ
=         (3-17)   



33 

Substitution of the vapor pressure gradient into Equation 3-15 and subsequent 

simplification provides an expression for the vapor velocity as a function of the wall-

normal coordinate, the cavity depth, and the average interfacial velocity.   
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Using Equation 3-18, one can then solve for the dimensional shear stress at the liquid-

vapor interface, ( ) dudydu viyvc µµτ 40 == = .  Normalization of the average interface 

shear stress yields 
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where the nondimensional shear stress is defined as ( )( )lhcc dxdPDT τ=  and the 

nondimensional interface velocity as ( )( )lhlii dxdPDuU 2µ= .  This simple analysis 

reveals that the shear stress at the interface is dependent on both the cavity depth and the 

viscosity ratio between the two fluids, as one would expect.  This one-dimensional cavity 

model can then be coupled to the solution to the liquid domain by setting the normalized 

average vapor velocity and interface shear stress equal to that of the liquid.  Thus the 

average normalized shear stress can be calculated using Equation 3-19 and be applied as 

the boundary condition at the liquid-vapor interface.  This allows for a simple model that 
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will model to a first-order the impeding viscous resistance of the vapor against the liquid 

and for the depth of the cavity.   

The one-dimensional cavity model was employed for the relative module widths 

values of Wm = 0.1 and 1.0 and for cavity fractions of Fc = 0.94 and 0.97.  Additionally, 

the relative cavity depth (δc) was maintained at a value of 0.1 for each of the cases.  A 

cavity depth study was then conducted where the relative cavity depth was varied from δc  

= 0.006-0.1, for Wm = 0.1 and 1, and Fc = 0.94 and 0.97. 

 The liquid computational domain was discretized with node clustering carried out 

in the same manner as for the zero shear stress model.  Since this model considers the 

streamwise direction to be perpendicular to the two-dimensional liquid domain, the same 

scalar diffusion analogy solution technique used in FluentTM for the zero shear stress 

model was employed for the one-dimensional cavity model.  Further, all boundary 

conditions remain as defined for the zero shear stress model with the exception of the 

vapor cavity region, 0 ≤ Z ≤ Wc and Y = 0.  As discussed in the previous paragraph, 

Equation 3-12 is used to calculate the interfacial shear stress, which is in turn applied as a 

specified wall shear stress boundary condition at the cavity region.  Due to the fact that 

the interfacial shear stress and velocity are interdependent, this becomes a dynamic 

boundary condition.  To accomplish this, a User Defined Function (UDF) was coded to 

supplement FluentTM (see Appendix A for UDF code).  Initially, a solution is obtained 

using FluentTM for the liquid domain by using the initial zero shear stress approximation.  

Subsequently, the UDF uses the interfacial liquid velocity at the cavity to calculate the 

average shear stress at the interface.  And finally, the calculated shear stress is applied to 
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the cavity region and replaces the previous shear stress value, and the liquid domain is 

recomputed based on the updated boundary condition.   

For grid independent solutions, the same grid used in the zero shear stress model 

of approximately 30,000 nodes was implemented.  Additionally, the identical 

convergence criteria were also found to be appropriate for the one-dimensional cavity 

model.  Each case was allowed to run until the nondimensional shear stress was within 

0.01% of the value of -1/4 and the average nondimensional velocity had ceased to change 

by more than 0.005%.  Each one-dimensional cavity model case was initialized using the 

solution obtained for the zero shear stress model for the same relative module width and 

cavity fraction values.   

3.1.4 Two-Dimensional Cavity Model 

The application of the one-dimensional cavity model revealed that the vapor 

cavity has a significant influence on the total frictional resistance.  For added rigor, a 

two-dimensional cavity model was implemented to account for velocity gradients in the 

transverse coordinate (z-direction) in addition to the wall normal coordinate (y-direction).  

As defined in the one-dimensional cavity model, it is assumed that the cavity end effects 

are negligible and the flow can be modeled as a steady, fully developed laminar flow.  To 

obtain a solution for the vapor cavity, all of the conditions at the boundaries of the liquid 

domain are maintained as defined for the one-dimensional cavity model, except that of 

the cavity region, 0 ≤ Z ≤ Wc and Y = 0.  At the channel centerline, Y = 1/4 and for 0 ≤ Z 

≤ Wm, a symmetry condition was applied, 0=∂∂ YU , and a periodic boundary condition 

was implemented at Z = 0 and Z = Wm for 0 ≤ Y ≤ 1/4.  Additionally, the classical no-slip 
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boundary condition was enforced at the rib, for Wc ≤ Z ≤ Wr at Y = 0.  To model the vapor 

cavity, Equation 3-5 was solved analytically using a separation of variable technique.  

No-slip boundary conditions were applied to the cavity walls, for 0 ≤ Y� ≤ -δc at both Z = 

0 and Wc, and for 0 ≤ Z ≤ Wc at Y� = 0.  Where cYY δ+=�  and is measured from the 

bottom of the vapor cavity (Y = -δc), as shown in Figure 3-5.  At the liquid-vapor 

interface, 0 ≤ Z ≤ Wc  at Y� = δc, the analytical vapor cavity solution is coupled to the 

liquid domain by equating the interfacial fluid velocities.  In other words, the boundary 

condition is set as a spatially dependent velocity profile, ( )Zui .  

 

Figure 3-5 Vapor cavity computational domain for analytical solution to Equation 3-5 

 

The analytical solution to Equation 3-5 is in the form of a two-dimensional 

velocity distribution for the cavity as a function of the unknown interface velocity, ui, and 

the unknown vapor-liquid pressure ratio, ( ) ( )lv dxdPdxdP .    In nondimensional form 
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the vapor velocity in the cavity is as follows.  Refer to Appendix B for a more detailed 

derivation.   
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The coefficients an, Anm, and Bnm are defined as follows. 
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As in the one-dimensional cavity model, the average velocity in the vapor cavity must be 

equal to zero in order to satisfy conservation of mass.  One can then employ the same 

technique to solve for the unknown vapor-liquid pressure gradient ratio.  The average 

velocity can be written as shown. 
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Performing the integration and simplifying where appropriate yields the following 

expression for the pressure gradient ratio. 
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In this relation, Φ represents 
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Substituting Equations 3-25 and 3-26 into Equation 3-20 the two-dimensional normalized 

vapor velocity becomes 
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In this form, the vapor velocity in the cavity can be determined based on the relevant 

dimensionless parameters and the unknown interface velocity (through the coefficient 

an).  Additionally, the nondimensional shear stress at the liquid-vapor interface can 

calculated using the same definition of the dimensionless shear stress as employed in the 

one-dimensional cavity model.  Doing so yields the follow expression. 
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It is important to note once again that the above expression is dependent upon the 

unknown interface velocity.  The analytical solution to the vapor cavity is then coupled to 

the liquid domain by assigning the liquid velocity and shear stress equal to those of the 

vapor at the interface.  This was accomplished by means of a UDF as in the one-

dimensional cavity model (see Appendix C for the two-dimensional cavity UDF code).  

The solution process with the UDF is illustrated in Figure 3-6.  Initially, a solution is 

obtained using FluentTM for the liquid domain by using the solution to the one-

dimensional cavity model as the initial approximation.  Subsequently, the liquid 

interfacial velocity is extracted from the solution by the UDF and is substituted into 

Equation 3-28 to solve for the shear stress distribution at the interface.  Finally, the 

calculated shear stress distribution is applied as the liquid-vapor interface boundary 

condition for the liquid domain, and replaces the previous shear stress values.  The liquid 

domain is then recomputed based on the updated boundary condition.  The interfacial 
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boundary condition was updated approximately every 25 iterations until the solution to 

the liquid domain converged.  The same scalar diffusion analogy used in previous 

laminar flow models was also implemented in the two-dimensional cavity model for the 

liquid domain. 

 

 

Figure 3-6 Cartoon illustrating a two-dimensional cavity model solution iteration 

 

For grid-independent solutions, the same grid used in the one-dimensional cavity 

model of approximately 30,000 nodes was implemented.  Also, it was found that 200 

terms in the summations of Eq. 3-28 were sufficient to obtain unchanging accuracy in the 

shear stress predictions.   For the two-dimensional cavity model all simulations were set 

with a relative cavity depth of δc = 0.1.  A parametric cavity depth study was then 
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performed where the relative cavity depth was varied from 0.0 to 0.7.  Additionally, the 

identical convergence criteria were also found to be appropriate for the two-dimensional 

cavity model as was used in the one-dimensional cavity model.  Each case was allowed to 

run until the nondimensional shear stress was within 0.01% of the value of -1/4 and the 

average nondimensional velocity had ceased to change by more than 0.005%.  Each two-

dimensional cavity model case was initialized using the solution obtained for the one-

dimensional cavity model for the same relative module width, cavity fraction, and cavity 

depth values. 

3.2 Turbulent Flow Model 

Consider turbulent flow through a three-dimensional rectangular channel with 

ultrahydrophobic top and bottom walls.  The turbulent flow through the channel is 

considered to be steady and fully developed in a time-averaged sense with constant fluid 

properties.  The width of the channel in consideration is much larger than the channel 

height, allowing the channel to be modeled as infinitely wide parallel plates.  The micro-

structures on the top and bottom walls consist of alternating ribs and cavities oriented 

parallel to the flow direction as in the laminar flow models.  For the turbulent flow model 

the liquid meniscus shape at the cavity is modeled in an ideal manner as a flat interface 

along the entire length of the cavity.   

