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ABSTRACT 

 

CROSS-CORRELATION-BASED TEXTURE ANALYSIS USING 

KINEMATICALLY SIMULATED EBSD PATTERNS 

 

Josh Kacher 

Department of Mechanical Engineering 

Master of Science 

 

The development and example applications of a new EBSD-based texture analysis 

system are presented. This new system uses the cross-correlation function to compare 

two EBSD patterns at a number of corresponding regions in each pattern to calculate the 

deformation gradient tensor. Bragg’s Law-based simulated EBSD patterns are used as 

reference patterns in the cross-correlation method to enable the measurements of absolute 

elastic strain and lattice orientation at discrete points in a crystalline sample. 

The resolution limits of this new method are explored using a variety of 

computational and physical experiments. The simulated pattern method is estimated to be 

able to measure lattice orientations to within +/-0.02° and elastic strains to within          

+/-3.6x10-4 for small strains and +/-1x10-3 for large strains. 

Two example applications are demonstrated. The first demonstration is estimating 

the dislocation density in a 5.5% compressed Mg-based AZ91 alloy. Nye’s and Kröner’s  





 

formulations are used to estimate the dislocation density. Comparisons are made with 

traditional OIM measurements and it is found that the simulated pattern method offers an 

order of magnitude improvement in dislocation density estimations over OIM. 

The second demonstration is tetragonality measurements of HSLA 65 steel along 

the weld line of a friction stir welded plate. Accurate tetragonality measurements in the 

bainite phase of the steel can be made using information from the diagonal components 

of the elastic strain tensor. The measured tetragonality can be related to the concentration 

of interstitial carbon atoms in the iron lattice to find the carbon distribution in the sample. 

From these experiments, it is demonstrated that the simulated pattern method 

presents a new and powerful methodology for texture analysis that exhibits both ease of 

use and access to high resolution orientation and elastic strain data. 
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1 Introduction 

The first fully automated electron backscatter diffraction (EBSD) indexing 

system, known as orientation imaging microscopy (OIM), was introduced in 1991 [1]. 

Since then, OIM has become a key tool in the study and characterization of metals and 

ceramics. By applying a Hough transform to EBSD patterns, Kikuchi bands are detected 

and indexed from a lookup table. In this manner, statistically significant datasets on the 

crystal orientation of a material can be collected in relatively short amounts of time. OIM 

has become a standard tool in many laboratories around the world with applications 

ranging from the study of semiconductors to microstructural optimization of components 

of mechanical devices. 

The largest advancements in OIM and EBSD-based texture analysis have been in 

hardware with increased camera speeds and improved convergence of the electron beam 

to increase spatial resolution. Current camera and indexing speeds are now as high as 450 

patterns per second. Past trends suggest that the camera speed will continue to increase as 

new cameras are developed and computational power for pattern indexing increases [2]. 

The spatial resolution is limited by the interaction volume of the electron beam with the 

sample and the software’s ability to deconvolve mixed EBSD patterns at grain 

boundaries. The interaction volume of the electron beams limits the ability of OIM to 

reliably characterize materials with a grain size smaller than ~100 nm [3-6]. Another area 
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of advancement in OIM is the relatively recent advent of three dimensional OIM [7, 8]. 

This has been made feasible and practical by the coupling of a focused ion beam (FIB) 

with the scanning electron microscope (SEM) system. High precision serial sectioning 

can be carried out using the FIB and three dimensional orientation maps can be 

constructed from the data obtained from each section. 

While OIM related hardware has continued to improve, there has been little 

change in the basic methodology of OIM. Multiple studies have reported the angular 

resolution of Hough based analysis methods to 0.5-1° [9]. The resolution limitations of 

Hough based methods are insufficient for meaningful elastic strain measurements. These 

two limitations (angular resolution and elastic strain) have motivated the search for new, 

high resolution methods of EBSD-based texture analysis. 

A cross-correlation-based orientation and strain measurement system introduced 

by Troost et. al. [10] and refined by Wilkinson et. al [11, 12] has been shown to achieve 

orientation resolution to 0.006° and, when boundary conditions are taken into account, 

measures all nine components of the elastic strain tensor to 1x10-4. In brief, this new 

method uses direct comparisons of collected patterns by way of the cross-correlation 

function applied at a number of regions on the pattern. Using this comparison technique 

the elastic strain gradient and rotation tensors can be measured at each point from which 

an EBSD pattern is collected. In order to measure the absolute elastic strain and 

orientation at each point, a reference pattern must be obtained from a precisely known 

lattice state. In practice, such patterns exist only in limited situations. The cross-

correlation method provides an important base for the method later presented, and so will 

be discussed in more detail in a subsequent section. 
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Because of its dependence on a reference pattern, the cross-correlation method 

has thus far been limited in its use to two main applications. The first use is with samples 

that have (relatively) strain free portions from which a reference pattern can be collected. 

In the first demonstration of the use of the cross-correlation method, Troost et al. 

measured the elastic strains across the interface of epitaxial silicon germanium layers. 

Wilkinson et al. have also demonstrated in multiple instances the cross-correlation 

method’s ability to facilitate high resolution studies of elastic strain and rotation behavior 

across silicon germanium epilayers [13, 14]. Villert et al. also applied this method to 

characterizing the interface between silicon germanium layers along with measuring the 

strain distributions across a silicon sample subject to four-point bending [15]. In each 

case, a reference pattern was collected far from the interface. The second use is when 

only gradient information is needed. This is the case when measuring curvatures or 

dislocation densities of a material. Wilkinson et al. demonstrated the ability to measure 

variations in dislocation densities leading up to a fatigue crack tip in a nickel based super 

alloy [11]. Landon et al. were also able to demonstrate the cross-correlation method’s 

usefulness in characterizing the dislocation state of a material using a well annealed 

polycrystalline nickel sample in the interior of a single grain [16]. Gradient information 

can also be important when the aim is to study elastic strain concentrations and the 

magnitude of misorientations in a sample. This use was demonstrated by Miyamoto et al. 

by investigating the local strain fields in the austenite phase caused by shape strain 

accommodation associated with the formation of martensite [17]. 

Simulated EBSD reference patterns provide an attractive possibility to maintain 

the increased angular resolution and access to elastic strain information that the cross-
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correlation method provides while still keeping the more general applicability of 

traditional OIM [18]. Winkelmann has produced stunning results with high fidelity 

dynamical simulations of EBSD patterns [19, 20]. These simulations generally use Bloch 

wave theory to accurately predict the placement of Kikuchi bands as well as intensity 

variations over the EBSD pattern. Dynamical simulations are, however, extremely 

computationally expensive (a single pattern simulation can take anywhere from hours to 

days). With current computational capabilities, it is impractical to dynamically simulate 

reference patterns for the cross-correlation method. Instead, simple Bragg’s Law or 

kinematical simulations have been investigated as potential reference patterns with the 

cross-correlation method [21]. Although these simulations do not accurately predict the 

variations in intensity over a pattern, they do accurately predict the Kikuchi band 

placements and widths. Since the cross-correlation method relies on measurements of 

shifts in Kikuchi bands for strain and orientation measurements, it is proposed that 

Bragg’s law-based simulations provide sufficient detail to be useful as reference patterns. 

There are two fundamental questions upon which the feasibility of using Bragg’s 

Law-based simulations as reference patterns hangs. First, will the cross-correlation 

analysis of a measured and simulated pattern return appropriate shifts, and second, are 

kinematical simulations sufficiently accurate to make meaningful measurements. A series 

of verification tests in chapter 3 shows that by iteratively generating the simple patterns at 

each calculated deformation state of a measured pattern and then repeating the calculation 

with the new simulation, a high resolution result—approaching the levels of the standard 

cross-correlation method—is rapidly found by convergence. Each deformation state is 

calculated with respect to a fixed initial state. In this way, the benefits of the cross-
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correlation method are kept while the limitations associated with needing a strain free 

reference pattern are eliminated. 

Chapters 4 and 5 of this paper describe example applications of the simulated 

pattern method. In chapter 4 the method’s usefulness in estimating dislocation densities is 

demonstrated. In chapter 5 it is shown that simulated patterns can be used to detect and 

measure the crystal lattice tetragonalities that arise in different phases of friction stir 

welded steel due to interstitial carbon atoms. 
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2 Development of the Simulated Pattern Method 

2.1 Cross-correlation analysis algorithm 

The approach developed by Troost and Wilkinson forms the underpinnings of the 

simulated pattern method to be introduced, so its fundamentals are briefly described. 

Many regions of interest (ROIs) (normally 10-20) are spread uniformly around a 

reference EBSD pattern (see figure 2-2 for visualization). For a 1000x1000 pixel image, 

these regions are usually selected to be of size 256x256 pixels. Ideally, the orientation 

and lattice strain of the reference pattern are known. In reality the lattice state can be 

known only to the precision of traditional methods informed by knowledge of the 

material in question. ROIs in corresponding positions are placed in a different collected 

pattern of unknown character. The cross-correlation function is then used to determine 

how the corresponding ROIs in the two patterns would need to be shifted in order to align 

similar features with each other. The cross-correlations are closely related to the 

convolution of two functions and can be calculated efficiently in the Fourier domain by 

the following equation.  ( ℑ ...{ } indicates the Fourier transform, conj(…) the complex 

conjugate, and * indicates element-wise multiplication of two matrices). 

