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ABSTRACT 

 

 

 

CHARACTERIZING MATERIAL PROPERTY TRADEOFFS OF 

POLYCRYSTALLINE DIAMOND FOR DESIGN 

SELECTION AND EVALUATION 

 

 

Neil D. Haddock 

Department of Mechanical Engineering 

Master of Science 

 

 

 

 Polycrystalline diamond (PCD) is used as a cutting tool in many industries 

because of its superior wear resistance compared to single crystal diamond.  Engineers 

who design new PCD materials must have an understanding of the tradeoffs between 

material properties in order to tailor a product for different applications.  Two competing 

material properties that are often encountered in PCD are transverse rupture strength and 

thermal-resistance.  Thermal-resistance is directly related to the cobalt content of PCD, 

and is the ability of the material to withstand thermally induced degradation. 

 In this thesis, we characterize the tradeoff boundary between transverse rupture 

strength and cobalt content of PCD.  We also characterize the tradeoff boundary between 

cost and cobalt content, and show how both of these tradeoff boundaries can be used to 

 





 

manage product development, which adds value for managers in both engineering and 

business. 

 In order to characterize these tradeoffs, empirical models are developed for each 

material property in terms of the design variables of sintering pressure and diamond grain 

size, where the pressure ranges from 55 kbar to 77 kbar and the grain size ranges from 12 

μm to 70 μm in diameter.  Then the models are used as optimization objectives in the 

normal constraint method to generate the tradeoff boundary.  Finally, the tradeoff 

boundary is validated through additional experiments. 

 The tradeoff boundary shows that the relationship between transverse rupture 

strength and cobalt content is not linear.  It also shows that the optimal PCD designs can 

occur over a wide range of pressures and grain sizes, but pressures above 66 kbar and 

grain sizes between 20 and 30 μm appear to offer the best compromise between these 

material properties.  These results are compared to the wear rates of PCD compacts in 

rock cutting tests.  The rock cutting test results confirm that the designs with the best 

compromise between transverse rupture strength and cobalt content also have the highest 

wear resistance.  In general, the designs that offer the best compromise between the 

properties are also the most expensive to manufacture. 





 

ACKNOWLEDGMENTS 

 

 

 

There are many people who have not only contributed to the success of this thesis, 

but also to my success as a graduate student and engineer. 

I want to first thank Dr. Chris Mattson for his guidance and support.  He helped 

me find a project that balanced the competing objectives of my career and my education, 

and pushed me to do things that I did not think were possible.  I also extend appreciation 

to the rest of my committee, Dr. Ken Chase and Dr. David Fullwood, for their support 

and contributions to this work. 

I especially wish to thank the people at US Synthetic who provided the 

motivation, funding, and valuable insights into the research that has become this thesis.  

They include Dr. Ken Bertagnolli, Dr. Deb Mukhopadhyay, Craig Cooley, David Miess, 

Jason Wiggins, Jake Atwater, and the R&D lab at US Synthetic.  I also thank Bob 

Johnson and Robert Farr for allowing me the time and freedom to pursue my educational 

goals while working full-time. 

I express deep gratitude to my wife, Brynna, for her patience, support, and 

personal sacrifices during this journey.  Her continual encouragement has been invaluable 

to the completion of this work.  And to my mother and father, who taught me by example 

to make education a daily pursuit.  

Last, I express gratitude to the Lord from whom all of my life’s blessings come.  

This thesis is living proof that with Him, all things are possible. 



 

 



 ix 

TABLE OF CONTENTS 

 

List of Tables …………………………………………………………………………... xi 

 

List of Figures …………………………………………………………………………. xiii 

1 Introduction ........................................................................................................................ 1 

1.1 Background ............................................................................................................................................... 1 

1.2 Problem Statement and Literature Survey .................................................................................. 2 

1.3 Research Approach ................................................................................................................................ 7 

2 Development of Pareto Frontier Models ................................................................ 11 

2.1 Experimental Program ....................................................................................................................... 12 

2.2 Test Methods and Measurements .................................................................................................. 16 

2.3 Response Surface Model for Cobalt Content ............................................................................. 18 

2.4 Response Surface Model for Transverse Rupture Strength ............................................... 19 

2.5 Manufacturing Cost Model................................................................................................................ 20 

2.6 The Normal Constraint Method ...................................................................................................... 22 