To obtain a solution to the liquid domain, the Reynolds Averaged Navier-Stokes 

(RANS) equations are implemented and a k-ω model is employed for closure to the 

RANS equations.  The governing equations in index notation are as follows: 
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In the above equation, iu  is the time averaged velocity, iu ′  is the fluctuating velocity 

component, P represents the time averaged pressure, xi is the spatial coordinate, κ is the 

kinetic energy, and ω is the dissipation rate of kinetic energy.  Γ is the effective 

diffusivity of κ, and ω, and is defined as 

 

κ
κ σ

µµ t+=Γ          (3-33) 

ω
ω σ

µµ t+=Γ          (3-34) 

 

where µ is the liquid viscosity, and µt is the turbulent viscosity defined as ωρκαµ ∗=t .  

The closure coefficients, σ, are closure coefficients set at κσ = 2.0 and ωσ = 2.0.  All 

coefficients in the current study are in accordance to those determined by Wilcox [50] for 

boundary layer flow with a pressure gradient.  The coefficient ∗α  is a low-Reynolds-
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number correction that works by damping the turbulent viscosity and is defined as 

follows. 
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In the above, Ret is the turbulent Reynolds number, µωρκ=tRe , and the coefficients 

are set as follows, Rκ = 6, ∗
∞α =1, 3iβα =∗

o , and 072.0=iβ .  Referring back to 

Equations 3-31 and 3-32, G and Y represent the generation and dissipation of both κ and 

ω, respectively.  The generation of turbulent kinetic energy and of the dissipation rate of 

kinetic energy can be expressed, respectively, as 
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and Rω = 2.95, ∞α = 0.52, 910 =α .  The dissipation of the turbulent kinetic energy, Yκ is 

defined as  

 

κωρβ βκ ∗
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and, ζ∗  = 1.5, Rβ = 8, and ∗
∞β = 0.09.  Further, F(Mt) = 0 for an incompressible liquid 

flow.  The dissipation of the turbulent kinetic energy dissipation rate is expressed as  

 

2ωρβ βω fY =          (3-44) 

 

where 
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In the given scenario, the computational domain can be confined to a small, three-

dimensional repeatable section consisting of a single rib and cavity that extends the 

length of the channel and is limited to half the total channel height, as shown in Figure 

3-7.  It is important to note that the figure shows only a two-dimensional cross-section of 

the computational domain, which in reality extends perpendicular to the image in the x-

direction.  The liquid domain extends from 0 ≤ y ≤ H, from 0 ≤ z ≤ W, and from 0 ≤ x ≤ L, 

where H is half the channel height and L is the length of the channel (Figure 3-8).  The 

width of the computational domain is represented as W and is defined as, rc wwW += , 

where wc is the cavity width and wr is the width of the solid rib.  In solving Equations 3-

29 to 3-32 for the liquid domain, the boundary conditions were set as follows.  At the 

channel centerline, for y = H, 0 ≤ z ≤ W, and 0 ≤ x ≤ L, a symmetry condition was 

applied, which is mathematically represented as a zero velocity gradient, 0=∂∂ yu .  

Since the computational domain consists of a repeating section a periodic boundary 
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condition was implemented at z = 0 and z = W for 0 ≤ y ≤ H and 0 ≤ x ≤ L, requiring the 

liquid velocity to be equal at identical vertical locations a long both sides of the domain.  

A periodic condition is also employed at the channel inlet, x = 0, and exit, x = L, for 0 ≤ y 

≤ H and 0 ≤ z ≤ W, to allow for a streamwise, time-averaged fully developed flow.  

Additionally, the classical no-slip boundary condition was enforced at the rib, for wc ≤ z ≤ 

wr at Y = 0 and 0 ≤ x ≤ L.  For the liquid-vapor interface, 0 ≤ z ≤ wc and 0 ≤ x ≤ L, at y = 0 

a vanishing shear stress boundary condition was applied.   

 

 

Figure 3-7 Schematic of a two-dimensional cross section of the turbulent flow model computational 
domain 

 

 

Figure 3-8 Illustration of the defined coordinate system for the three-dimensional turbulent flow 
model 
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In the research presented, three important dimensionless parameters exist.  These 

being the relative module width, hm DWW = , the relative cavity fraction, 

mccc WWWwF == , and the Reynolds number, νhDu=Re .  In the numerical 

analysis, Wm was varied from 0.01-1.0, Fc was varied from 0-0.97, and a Reynolds 

number range of 2,000-10,000 was explored.   

To quantify the global frictional resistance, the Darcy friction factor, f, was 

calculated and compared to values calculated for a full no-slip parallel plates channel.  

The average Darcy friction factor is defined as  

 

( )2
84 uCf f ρ
τ==         (3-50) 

 

where Cf is the average skin friction coefficient and τ  is the average shear stress at the 

liquid-solid boundary of the liquid domain.  The average shear stress is computed at the 

channel wall, including both the liquid-solid interface (rib) and the liquid-vapor interface 

(cavity).  Empirical correlations developed for turbulent flow through smooth rectangular 

ducts may be used for model validation under conditions of a no-slip boundary 

everywhere.  The often-used expression presented by Blasius [46] for the Darcy friction 

factor is  

 

41Re
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and has stated applicability for the Reynolds number range of 4,000 ≤ Re ≤ 100,000.  

Although this correlation was developed for flow through a smooth pipe, it can be 

modified for channel flow using a Reynolds number based on an effective 

diameter, kDD heff 64= , where k is equal to 96 for parallel plate channel flow [47].  

Other correlations include those developed by Beavers et al. [48] and Dean [49] as 

shown: 

 

3.0Re
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f =          (3-52) 
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f =          (3-53) 

 

These correlations are recommended for use over the Reynolds number ranges of 5,000 ≤ 

Re ≤ 30,000 and 12,000 ≤ Re ≤ 1,200,000, respectively.  Although the recommended 

Reynolds number range for the Dean correlation is much higher than the Reynolds 

number range explored in the current study, the calculated values using the correlation 

are very close to those computed using the other correlations (with a maximum difference 

of 2.5% when compared to the Blasius formula).  Therefore, the Dean correlation is still 

included in the model validation. 

The liquid domain was discretized and the governing equations were integrated at 

each cell.  Only a few cells were created in the streamwise direction since a Reynolds 

averaged solution method was employed.  As in the laminar flow models, the commercial 

software FluentTM was employed to solve the fluid domain where a k-ω model was 
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implemented for closure to the RANS equations.  The coefficients relevant to this model 

were maintained at the default settings set by FluentTM, which are set to match those 

determined by Wilcox [50] for boundary layer flow as stated previously.  Although they 

were also defined previously, the coefficients are repeated here for convenience.   

 

1=∗
∞α ; 52.0=∞α ; 910 =α ; 09.0=∗

∞β ; 072.0=iβ ; 8=βR  

6=κR ; 95.2=ωR ; 5.1=∗ζ ; 0.2=κσ ; 0.2=ωσ  

 

Grid independence was achieved with a grid of nominally 80,000 cells, requiring 

approximately 100,000 iterations for convergence.  The f and Cf values were monitored to 

ensure their complete convergence. The solution was considered converged when the f 

and Cf values ceased to change more than 0.01%.  Additionally, simulations were set up 

using an enhanced wall treatment feature in FluentTM which allows for resolution into the 

viscous sublayer to approximately y+ ~ 1.  As a result, the nearest wall node for each of 

the simulations is adaptively positioned near a value of y+ = 1 of the liquid domain as 

recommended in the FluentTM documentation.  To insure compliance to this requirement, 

each grid was adapted until the nearest node point was within 5% of y+ = 1.  A difference 

of 5% in the y+ value was seen to influence the f value by less than 1%. 

 



50 



51 

4 Laminar Flow Results 

4.1 Zero Shear Stress Model 

Figure 4-1 illustrates numerical fRe predictions as a function of the cavity fraction.  

In the figure, each line represents a different value of the relative module width.  To 

facilitate comparison, a line that denotes the classical parallel plate channel value of fRe = 

96 is included.  It can therefore be understood that any deviation from this value signifies 

a reduction in the total frictional resistance in the channel.  As the cavity fraction 

approaches zero, the fRe predictions for each relative module width converge at the 

classical value of 96.  It is also observed that fRe decreases with increasing values of the 

cavity fraction.  A larger cavity fraction represents a computational domain with a larger 

cavity-to-rib ratio, which increases the relative area where the zero shear boundary 

condition exists.  Therefore, the influence of the zero shear stress boundary condition on 

the liquid flow is larger and a more significant reduction in the frictional resistance is 

obtained.  It can also be deduced from Figure 4-1 that the fRe predictions decrease for 

increasing values of the relative module width.  Larger values of the relative module 

width signify a liquid computational domain that has a smaller height-to-width aspect 

ratio, meaning the width of the cavity is larger in relation to the channel height.  This 
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condition allows for the influence of the vapor cavity to diffuse through a larger 

percentage of the liquid domain and thus results in greater reductions in the fRe value.   