 

 { } { }( ){ }1C f conj g−= ℑ ℑ ∗ ℑ
   

(1) 
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The resulting image, C, shows intensity peaks related to shifts that cause similar 

features to be aligned. The peak intensity in C is located at a position described by the 

vector q  measured from the center of the image (i.e. if the peak appears at the center then 

 would have components [0,0], if the peak appears one pixel to the right of and one 

pixel down from the center then q

r

qr

r  would have components [1,-1]). The vector qr  

describes how (on average over the ROI) features contained in the selected ROI shift 

when compared to other patterns that also contain the feature. Local interpolation 

schemes over a number of ROIs allow the tracking of a feature shift down to 1/20th of a 

pixel. Although this shift is the average of all features in the region, it approximates the 

shift of the pattern direction, r̂ , found at the center of the ROI. The schematic given in 

figure 2-1 illustrates the connection between crystal lattice deformation and a shift in the 

EBSD pattern as measured on the phosphor screen. The following geometrical relation is 

similar to that proposed by Wilkinson et al., but has been modified to more precisely 

represent the actual deformation geometry. 

 

 ( ) 'ˆ'ˆ'ˆ'ˆ rrqrrwwq
λλ
⋅

+⋅−=
r

rr
r

     (2) 

 

Here  is the shift in the EBSD patterns as measured on the phosphor,    is the unit 

vector pointing from the specimen origin to the ROI center on the phosphor screen, and 

qr r̂

'r̂  points to the shifted position of the ROI in the deformed lattice pattern. λ  is a 

geometrical factor and is given by 
rr

z
pc ˆˆ

*
⋅

=λ  where pcr̂  is a unit vector normal to the 
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phosphor screen and z* is the perpendicular distance from the screen to the sample origin. 

The displacement under deformation is represented by the vector , where . A is 

the displacement gradient tensor defined by (A+I)=F. F is the local deformation gradient 

tensor (its dependence upon location in the sample frame is implicit). 

wr rAw ˆ=
r

qr ˆ 'r

 

 

 

Figure 2-1: Schematic of how a strain and a rotation in the crystal lattice (greatly exaggerated) can be related to 
a shift of an EBSD pattern on the phosphor screen. The strained lattice is represented by the dashed line. 
 

 

Equation (2) contains three independent equations, one for each component of  

(the third component of  is uniformly zero when described in the coordinate frame of 

the phosphor screen, but is non-zero in other coordinate frames). Knowing the 

configuration of the microscope geometry and the appropriate coordinate frame 

transformations,    is easily calculated for any ROI. Using the measured shifts ,  can 

qr

qr
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also be evaluated. This leaves the displacement gradient tensor as the only unknown. 

Equation (2) is true for each ROI, and so can be used to formulate a system of equation. 

This system of equations can be used to solve for the off-diagonal components of the 

displacement gradient tensor, but not necessarily the diagonal components. 

 The diagonal components of the displacement gradient tensor correspond to 

normal elastic strains. Normal strains, or stretches and compressions of the lattice, do not 

necessarily cause a shift in the Kikuchi bands, so they are immeasurable by the cross-

correlation method. A hydrostatic compression of the lattice causes the atomic planes to 

uniformly come closer together. In reciprocal space (which is what we see the EBSD 

patterns in), this compression of atomic planes corresponds to a widening of the Kikuchi 

bands. In terms of Bragg’s Law, all that is changed is the dhkl value; theta remains the 

same. The opposite is the case for a hydrostatic stretch of the lattice. Only the difference 

between diagonal components of the elastic strain tensor, or ][ 3311 εε −  and ][ 3322 εε − , 

causes shifts in the Kikuchi bands, and so is measurable by the cross-correlation. This 

issue is readily apparent in the Wilkinson derivation of the cross-correlation equations. 

 If boundary conditions are taken into consideration, it is possible to separate the 

diagonal components of the elastic strain tensor. EBSD patterns are collected from an 

interaction volume which is very near the surface of the sample (the electrons backscatter 

from a maximum depth of ~100 nm). At this depth, the normal direction to the sample 

surface can be assumed to be stress free. The stress can be related to elastic strain through 

Hooke’s law. Mathematically, this can be expressed in the sample frame as: 

 

               (3) 033 == sample
kl

sample
kli

sample
i C εσ
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Or in the local crystal frame as: 

 

      (4) 0== j
crystal
kl

crystal
ijklj

crystal
ij nCn εσ

 

Where nj are the components of the vector normal to the sample surface given in the 

crystal frame. 

 If the elastic constants are known, Equation (4) provides the necessary additional 

equations to solve for the diagonal components of the elastic strain tensor. 

For small deformations, the symmetric and asymmetric parts of the displacement 

gradient tensor A represent respectively the elastic strain and rotation according to the 

following equations: 

 

      )(
2
1 TAA +=ε  and )(

2
1 TAA −=ω         (5) 

 

The reader is reminded that the polar decomposition theorem enables the 

deformation gradient tensor, F, to be expressed as the product of a proper orthogonal 

tensor or rotation, R, and a positive definite symmetric tensor, U: F=RU.  In the case of 

the small elastic deformations and rotations of the crystal lattice, ω  can be related to the 

rotation tensor by R I ω= + , and ε is related by the expression U I ε= + . 

Care must be taken to express all terms in the above equations in the same 

reference frame - usually the deformed (or sample) frame or the reference (or crystal) 

frame. However, difficulties with the boundary condition are that, first the elastic 
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constants must be known, second the appropriate deformation must be known to express 

the elastic stiffness tensor, C, in the deformed frame. Conversely the appropriate 

deformation must be known to express  in the crystal frame, but until the boundary 

condition equations are evaluated, the deformation is not completely known. This circular 

dependence may be resolved by an iterative process where an initial assumption is made 

about deformation, and then the calculated deformations are used to update subsequent 

iterations. This approach is described in detail later. The system composed of Equations 

(2) and (3) may be solved by choosing only two ROIs. (Note that this is a decrease in the 

number of requisite ROIs from Wilkinson’s method because the system of equations 

includes the boundary conditions rather than imposing them after evaluation of the 

deformation geometry equation. However, this reduction is of limited technical 

significance because typically 10-20 ROIs are chosen to reduce the effects of noise and 

improve resolution.) 

ˆ r pc

A new error measure was defined to describe the fit of a calculated deformation 

tensor to the shifts measured on the phosphor screen. To evaluate the fit, the shifts that 

would have been caused by a measured deformation tensor, F, are calculated, and then 

the average length of the difference between the calculated and measured shifts is found. 

For N ROIs in an EBSD pattern the error measure is defined as follows where ri ˆ  is the 

direction of the center of the ith ROI, mi qr  and ci qr , are the measured and calculated shifts 

of the ith ROI, P is the plane that contains the phosphor screen and e  is the average error 

for all N ROIs. 

  

 ( )Ir PrFrq iici ˆˆ −=   (6) 
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 ∑
=

−=
N

i

mici qq
N

e
1

1 rr   (7) 

 

The |…|  notation in Equation (7) denotes the scalar magnitude, and I in Equation (6) 

denotes the intersection of sets. The error measure e  describes how well the calculated F 

fits the measured shifts.  

2.2 Bragg’s Law pattern simulations 

Dependence on a reference pattern allows for measurements of elastic strain and 

orientation gradients, but makes it difficult to measure absolute values of elastic strain 

and orientation. This limitation can be solved by using simulated EBSD patterns that are 

generated at known lattice states. While high fidelity simulations are expected to compare 

best with collected images, computational costs make it favorable to utilize a simpler 

model. The development of simple Bragg’s Law simulations is presented as well as 

evidence of their utility as reference patterns. 

There are simple geometric relations that connect a crystal lattice state to its 

projected EBSD image, but in order to represent them mathematically several reference 

frames must be established. The first is the crystal frame, , with the local crystal lattice 

parameters defining the basis vectors (this reference frame is typically taken to be strain 

free—only the rotation component of the deformation tensor is used to rotate the global 

reference lattice vectors to the local lattice). The second is the standard sample frame (  

normal to the sample surface,  in the rolling direction, and  in the transverse 

ˆc
ie

ˆ e 3
s

ˆ e 1
s ˆ e 2

s
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direction). The sample frame is taken to be the external reference frame so that the 

rotation component of the local deformation tensor is exactly the orientation measured by 

traditional OIM. The third reference frame of interest is attached to the phosphor screen 

used to collect the EBSD images and is related to the pixilated image so that  points 

from left to right in the image  (increasing columns),  points from top to bottom in the 

image (increasing rows) and  completes the orthonormal right-handed frame. A vector 

described in any of these three frames may also be rotated into another using a second 

rank tensor that describes a pure rotation. For example, 

ˆ e 1
v

ˆ e 2
v

ˆ e 3
v

 

      (8) v
j

sv
ij

s
i vRv →=

 

Now consider the Bragg’s Law relationship. 

 

 ( )2 sinhklm dλ θ=     (9) 

 

This law describes two cones of angle θ  that bound the diffraction band from the hkl 

plane for a wavelength λ . m is an integer that denotes the order of the diffraction band. 

Only first order (m=1) diffraction bands are usually used, but higher order diffraction 

bands can be included with no fundamental modifications of the simulation method. The 

deformation tensor F determines how the diffraction cones are oriented with respect to 

the phosphor frame and may also change the inter-planar spacing dhkl.  Because the 

equation of a cone is easiest to describe in the frame in which it is a right rectangular 
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cone with the axis of symmetry in the z-axis, a fourth right-handed, orthonormal 

reference frame may be defined for convenience. 