2.7 Characterizing the Tradeoff Between 1 and 2 ...................................................................... 25 

2.7.1 Iteration 1........................................................................................................................................ 25 

2.7.2 Iteration 2........................................................................................................................................ 28 

2.8 Characterizing the Tradeoff Between 1 and 3 ...................................................................... 37 

3 Design Evaluation and Selection Using Pareto Frontier Models .................... 41 

3.1 Selection of the Optimal PCD Design ............................................................................................ 41 



 x 

3.2 Evaluation of the Optimal PCD Design ........................................................................................ 45 

4 Conclusion ......................................................................................................................... 51 

4.1 Conclusions ............................................................................................................................................. 51 

4.2 Future Work ........................................................................................................................................... 53 

5 References ......................................................................................................................... 55 

Appendix A Statistical Analysis ...................................................................................... 57 

A.1   Normally Distributed Errors with a Zero Mean ………………………………….......... 58 

A.2    Constant Variance and Independent Errors …………………………………………… 61 

A.3  Discussion of Model Assumptions …………………………………………………..... 64 



 xi 

LIST OF TABLES 

 

 

Table 2.1:  Design variable values in coded (parenthesis) and uncoded form ......................15 

Table 2.2:  Summary statistics for experimental runs A – I (10 samples each) ....................16 

Table 2.3:  Summary of transverse rupture strength measurements ......................................17 

Table 2.4:  Summary of the additional experimental runs, J-M ............................................29 

Table 2.5:  Output data from Statistica used to obtain equation (2.4) ...................................31 

Table 3.1:  Rock cutting parameters for Test I and Test II. ...................................................46 

 



 xii 

 



 xiii 

LIST OF FIGURES 

 

 

Figure 1.1:  A polycrystalline diamond compact (a) with PCD layer (b) sintered onto 

cemented WC/Co substrate (c) ..................................................................................4 

Figure 1.2:  Three-step approach for developing the Pareto frontier model ..........................9 

Figure 2.1:  Pressure-Temperature phase diagram for carbon ...............................................14 

Figure 2.2:  Experimental runs shown in the design variable space ......................................15 

Figure 2.3:  Transverse rupture strength test setup ................................................................17 

Figure 2.4:  Cobalt content response surface model plotted against the experimental    

data .............................................................................................................................18 

Figure 2.5:  Transverse rupture strength response surface model .........................................19 

Figure 2.6:  Graphical representation of the normal constraint method for bi-objective 

problems [17] .............................................................................................................23 

Figure 2.7:  The Pareto frontier for μ1 and μ2, generated using equations (2.3) and (2.4) .....26 

Figure 2.8:  The Pareto frontier with a “confidence region” drawn around the 95% 

confidence limits on the mean for each segment .......................................................27 

Figure 2.9:  A comparison of the first Pareto frontier model to the experimental data .........28 

Figure 2.10:  Contour plot of transverse rupture strength showing the pressure and grain 

size values of experiments J - M ................................................................................29 

Figure 2.11:  Average values compared to quadratic model predictions of μ2 for designs 

C, D and J ...................................................................................................................31 

Figure 2.12:  Average values of μ2 for designs C, D and J compared to the linear and 

quadratic model predictions .......................................................................................32 

Figure 2.13:  Comparison of the quadratic (a) and linear (b) response surface models for 

μ2 ................................................................................................................................33 

Figure 2.14.  Comparison of the first and second Pareto frontier approximations ................34 



 xiv 

Figure 2.15:  The second and final Pareto frontier model with the 95% confidence   

region .........................................................................................................................34 

Figure 2.16:  The first Pareto frontier model plotted against all 13 experimental runs .........35 

Figure 2.17:  The second Pareto frontier mapped to the design variable space.....................36 

Figure 2.18:  The Pareto frontier between μ1 and μ3 ..............................................................37 

Figure 2.19:  The Pareto frontier between μ1 and μ3 plotted against the experimental data ..39 

Figure 3.1:  Three-dimensional plots of μ1, μ2 and μ3 ............................................................42 

Figure 3.2:  The tradeoff characterization for μ1 and μ2 ........................................................43 

Figure 3.3:  Three-dimensional plot of μ1, μ2 and μ3 showing the most “optimal” PCD 

design, D (indicated by the arrow) .............................................................................44 