 

 

Figure 4-1 Numerical prediction of fRe as a function of the cavity fraction, for relative module widths 
of 0.1, 0.2, 0.5, and 1 

 

Additionally, Figure 4-1 illustrates the magnitude of the reductions in the friction 

resistance that the use of ultrahydrophobic surfaces enables.  For a relative module width 

of Wm = 1 and a cavity fraction of Fc = 0.97, an unprecedented 92% reduction is 

observed.  Even for a more realistic relative module width value of Wm = 0.1 and a cavity 

fraction of Fc = 0.97, a 53% reduction is shown to be achievable.   

Figure 4-2 contains a comparison between the numerical predictions using the zero 

shear stress model and the values calculated using the analytical expression developed by 



53 

Lauga and Stone [26], Equation 3-12.  Shown in the figure are normalized slip length 

values as a function of the cavity fraction, and includes the numerical predictions for the 

relative module widths of Wm = 0.2, 0.5, and 1.0.  Examination of the presented data 

shows very good agreement between the predicted values and the exact solution. 

 

 

Figure 4-2 Normalized slip length predictions as a function of the cavity fraction for the relative 
module widths of Wm = 0.2, 0.5, and 1.0 in comparison to the analytical expression developed by 
Lauga and Stone, Equation 3-12 

4.1.1 Liquid Meniscus Model 

The liquid meniscus, zero shear model was confined only to a channel with a 

relative module width of Wm = 1.0 and a cavity fraction of Fc = 0.87.  The purpose of this 

model again is to test the validity of the flat liquid-vapor assumption used in the models.  

Shown in Table 4-1 are the fRe predictions for the nondimensional meniscus depth values 
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of ξ = 0.0, 0.01, 0.05, and 0.1.  The value obtained for a meniscus depth of ξ = 0 

represents the value obtained in the zero shear stress model.  As illustrated in the table, 

fRe increases as the depth of the meniscus increases.  Since the interfacial boundary 

condition is that of zero shear stress, the increased surface area does not contribute to the 

observed increase in frictional resistance.  Instead, this increase could be accounted for 

by considering that the meniscus introduces an uneven boundary over which the liquid is 

forced to pass.  However, it can also be observed from the table that the increase in the 

frictional resistance due to the presence of the meniscus is insignificant.  An increase of 

only 4% in fRe is experienced over the nondimensional meniscus depth range of ξ = 0 � 

0.1.  The nondimensional value of ξ = 0.1 represents a meniscus depth that is 40% of the 

channel height, which is much larger than could be achieved without the liquid wetting 

the cavity.  It is important to note that this approximate model does not account for the 

added shear stress due to the penetration into the cavity since a zero shear stress boundary 

is still assumed. 

 

Table 4-1 Predictions of fRe as a function of the dimensionless meniscus depth, ξ 

ξ Fc fRe 

0.00 0.87 12.77 
0.01 0.87 12.76 
0.05 0.87 13.11 
0.10 0.87 13.29 
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4.2 One-Dimensional Cavity Model 

Figure 4-3 illustrates fRe predictions as a function of the cavity fraction for the 

relative module width values of Wm = 0.25 and 1.0, and a relative cavity depth of δc = 0.1.  

Included in the figure are the friction factor-Reynolds number product calculations for 

both the zero shear and the one-dimensional cavity models.  As can be seen in the figure, 

the zero shear stress model over-predicts the reduction in the total frictional resistance.  

This of course is due to the fact that the zero shear model is an idealization of the actual 

interfacial physics.  The cavity model in discussion shows that, albeit small, a non-zero 

shear stress exists at the liquid-vapor interface.  The magnitude of which will be further 

examined in the discussion of the two-dimensional cavity model.   

 

 

Figure 4-3 Predictions of fRe for the one-dimensional cavity model (1D) compared to the zero shear 
model (ZS) as a function of cavity fraction, for Wm = 0.1 and 1.0, and δc = 0.1 
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Further, the difference between the predicted values of each model is observed to 

increase with increasing relative module width.  For a relative module width of Wm = 1.0 

and a cavity fraction of Fc = 0.97, a 40% difference exists between the predicted values 

of the two models, whereas for the module width of Wm = 0.1, only a 5% difference is 

observed for the same cavity fraction.  This may be attributed to the fact that an increased 

relative width signifies an increased cavity area and a decreased channel height relative to 

the increasing width.  In such a channel the interfacial boundary condition will have a 

larger influence on the liquid flow dynamics, and therefore be more sensitive to changes 

in the boundary conditions.   

4.2.1 One-Dimensional Cavity Depth Study 

Table 4-2 illustrates the fRe predictions obtained in the cavity depth study using 

the one-dimensional cavity model.  Predicted values shown in the table are limited to 

those for the relative module width values of Wm = 0.1 and 1.0, and the cavity fraction 

values of Fc = 0.94 and 0.97.  The relative cavity depth was varied from δc = 0.006 to 0.1.  

It is observed from the table that as the cavity depth increases, the predicted fRe value is 

decreased.  The data clearly shows that the total frictional resistance of the channel 

depends significantly on the cavity geometry.  From a change in the nondimensional 

cavity depth from 0.006 to 0.1, a 21% decrease in the fRe is observed for the case of Wm 

= 0.1 and Fc = 0.94.  Additionally, for the case of Wm = 1.0 and Fc = 0.97, a 73% decrease 

in fRe occurs.  As the cavity depth increases the predicted fRe value continues to decrease 

as it approaches the ideal value predicted by the zero shear stress model, which were 

calculated for the two cases mention above to be 49.72 and 9.34, respectively.  Further, 
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the magnitude that the fRe value decreases can be observed to lessen as the cavity depth 

continues to increase.  This suggests that the friction factor-Reynolds number product 

may become independent of the cavity depth once a specific depth is achieved.  However, 

the extent of this preliminary cavity study is insufficient to accurately specify that 

required depth. 

   

Table 4-2 Prediction of fRe as a function of the relative cavity                                                               
depth for the cavity fraction values of 0.94 and 0.97 

Wm = 0.1 Wm = 1.0 

δc Fc fRe δc Fc fRe 

0.100 0.94 51.48 0.100 0.94 14.09 
0.063 0.94 50.11 0.063 0.94 16.71 
0.031 0.94 54.23 0.031 0.94 22.92 
0.006 0.94 65.27 0.006 0.94 51.08 
0.100 0.97 44.63 0.100 0.97 12.21 
0.063 0.97 45.64 0.063 0.97 14.85 
0.031 0.97 48.14 0.031 0.97 21.16 
0.006 0.97 61.77 0.006 0.97 49.84 

 

4.3 Two-Dimensional Cavity Model 

Figure 4-4 illustrates the fRe calculations as a function of the cavity fraction for 

the two-dimensional vapor cavity model (2D) for the relative module width values of Wm 

= 0.1 and 1.0.  Also included in the figure are the fRe predictions for the zero shear stress 

model (ZS).  The same conclusions can be made in response to this data as were made for 

the one-dimensional cavity model.  That is, the zero shear stress model over predicts the 

reduction in the total frictional resistance, since in actuality a non-zero shear stress exists 
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at the liquid-vapor boundary.  Also, the difference between the two models increases as 

the relative module width increases.  This is due again to the fact that the increased 

relative width also increases the area over which the reduced shear boundary is effective, 

thus increasing the amount of influence the interfacial boundary has on the liquid flow 

dynamics.   

 

 

Figure 4-4 Predictions of fRe for the two-dimensional model (2D) compared to the zero shear (ZS) 
values as a function of the cavity fraction, for Wm = 0.1 and 1.0, and δc = 0.1 

 

Illustrated in Figure 4-5 are slip length predictions as a function of the cavity 

fraction for the module widths of Wm = 0.5 and 1.0, and for a dimensionless cavity depth 

of δc = 0.1.  Also included in the figure are the slip length values for the zero shear stress 

model.  As expected, for a cavity fraction of Fc = 0 the slip length is seen to approach 
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zero for each case presented.  Just as with the fRe predictions displayed in Figure 4-4, 

λ/W increases as the cavity fraction is increased.  Further, when the zero shear stress 

model is used, λ/W is independent of Wm as is described by Equation 3-12.  However, 

when the vapor cavity solution is coupled to the liquid domain, the slip-length is seen to 

decrease with increasing relative module width, Wm.  For example, at a cavity fraction of 

Fc = 0.97 and a relative width of Wm = 1.0 the relative difference between the zero shear 

stress model and the two-dimensional cavity model predictions is nearly a factor of two. 

 

 

Figure 4-5 Predicted slip length values as a function of the cavity fraction for relative module widths 
of Wm = 0.5 and 1.0 

 

Although the two-dimensional vapor cavity model is a more accurate depiction of 

the actual physics of the flow, when compared to Figure 4-3, the two-dimensional cavity 
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model data presented in Figure 4-4 does not appear significantly different from that 

obtained using the one-dimensional cavity model.  For comparison, Table 4-3 contains 

predictions of fRe for both the one-dimensional and two-dimensional vapor cavity 

models.  Examining the values from the two different models for the same relative 

module width reveals a very insignificant variation.  For a relative module width of Wm = 

1.0 and a cavity fraction of Fc = 0.97, only a 2% change occurs from the one-dimensional 

model to the two-dimensional model.  This small difference between the two cavity 

models is also observed to decrease as the cavity fraction decreases.  For the same cavity 

fraction in the example above but for the relative module width of Wm = 0.1, less than a 

1% difference exists between models.  This may be accounted for by the fact that as the 

cavity fraction increases, the variation in the interfacial velocity and shear stress becomes 

greater and the side effects of the cavity more significant; thus rendering the assumption 

of an average velocity and shear stress value a less adequate representative of the actual 

physics.   