The cone reference frame is then aligned such that  , 0neco ˆˆ3 = = ˆ e 2
co ⋅ ˆ e 3

co , and  

. In the cone reference frame, a point ˆ e 1
co = ˆ e 2

co × ˆ e 3
co

 
r 
p = p1ˆ e 1

co + p2 ˆ e 2
co + p3 ˆ e 3

co  lies on the 

cone if p1
2 + p2

2 =
p3

tan θ( )
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

 where the angle is the same as in Equation (9).  The CCD 

camera is made up of a matrix of pixels and each pixel can be described as a point in the 

cone reference frame. If a pixel falls on or between the two cones corresponding to a 

chosen refracting plane (hkl), then that pixel in the image of the simulated band, B, is 

taken to have an intensity equal to the square of the structure intensity, Shkl, and zero 

otherwise. 
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( ) ( ) ( )
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2 2 32

1 2
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tan

0

v c c co

c co v c

c co v c c co v c
hkl

B p F R R hkl

R FR p
S if R FR p R FR p

otherwise

θ

→ →

→ →

→ → → →

=

⎧ ⎛ ⎞⎡ ⎤⎣ ⎦⎪ ⎜ ⎟⎡ ⎤ ⎡ ⎤+ ≥⎪ ⎣ ⎦ ⎣ ⎦ ⎜ ⎟⎨
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⎪⎩

r
K

r
r r  

 (10) 

 

Summing the contributions of each band and its symmetry variants generates the 

complete approximation of the EBSD pattern image. If Si
 are the elements of the 

symmetry subgroup and (hkl)(j) are the elements of the set that includes all of the 

diffracting planes, then the composite simulation image can be described as follows. 
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        (12) 

 

Figure 2-2 shows a collected pattern from a single crystal silicon sample and a 

simulated pattern generated at the OIM calculated orientation. The simulated pattern has 

the following input parameters: 

a) Diamond structure lattice, a = 5.43Ǻ 

b) 70° Sample tilt angle 

c) 10° elevation angle of phosphor screen 

d) Phosphor screen width Dx = 1000 pixels and height Dy = 1000 pixels 

e) Pattern center (from lower left corner) PCx = 0.5405 Dx, PCy = 0.7139 Dx 

f) Sample to phosphor screen distance z* = 0.7455 Dx 

g) Orientation in Euler angles (radians): φ1 = 1.74, Ф = 3.06, φ2 = 0.11 

Furthermore, both patterns were filtered using a band pass filter. 

 

 

Figure 2-2: Collected pattern (left) and a simulated pattern (right) at approximately the same orienation with 
outlines of ROIs drawn on. 
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2.3 Simulation of deformed lattice 

When simulating EBSD patterns from a deformed lattice, care must be taken to 

calculate both the plane normal of the deformed plane and the new dhkl correctly. We 

define three orthogonal vectors ar , b
r

, andcr . ar  and b
r

 lie in the basal plane of the lattice. 

is normal to that plane. In the case of a cubic lattice, acr r
, b

r
, and  correspond to the 

lattice vectors. We can also define the plane normal n  by 

cr

ˆ
|b

b
r

| a
a
rn̂

rr

×
×

= . The deformation 

of the lattice is described by the deformation gradient tensor F. The deformed vectors ar , 

, and  can be described post deformation by ab
r

cr aFrr
=' , bFb

rr
=' , and . Note that 

the vectors ' , 'b , and  are not necessarily orthogonal to each other. 

cFc rr
='

ar
r

'cr

The derivation of the following equation describing a plane normal after 

deformation can be found in standard mechanics books [22]: 

 

nFFbanba T ˆ))(det(||'ˆ|''| 1−×=×
rrrr

       (13) 

 

Here  is the unit vector associated with the normal to the deformed plane and replaces 

 when calculating  above. The new dhkl  is found using the dot product and is given 

by . 

'n̂

hkl =

n̂ coe3ˆ

'n̂cd ⋅
r

2.4 Strain and rotation analysis with simulated patterns 

It was found during the development process of the simulated pattern method that a 

single comparison between a measured and simulated EBSD pattern using the cross-
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correlation technique did not give the desired angular and strain resolution. To improve 

the resolution, an iterative technique was developed using the Hough measured 

orientation as the starting point. The iterative technique also allows for updating the 

boundary conditions by more accurately identifying with each iteration the normal to the 

sample surface.  The simulated pattern analysis algorithm proceeds as follows: 

 

1) Measure a local lattice orientation to within a 0.5° using the Hough transform 

method and save the EBSD pattern image 

2) Generate a simulated pattern based on the crystal structure (which must be 

known) and the Hough-transform estimate of the true orientation 

3) Use the cross-correlation analysis algorithm to compare shifts from the simulated 

pattern to the saved EBSD pattern image 

4) Calculate the deformation tensor by inputting the measured shifts into Equations 

(2) and (3) and solving 

5) Evaluate the fit of the deformation tensor with Equation (7) 

 

At the conclusion of these five steps, a new pattern can be simulated at a deformation 

state that is closer to the actual state of the examined material. If the refined simulation 

pattern is then used for steps 3-4, the error measure significantly improves. By repeating 

this process iteratively, a solution for the deformation tensor is rapidly converged upon. 
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2.5 Pattern center calibration 

In order to obtain accurate results from the simulated pattern method, the patterns 

must be simulated with an accurate pattern center. The pattern center is defined as the 

intersection of a vector originating from the electron beam/sample interaction point and 

normal to the plane of the phosphor screen (figure 2-3). For calibration purposes, the 

sample to phosphor screen distance is also included as the z coordinate of the pattern 

center. Standard EBSD analysis software packages include pattern center calibration 

routines. These calibration routines generally use a least squared approach to find the best 

fit for the pattern. The fit is defined as the angular deviation between the detected bands 

from a measured pattern and the calculated position of the bands based on the measured 

orientation. This calibration is carried out on four corners of a low magnification square 

to find the variation in pattern center as the electron beam rasters across the sample. 

While sufficiently accurate for the purposes of OIM, this calibration is not of sufficient 

precision for high resolution cross-correlation methods. 

 

 

Figure 2-3: Pattern center schematic. 
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An optimization routine was set up in Matlab to calibrate a more refined pattern 

center for each scan. The main issue to address in optimizing the pattern center is finding 

a suitable variable to minimize in the optimization. It was found that minimizing the 

norm of the elastic strain tensor, where the norm is defined as the sum of the squared 

components, gave the best results. However, upon experimentation with simulated 

pattern comparisons it was also found that an error in pattern center calibration can 

exactly mimic the shifts caused by actual strains and rotations of the crystal lattice. 

Consequentially, if a collected EBSD pattern from a strained portion of the lattice is used 

as the calibration pattern, artificially low elastic strains can be measured and the pattern 

center will still be poorly calibrated. 

In order to address this issue, a special sample holder was built for the SEM 

(figure 2-4). The sample holder allows for two samples to be mounted coplanar with each 

other. One of the samples is the sample of interest and the other is a reference single 

crystal sample that is assumed to be strain free. A strain free assumption is justifiable 

since it is expected that any elastic strains present will be below the resolution limit of the 

simulated pattern method and should not affect any measurements. A square scan is taken 

on the single crystal sample and the patterns are saved. The stage is then shifted over (just 

using the horizontal stage control so that the scan geometry does not change) and the 

sample of interest is scanned. 

The square scan from the single crystal sample is used for calibration purposes. 

For each measured pattern from the single crystal sample, the pattern center is calibrated 

by minimizing the norm of the elastic strain tensor calculated when comparing the 

measured pattern to a simulated pattern of specified pattern center. The pattern center that 
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Figure 2-4: Model of custom SEM stage 
 

 

minimizes the norm of the elastic strain tensor is found using a built in Matlab 

optimization routine that minimizes a chosen function using the Nelder-Mead simplex 

method [23]. The Nelder-Mead simplex method begins with an n-dimensional simplex 

where n is the number of variables. The simplex has n+1 vertices where each vertex 

corresponds to a set of variables. The function is evaluated at each vertex, and based on 

set criteria, one vertex is eliminated. A new simplex is formed keeping all but one vertex 

the same, and the process is repeated. Eventually, the simplex converges on the set of 

variables that minimizes the function. In the case of minimizing the elastic strain for 

pattern center calibration, the variables are the x and y coordinates of the pattern center 

and the sample to phosphor screen distance. The pattern center calibration is used to find 

both the absolute pattern center and the pattern center variation as the electron beam 

rasters across the sample surface. 
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2.6 Pattern filtering 

Before analyzing an EBSD pattern using the simulated pattern method, the pattern 

is filtered and processed to improve convergence and accuracy. Any defects or non-

uniformity of EBSD patterns can have a detrimental effect when using a cross-

correlation-based technique. They can cause the cross-correlation function to measure 

shifts that match the defects instead of finding the shifts that align the Kikuchi bands. 

 

 

Figure 2-5: Comparison of filtered (left) and non-filtered (right) EBSD patterns. 
 

 

Using simulated patterns for the reference pattern limits the defects to only one of 

the two patterns being compared using cross-correlations. This lessens the effect that 

small pattern defects can have on the results, but does not eliminate it. Special care must 

be taken to eliminate as much as possible any detrimental pattern defects without filtering 

out too much information. 

Image processing is done using two different techniques: background subtract and 

band pass filtering. The image processing improves convergence by eliminating or 
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minimizing intensity gradients from the overall EBSD pattern, filtering out background 

noise, and improving the contrast of the Kikuchi bands (figure 2-5). 

Background subtract is done using a built in OIM option. A number of patterns are 

collected from the sample at the same operating conditions as the scan. The pattern 

intensities are averaged to form a “background” pattern. This background is then 

subtracted from each pattern in the scan. Two aims are achieved through this background 

subtraction. First, any defects on the phosphor screen are present in the background 

pattern, and so are subtracted out from all other patterns. Second, EBSD patterns 

naturally have a non-uniform intensity distribution. There is a peak intensity at the spot of 

highest electron interaction, and the intensity fades away from there. The background 

subtract flattens this intensity and makes it more uniform across the pattern. 
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3 Sensitivity Analysis 

A series of tests was performed to evaluate the resolution limits of the simulated 

pattern method and its sensitivity to any calibration errors. Before describing the tests and 

results, it is appropriate to define exactly what is meant by resolution in the case of the 

simulated pattern method. 