Figure 3.4:  Vertical turret Lathe apparatus used for testing the wear rate of PCD ...............46 

Figure 3.5:  Contour plot of the G-ratio for designs A – I (Test I), with Pareto frontier 

highlighted .................................................................................................................47 

Figure 3.6:  Contour plot of distance-to-failure for designs A – I (Test II) ...........................47 

Figure A.1:  The normal probability plot for the errors of equation (2.3) .............................58 

Figure A.2:  The normal probability plot for the errors of equation (2.4) .............................59 

Figure A.3:  The normal probability plot for the errors of equation (2.16) ...........................59 

Figure A.4:  A histogram of the errors of equation (2.3) .......................................................60 

Figure A.5:  A histogram of the errors of equation (2.4) .......................................................60 

Figure A.6:  A histogram of the errors of equation (2.16) showing a similar pattern to the 

errors of equation (2.4) ..............................................................................................61 

Figure A.7:  A plot of the errors (vertical axis) vs. the values predicted by the model 

(horizontal axis) for equation (2.3) ............................................................................62 

Figure A.8:  A plot of the errors vs. the values predicted by the model for              

equation (2.4) .............................................................................................................63 

Figure A.9:  A plot of the errors vs. the values predicted by the model for               

equation (2.16) ...........................................................................................................63 

 



 xv 

 





1 

1 Introduction 

1.1 Background 

Engineering design often involves making decisions between two or more 

conflicting objectives.  When designing a new material to meet a given need or selecting 

an existing material for a particular application, the conflicting objectives often take the 

form of competing material properties.  For example, tensile strength is typically 

improved to the detriment of fracture toughness, and vice versa [1].  Materials engineers 

are usually tasked with resolving these types of competing objectives.  But, whether a 

materials engineer seeking to improve a given tradeoff or a design engineer responsible 

for selecting a suitable material for a given component, having an explicit 

characterization of material property tradeoffs can enhance the design selection process 

or provide direction towards materials improvement efforts. 

Polycrystalline diamond (PCD) is widely used as a material in cutting tools, wire 

drawing, rock cutting and other wear surface applications.  In order to design better wear 

tools, engineers must understand the wear and chipping mechanisms of PCD [2].  An 

understanding of material properties such as fracture toughness, tensile strength, 

compressive strength, and elastic modulus, and the relationships between these 

properties, is therefore an important part of PCD design.  Another important property of 

PCD is its ability to resist degradation under thermal loads.  This is referred to as thermal 

stability, or thermal-resistance [3].  Two competing objectives, often encountered in the 
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design of PCD tools, are transverse rupture strength – a tensile property [4] – and 

thermal-resistance. 

When a designer faces decisions between competing objectives, it is possible that 

more than one solution exists that will meet the design goals.  Having a complete visual 

representation of all possible designs in relation to the objectives would aid the designer 

in making the optimal design decision.  It is possible that some designs would be better 

than others in both objectives, and thus would be the most relevant to the designer.  An 

effective way of characterizing those designs is by finding the Pareto frontier [5].  The 

Pareto frontier is the set of all non-dominated designs within the feasible design space, 

which means that no other designs exists that are equal or better in every objective.  

When a design solution falls on the Pareto frontier we say it is Pareto optimal [6]. With a 

set of Pareto optimal solutions in hand, a designer can see the “best” options available 

under the specified constraints [7].   

In this thesis, we use multi-objective optimization methods to characterize the 

tradeoff between the objectives of transverse rupture strength and thermal-resistance of 

PCD.  We also characterize the tradeoff between a manufacturing cost objective and 

thermal-resistance in order to create value for engineering and business managers.  These 

tradeoffs are characterized as Pareto frontier models.  Finally, we compare the Pareto 

frontier models to the wear rates of PCD in rock cutting tests. 

1.2 Problem Statement and Literature Survey 

Characterizing the design tradeoffs by modeling the Pareto frontier using multi-

objective optimization methods requires mathematical representations of the objectives in 

terms of the design variables.  Several authors have measured the transverse rupture 



3 

strength of PCD [2,10], and others have qualitatively described the factors that influence 

its thermal-resistance [3,11].  Before we review this literature however, we will briefly 

review the fundamentals of polycrystalline diamond manufacturing and the unique 

challenges associated with testing diamond. 