 

Table 4-3 Comparison of fRe predictions from both the                                                                          
one-dimensional (1D) and two-dimensional                                                                                              

(2D) cavity models, for δc = 0.1 

fRe 
Wm = 1.0 Wm = 0.1 Fc 

1D 2D 1D 2D 
0.50 43.46 43.72 84.93 84.63 
0.75 24.06 26.59 70.80 70.44 
0.88 17.34 17.56 59.78 59.55 
0.94 14.09 14.29 51.50 51.10 
0.97 12.21 12.41 44.64 44.06 
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Further examination of the data presented in Table 4-3 show that the difference in 

fRe predictions between the one and two-dimensional models decreases for decreasing 

relative module width.  This is expected since the liquid-vapor boundary exerts less 

influence on the liquid domain for smaller relative module widths, and therefore, a more 

sophisticated model does little to increase the accuracy of the prediction.  It is interesting 

to note however, that the one-dimensional fRe calculations are greater than those for the 

two-dimensional model for the smaller relative module width.  This phenomenon occurs 

for all the lower values of relative module width examined in this study, although it is 

unclear as to why this occurs.  It is possible that the average interfacial shear stress 

approximation in the one-dimensional cavity model over-predicts the shear stress and 

thus, a larger fRe value is calculated.  However, despite the apparent similarity between 

the one-dimensional and two-dimensional predictions of fRe, the two-dimensional vapor 

cavity model allows for a more complete examination of the fluid flow dynamics that 

cannot be achieved using the one-dimensional model. 

An examination of the velocity profiles helps illustrate the physical phenomenon 

at the liquid-vapor interface which creates the large decrease in the total frictional 

resistance in the channel.  Nondimensional velocity predictions are illustrated in Figure 

4-6 as a function of the normalized transverse coordinate, ζ = z/w, for both the zero shear 

stress (solid lines) and two-dimensional cavity models (dashed lines).  The predictions 

displayed are for a relative module width of Wm = 0.25, a relative cavity depth of δc = 0.1, 

and for the cavity fraction values of Fc = 0.50, 0.88, and 0.97.  As the velocity profiles 

show, the no-slip condition holds at the rib, but due to the non-zero shear stress at the 

liquid-vapor interface, a non-zero velocity exists over the vapor cavity region.  This 



62 

enhancement of the fluid velocity at the vapor cavity is the source of the enhanced fluid 

flow.  Shown in the figure for each profile is the average liquid velocity prediction 

obtained from the two-dimensional cavity model.  Numerical predictions show an 

average velocity of lU = 0.021 for a no-slip parallel plate channel flow.  A quick 

comparison between this value and those indicated in Figure 4-6 reveals the significant 

enhancement of the fluid flow in the channel due to the reduced frictional resistance.  

Further, it is also observed that as the cavity fraction increases, the average normalized 

liquid velocity increases; this trend is in direct relation to that of the fRe value increasing 

with increased cavity fraction as previously discussed. 

 

 

Figure 4-6 Predictions of the normalized velocity at the liquid-vapor interface as a function of ζ = z/w 
for a relative module width of Wm = 0.25, a relative cavity depth of δc = 0.1, and cavity fractions of Fc 
= 0.50, 0.88, and 0.97. 
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 It is also interesting to note from Figure 4-6 the difference between the 

normalized velocity profiles of both the zero shear stress and two-dimensional cavity 

models.  As is expected, the assumption of a zero shear stress at the liquid-vapor interface 

allows for the development of a higher average channel velocity.  Accounting for the 

small amount of interfacial shear stress reduces that value from the ideal by accounting 

for the strong dependence upon the vapor flow dynamics in the cavity.  Further, it is 

observed that the difference between the velocity profiles decreases as the cavity fraction 

decreases.  This indicates that the interfacial shear stress at the cavity approaches zero as 

the cavity fraction decreases.  Only for larger cavities does the shear stress become large 

enough to have a significant influence on the channel flow.   

 

 

Figure 4-7 Normalized velocity predictions as a function of the normalized transverse coordinate, ζ = 
z/w for a cavity fraction of Fc = 0.88, a relative cavity depth of δc = 0.1, and for relative module widths 
of Wm = 0.1, 0.25, 1.0 
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Figure 4-7 also illustrates nondimensional velocity profiles plotted as a function 

of the dimensionless transverse coordinate, ζ = z/w, for both the zero shear stress and 

two-dimensional cavity models.  The represented profiles are for a cavity fraction of Fc = 

0.88, a relative cavity depth of δc = 0.1, and for the relative module widths of Wm = 0.1, 

0.25, and 1.0.  Again, the average liquid velocity is included for the two-dimensional 

cavity model predictions.  As is expected, the average velocity is observed to increase as 

the relative module width increases.  This increased average velocity in conjunction with 

an increased module width is the cause of the previously observed dependence of the fRe 

on the relative module with.  Since, for a fixed hydraulic diameter, a larger value of the 

relative module width essentially means a larger cavity in relation to the channel height, 

the predicted interfacial shear stress has a more significant influence on the channel flow 

dynamics.   

  Displayed in Figure 4-8 are nondimensional shear stress predictions as a function 

of the normalized transverse coordinate ζ = z/w, for the two-dimensional cavity model at 

Y = 0.  Included in the figure are predictions of the relative module width of Wm = 0.1 and 

0.25, a relative cavity depth of δc =0.1, and for cavity fractions of Fc = 0.50, 0.88, and 

0.97.  As Equation 3-8 indicates, for the laminar flow models, the normalized average 

shear stress is -1/4.  Figure 4-8 illustrates that this holds even as the width of the rib is 

decreasing with increased cavity fractions.  Since the interfacial shear stress is near zero, 

the shear stress at the rib must increase to maintain the constant average of -1/4.  

Therefore, as the cavity fraction increases, the maximum shear stress at the rib also 

increases.  It can be observed in the figure that the maximum shear stress for a cavity 

fraction of Fc = 0.97 is approximately three times that for the Fc = 0.50 case.  It can 
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further be observed that the maximum shear stress occurs at the liquid transitions from 

the cavity to the rib and vise versa.  This sudden change in velocity causes a spike in the 

shear stress, which is then seen to approach a minimum value at the center of the rib. 

 

 

Figure 4-8 Normalized interfacial shear stress profiles as a function of ζ = z/w for a relative widths of 
Wm = 0.1 and 0.25, a relative cavity depth of δc = 0.1, and for cavity fractions of Fc = 0.5, 0.88, and 
0.97 

 

Displayed in Figure 4-9, are nondimensional liquid velocity profiles as a function 

of the dimensionless wall-normal coordinate, Y, at various locations in the transverse 

coordinate, Z, for Wm = 0.1, Fc = 0.88, and δc = 0.1.  The inset figure illustrates the 

relative location of each of the profiles.  The locations labeled a and e represent the 

center of the vapor cavity and the solid rib, respectively.  Satisfying the no-slip condition, 

the liquid velocity approaches zero at the liquid-solid boundary.  However, an increase in 
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the slip-velocity (non-zero liquid velocity at the wall, Y = 0) occurs as one progresses to 

the vapor cavity center where a maximum value is obtained.  Using this velocity data, 

one could then calculate the weighted average velocity profile for the entire liquid 

domain.   

 

 

Figure 4-9 Nondimensional liquid velocity profiles as a function of the dimensionless wall-normal 
coordinate, Y, at various location in the transverse coordinate, Z for Wm = 0.1, Fc = 0.88, and δc = 0.1 
(see inset figure for the profiles relative positions)  

 

Figure 4-10 illustrates three nondimensional weighted average liquid velocity 

profiles as a function of the wall-normal coordinate for a relative module width Wm = 0.1, 

a relative cavity depth of δc = 0.1, and cavity fractions of Fc = 0.5, 0.88, and 0.97.  It is 

observed that as the slip velocity increases with increasing cavity fraction, the average 

and maximum velocities are also increased.  It has been stated in previous research as 
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well as in the current study that it is the existence of the slip velocity, and thus the 

increased average velocity, that creates the reduced pressure drop through such channels.  

Essentially, one could obtain a rough estimate of the enhanced flow dynamics of 

ultrahydrophobic channels by modeling a channel flow with a specified slip boundary 

condition based on an average slip velocity. 

 

 

Figure 4-10 Weighted average nondimensional liquid velocity profiles as a function of the 
dimensionless wall coordinate, Y, for cavity fractions of Fc = 0.5, 0.88, and 0.97, and a relative cavity 
depth of δc = 0.1 

4.3.1 Two-Dimensional Cavity Depth Study 

A more extensive cavity depth study was conducted in conjunction with the two-

dimensional vapor cavity model.  Shown in Figure 4-11 are fRe predictions and in Figure 

4-12 λ/W predictions as a function of the relative cavity depth, δc, for various values of 
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the relative module width and the cavity fraction.  Also shown in the figures as small 

dotted lines are fRe and relative slip-length predictions for the zero shear stress model.  