3.1 Resolution considerations 

There are three main types of resolution that could be considered when discussing 

EBSD-based techniques: spatial, angular, and strain. The spatial resolution of an EBSD 

scan is based on the step size used when taking the scan. The limiting spatial resolution is 

determined by the interaction volume of the electron beam in the sample. The interaction 

volume is dependent on a number of factors including, but not limited to, the accelerating 

voltage of the electron beam, the acquisition time for each EBSD pattern, and the atomic 

mass of the material. A spatial resolution of 20-50 nm is generally reported for EBSD 

techniques. No attempt is made in this paper to discuss ways to increase the spatial 

resolution of EBSD-based techniques. 

The meaning of angular and strain resolution, as used in this paper, is the 

uncertainty in the data. In other words, the collected data are accurate to within plus or 

minus the reported resolution limit. The angular and strain resolution can be further 
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broken down into two categories describing a global resolution limit and a resolution of 

the gradient between points. The global resolution describes how much the data as a 

whole may be offset in either strain or rotation. This resolution is limited mainly by the 

accuracy of geometry calibrations. The resolution of the gradient describes how 

accurately the change in orientation or strain is measured between adjacent points.  

3.2 Resolution limits 

A series of tests was performed to evaluate the angular and strain resolution of the 

simulated pattern method. 

3.2.1 Convergence of iterations 

The first test carried out was simply to observe the variations of elastic strain and 

orientation between iterations once convergence was reached. For this purpose, a pattern  

 

 

Figure 3-1: Convergence of orientation and strain. y-axis is in radians for orientation and unitless for the strain 
component. 
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from a single crystal germanium sample was collected at a camera resolution of 512x512 

pixels and analyzed using the simulated pattern method. The analysis was allowed to run 

for 20 iterations (figure 3-1). 

The suggested angular resolution is taken to be the variation in elastic strain and 

orientation averaged over the last 10 iterations. The results suggest an angular resolution 

of (6.1x10-4) ° and a strain resolution of 6.1x10-6. 

3.2.2 Simulated/simulated pattern comparisons 

The second test performed was a comparison of simulated patterns generated at 

slightly different lattice states. A strain free EBSD pattern was generated, and then 

another strained pattern was generated at a rotated orientation. The test was carried out 

using 512x512 pixel simulated α-iron patterns. Table 3-1 shows a list of input and 

measured deformation tensors. The tensors were then decomposed to estimate the 

resolution of the elastic strain and orientation separately. Since the test was performed in 

an entirely computational environment, the traction free boundary condition does not 

apply, and so the diagonal components of the elastic strain tensor were ignored. 

The results suggest a strain resolution of 1x10-3 and an angular resolution of 0.05° for 

large deformations (components of F>0.02). For smaller deformations, the results suggest 

a strain resolution of 1x10-4 and an angular resolution of 0.0045°. This test is not meant 

to be statistically significant, but instead to give a general idea of what limiting resolution 

we might expect from the iterative cross-correlation approach. 
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Table 3-1: Simulated pattern comparisons for resolution estimation 
Input F Calculated F Maximum 

error in 

elastic strain 

Error in 

rotation 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −

002.001.0
02.0002.0
01.001.00

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −

002.001.0
0194.000186.0
0096.00096.00 1x10-3 0.049° 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

00006.0001.0
0001.00002.0

003.0001.00
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

00006.0001.0
0001.000021.0

003.0001.00
 

1x10-4 0.003° 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −

00006.0001.0
0001.0002.0

01.000
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −

00006.0001.0
0000.0002.0
0101.00001.00

 

1x10-4 0.0045° 

 

3.3.3 Beam shift experiment 

The beam shift experiment was used to test the ability of the cross-correlation 

function to measure shifts when comparing simulated patterns to measured patterns. An 

EBSD pattern was generated at approximately the same lattice state as a collected pattern 

from a single crystal silicon sample. The silicon pattern was collected at the full camera 

resolution of 1000x1000 pixels. The simulated pattern was shifted a known number of 

pixels and compared to the measured pattern using the cross-correlation function to 

measure the applied shift. This was repeated several times for increasing shifts of the 

simulated pattern. Figure 3-2 shows the shifts applied to the simulated pattern and the 

corresponding measured shifts in both the horizontal and vertical directions. The cross-

correlations correctly identified the shifts to within 0.05 pixels, and the standard deviation 
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of the measured shifts from the applied shifts was 0.035 pixels. It can be seen that the 

spread in the measured shifts was smaller in the horizontal direction than in the vertical 

direction, but the exact reason for this is unknown. Deviations of a collected pattern from 

a simulated pattern should then be measurable to 1/20th of a pixel, which is the same level 

of resolution claimed by Wilkinson for the cross-correlation method [12]. 

 

 

 

Figure 3-2: Measured shifts when comparing simulated and measured EBSD patterns 

 

An EBSD pattern covers about 1.05 radians of angular space of the full Kikuchi 

map. Using this, the shift resolution can be correlated to an angular and strain resolution. 

An error of 1/20th of a pixel corresponds to a strain resolution of 5.3x10-5 and an angular 

resolution of 0.003°. 

3.3.4 Rotation test 

In the next test, a rotation was applied incrementally to a sample in the 

microscope chamber and five patterns were collected at each increment of rotation. The 

rotation control of the stage does not have sufficient precision to adequately probe the 
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resolution of this method, so instead the standard deviation of the five measurements at a 

constant angle of rotation was taken to be the resolution limit.  This test was performed 

using a single crystal [0 0 1] silicon sample (figure 3-3).  

 

 

Figure 3-3: Rotation test of resolution of the simulated pattern method 
 

 

The results suggest an angular resolution of 0.02° and a strain resolution of 

3.6x10-4. 

The worst resolution suggested by the resolution tests is 0.02° angular resolution 

and a strain resolution of 3.6x10-4 for small strains and 1x10-3 for large (>0.02) strains. 

3.4 Resolution sensitivity to geometry calibration 

Errors in the geometry inputs for pattern simulations can lead to both global and 

local errors when using the simulated patterns as reference patterns for deformation 
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calculations. A correct knowledge of the SEM geometry is vital for accurate EBSD 

pattern simulations. Incorrect geometry parameter inputs in the pattern simulations can 

cause the simulated pattern to be shifted, dilated, or expanded relative to the measured 

pattern. As a result, shifts are measured in the ROIs that do not correspond to an actual 

strain or rotation of the crystal lattice, and an incorrect displacement gradient tensor is 

calculated. 

The following geometry parameters must be correct in the simulation in order to 

obtain accurate measurements of strain and rotation: elevation angle, sample tilt angle, x 

and y position of the pattern center, and the sample to phosphor screen distance. 

Both the elevation angle and sample tilt angle influence only the global 

orientation measurements of the lattice. Typical SEM systems allow for the elevation and 

sample tilt angles to be known to ~0.1°, causing a comparable error in the measured 

orientation of the crystal. Since both angles are constant (assuming a planar sample 

surface), they do not affect the misorientation measured between points in a scan. For the 

majority of applications of microstructure analysis, a resolution of 0.1° for the absolute 

orientation is sufficient as long as the misorientation is not affected. No attempt is made 

to calibrate the sample tilt or elevation angle. 

The pattern center is defined as the intersection of a vector originating from the 

electron beam/sample interaction point and normal to the plane of the phosphor screen. 

For calibration purposes, the sample to phosphor screen distance is also included as the z 

coordinate of the pattern center. The pattern center varies depending on the interaction 

point of the electron beam with the sample, and so must be found for every point in the 

scan. The pattern center is a purely geometrical parameter, and so, assuming that the 
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sample is planar, these variations should be linear with the change in position of the 

electron beam. 

The sensitivity to error in the pattern center calibration on the measured values of 

elastic strain and rotation was investigated by comparing simulated patterns to each other. 

In this study, a strain free pattern was simulated and used as a reference pattern. 

Subsequent patterns were then simulated keeping everything identical to the reference 

pattern except for the pattern center. The patterns were then compared using the 

simulated pattern method to find how errors in the pattern center correspond to errors in 

the components of the elastic strain and rotation tensors (figure 3-4 and 3-5). 

 

  
Figure 3-4: Relation of error in elastic strain components to error in pattern center calibration 
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Figure 3-5: Relation of error in rotation tensor components to error in pattern center calibration 
 

 

As can be seen from the results, the elastic strain calculations are most sensitive to 

the sample to phosphor screen distance, and the lattice orientation calculations are most 

sensitive to error in the x and y coordinates of the pattern center. The diagonal 

components of the elastic strain tensor, which correspond to a normal strain, are the most 

sensitive to errors in the phosphor to screen distance. Measurements of the tetragonality 

of a material are taken from the diagonal components of the elastic strain tensor, so it is 

especially important that this distance be calibrated accurately. 
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A method for pattern center calibration was described in chapter 2. A series of 

tests was performed to evaluate the accuracy of the pattern center calibration for strain 

and orientation resolution determination. 

3.4.1 Accuracy of OIM pattern center calibration 

To begin with, a simple test was carried out to get a rough estimate of the 

accuracy of the OIM calibrated pattern center. The pattern center was calibrated using a 

series of patterns collected from a single crystal germanium sample. The patterns were 

collected in a horizontal line across the sample, so only variations in PCx should occur. 

 

 

Figure 3-6: Variations in pattern center as measured by OIM as beam moves in x direction on sample 
 

 

The pattern center was calibrated for eight patterns collected from a strain free 

germanium single crystal. As can be seen from figure 3-6, the scatter in the data for both 

z* and PCy is ~0.005Dphosphor. Using figure 3-4 and 3-5, this error can be related to an 

error in the elastic strain of ~0.005. This error is well above the resolution limit of the 
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simulated pattern method, emphasizing the importance of a more precise pattern center 

calibration. 

3.4.2 Comparison to theoretical variations 

Assuming a perfect knowledge of the geometry of the SEM, the variations in the 

pattern center can be predicted. Admittedly, such a perfect knowledge is unobtainable 

with current SEM configurations, but a theoretical prediction of pattern center shifts can 

still be profitably compared to measured variations to ensure that the measured variations 

are at least somewhat accurate. 