Diamond powder is sintered to form PCD under pressure and temperature 

conditions where diamond is the thermodynamically stable phase of carbon.  These 

pressure and temperature ranges are approximately 50 kbar and above, and 1500°C to 

2000°C, respectively [8].  The diamond is typically sintered onto a cemented tungsten 

carbide substrate containing a cobalt binder.  This substrate provides support for the 

diamond layer and a means for attaching it to a given tool.  Also, under high pressure and 

high temperature conditions, the cobalt binder alloy from the substrate melts and 

infiltrates the diamond powder, and facilitates diamond-to-diamond growth by enhancing 

the bonding kinetics between grains [9].  This sintering process produces a coherent 

diamond structure with residual cobalt metal left in the pore spaces between diamond 

grains.  Figure 1.1 shows a polycrystalline diamond compact (a) with a sintered diamond 

layer (b) that is bonded to a cemented tungsten carbide substrate (c).  Figure 1.1b 

illustrates the bonding that occurs between diamond grains (dark areas), and shows 

residual cobalt left in the structure (light areas). 

The ability of engineers to model and predict the behavior of PCD without going 

to the expense of building and testing many samples is limited.  Testing diamond samples 

is a challenge for several reasons.  First, creating the high temperature and high pressure 

environment necessary for diamond formation requires manufacturing equipment that is 

costly to obtain and operate.  Second, because diamond is the hardest known material, 
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specialized fixtures are often required for mechanical testing.  A third obstacle in working 

with diamond is the difficulty one has in forming it into standard test sizes and 

geometries.  Finally, the repeatability of tensile strength measurements is difficult to 

achieve.  These challenges can make the gathering of material property data for PCD 

more difficult compared to other engineering ceramics. 

 

 

Figure 1.1:  A polycrystalline diamond compact (a) with PCD layer (b) sintered onto 

cemented WC/Co substrate (c) 

 

Despite these challenges, several authors have successfully measured the 

mechanical material properties of PCD such as Young’s modulus, fracture toughness, 

compressive strength, tensile strength, and transverse rupture strength.  Gigl [10] was the 

first to measure the transverse rupture strength of PCD.  He machined thin, rectangular 

diamond slabs from PCD discs and subjected them to a three-point bending test.  In 

another work, Lammer [2] measured the effects of grain size and cobalt content on 

several mechanical properties of PCD, including transverse rupture strength and fracture 
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toughness.  He tested transverse rupture strength by conducting three-point bending tests 

on PCD discs that were cut from sintered compacts and sintered as stand-alone discs.  He 

built a statistical model of transverse rupture strength as a function of cobalt content and 

grain size, and concluded that transverse rupture strength is inversely related to grain size 

and directly related to cobalt content.  Huang et al. [11] also measured the fracture 

toughness and transverse rupture strength of PCD.  He found that the fracture toughness 

increases with increasing grain size, and that transverse rupture strength decreases with 

increasing grain size.    

 Others have conducted extensive tests to understand the mechanisms behind 

thermal degradation of PCD.  Miess and Rai [3] studied the effects of grain size and 

residual cobalt content on the thermal-resistance of diamond layers after removing them 

from the substrate.  They subjected diamond discs made with 5 μm, 10 μm and 30 μm 

grain sizes to temperatures between 600 and 800°C in different gas environments.  They 

observed that thermal damage begins to appear around 600°C in air as evidenced by 

intergranular microcracking.  This was believed to be caused by rapid graphitization of 

the diamond grains, and also by residual stresses within the material that exist due to the 

different thermal expansion rates of diamond and cobalt.  They investigated these stresses 

using Raman spectroscopy, which revealed that the 5 μm samples had a compressive 

stress approximately four times higher than the coarse grain samples.  They concluded 

that increasing amounts of the cobalt phase in PCD layers reduces thermal-resistance. 

These studies show two important things; first, the transverse rupture strength and 

thermal-resistance of PCD are related to the amount of cobalt in the material, and second, 

thermal-resistance is inversely proportional to the cobalt content while transverse rupture 
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strength is directly proportional to the cobalt content.  This implied tradeoff between the 

objectives is what we seek to characterize. 

However, in order to make this characterization we need to understand how to 

control the amount of residual cobalt in the diamond.  Unlike cemented tungsten carbide, 

the cobalt content of PCD is not an independent variable that the designer specifies up-

front.  As Lammer points out, the cobalt is introduced by infiltration and not by 

admixing, and therefore it cannot be systematically changed for a given grain size [2].  