As expected, fRe increases to a value of 96 and the effective slip-length decreases to 0 at 

a relative cavity depth of δc = 0 where the laminar no-slip channel flow behavior is 

approached. The figure also illustrates that the fRe predictions decrease as the relative 

vapor cavity depth increases.  Further, as the relative cavity depth is increased the  

 

 

Figure 4-11 Predictions of fRe as a function of the relative cavity depth for multiple relative module 
widths and cavity fractions 

 

magnitudes of fRe and λ/W are observed to become independent of the cavity depth, 

although when this occurs is dependent upon the cavity fraction.  Therefore, to optimize 

the reduction in total frictional resistance or slip-length, the cavity depth should be set so 
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as to exceed this point.  It is also observed for all scenarios that as the cavity depth is 

increased, the fRe and λ/W predictions approach the value obtained by the zero shear 

stress model.  However, even at large relative cavity depths a small difference between 

the zero shear stress model and the two-dimensional coupled cavity model exists.  In 

general, the vapor cavity depth has a greater influence on fRe and λ/W at higher values of 

Fc and Wm.  The significant dependence of fRe and λ/W on the vapor cavity depth is 

further support to the conclusion that the zero shear stress model is inadequate in 

modeling the flow dynamics. 

 

 

Figure 4-12 Slip-length predictions for the two-dimensional cavity model as a function of the relative 
cavity depth, δc for various cavity fractions and module widths 
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To illustrate the behavior of the vapor flow in the cavity, a simple code was 

written in MatlabTM to compute the cavity vapor velocity field using Equation 3-27.  This 

code can be found in Appendix D.  Contained in Figure 4-13 are nondimensional vapor 

velocity profiles as a function of the wall-normal coordinate, Y� , for the cavity fractions 

Fc = 0.5, 0.75, 0.88, 0.94, and 0.97, a module width of Wm = 0.1 and a relative cavity 

depth of δc = 0.1.  Similarly, Figure 4-14 illustrates nondimensional vapor velocity 

profiles for the relative module widths Wm = 0.1, 0.5, and 1.0, for Fc = 0.97 and δc = 0.1 

  

 

Figure 4-13 Dimensionless vapor velocity profiles at Z = 0.5Wc as a function of the nondimensional 
wall normal coordinate, cYY δ+=� , measured from the bottom of the cavity for various cavity 
fractions and for Wm = 0.1 and δc = 0.1 
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also as a function of the wall-normal coordinate.  The cavity wall-normal coordinate is 

measured from the bottom of the cavity and is defined as cYY δ+=� .  Additionally, each 

profile in both figures represents the vapor velocity at the transverse centerline (Z = 

0.5Wc and for cY δ≤≤ �0 ) for each of the given scenarios.  As the cavity fraction and the 

relative module width increase the interfacial velocity is also seen to increase, creating 

greater recirculation in the vapor cavity.  This is in accordance with the observed trend in 

the previously presented fRe predictions where fRe were seen to decrease with increasing 

Fc and Wm due to the enhanced liquid interfacial velocity.   

 

 

Figure 4-14 Dimensionless vapor velocity profiles as a function of the nondimensional wall normal 
coordinate, cYY δ+=� , measured from the bottom of the cavity for various module widths and for 
Fc = 0.97 and δc = 0.1 
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Figure 4-15 Dimensionless vapor velocity profiles as a function of the nondimensional wall-normal 
vapor cavity coordinate for various relative cavity depths and for Wm = 0.1 and Fc = 0.97 

 

It is further observed in both Figure 4-13 and Figure 4-14 that as the cavity 

fraction increases the vapor velocity gradient at Y� = 0 increases, causing the shear stress 

at the vapor-solid boundary to increase.  This suggests the possibility that a larger cavity 

depth could provide the same recirculation vapor velocity while maintaining a smaller 

magnitude of the near wall velocity gradient and wall shear (this effect can be observed if 

one were to stretch the figures in the vertical direction).  This phenomenon is better 

illustrated in Figure 4-15.  Presented are nondimensional vapor velocity profiles as a 

function of the normalized wall normal coordinate, Y� .  Data is represented for various 

values of the relative cavity depth at Fc = 0.97 and Wm = 1.0.  It is observed that the 

interface velocity and the recirculation velocity in the vapor cavity both increase as the 
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cavity depth increases, while simultaneously maintaining a smaller near wall velocity 

gradient at Y� = 0.  A smaller near-wall gradient results in less frictional resistance in the 

cavity and therefore, less momentum is lost.  For this reason greater reductions of the 

total frictional resistance in the liquid channel occur for increasing values of the cavity 

depth as shown in the cavity depth study.   

4.3.2 Two-Dimensional Cavity Correlation 

Results from the coupled cavity models indicate that the friction factor-Reynolds 

number product depends strongly on the cavity depth, δc, in addition to the relative 

module width, Wm, and the cavity fraction, Fc.  The overall behavior is for fRe to decrease 

 

 

Figure 4-16 Normalized slip length prediction using the two-dimensional cavity model compared to 
the analytical expression developed my Lauga & Stone, Equation 3-12 
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with increasing δc, Wm, and Fc.  The development of an expression that can accurately 

predict the fRe value as a function of all the relevant dimensionless parameters would 

prove very beneficial, since Equation 3-12 and 3-13 are not adequate for the coupled 

cavity problem.  Figure 4-16 presents the two-dimensional cavity model predictions of 

the normalized slip length in comparison to the expression developed by Lauga and Stone 

[26] (Equation 3-12).  An examination of the figure reveals an additional dependence 

beyond the relative module width and the cavity fraction.  Analysis of the numerical 

predictions reveals that this additional dependence can be accounted for by including the 

depth of the vapor cavity.  It was found that the predicted fRe shows an exponential 

dependence on the ratio of cavity depth to height.  A regression analysis indicates that 

Equation 3-12 can be modified to account for the observed dependence on the vapor 

cavity depth.  Doing so provides the following updated correlation for the normalized slip 

length.   
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Combining the above expression with Equation 3-11 results in a predictive correlation 

based on the observed physics for fRe as a function of all the relevant dimensionless 

parameters. 
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A comparison between the numerically predicted fRe values and those obtained using the 

above expression is shown in Figure 4-17.  In this figure the numerical predictions are 

shown as dots and the analytical expression as the solid line.  As demonstrated by the 

data, excellent correlation exists between the fRe values obtained in the numerical study 

and those calculated using Equation 4-2. 

 

 

Figure 4-17 Comparison between fRe predictions from the two-dimensional cavity model and those 
obtained using Equation 4-2 
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4.3.3 Comparison to Experimental Data 

A comparison between numerically predicted and experimentally measured 

values of fRe is shown in Figure 4-18, as a function of the cavity fraction, Fc.  The 

experimental measurements provided by Woolford et al. [30] are for relative module 

width values of Wm = 0.13 and 0.26 and were taken at cavity fraction of Fc ≈ 0, 0.48, 

0.69, 0.79, 0.84, and 0.91.   The numerical predictions illustrated represent relative 

module width values of Wm = 0.1 and 0.25 and a relative cavity depth of δc = 0.1.  Both 

the numerical predictions and the experimental measurements show the same trend and 

dependence on the cavity fraction.   At a cavity fraction of zero, both the model and the 

experimental work match the classic no-slip channel value of 96.  However, as the cavity 

fraction increases the numerical predictions are observed to predict lower fRe values than 

are measured experimentally.  This discrepancy can be attributed to some of the 

assumptions made in the numerical model.  For the numerical two-dimensional cavity 

model the entrance effects were neglected and the liquid-vapor interface was considered 

as a flat, each of which would contribute to increasing the total frictional resistance.  

Further, the liquid channel was modeled as infinitely wide parallel plates, whereas the 

experimental data was calculated using measurements from a rectangular channel.  

Therefore, neglecting the side effects of the channel may have also contributed to the 

observed discrepancy between the numerical predictions and the experimental data. 
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Figure 4-18 Comparison of fRe predictions to experimental data obtained from Woolford et al. as a 
function of the cavity fraction and for the relative module widths of 0.1 and 0.25 
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5 Turbulent Flow Results 

5.1 Model Validation 

Contained in Table 5-1 are values of the Darcy friction factor computed in the 

current numerical study for turbulent smooth-channel flow and the values provided by the 

Blasius [46], Beavers et al. [48], and Dean [49] correlations.  A Reynolds number range 

from 2,000-10,000 is presented in the table.  Good agreement between the values can be 

seen for Reynolds numbers above 4,000, providing adequate validation for the presented 

numerical study.  The poor agreement for Reynolds numbers below 4,000 can be 

attributed to the fact that transition is still occurring and is below the suggested range for 

the presented correlations. 