For the derivation of the variation in pattern center with beam movement, the 

following terms are defined: 

xPCΔ  = variation in x coordinate of pattern center 

yPCΔ  = variation in y coordinate of pattern center 

*zΔ  = variation in sample to phosphor screen distance 

xΔ  = movement in x on sample surface 

yΔ  = movement in y on sample surface 

phosphorD  = diameter of the phosphor screen 

θ  = 90° - sample tilt angle 

ϕ  = elevation angle 

The sample is assumed to be perfectly planar and tilted only about one axis (θ ). 

With these assumptions,  varies only with changes in x in the beam position, and xPCΔ
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yPCΔ  and  vary only with changes in y in the beam position. We wish to find the 

changes in pattern center with changes in beam position, or 

*zΔ

x
PCx

Δ
Δ , 

y
PC y

Δ

Δ
, and 

y
z *

Δ
Δ . 

The change in PCx is equal to the change in the x position on the sample, so we 

can write the relation 
phosphor

x

Dx
PC 1

=
Δ

Δ
. The 

phosphorD
1  term is a unit conversion used to 

express  as a fraction of the phosphor screen (this is the generally used form for 

expressing the pattern center). 

xΔ

y
PC y

Δ

Δ
 is found by defining a new term . This term is defined by the 

geometry shown in figure3-7. 

zyΔ

 

 

Figure 3-7: Geometry of y-component of pattern center 
 

 

zyΔ  can be solved for from both the phosphor screen and sample geometry using basic 

trigonometry. From the phosphor, we have: 
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ϕcoszy yPC Δ=Δ          (14) 

and from the sample we have: 

 

phosphor
z D

yy θcosΔ
=Δ          (15) 

 

Solving both for  and setting them equal to each other, we get: zyΔ

 

phosphor

y

D
yPC θ

ϕ
cos

cos
Δ

=
Δ

         (16) 

 

We can then solve for 
y

PC y

Δ

Δ
 giving us: 

 

ϕ
θ
cos

cos

phosphor

y

Dy
PC

=
Δ

Δ
        (17) 

 

Similarly, the geometry to find 
y

z
Δ

Δ *  is given in figure 3-8 

From the geometry,  
y

z
Δ

Δ *  is found using trigonometry: 

 

phosphorDy
z )sin(* ϕθ +

=
Δ

Δ          (18) 
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Figure 3-8: Geometry of z-component of pattern center 
 

 

A 1x1 mm square scan with a 0.1 mm step size was collected from a single crystal 

germanium sample. At each point, the pattern center was calibrated using the method 

described in chapter 2. The change in pattern center with change in beam position was 

found and compared to the theoretical variations using a measured phosphor screen 

diameter of 37 mm. Both the theoretical and measured lines are plotted together for 

comparison in figure 3-9. 

We can compare the slope of the theoretical line with a best fit line generated for the 

calibrated pattern center. The y-axis is in the standard units that EBSD systems use (% 

Dphosphor). The x-axis is in units of microns. The patterns used for the pattern center 

calibration were binned to 512x512 pixels. So, to convert the slope to pixels/µm, we can 

multiply it by 512. 
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Figure 3-9: Measured variation of pattern center compared to theoretical 
 

 

PCx Theoretical slope = -2.7027x10-5 

 Measured slope = -2.7158x10-5  

 

PCy Theoretical slope = 2.5789 x10-5  

 Measured slope = 2.6086 x10-5  

 

z* Theoretical slope = 1.3514 x10-5 

 Measured slope = 1.2919 x10-5 
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So, what does this mean? On average, the difference between the theoretical and 

measured slope is 3x10-7. If we assume that the geometry really is exactly what we 

assumed that it is when calculating the theoretical slopes, it means that for every 100 µm 

step, we are measuring the variation in pattern center to within ~0.015 pixels. The 

simulated pattern code can use this measured slope to calculate a varying pattern center 

as the input for the pattern simulations. 

 The calibration of the absolute pattern center at a given point is much more 

difficult to verify. Simulated/simulated pattern comparisons give a rough idea of the 

calibration resolution, but the results do not necessarily mean that the same resolution can 

be expected when comparing simulated and measured patterns for pattern center 

calibration. 

3.4.3 Calibration with simulated patterns 

A computational verification of the pattern center calibration technique was 

carried out using simulated pattern comparisons. Two different patterns were simulated 

with slightly different pattern centers and at slightly different orientations (0.5° difference 

in orientation). Both patterns were simulated with zero elastic strain. This situation was 

meant to simulate the conditions of calibrating the pattern center on a strain free single 

crystal sample using the Hough measured orientation as the input orientation for the 

pattern simulation. The test was carried out for a number of different input pattern center 

errors. Table 3-2 shows the results for the pattern center error after calibration. 
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Table 3-2: Resolution of pattern center calibration 
Correct Pattern Center Input Pattern Center Output Pattern Center 

PCx PCy z* PCx PCy z* PCx PCy z* 

0.5011 0.7293 0.7586 0.5011 0.7293 0.7486 0.5000 0.7296 0.7586 

0.5011 0.7293 0.7586 0.5011 0.7393 0.7586 0.5001 0.7296 0.7586 

0.5011 0.7293 0.7586 0.4911 0.7293 0.7586 0.5001 0.7296 0.7585 

0.5011 0.7293 0.7586 0.5081 0.7233 0.7556 0.5000 0.7296 0.7585 

 

From the table, the average error in each component of the pattern center is 0.0010 

for PCx, 0.0003 for PCy, and <5x10-5 for z*. Using the graphs in figure 3-4 and 3-5, this 

corresponds to a rotational error of 0.001 radians, or 0.057° and a negligible error in the 

elastic strain. The rotational error is a global error in the data, meaning that it does not 

affect the angular resolution of the method when measuring misorientations between 

points. 

  

41 
 



 

42 
 



4 Dislocation Density Measurements in Mg AZ91 

4.1 Dislocation density: resolution considerations 

EBSD-based texture analysis techniques have been utilized with success by 

various researchers to obtain estimates of the local dislocation density in a material. The 

theoretical groundwork for dislocation density estimates is largely based on the work of 

Nye [24]. He was able to show how the lattice curvature, or curl of the orientation field, 

could be linked to geometrically necessary dislocations. Later work by Kröner [25] 

advanced Nye’s work to include the elastic strain in the formulation. The following 

equation emerged: 

 

e
lijkljppkikiik e ,εκδκα +−=         (19) 

 

where kiκ  is the lattice curvature tensor,  is the elastic strain tensor, and e
ijε ikα  is the 

dislocation density tensor. The components of the dislocation density tensor weight the 

dyadic formed by the direction of the dislocation line and the Burger’s vector 

characterizing that dislocation. An important distinction needs to be made between two 

different types of dislocations when discussing dislocation densities. There are 

geometrically necessary dislocations (GND) and statistically stored dislocations (SSD). 
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SSDs come in pairs with opposite signs (Burger’s vectors pointing in opposite 

directions), and have no long range effect. Only GNDs contribute to curvature over a 

grain.  When estimating dislocation densities using EBSD-based techniques, each square 

of data points forms a Burger’s circuit (figure 4-1) [26, 27]. Kröner’s formula is used to 

estimate the net dislocation effect within the circuit. The formula is not sensitive to any 

SSDs contained within the circuit. However, if a small enough Burger’s circuit is used, 

i.e if a small enough step size is used when collecting data points, all SSDs effectively 

become GNDs and can be detected.  

 

 

 

Figure 4-1: Representation of Burger’s circuit formed using EBSD data points 
 

 

Since the dislocation density estimates are dependent on spatial derivatives of the 

orientation field, they are very sensitive to the angular resolution of the chosen 

characterization technique. Noise in the data can be reduced by increasing the step size 
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between data points, but, as is usually the case, there is a tradeoff. As the step size 

increases, more SSDs are averaged out and so they are undetected [28]. 

All this should be taken into account along with the expected dislocation density 

when choosing a step size. If too small of a step size is used, the data will be dominated 

by noise. If too large a step size is used, important data will be averaged out. 

The three techniques discussed in this paper are Wilkinson’s cross-correlation 

method, the simulated pattern method, and traditional OIM. They have estimated angular 

resolutions of 0.006°, 0.02°, and 0.5° respectively. The theoretical minimum local 

dislocation density that can be measured without the data being dominated by noise is 

given by: 

 

Lb
GND min
min

θ
ρ =

          (20) 

 

where minθ  is the limiting angular resolution of the chosen method in radians, L is the 

step size, and b is the magnitude of the Burger’s vector. 

Figure 4-2 provides a reference as to what should be taken into account when 

interpreting data from dislocation density estimates. Assuming a Burger’s vector of 2.5 

Ǻ, the minimum resolvable dislocation density is plotted as a function of step size for 

each of the discussed methods. The interpretation of the plot is that any dislocation 

density that falls below the minimum resolvable dislocation density line will be 

dominated by noise, and is thus unobtainable by the selected technique. Another line is 

plotted showing the physically feasible dislocation density measureable at each step size. 
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Any data below that line corresponds to a fraction of a dislocation per Burger’s circuit, 

which is not physical. The physically feasible minimum dislocation density is given by:  

 

2min
1
L

=ρ
          (20) 

 

minρ  is the dislocation density corresponding to one dislocation per Burger’s circuit. 

 

 

Figure 4-2: Step size considerations when estimating dislocation densities. 
 

 

Average dislocation densities have been commonly measured to be               

~1013-1016 m-2.  Because of angular resolution limitations in OIM, a relatively large step 

size must be used to resolve such dislocation densities. However, this increases the risk of 
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many of the dislocations cancelling each other out within the Burger’s circuit. By 

increasing the angular resolution using cross-correlation techniques, the resolution of 

dislocation density estimates can be improved by more than an order of magnitude over 

traditional OIM-based techniques. 