We would like to mention here that the latter comment may be true when all other 

material and process variables are fixed.  However, there are other design variables 

involved in the process that may allow a designer to alter cobalt content for a given grain 

size, and we will discuss those in the next chapter. 

We would like to point out that although thermal-resistance is an important 

concept for PCD that is related to the cobalt content, it is difficult to quantify in a 

generally meaningful way.  Unlike tensile strength, there is no standard measure for this 

property.  For clarity, the term “thermal-resistance” as used in this paper refers to the 

ability of the material to resist thermal degradation, and is not in any way related to the 

term commonly used in heat transfer.  Mehan and Hibbs [12] correlated thermal damage 

in PCD to the number of acoustic events emitted from PCD compacts that were rapidly 

heated to elevated temperatures.  They validated this correlation by measuring the wear 

rates of the heated compacts in rock cutting tests.  They report that an incubation period 

exists before the onset of thermal damage, and report that the onset of damage occurs 

sooner in fine grain PCD than in coarse grain PCD.  They propose that an Arrhenius 

relation in terms of time and temperature can explain thermal damage in some PCD 
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compacts.  However, they do not draw any correlation between thermal damage and 

cobalt content.  Therefore, because quantifying thermal-resistance is open to question at 

this time, we have chosen to use the residual cobalt content as the substitute objective for 

thermal-resistance, recognizing it has a general inverse relationship to thermal-resistance.  

We leave the development of an explicit relationship between thermal-resistance and 

cobalt content for future work. 

Finally, the number of PCD manufacturers has grown substantially in recent 

years, especially in countries where labor costs are low.  This increase in the number of 

PCD suppliers has caused an increase in cost-sensitivity by PCD consumers.  As a result, 

manufacturers must become more aware of the costs they incur when developing new 

materials.  Therefore, an understanding of how manufacturing cost is influenced by 

improving transverse rupture strength and thermal stability is important. 

The goals of this thesis are (1) to provide designers of PCD with a useful 

characterization of the tradeoff between the competing material property objectives of 

thermal stability (i.e. cobalt content) and transverse rupture strength, and (2) to examine 

the influence of this tradeoff on the manufacturing costs associated with improving these 

objectives.  The next section outlines the research approach that was used to accomplish 

these goals. 

1.3 Research Approach 

In order to accomplish the goals set forth in the previous section, the following 

research approach was used: 
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(1) Empirical models were developed between the design variables of 

sintering pressure and grain size, and the material properties of residual cobalt 

content and transverse rupture strength in PCD. 

(2) The tradeoff between the cobalt content and transverse rupture strength 

was characterized using the normal constraint method. 

(3) The tradeoff between manufacturing cost and residual cobalt content was 

characterized using the normal constraint method. 

(4) The tradeoff characterizations were used to select the optimal PCD 

designs. 

(5) Wear rate models of PCD were developed for two different rock cutting 

tests using the same design variables from (1) and (2), and 

(6) The optimal PCD designs were evaluated in terms of the wear rate models 

developed in (5). 

In order to accomplish (1)-(3), we followed the iterative 3-step process illustrated 

in Figure 1.2.  This process shows how the Pareto frontiers can be generated from 

empirically based objectives.  Step 3 in the process involves evaluating the adequacy of 

the Pareto frontier.  Part of the thesis was to establish a method for making this 

evaluation meaningful. 

The balance of this thesis is presented as follows.  Chapter 2 presents the 

development of the Pareto frontiers using the method of Figure 1.2, outlining in detail the 

experimental process, the test methods and measurements, and the development and 

refinement of the empirical models used to make the tradeoff characterizations.  In 

Chapter 3, we use the tradeoffs developed in Chapter 2 for selecting the optimal PCD 
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designs, paying special attention to the influence of the manufacturing cost.  We also 

show the development of the wear rate models and compare the best wear rate designs to 

the Pareto frontier models in order to validate our assumption that characterizing these 

tradeoffs can help engineers design better wear tools.  Finally, Chapter 4 provides 

conclusions and future work. 