 

Table 5-1 Darcy friction factor predictions compared to calculated values from published 
correlations as a function of the Reynolds number 

f 
Re 

Predicted Blasius 
[46] 

Beavers 
et al. [48]

Dean 
[49]  

2,000 0.075 0.052 0.052 0.052 
4,000 0.053 0.044 0.042 0.044 
6,000 0.044 0.040 0.037 0.039 
8,000 0.038 0.037 0.034 0.037 
10,000 0.035 0.035 0.032 0.035 
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 In the current study three values of the relative module width were examined, Wm 

= 0.01, 0.1, and 1.0.  For the smallest value of the relative module width it became 

necessary to increase, from that used for the other values of module width, the number of 

nodes in the transverse direction to provide for a grid-independent solution.  As this was 

accomplished, while simultaneously maintaining the nearest wall node at approximately 

y+ = 1 (see Section 3.2), cells with aspect ratios of up to ten were created at the lower 

boundary (y = 0).  For assurance of accurate results it is typically recommended that the 

aspect ratio be kept as close to a value of one as possible.  A quick test was employed to 

verify that these larger aspect ratios did not induce significant error into the Wm = 0.01 

solutions.  Since the classical no-slip channel solution is not dependent upon the module 

width, friction factor predictions were computed for the same Reynolds number at all 

three relative width values.  The results of this study are presented in Table 5-2 for a no-

slip parallel plate flow at a Reynolds number of Re = 8,000.  It can be observed from the 

table that a 2.6% difference exists between the predicted friction factors from the two 

higher values to the lowest value of Wm = 0.01.  Although it is not understood how 

varying the cavity fraction may influence this small error, there has been no indication 

that it has increased significantly. 

 

Table 5-2 Friction factor predictions for the classical no-slip parallel plate channel flow for Re = 
8,000 and module widths of Wm = 0.01, 0.1, and 1.0 

Re = 8,000 
Wm f 

1.0 0.038 
0.1 0.038 

0.01 0.039 
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5.2 Turbulent Flow Results 

Illustrated in Figure 5-1 are Darcy friction factor predictions as a function of the 

Reynolds number for a relative module width of Wm = 0.1 and for the cavity fractions of 

Fc = 0, 0.5, 0.75, 0.88, 0.94, and 0.97.  The solid line in the figure represents the friction 

factor predictions for the classical no-slip parallel plate channel flow, and therefore 

becomes the benchmark from which reductions in the frictional drag may be measured.   

 

 

Figure 5-1 Friction factor predictions as a function of Reynolds number for a relative module width 
of Wm = 0.1 and for cavity fractions of Fc = 0, 0.5, 0.75, 0.88, 0.94, and 0.97 

 

It is observed from Figure 5-1 that as the Reynolds number increases the friction factor 

decreases, as expected.  However, it can also be observed from the figure that the 

dependence of the friction factor on the Reynolds number also decreases for increasing 
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values of the Reynolds number.  It can be speculated that very little difference would 

exist between the predictions given at a Reynolds number of 10,000 to those of a higher 

Reynolds number.  For a cavity fraction of Fc = 0.94 there is a 46% decrease in the 

friction factor from a Reynolds number of 4,000 to 8,000; whereas only a 13% decrease 

occurs from 8,000 to 10,000.  This leads to the hypothesis that for a given cavity fraction 

and module width, little advantage may be gained in terms of reducing the frictional 

resistance beyond a certain Reynolds number.  However, further investigation of higher 

Reynolds numbers would be required before any sure conclusions could be made.   

 

 

Figure 5-2 Friction factor predictions as a function of the cavity fraction for a relative module width 
of Wm = 0.1 and for the Reynolds numbers Re = 2,000, 4,000, 6,000, 8,000, and 10,000 
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Figure 5-2 exhibits friction factor predictions as a function of the cavity fraction for 

the relative module width of Wm = 0.1, at the Reynolds numbers of Re = 2,000, 4,000, 

6,000, 8,000, and 10,000.  In this figure, a cavity fraction of Fc = 0 represents the 

classical no-slip parallel plate channel value from which the measurements of drag 

reduction are to be based.  An examination of this figure reveals the same trend that was 

observed in the laminar flow data.  As the cavity fraction increases, the reduction in the 

total frictional resistance decreases.  For turbulent flow data presented, a reduction in 

frictional resistance is indicated by the reduction in the friction factor predictions.  The 

turbulent flow simulations show reductions of 24% for a cavity fraction of Fc = 0.5 and a 

relative module width of Wm = 0.1 and of 75% for the same module width but a cavity 

fraction of Fc = 0.97.  As discussed in the previous chapter, this trend in the predictions is 

due to the increased region of zero shear stress as the cavity fraction increases.  As this 

region of reduced shear stress increases so does the influence it has on the dynamics of 

the channel flow.   

The turbulent flow predictions also show the same dependence on the relative 

module width as observed for laminar flow.  Presented in Figure 5-3 are friction factor 

calculations as a function of the Reynolds number for a cavity fraction of Fc = 0.88, and 

for the relative module widths of Wm = 0.01, 0.1, and 1.0.  A study of the figure reveals, 

as expected, that the predicted friction factor decreases with increasing relative module 

width.  At a Reynolds number of 8,000 and a cavity fraction of Fc = 0.88 the turbulent 

simulations calculate a friction factor of f = 0.027 for a relative width of Wm = 0.01 and f 

= 0.01 for a relative width of Wm = 0.1, a reduction of 63%.  This is a result of the larger 

module width case having a larger cavity in relation to the channel height in comparison 
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to that of a smaller module width value, as discussed previously.  However, examination 

of the results also shows that the magnitude of the reduction of frictional drag is much 

more significant for the lower values of the relative module width.   For a cavity fraction 

of 0.88, from a Reynolds number of Re = 2,000 to 10,000, the magnitude of the friction 

factor is reduced by 0.029 for a relative width of Wm = 0.01 compared to 0.004 for a 

width of Wm = 1.0.  Although, it is interesting to note that the percent reduction is the 

same for both of the examples given, at approximately 54%. 

 

 

Figure 5-3 Friction factor predictions as a function of the Reynolds number for the cavity fraction of 
Fc = 0.88 and for the relative module widths of Wm = 0.01, 0.1, 1.0 
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Figure 5-4 Predictions of fRe as a function of the cavity fraction for a relative module width of Wm = 
0.1 for both turbulent flow, at various Reynolds numbers and for laminar flow 

 

Plotting the predictions from the turbulent flow simulations as a function of the 

cavity fraction, as in Figure 5-2, also permits a comparison to the laminar flow 

predictions.  Figure 5-4 contains fRe calculations as a function of the cavity fraction for a 

relative module width of Wm = 0.1 and for the Reynolds numbers Re = 4,000, 6,000, 

8,000, and 10,000.  The solid line in the figure represents the laminar flow predictions 

which are independent of the Reynolds number.  A cavity fraction of Fc = 0 represents 

the classical no-slip channel flow, where the laminar flow predictions can be seen at the 

value of 96.  Viewing the predictions in this manner illustrates how much greater the 

reduction in frictional drag occurs for the turbulent channel flow.  For a Reynolds number 

of Re = 10,000 and a relative module width of Wm = 0.1, an 82% reduction is observed 
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from a cavity fraction of Fc = 0 to 0.97, whereas only a 54% reduction occurs in the 

laminar flow predictions for the same relative module width.  Further, for the relative 

module width displayed in Figure 5-4, Wm = 0.1, the reduction in the turbulent flow 

predictions are so large that the value drops below the classical no-slip laminar flow 

value.  For the relative module width displayed in Figure 5-4 at a cavity fraction of Fc = 

0.97, the friction factor predictions are in the range of fRe = 41-58 for the given Reynolds 

number values.    

 

 

Figure 5-5 Normalized liquid velocity values, u/uaverage, as a function of the dimensionless wall-normal 
coordinate, Y=y/Dh at various transverse locations for Wm = 0.1, Fc = 0.88, and Re = 10,000 

 

Contained in Figure 5-5 are normalized liquid velocity profiles, u/uaverage, as a 

function of the normalized wall-normal coordinate, y/Dh.  Represented are velocity 

a c d eb 
Liquid 

Vapor 

Y 

Z
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predictions for Wm = 0.1, Fc = 0.88, and Re = 10,000.  The liquid velocity is normalized 

by the average velocity for the entire liquid domain, and the wall-normal coordinate by 

the channel hydraulic diameter.  The inset figure illustrates the relative location of each 

of the profiles.  The locations labeled a and e represent the center of the vapor cavity and 

the solid rib, respectively.  Satisfying the no-slip condition, the liquid velocity approaches 

zero at the liquid-solid boundary.  As with the laminar flow predictions, an increase in the 

slip-velocity (non-zero liquid velocity at the wall, Y = 0) occurs as one progresses to the 

vapor cavity center where a maximum value is obtained.  As expected, the turbulent flow 

predictions show a larger near wall velocity gradient then that of the laminar flow 

velocity profiles presented in Figure 4-9.  Using the turbulent flow velocity profile data in 

the same way as done previously with the laminar flow data, one can calculate the 

weighted average velocity profile for the entire liquid domain.  This is illustrated in 

Figure 5-6, where averaged normalized velocity predictions are plotted as a function of 

the normalized wall-normal coordinate at cavity fractions of Fc = 0.5, 0.88, and 0.97, for 

Wm = 0.1 and Re = 10,000.  Each line represents an area weighted average velocity for the 

entire liquid domain at the respective cavity fraction.  It is interesting to note that as the 

slip velocity increases with increasing cavity fraction that the maximum velocity 

decreases.  Since each of these simulations is for the same value of the Reynolds number, 

they each were specified with the same constant mass flow rate and thus the same 

average velocity.  Therefore, in order to maintain the same average velocity, the 

maximum velocity must increase to accommodate an increased slip velocity. 
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Examination of Figure 5-6 allows a rough prediction of the average slip-lengths for 

the given turbulent flow scenarios.  Extending the near-wall velocity gradient to the 

vertical axis one can obtain a crude estimate of the relative slip-length. 