To demonstrate the effect of angular resolution on dislocation density estimates, a 

number of dislocation networks in a material were simulated. The networks were 

simulated to have a random distribution of positive and negative dislocations and a set 

total dislocation density. Using these simulated networks, the dislocation density was 

estimated at increasing step sizes. A random noise component was added to the measured 

data that corresponds to the angular resolution of each technique. For comparison, a 

reference line was also plotted with no noise component (figure 4-3).  
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Figure 4-3: Simulated dislocation density measurements. x-axis refers to GNDs. 
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The following conclusions can be drawn from the simulated data. First, it can be 

seen that the data follows a general trend of reaching a plateau at the total dislocation 

density. This plateau for every case except for high dislocation densities is reached at a 

significantly larger step size than the minimum plotted step size. It is a common 

misconception that a smaller step size will always lead to more accurate data. Instead, the 

opposite is often the case. As the step size decreases, the noise component of the data 

becomes increasingly dominant, and important information is lost. Instead, the selection 

of the step size should be dependent on the expected dislocation density. High dislocation 

densities require a small step size to resolve the dislocation structure, but a larger step 

size should be selected when dealing with materials that have relatively low dislocation 

densities. There is also a plateau at the tail end of the data. This plateau corresponds to 

the step size at which all SSDs are averaged out, and only GNDs remain. Second, at the 

end of the top plateau (corresponding to the step size where every dislocation is 

resolved), the estimated dislocation density steadily decreases. This is due to dislocations 

of opposite signs cancelling each other within a Burger’s circuit. So, while there is danger 

from noise effects in choosing too small a step size, care must also be taken so as to not 

choose so large a step size that important data is averaged out. Third, OIM techniques are 

capable of meaningful dislocation density estimates only for high dislocation densities (of 

the order of ~1016 m-2).  This makes OIM useful for detecting large dislocation pileups as 

might be expected to occur near grain boundaries in deformed materials, but ineffective 

as a tool for studying more general dislocation structures. Cross-correlation methods offer 

over an order of magnitude improvement in angular resolution making dislocation 

structure characterization at high resolution much more feasible. 
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An added advantage of cross-correlation techniques over traditional OIM is the 

ability to access elastic strain data. OIM is insensitive to the elastic strain in a material, 

and so it is assumed to be negligible when estimating dislocation densities. Cross-

correlation techniques provide the elastic strain information and allow for its inclusion in 

Kröner’s formula. 

4.2 Application to magnesium 

Dislocation density measurements are an important factor in the development of 

new metallic materials. Due to its light weight and high recyclability, magnesium alloys 

are very attractive prospects for applications in car parts. However, their use is limited by 

low ductility and formability at low temperatures [29-32]. This low ductility is based on 

the limited number of slip systems that are active at room temperatures. One way to see 

this effect is through studying the dislocation densities caused by slip in the crystal 

lattice. A better understanding of the dislocation structure can lead to a more fundamental 

understanding of the deformation mechanisms of magnesium. 

The simulated pattern method was used to estimate the dislocation density of a 

polycrystalline Mg AZ91 sample that had been compressed 5.5%. The normal to the 

sample surface was parallel to the compression direction. The sample was prepared and 

scanned at GM facilities in Detroit. A 4x4 µm scan was taken near the center of a    

20x20 µm grain at a 100 nm step size. The scan was taken using an accelerating voltage 

of 20 kV and at a working distance of 12 mm. In order to obtain the highest signal-to-

noise ratio possible, the EBSD patterns were saved at the full camera resolution (465x465 

pixels for the camera used in this study) which slowed scanning time to ~3 patterns/sec. 
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To further improve the accuracy of the cross-correlations, a band pass filter was used on 

the overall patterns (both measured and simulated) and a low pass filter was applied to 

each individual ROI. The cut-off frequencies for the band pass filters (in cycles per pixel) 

were 0.0065 for the high pass and 0.32 for the low pass. The cut-off frequency of the low 

pass filter was 0.0077 cycles per pixel. These values were obtained by visual 

optimization to minimize the scatter in the data. The saved patterns were analyzed offline 

using the simulated pattern method with the OIM measured orientation as the starting 

point in the iterations. The offline analysis time is dependent on the number of iterations 

used, which is generally 3-5. For 465x465 pixel images, each iteration requires ~0.5 

seconds, with two thirds of the time used for pattern simulation and the rest to perform 

the cross-correlation analysis. The code used has not been optimized for speed, and it is 

expected that the time requirements will be significantly reduced in the future. 

 

 

Figure 4-4: Spatial distribution of three components of the dislocation density tensor as estimated by the 
simulated pattern method (top row) compared to the estimation made using conventional OIM data (bottom 
row). 
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The dislocation density was first estimated using the OIM measured orientation, 

and then using the simulated pattern method with and without including the elastic strain 

term. Since dislocation density measurements need only the gradients of the elastic strain 

and orientation, Wilkinson’s method was also used as a comparison to further validate the 

simulated pattern method. The dislocation density was defined as the average of the 

absolute magnitude of all of the points in the scan (Table 4-1). 

 

 

Table 4-1: Comparison of methods for dislocation density measurements in m-2 

 

 

4.3 Discussion 

The data obtained using Wilkinson’s method were very close to that obtained 

using the simulated pattern method. This serves as further validation of the accuracy of 

the results. The OIM estimated dislocation density on the other hand was over a full order 
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of magnitude higher than that estimated using the simulated pattern method. In general, 

OIM is incapable of measuring dislocation densities below 15 2~ 3 10 m−× , so the estimated 

density in this case is around what would be expected if only noise was measured. 

Although no significant structure is seen in the figure, there are two important points to 

be taken from it. First, the dislocation density measurements using the simulated pattern 

method are over a full order of magnitude lower than those measured by traditional OIM. 

This is directly related to the increase in angular resolution of the simulated pattern 

method. Second, the dislocation density maps created by traditional OIM have many very 

high points as can be seen in the center of the scan, while other points show a very low 

dislocation density. These sharp changes in dislocation density are attributed to scatter in 

the orientation data collected by OIM and suggest that while the overall dislocation 

density measured by OIM may differ from the simulated pattern method by only an order 

of magnitude, local variations caused by scatter can cause much higher levels of error. 

From the data it is also seen that the elastic strain term can have a significant 

effect on the estimated dislocation density. Depending on how the elastic strain aligns 

with the dislocations, the inclusion of the elastic strain tensor can cause a higher or lower 

dislocation density to be estimated. In this case, the overall estimated dislocation density 

increased 15% after the inclusion of the elastic strain term. 
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5 Tetragonality Measurements in FSW HSLA 65 Steel 

5.1 Background 

Steel is the most used of all metals [33-36]. It is also one of the most complicated. 

Different treatments and alloying contents can produce very different properties. The 

physics behind these processes is often poorly understood. Many of the processes 

developed with steel have been found through trial and error which is both costly and 

time consuming. 

One of the most influential factors in determining the properties of steel is the 

carbon concentration and distribution in the iron lattice [37]. Depending on the carbon 

content and environmental conditions, the steel crystal lattice can either be bcc, fcc, hcp, 

or bc tetragonal. It is relatively simple to distinguish between fcc, bcc, and hcp lattices 

using existing EBSD based texture analysis methods. The characterization of 

tetragonalities, however, presents a more formidable challenge. 

The bc tetragonal phase arises in steel lattices when carbon atoms occupy 

interstitial positions in the bcc iron lattice. The carbon atoms occupy the octahedral sites, 

causing a larger expansion along the c axis than along the a axis (figure 5-1). The 
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Figure 5-1: Schematic of carbon atoms occupying the octehedral sites in an iron lattice 
 

 

magnitude of the tetragonality is proportional to the carbon concentration and is 

estimated to be [38]: 

 

Cwtac %045.01/ +=         (22) 

 

where wt%C is the weight percent of carbon in the steel. The ability to measure both the 

magnitude and axis of this tetragonality at high resolution would provide a wealth of 

information on the variations in carbon concentrations and the interactions of different 

steel phases. 

There are two steel phases in which lattice tetragonalities are found, namely the 

martensite and bainite phases. Martensite is formed by rapid quenching of steels with 

high carbon concentrations. At elevated temperatures, the austenite phase can form in 

steels. Austenite has an fcc iron lattice with a high concentration of interstitial carbon 

atoms. At room temperature, austenite becomes unstable. When steel is rapidly quenched, 
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the lattice structure of austenite changes with little carbon diffusion to form martensite. 

Since most of the carbon is retained from the austenite, the martensite phase occurs at 

relatively high concentrations of carbon (~0.8wt%C), causing the formation of a bc 

tetragonal phase [38]. Using traditional OIM, this tetragonality can usually be detected 

but difficulties still arise when attempting to determine the axis of tetragonality. 

Bainite is more complicated than martensite and its discovery and identification 

occurred at a much later time. Bainite forms when steel is cooled too rapidly for pearlite 

to form, but not rapidly enough for martensite to form.  Some carbon is still retained in 

the lattice, but there is still much debate in the literature on the magnitude and nature of 

the carbon concentrations [39]. Much of this debate is due to the lack of adequate 

techniques to fully understand and characterize the physics behind the bainite phase [40]. 

A brief review of the current techniques used to study the bainite and martensite phases is 

presented. 