 

 
 

Figure 1.2:  Three-step approach for developing the Pareto frontier model 
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2 Development of Pareto Frontier Models 

 

In this chapter, the tradeoff characterization of transverse rupture strength, cobalt 

content, and manufacturing cost is presented using empirical models for the first two 

objectives.  Because the empirical models that were used to generate the Pareto frontier 

were approximated over a wide variable range and contain experimental error, this 

introduced uncertainty in the Pareto frontier.  One way to decrease this uncertainty would 

be to build a second empirical model over a smaller range of the variables, in the areas of 

interest.  However, this was not possible due to the high experimental cost, and may not 

have provided a better approximation given the small the signal-to-noise ratio in the 

transverse rupture strength.  Therefore, a method was needed for describing the 

uncertainty in the Pareto frontier.  This chapter describes such a method. 

This chapter begins by describing the experimental program that was used to 

develop the empirical models for transverse rupture strength and cobalt content.  This 

includes establishing the important design variables for PCD, the design variable range, 

and the test sample preparation.  The test methods and measurements are described, and 

the empirical models for cobalt content and transverse rupture strength are presented in 

terms of sintering pressure and grain size.  Then the manufacturing cost objective and the 

design variables that influence it are discussed.  This brings us through Step 2 of the 

process illustrated in Figure 1.2. 
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Last, the development of the Pareto frontier is presented using the normal 

constraint method, and a process for characterizing the uncertainty in a Pareto frontier 

generated from empirically-based objectives is illustrated. 

Throughout the remainder of this thesis we will refer to the objectives of cobalt 

content, transverse rupture strength, and manufacturing cost as μ1, μ2, and μ3 respectively. 

2.1 Experimental Program 

Response Surface Methodology is a useful experimental approach for exploring 

the relationship between a group of design variables and one or more response variables.  

This method was first introduced by Box and Wilson in 1951 [13] and has found wide 

application in the design, development and optimization of new and existing processes 

and products [14].  This approach is also useful when experiments are costly because it 

requires a relatively small number of experiments in order to generate an empirical 

relationship between the design variables and the response.  We now discuss the 

application of this method to the development of empirical models for μ1 and μ2. 

The first step in Response Surface Methodology is to determine the important 

design variables that have an effect on the response.  From the literature, the initial 

diamond grain size is under the engineer’s control and has a significant effect on 

transverse rupture strength and cobalt content [2-3,10-11].  Other variables known to 

have an important effect on diamond sintering are the process variables of pressure, time 

and temperature [15].  For this study, we chose to include sintering pressure (x1) and 

diamond grain size (x2) as the factors of interest and maintained a constant press time and 

temperature.  The main reasons behind this are related to the constraints imposed on time 
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and temperature from a business perspective (i.e. extremely long sintering times limit 

capacity, and high temperatures have a negative effect on tool life). 

The second step is to select a model that will best describe the relationship 

between the design variables and the response.  This is difficult to do when we do not 

know what the relationship looks like between the objectives and the design variables.  

The best we can do is to try to draw some reasonable conclusions about the form of the 

relationships from the work of others who have studied one design variable at a time 

[2,11,16].  Based on previous work, the relationship between transverse rupture strength 

and grain size is likely linear [11], but may be approximated by a second-order 

polynomial [2].  Other work indicates that the relationship between cobalt content and 

grain size is best approximated by a second-order polynomial, and that cobalt content and 

pressure are linearly related [16].  With this information, we chose the second-order 

polynomial model proposed by Box and Wilson [13].  This model is widely used in 

industrial applications because it can be adapted to situations where the relationship 

between the response and the design variables is both linear and quadratic.  It can also 

model any interaction between the design variables that might exist.  The general 

mathematical representation of this model for two factors is 

        0  1x1  2x2  3x1
2  4x2

2  5x1x2                 (2.1). 

The  coefficients are estimated from the experimental data using least squares 

regression. 

For the experiment design, we chose a central composite design with two factors 

[17] .  This design is advantageous because it requires only nine experimental runs in 

order to estimate the coefficients.  The first four runs test all combinations of the high and 
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low values of the design variables.  The fifth run is called the “center point” because it 

tests the middle values of each design variable.  The last four runs are called “star points” 

and are denoted by .  These runs allow for the estimation of curvature within each factor 

and more fully cover the experimental region. 

The third step is to determine the experimental values of the design variables.  