 

 

Figure 5-6 Average normalized liquid velocity profiles, u/uaverage, as a function of the dimensionless 
wall-normal coordinate, Y=y/Dh at Fc = 0.5, 0.88, 0.97, for Wm = 0.1 and Re = 10,000 

 

5.2.1 Turbulent Flow Correlation   

As previously observed, the turbulent flow predictions are highly dependent on 

the Reynolds number.  Correlations have been developed previously by researchers to 

calculate the friction factor as a function of the Reynolds number.  Examination of the 
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numerical data for the no-slip channel flow from the current study reveals the following 

correlation for the friction factor. 

 

Re
4.3=f          (5-1) 

 

It is recognized that this presented correlation demonstrates a substantially different 

dependence on the Reynolds number than those referenced earlier (Equations 3-51 to 3-

53).  This is due to the fact that Equation 5-1 was developed for a Reynolds number range 

of Re = 2,000 to 10,000, which is much lower than the recommended range of the 

referenced correlations, and thereby results in a different power law dependence.  It is 

also important to note that a Reynolds number of Re = 2,000 is still within the laminar to 

turbulent flow transition region.   

Further analysis of the turbulent flow numerical data revealed the same dependence 

on the relative module width and cavity fraction for the turbulent flow predictions as was 

observed for the laminar flow predictions.  In addition, an examination of Equation 3-13 

shows that for a no-slip channel, Fc = 0, the left hand side of the denominator vanishes 

and only the constant coefficients 8 and 1/12 remain, which finally reduce to fRe = 96.  

Based on this observation, it was assumed that to include a Reynolds number 

dependence, the constants 8 and 1/12 in Equation 3-13 would require modification so that 

for Fc = 0, the expression would reduce to Equation 5-1.  Performing this adaptation 

reveals the following expression. 
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The above expression can then be used to predict the friction factor as a function of the 

relative module width, Wm, the cavity fraction, Fc, and the Reynolds number, Re.  Figure 

5-7 contains numerical predictions of the friction factor in comparison to the values 

calculated using Equation 5-2.  In the figure the dots indicate the numerically predicted 

values and the solid line represents the analytical expression.  The numerical predictions 

shown are for a range of relative module widths of Wm = 0.01-1.0, cavity fraction of Fc = 

0-0.98, and for the range of Reynolds number Re = 2,000-10,000.  It is observed from the 

figure that the analytical expression fits the trend of the data well.  Those data points 

showing the largest variation from the Equation 5-2 tend to be for Re = 2,000, which as 

previously stated, is still within the laminar to turbulent flow transitions region.  

However, the average difference between the numerical and analytical values is 

approximately 25%.  It is therefore recommended that use of Equation 5-2 to predict the 

friction factor be limited to initial estimates only.   
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Figure 5-7 Numerical predictions of the friction factor compared to those calculated using Equation 
5-2 for the range of module widths Wm = 0.01-1.0, cavity fractions Fc = 0-0.98, and Reynolds numbers 
Re = 2,000-10,000 
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6 Conclusions 

Due to the increase of application in a number of emerging technologies, a 

growing amount of research has focused on the reduction of drag in microfluidic 

transport.  A novel approach reported in the recent literature is to fabricate micro-ribs and 

cavities in the channel wall that are then treated with a hydrophobic coating.  Such 

surfaces have been termed superhydrophobic and the contact area between the flowing 

liquid and the solid wall is greatly reduced.  Further, due to the scale of the microscaled 

structures, the liquid is unable to wet the cavity and a liquid meniscus is formed between 

ribs.  Reported in this thesis is the numerical study of fully developed laminar and 

turbulent flow through a parallel plate channel with walls exhibiting micro-ribs and 

cavities oriented parallel to the flow direction.   

Various laminar flow models are implemented to investigate the liquid-vapor 

interface and to include the effects of the vapor motion in the cavity regions.  It was 

observed that the fRe decreases with increasing Wm and Fc.  Reductions in fRe as high as 

92% were observed for a relative module width of Wm = 1.0 and a cavity fraction of Fc = 

0.97.  The numerical prediction produced using the zero shear stress model were shown 

to correlate very well with the analytical model developed by Lauga and Stone for the 

normalized slip length.  However, it was concluded that the zero shear stress model is 

inadequate in terms of accounting for the actual physics at the liquid-vapor interface and 
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is therefore an idealization.   The one and two-dimensional vapor cavity models account 

for the non-zero interfacial shear stress by modeling the vapor cavity in progressing 

levels of rigor.  These models reveal a significant dependence of fRe on the vapor cavity 

dimensions and therefore more accurately represent the true physics.  For the example 

given earlier, the two-dimensional cavity model shows a reduction of 87% (for a cavity 

fraction of δc = 0.1) as opposed to the 97% reduction given by the zero shear stress 

model.  A cavity depth study was performed where it was observed that fRe decreases 

with increasing δc.  Further, the dependence of fRe was seen to decrease with increasing 

δc, where less than a 2% difference exists from a cavity depth of δc = 0.4-0.7.  Returning 

to the example given, if the cavity fraction is increased to a value of δc = 0.7, the 

predicted reduction increases to 91%.  Finally, a laminar flow correlation was developed 

based on the numerical predictions which allows for the prediction of the friction factor-

Reynolds number product as a function of the relevant dimensionless parameters, Wm, Fc, 

and δc.  Agreement between the numerical and analytical predictions is found to be very 

good. 

In the turbulent flow model the liquid-vapor interface is idealized as a flat 

interface with a zero shear stress boundary condition.  The numerical predictions show 

the same dependence on both the relative module width and the cavity fraction as 

observed in the laminar flow models; that is, the frictional resistance decreases with 

increasing Wm and Fc.  It is also shown that the predicted friction factor value for 

turbulent flow is reduced with increasing Reynolds numbers.  For the range of parameters 

explored, reductions in the friction factor were found to be as high as 90% for a relative 

module width of Wm = 1.0, a cavity fraction of Fc = 0.88, and at a Reynolds number of Re 
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= 10,000.  It was also observed that for the same value of the relative module width and 

cavity fraction, the turbulent flow results indicated a greater reduction in flow resistance 

than for the laminar flow.   An analytical relationship is also proposed for the turbulent 

flow regime where the friction factor can be predicted as a function of the relevant 

dimensionless parameters.  Use of the developed analytical expression shows an average 

error of approximately 29% and is therefore recommended for use only as an initial 

estimate. 

It is recommended that further work should be made to correlate the numerical 

predictions with the previously published experimental measurements.  This could be 

accomplished by accounting for the developing boundary layer at the channel entrance, 

as well as for the influence of the side walls of the channel.  It is also recommended that 

the turbulent flow study be continued for higher Reynolds numbers.  It is assumed that 

the 1/2 power law in Equation 5-1 is a result of a low Reynolds number range where 

transition may be occurring (Re = 2,000-4,000).  It is possible that a study including 

Reynolds number higher than those examined in the current work would reveal a more 

typical turbulent power law, such as 1/5 or 1/7, and therefore lead to the development of a 

more accurate predictive correlation.  Further, the use of a turbulent model other than a 

RANS model could lead to a more complete understanding of the influence 

ultrahydrophobic surfaces may have on turbulent flow dynamics. 
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Appendix A. U.D.F. Code for 1-D Vapor Cavity Model 

#include "udf.h" 
 
DEFINE_PROFILE(interface_shear, thread, index) 
{ 
   real VISCOSITY_RATIO = 0.0181; 
   real HEIGHT_RATIO = 5; 
   real A[ND_ND]; 
   real sum = 0; 
   real sum_A = 0; 
   real u_bar; 
   face_t f; 
    
       
   begin_f_loop(f,thread) 
    { 
    F_AREA(A,f,thread); 
    sum_A += NV_MAG(A); 
    sum += F_T(f,thread)*NV_MAG(A); 
 } 
   end_f_loop(f,thread) 
    
   u_bar = sum/sum_A; 
        
   begin_f_loop(f,thread) 
    { 
    F_PROFILE(f,thread,index) = -
8*u_bar*HEIGHT_RATIO*VISCOSITY_RATIO; 
 } 
   end_f_loop(f,thread) 
}  
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Appendix B. Analytical Solution of the 2-D Vapor Cavity 
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vdx
dP
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Solving for 
vdx

dP
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hD

yY = ;          
hD

zZ = ;          















−

=

l

h

l

D
dz
dP

uU

µ

2
 

 

( ) ( ) ( )YZUYZUYZU ,,, 21 +=  

 

 

( )
( )

∑
∫∞

=



































=
1

0

1 sinhsin
sinh

sin2
,

n cc

c

c
c

W

c
i

Y
W
nZ

W
n

W
n

W

dZZ
W
nZU

YZU

m

ππ
πδ

π

 

 

 