TEM offers the most direct visualization of the different phases of steel. Methods 

such as convergent beam electron diffraction (CBED) and high resolution TEM allow for 

the direct observation of the tetragonality in steel phases [41], the interaction of the 

different phases at interfaces [42], and the morphology of the microstructure [43]. There 

are, however, a few significant drawbacks of using TEM for studying steel. The need for 

a thin foil sample introduces two free surfaces. This can cause strain relaxation in the 

sample and lead to erroneous conclusions on the observed phenomena. Also, TEM is 

very limited in the size of the area for characterization. Only very small areas can be 

observed at a time, making it difficult to collect statistically significant amounts of data 

from samples. 
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X-ray spectroscopy techniques such as energy dispersive x-ray spectroscopy 

(EDS) have been used to find the composition of steels at discrete points in a sample [44-

46]. EDS has the advantage over many other methods that it allows for the direct 

measurement of carbon concentration without relying on secondary data such as lattice 

parameters to estimate the chemical composition. Both SEMs and TEMs are routinely 

equipped with x-ray detectors for x-ray spectroscopy. In the SEM, EDS has been 

successfully coupled with OIM to simultaneously characterize the microstructure and the 

chemistry of a material at discrete points in an automated manner. Some significant 

drawbacks of EDS are that the total carbon content of the sample must be known for 

calibration purposes and the spatial resolution of EDS is significantly worse than EBSD.  

Traditional OIM has been profitably used to study more of the physics behind 

steel phases. This is done in a few different ways. Different phases are simple to 

distinguish using OIM when each phase has a different lattice structure. For example, this 

is the case when distinguishing austenite (fcc lattice) from ferrite (bcc lattice). Lattice 

tetragonalities, if large enough, can also be directly detected using band indexing through 

the Hough transform. This is limited to large tetragonalities (>5%), and is unreliable 

when specifying the axis of tetragonality. Some researchers have utilized the image 

quality to characterize steel samples. Higher dislocation densities are present in certain 

steel phases, leading to a decrease in the image quality. Theoretically, this could be used 

to detect different phases in steel samples. In practice, this method has been proven to be 

unreliable due to the host of other factors that also affect the image quality and the 

difficulty in establishing an image quality threshold value for phase identification. The 

orientation distribution can be used to gain information on grain morphology and 
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estimate the local curvature/dislocation density. This information has been used 

especially to identify the bainite phase, which has a high dislocation density in 

comparison with other steel phases [46, 47]. Thus, high dislocation density areas can be 

linked to the distribution of the bainite phase in a material. Some uncertainty in the data 

arises due to the need of setting a dislocation density threshold value for phase distinction 

when using this method. 

5.2 Simulated pattern approach to tetragonality estimates 

The simulated pattern method provides a direct way to detect and measure 

tetragonalities in a crystal lattice and thus access important information on phase 

characteristics and carbon distribution in steel samples. These tetragonalities can be 

detected in the diagonal components of the elastic strain term when expressed in the 

crystal frame. 

When expressing the elastic strain term in the crystal frame, the off-diagonal 

terms correspond to shear strains in the unit cell. The diagonal terms correspond to 

normal strains, or a stretch or compression of the unit cell (figure 5-2). A stretch or 

compression of the unit cell can arise from two different influences – an elastic strain in 

the material, or a chemical composition change. Strain from the latter influence is 

referred to as an eigenstrain. These two influences combine resulting in the total 

measured strain. 

In order to obtain meaningful information, these two strains must be separated. 

Both forms of strain result in identical shifts in the Kikuchi bands of an EBSD pattern, 

and so are indistinguishable from each other using the simulated pattern method. This 
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Figure 5-2: Representation of components of the elastic strain tensor. 
 

 

issue is resolved when the relative magnitudes of the two different types of strain are 

taken into account. Plastic yielding occurs in most metallic materials at around 0.2% 

strain. It is expected that while local elastic strains may exceed this value, they will still 

be at or below 1%. Eigenstrains vary over a much larger range depending on the chemical 

composition of the lattice. In the case of steel samples, the tetragonality is directly related 

to the concentration of carbon in the lattice. This tetragonality can vary significantly from 

<1% to 6%. Taking this into account, measured strains above 1% can be assumed to be 

eigenstrains. Any values of elastic strain below 1% are inseparable using the current 

approach. 

In the derivation of the cross-correlation method, it was shown that only the off-

diagonal components of the elastic strain tensor can be measured directly. Only the 

difference between diagonal components of the elastic strain tensor is directly accessible 

using cross-correlation methods. When measuring elastic strains, the diagonal 

components can be separated by taking into account the free surface boundary condition. 

This boundary condition, however, applies to elastic strains only, not to eigenstrains. In 
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the case of a tetragonality from the chemical composition, the diagonal components must 

be separated in a different manner. 

 

 

Figure 5-3: Schematic of how an eigenstrain stretches the crystal lattice. 
 

The elastic strain tensor in a phase with a tetragonality along the   axis in the 

crystal frame has the following form (shown schematically in figure 5-3): 
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Assuming that the eigenstrain is much bigger than the elastic strains, we can rewrite the 

elastic strain tensor as 
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At this point, it is a simple matter to separate the diagonal components of the strain tensor 

allowing the recovery of the lattice tetragonality. 

5.3 FSW results 

Friction stir welding (FSW) is a solid state welding process that shows much 

promise for minimization of failure due to poor welding. Two sheets of metal are welded 

together using frictional heat to bond them. The temperature of the process remains 

below the melting point of the material, keeping it a solid state technique. 

FSW of aluminum alloys has been already widely used especially in aeronautical 

applications [48, 49]. FSW of steel alloys has been more difficult due to complicating 

factors such as its higher melting point and increased wear on the instruments [50, 51]. 

Traditional welding techniques can cause large changes in the metallurgy of steel 

samples. These metallurgical changes can be reduced using FSW techniques since the 

material is not heated to its melting point. There remain significant studies to be carried 

out to determine the microstructural changes that still do occur from the FSW process. 

One especially important topic is the redistribution of carbon atoms after the welding 

process. 

In order to demonstrate the abilities and versatility of the simulated pattern 

method, a series of scans was taken from the weld zone of HSLA 65 steel. The steel was 
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thermo-mechanically processed to reduce the grain size and increase strength. The scans 

were taken using the custom built SEM stage for pattern center calibration. A single 

crystal germanium sample was used as the reference sample for the calibration. All of the 

patterns were stored and analyzed using the simulated pattern method to get the strain and 

orientation information. 

Three different types of maps are used for displaying the data. The first type of 

map is a standard inverse pole figure (IPF) map used to display the crystallographic 

orientation at each point in the scan. The second type of map is a tetragonality map. The 

tetragonality is defined as the eigenstrain previously discussed. Experimentally, the 

magnitude of this tetragonality is defined as: 

 

2
2211
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crystalcrystal
crystaltetr εεεε +

−=
       (25) 

 

where  is defined as the stretched axis in the tetragonality. The map is formed by 

plotting  at each point in the scan. A third map generated is a dislocation density 

map. Due to opacity limitations of the scan, the dislocation density maps are limited to a 

rough estimate of the total dislocation density at each point (see chapter 4 for further 

discussion). The dislocation density is estimated by multiplying the sum of the magnitude 

of the three available components of the dislocation density tensor by three. 

crystal
33ε

tetrε
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5.3.1 OIM comparison 

Grain morphology is a standard method for identification of the bainite phase. 

Before doing any high resolution scans, regular OIM scans were done to visualize the 

grain morphology in and away from the weld area. 

 

 

Figure 5-4: Comparison of microstructure from the undeformed lattice (left) with the microstructure of the weld 
area (right). 
 

 

Figure 5-4 shows how the welding process affects the microstructure of the 

material. The polygonal grain morphology suggests that there is very little of the bainite 

phase in the undeformed (away from the weld) area of the sample. The lathe structure of 

the grains in the weld area suggests that most of the scan area is made up of the bainite 

phase. This can be understood by considering the heat input of the FSW process. The 

FSW process heats the material enough that the austenite phase forms. As the steel cools 

after the welding process is complete, the austenite undergoes a phase transformation into 

bainite [52]. There is insufficient carbon in HSLA 65 steel for martensite to form.  

64 
 



5.3.2 General scan conditions 

All of the high resolution scans were taken with identical parameters for the 

simulated pattern method analysis. Each pattern was filtered using a band pass filter with 

an upper cutoff frequency of 0.39 cycles/pixel and a lower cutoff frequency of 0.016 

cycles/pixel. Also, each individual ROI was filtered using a low pass filter with an upper 

cutoff frequency of 0.070 cycles/pixel. The patterns were saved at half of the camera 

resolution (512x512 pixels). The electron beam accelerating voltage was set to 20 kV. 

The acquisition time varied for each scan between 0.5-1 second per point. The long 

acquisition time allowed for the highest possible signal to noise ratio. The color coding 

for the IPF maps is given by the colored triangle (figure 5-5). 

 

 

Figure 5-5: Color coding for the IPF maps. 
 

 

5.3.3 Scan 1 

The first high resolution scan is a 30x30 µm scan taken with a 150 nm step size. 

The purpose of the scan is to show the general microstructure characteristics and 

measured tetragonalities in the crystal lattice outside of the welded area. Also, the scan 
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acts as verification that the simulated pattern method does not measure large 

tetragonalities in areas of little carbon concentration. 

 

 

 

Figure 5-6: Scan 1 - IPF map (left) and tetragonality map (right) from the undeformed portion of the steel 
sample. 
 

 

The results show that throughout the microstructure, there is very little 

tetragonality in any of the grains (figure 5-6). There are a few exceptions to this, 

especially around the grain boundaries, but for the most part the tetragonality stays 

around 1%. Also, the grain morphology is generally polygonal. Both of these results 

suggest what is expected, that there is very little carbon or bainitic steel away from the 

weld area. These results can be used as a reference to estimate the expected magnitude of 

tetragonalities in areas of little to no carbon concentration. 
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5.3.4 Scan 2 

Scan 2 is a 100x100 µm scan taken with a 550 nm step size. The material has a 

very small grain size, so the scan size was sufficient to characterize many individual 

grains. 

 

 

 

Figure 5-7: Scan 2 - IPF map (top) and comparison of a dislocation density map in m-2 (lower right) with a 
tetragonality map (lower left). White circles indicate areas of corresponding high tetragonality and high 
dislocation density. 
 