( ) ( )( ) ( )( )∑∑
∞

=

∞

=




























+

−−=
1 1

2

2

2

22 sinsin1cos1cos2,
n m cc

cc
c

YmZ
W
n

m
W
nnm

mnYZU
δ
ππ

δ
δ

ππ  

                                          

( )
( )( )

( )( ) ( )( )
































+

−−−































−







−
















−

∑∑

∑
∫

∞

=

∞

=

∞

=

1 1

2

2

2

2
2

22

1

0

1cos1cos

1cosh1cos
sinh

sin

*

n m

cc

n c

c

c

c

W h
i

m
W
nm

mn

W
n

n

W
n

dZZ
w
nD

ZUm

δ

ππ

πδπ
πδ

π

 



112 

DIMENSIONLESS SHEAR STRESS 
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Appendix C. U.D.F. Code for 2-D Vapor Cavity Model 

#include "udf.h" 
 
DEFINE_PROFILE(interface_shear, thread, index) 
{ 
   real VISC_RATIO = 0.0181; /*air viscosity/water viscosity*/ 
   real cH = 80;  /*H2O channel height*/ 
   real H_RATIO = 5;  /*channel/cavity heigth ratio*/ 
   real H_W_RATIO = 1;  /*channel height/cavity width*/ 
   real C_H_W_RATIO = 0.2; /*cavity height/cavity width*/ 
   real CAVITY_HEIGHT = 16; 
   real CAVITY_WIDTH = 80; 
   real PI = 3.14159265; 
   int NMAX=200;   /*Maximum number of terms for sums*/ 
    
   real V[200]; 
   real A[ND_ND]; 
   real x[ND_ND]; 
   real z=0; 
   real dz=0; 
   real T=0; 
   real T1=0; 
   real T2=0; 
   real dP=0; 
   real dP1=0; 
   real dP2=0; 
   real T1old=0; 
   real T2old=0; 
   real dP1old=0; 
   real dP2old=0; 
   real R=0; 
   real iter=0; 
   int icheck=0; 
   double dcheck=0; 
   face_t f; 
   int n=0; 
   int m=0; 
    
   /*iter=N_ITER; 
   printf("%f\n", iter); 
   /*icheck=iter/25; 
   dcheck=iter/25.0; 
   if(dcheck-icheck!=0) break;*/ 
    
   for(n=1;n<NMAX+1;n++) 
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   { 
    V[n]=0; 
   } 
    
   for(n=1; n<NMAX+1; n++) 
   { 
    begin_f_loop(f,thread) 
 { 
  F_AREA(A,f,thread); 
     dz = NV_MAG(A); 
   
  F_CENTROID(x,f,thread); 
  z=x[0]; 
   
  V[n] += F_T(f,thread)*sin(2*H_W_RATIO*n*PI*z)*dz; 
  /*printf("%f %f\n", V[n], n);*/ 
    
 } 
 end_f_loop(f,thread) 
 /*printf("%f\n", V[n]);*/ 
   } 
    
   dP=0; 
   dP1old=0; 
   dP2old=0; 
   for(n=1; n<NMAX+1; n++) 
   { 
    dP1old = dP1; 
 dP1 = dP1old+((-V[n]*(cos(n*PI)-1)*(cosh(C_H_W_RATIO*n*PI)-1)) 
 /(n*n*sinh(C_H_W_RATIO*n*PI))); 
     
 for(m=1; m<NMAX+1; m++) 
 { 
  dP2old = dP2; 
  dP2 = dP2old+(-pow((cos(n*PI)-1),2)*pow((cos(m*PI)-1),2) 
        
/(pow(n*m,2)*(pow(n/CAVITY_WIDTH,2)+pow(m/CAVITY_HEIGHT,2)))); 
             
  R=fabs(dP2-dP2old); 
  icheck=m/2; 
  dcheck=m/2.0; 
  if(dcheck-icheck!=0 && R<0.0001) break; 
  /*printf("%f\n", dP2);*/ 
 } 
 R=fabs(dP1-dP1old); 
 icheck=n/2; 
 dcheck=n/2.0; 
 if(dcheck-icheck!=0 && R<0.0000001) break; 
 /*printf("%f\n", dP1);*/ 
   } 
   dP = dP1/dP2; 
   /*printf("\n%f\n", dP);*/ 
    
   T=0; 
   T1old=0; 
   T2old=0; 
   begin_f_loop(f,thread) 



115 

   { 
    F_CENTROID(x,f,thread); 
 z=x[0]; 
  
 T1=0; 
 T2=0; 
 for(n=1; n<NMAX+1; n++) 
    { 
  T1old = T1; 
  T1 = T1old+(pow(H_W_RATIO,2)*8*n*PI*V[n] 
       *sin(2*H_W_RATIO*n*PI*z)*cosh(C_H_W_RATIO*n*PI) 
       /sinh(C_H_W_RATIO*n*PI)); 
   
  for(m=1; m<NMAX+1; m++) 
  { 
      T2old = T2; 
   T2 = T2old+(pow(H_RATIO,2)*dP*8*PI*(cos(n*PI)-
1)*(cos(m*PI)-1) 
        
*sin(2*H_W_RATIO*n*PI*z)*cos(m*PI)/(n*(pow(n/CAVITY_WIDTH,2) 
        +pow(m/CAVITY_HEIGHT,2)))); 
    
   R=fabs(T2-T2old); 
   icheck=m/2; 
   dcheck=m/2.0; 
   if(dcheck-icheck!=0 && R<0.0000001) break; 
   /*printf("%f\n", T2);*/ 
  } 
  R=fabs(T1-T1old); 
  if(R<0.0000001) break; 
  /*printf("%f\n", T1);*/ 
   } 
   T = -VISC_RATIO*(T1+T2); 
   /*printf("\n%f\n", T);*/ 
    
   F_PROFILE(f,thread,index) = T; 
    } 
    end_f_loop(f,thread) 
} 
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Appendix D. MatlabTM Code for Vapor Cavity Velocity Field 

%Kevin Jeffs 
%Thesis: vapor cavity 
  
%clear previous data 
clc 
close all 
clear 
format compact 
  
[Z ui] = textread('InterfaceVelocityData.txt'); 
nZ=length(Z); 
for i=1:nZ-1 
    dZ(i)=Z(i+1)-Z(i); 
    Ui(i)=(ui(i+1)+ui(i))/2; 
end 
  
Wm=1.0;     %relative module width 
Fc=0.96875;    %cavity fraction 
Wc=Fc*Wm;   %demensionless cavity width 
dc=0.4;     %dimensionless cavity depth 
Dh=160;     %hydraulic diameter 
Zcl=Wc/2; 
Yhat=0:0.001:dc; 
nY=length(Yhat); 
n=100; 
m=100; 
  
%an 
for i=1:n 
    for j=1:nZ-1 
        int(j)=Ui(j)*sin(i*pi()*Z(j)/Wc)*dZ(j); 
    end 
    an(i)=sum(int)/sinh(i*pi()*dc/Wc); 
end 
  
%Anm and Bnm 
for i=1:n 
    for j=1:m 
        Anm(i,j)=(cos(i*pi())-1)*(cos(j*pi())-1)/(i*j); 
        Bnm(i,j)=(i/Wc)^2+(j/dc)^2; 
    end 
end 
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%Phi 
for i=1:n 
    temp1(i)=an(i)/i^2*(cos(i*pi())-1)*(cosh(i*pi()*dc/Wc)-1); 
    for j=1:m 
        temp2(i,j)=Anm(i,j)^2/Bnm(i,j); 
    end 
end 
phi=sum(temp1)/sum(sum(temp2)); 
  
%Velocity Field 
for k=1:nZ 
    for l=1:nY 
        for i=1:n 
            temp1(i)=an(i)*sin(i*pi()*Z(k)/Wc)*sinh(i*pi()*Yhat(l)/Wc); 
            for j=1:m 
               temp2(i,j)=Anm(i,j)/Bnm(i,j)*sin(i*pi()*Z(k)/Wc) 

*sin(j*pi()*Yhat(l)/dc); 
            end 
        end 
        temp3(k,l)=sum(temp1); 
        temp4(k,l)=sum(sum(temp2)); 
    end 
end 
for k=1:nZ 
    for l=1:nY 
        U(k,l)=(2/Wc)*temp3(k,l)+(2*phi/dc)*temp4(k,l); 
    end 
end 
  
%Velocity Field at Cavity Center Line (Zcl) 
for l=1:nY 
    for i=1:n 
        temp1(i)=an(i)*sin(i*pi()*Zcl/Wc)*sinh(i*pi()*Yhat(l)/Wc); 
        for j=1:m 
            
temp2(i,j)=Anm(i,j)/Bnm(i,j)*sin(i*pi()*Zcl/Wc)*sin(j*pi()*Yhat(l)/dc); 
        end 
    end 
    temp3(l)=sum(temp1); 
    temp4(l)=sum(sum(temp2)); 
end 
for l=1:nY 
    Ucl(l)=(2/Wc)*temp3(l)+(2*phi/dc)*temp4(l); 
end 
  
figure(1) 
plot(Ucl,Yhat) 
title('Vapor Cavity Centerline Velocity Profile') 
xlabel('U_v') 
ylabel('Y') 
 