 

All three types of maps were generated for this scan. The points that were not 

indexed properly are colored black. As can be observed from the IPF map (figure 5-7), 

this occurred primarily along the grain boundaries. There are two reasons for this to 
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happen. As the electron beam approaches a grain boundary, the interaction volume can 

straddle the boundary, and so data is collected from two different orientations. This 

causes overlapping EBSD patterns to be collected. When the patterns are mixed severely 

enough, the software is unable to distinguish between them, and they are not indexed. 

Also, dislocation pileups and higher carbon concentrations tend to occur near grain 

boundaries. Both result in the deterioration of the EBSD patterns and can lead to the 

patterns not being indexed. 

The tetragonality map and dislocation density map were generated for comparison 

purposes. Careful inspection of the two maps shows that regions of high dislocation 

density often correspond with areas of high tetragonality. This is in agreement with 

current data on the bainite phase [40]. The dislocation density map provides fewer data 

points than the tetragonality map. This is because dislocation density estimates require at 

least three good points to estimate the three available components of the dislocation 

density tensor. Near grain boundaries, there is often an insufficient number of indexed 

points to estimate the dislocation density, so more of the data is inaccessible. The 

simulated pattern method is not reliant on neighboring points to process the information 

so it does not encounter the same problem. 

The number if grains collected allows for the observation of the tetragonality 

variations at the mesoscale. In theory, this should give a good estimate of the carbon 

distribution as well. As can be seen from the map, lattice tetragonalities can vary 

significantly between grains. Since orientation information is collected along with the 

strain data, lattice tetragonalities can also be linked to microstructure characteristics. For 
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example, from scan 2 a correlation between higher tetragonality and the [0 0 1] 

orientation can be made.  

Scan 2 highlights an important ability of the simulated pattern method. Relatively 

large areas of a sample can be characterized in a non-destructive way that allows for 

lattice tetragonality variation information. This allows for finding links between 

microstructure characteristics such as grain size and orientation and the local lattice 

tetragonality. In order to verify connections between microstructure and local lattice 

tetragonality, a statistically significant number of grains must be analyzed (on the order 

of hundreds to thousands). To analyze such a large number of grains using a TEM is 

extremely time consuming and labor intensive. To collect statistically significant data sets 

that include the local tetragonalities on an SEM is a relatively simple matter and is 

possible using the simulated pattern method. Scan 2 also emphasizes the advantage of 

using simulated patterns as reference patterns when characterizing polycrystalline 

materials. It is highly unlikely that a strain free reference pattern could be found in the 

majority of the grains in scan 2, and the limited number of points per grain makes the 

gradient information less reliable or useful.  

5.3.5 Scan 3 

Scan 3 is similar to scan 2 except it was collected at a higher spatial resolution 

(figure 5-8). The step size in scan 3 is 300 nm, and the total scan area is 30x30 µm. This 

still allows for several grains to be characterized while also providing detail on the 

interior structure and tetragonality variations within individual grains. 
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Figure 5-8: Scan 3 - IPF map (right) and tetragonality map (left). 
 

 

As observed in scan 2, there appears to be more and less favorable grain 

orientations for high tetragonalities. With the finer step size, it is also seen that the lattice 

tetragonality within grains varies significantly. The magnitude of the tetragonality is 

especially high near the grain boundaries, although some grain boundaries appear to be 

much more conducive to large tetragonalities than others. This can be seen from 

comparing the magnitude of the tetragonality in the grain with the [1 1 1] orientation in 

the upper right corner to the [1 0 1] oriented grain in the middle right side. 

Scan 3 highlights the ability of the simulated pattern method to capture multiple 

grains and still provide interesting details on the interior structure of grains. 

5.3.6 Scan 4 

Scan 4 was taken for correlation purposes with EDS data. Since lattice 

tetragonality is theoretically linked with the carbon concentration, both the EDS and 

tetragonality maps should display the same information. The scan size is 30x30 µm with 
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a step size of 500 nm. EDS data was collected simultaneously with the EBSD patterns 

and was then used to generate a carbon distribution map (figure 5-9). 

 

 

 

 

 

Figure 5-9: Scan 4 - IPF map (top) and comparison of tetragonality map (lower left) with EDS map of carbon 
distribution (lower right) 
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Some imagination is needed to find useful data in the carbon distribution map. 

This is likely due in part to the lower spatial resolution of EDS techniques in comparison 

with EBSD. The interaction volume from which x-rays are detected is much bigger than 

the interaction volume that backscattered electrons are detected from. This causes the 

EDS data to be averaged over a larger volume, and can lead to smearing in the data. 

EBSD provides a higher spatial resolution which allows for the resolution of finer details. 

This can be seen when comparing the carbon distribution map with the tetragonality map. 

Local gradients of tetragonality can be detected from the simulated pattern method 

analysis that are unavailable to EDS at current resolutions. 

Scan 4 highlights the ability of the simulated pattern method’s ability to detect 

fine scale features unobtainable using EDS without having to rely on more difficult and 

demanding techniques such as TEM. 

5.3.7 Scan 5-6 

Scans 5 and 6 were both taken at a much finer length scale than the other scans. 

The step size was chosen to be 50 nm for both scans and the full scan size was 5x5 µm 

for scan 5 and 5x2.15 µm for scan 6. At this length scale, much of the fine detail leading 

up to the grain boundaries can be observed. Overlapping pattern effects limit the data 

right at the grain boundaries (figure 5-10 and 5-11). 
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Figure 5-10: Scan 5 - IPF map (left) and tetragonality map (right). 
 

 

Figure 5-11: Scan 6 - IPF map (top) and tetragonality map (bottom). 
 

 

It can be quickly seen that the higher tetragonalities occur near the grain 

boundaries for the most part. Interestingly, high tetragonalities do not occur at all of the 
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grain boundaries. In both scans, there are some grain boundaries, and entire grains in 

general, that have high tetragonalities, while others remain at relatively low 

tetragonalities. This is apparent when comparing the upper middle grain (low 

tetragonality at the grain boundary) with the lower right corner grain (high tetragonality 

at the grain boundary) in scan 6. Also, very fine scale gradients of the magnitude of 

tetragonality can be seen across the grains and near grain boundaries. 

Scans 5 and 6 highlight the simulated pattern method’s high resolution abilities. 

Previously, only TEM techniques could give such high resolution information on the 

tetragonalities found in the lattice parameters. The simulated pattern method offers 

similar information as could be obtained using TEM, but with the advantages of ease of 

use, ease of automation, and versatility in scan size. 

5.4 Discussion 

The purpose of this paper is not to go in depth on the mechanics and physics of 

steel processes. Instead, it is to demonstrate a powerful new method that can later lead to 

a more complete understanding of these processes. 

The simulated pattern method offers a superior spatial resolution to dislocation 

density and EDS methods for phase identification and tetragonality/carbon content 

determination while still maintaining the ease of use that both methods provide. It also 

allows for large scans of many grains since it is not dependent on a strain free pattern for 

reference. All this is done in a nondestructive manner and with much less demanding 

sample preparation than is required by TEM. 
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The fine scale gradients of tetragonality variations within individual grains lead to 

much more complete information than is obtainable using other methods. There is a 

general trend to label and characterize each part of a steel sample so that each phase is 

known. While this is important in determining the properties and general characteristics 

of a material, it is also in many ways limiting. If instead the data is treated in a continuum 

sense with less strict delineation between phases, the fundamental physics of the situation 

can be better observed. As is often the case with new advances in techniques, changes in 

our understanding and labeling of materials must also undergo similar changes to reflect 

a more fundamental understanding of the situation. 
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6 Conclusions 

The simulated pattern method of cross-correlation-based EBSD analysis provides 

high resolution elastic strain and orientation information while maintaining the ease of 

use that has made OIM such a valuable tool. Simulated patterns allow for a much more 

general application of the cross-correlation method than is possible when using a 

measured pattern for reference. The following conclusions can be drawn from the 

experiments carried out in this paper: 

• The simulated pattern method has a gradient resolution limit (change in values 

instead of absolute values) of 0.02° for angular resolution and an elastic strain 

resolution of 3.6x10-4 for small strains and 1x10-3 for large strains (>0.02). This 

represents an order of magnitude improvement of angular resolution over OIM 

without any loss of applicability. 

• The pattern center calibration allows for a global angular resolution limit of 

~0.06°. This value does not take into account any error in the accuracy of the 

input sample tilt and elevation angles. The global elastic strain resolution is the 

same as what is stated for the gradient resolution. 

Data obtained using the simulated pattern method (elastic strain and orientation 

information) can be used to measure and characterize a number of other properties of 

materials. The following have been demonstrated: 
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• Three components of the dislocation density tensor can be estimated using 

orientation and elastic strain information. The minimum resolvable dislocation 

density demonstrated in this paper is 1x1014 m-2, although lower densities have 

been measured in single crystal samples. This represents an order of magnitude 

improvement over traditional OIM (directly proportional to the respective angular 

resolutions of OIM and the simulated pattern method). Additionally, the simulated 

pattern method takes into account the elastic strain gradient information which is 

inaccessible to traditional OIM. Inclusion of the elastic strain term was found to 

change the data by 15%. 

• Lattice tetragonalities arising from compositional changes in a material, or 

eigenstrains, can be measured using the diagonal components of the elastic strain 

tensor when expressed in the crystal frame. Assuming that the elastic strains are 

much smaller than the eigenstrains, the minimum measurable eigenstrain is ~1%. 

Any eigenstrain smaller is inseparable from the elastic strains. 

The applications presented in this paper are just a sampling of the many possible 

future applications. The simulated pattern method’s versatility, ease of use, and high 

resolution capabilities make it a promising candidate for many more uses. There is 

continued work being done to improve the resolution capabilities of the simulated pattern 

method. This includes methods for improving the fidelity of the simulations, 

characterization of any optical distortions of the electron beam, and deconvolution of the 

interaction probe volume to increase the spatial resolution. 
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