The lower limit of pressure is fixed by the intersection of the diamond-graphite transition 

line, shown in Figure 2.1, with the melting point of the cobalt alloy (~1400°C), illustrated 

by the left edge of the red triangle in Figure 2.1.  This intersection gives a lower pressure 

limit of approximately 55 kbar [18].  The upper limit is constrained by the safe operating 

range of the press.  Grain sizes were selected based on the common extremes of 12 μm 

and 70 μm.  With the extreme levels fixed for each variable, the center value was taken as 

the midpoint between the extremes, and the low/high values were calculated in relation to 

the coded values.   The design variable levels are listed in Table 2.1. 

 

 

Figure 2.1:  Pressure-Temperature phase diagram for carbon 
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Table 2.1:  Design variable values in coded (parenthesis) and uncoded form 

Design Variable 

Low  

(-√2) 

Low 

(-1) 

Center 

(0) 

High 

(1) 

High  

(√2) 

Pressure (kbar) 55 58.2 66 73.8 77 

Grain Size (μm) 12 20 40 60 70 

 

 

The last step is to generate the experimental run table and build the samples 

accordingly.  The experimental runs are illustrated in the design variable space shown in 

Figure 2.2.  All PCD samples were sintered on WC/Co substrates using a cubic press 

apparatus, finished to a diameter of 15.875 mm (± 0.025 mm) and then subsequently 

removed from the substrate by wire EDM.  The PCD samples were then lapped to a 

thickness of 1.016 mm (± 0.025 mm) using 300 mesh diamond grit. 

 

 

Figure 2.2:  Experimental runs shown in the design variable space 
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2.2 Test Methods and Measurements 

 After finishing the samples to the specified geometry, we took measurements of 

the thickness, mass and cobalt content of each sample.  The cobalt content was calculated 

by measuring the magnetic moment-to-weight ratio of a PCD sample, calculating the 

weight-specific saturation magnetization of that sample, and then using the magnetic 

material constant for Co-WC alloy to find the weight-percent of the cobalt in each 

sample.  These measurements are summarized in Table 2.2. 

 

Table 2.2:  Summary statistics for experimental runs A – I (10 samples each) 

 

Measurement A B C D E F G H I 

Mean Disc 

Thickness (mm) 
1.035 1.027 1.029 1.032 1.035 1.017 1.037 1.039 1.035 

Standard 

Deviation (mm) 
0.007 0.007 0.009 0.012 0.010 0.014 0.008 0.005 0.011 

Mean Disc 

Mass (g) 
0.793 0.768 0.817 0.788 0.785 0.793 0.782 0.821 0.776 

Standard 

Deviation (g) 
0.005 0.007 0.006 0.009 0.007 0.013 0.005 0.003 0.006 

Mean Cobalt 

Content 

(Wt.%) 

6.595 4.926 8.019 5.873 5.723 7.359 5.283 7.802 5.299 

Standard 

Deviation 

(Wt.%) 

0.087 0.052 0.158 0.098 0.277 0.126 0.089 0.123 0.058 

 

 

Once the measurements were obtained, each PCD sample was subjected to a 

transverse rupture strength test.  Figure 2.3 shows a simple schematic of the test. While 

supported with an aluminum barrel at the diameter on one face, the opposite face of the 

disc was pressurized by hydraulic fluid until failure.  The pressure at failure was recorded 
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and the rupture stress (R) calculated using the relation [19]       

     R 
3Pr2(3)

8t 2
.          (2.2) 

A summary of the transverse rupture strength measurements is given in Table 2.3.    

The mean values are within the range of previous measurements [2,10,11], and the 

standard deviation in designs E – I is within the range reported by Lammer [2].  The 

standard deviation in the measurements for designs A – D is significantly lower 

compared to the other designs.  An inspection of the samples and the testing system did 

not reveal any cause for this inconsistency, and therefore was assumed to be coincidental. 

 

Figure 2.3:  Transverse rupture strength test setup 

 

 

Table 2.3:  Summary of transverse rupture strength measurements 

Measurement A B C D E F G H I 

Mean R 

(MPa) 
1043 862 1435 1349 838 1169 980 1184 592 

Standard 

Deviation 

(MPa) 

64.83 42.42 55.67 85.63 221.6 246.6 154.3 261.5 178.2 
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2.3 Response Surface Model for Cobalt Content 

The coefficients in equation (2.1) are estimated from the data using least squares 

regression.  Analysis of the cobalt content data gives the relationship 

                       1  5.723 .844x1  .739x2  .278x1
2  .3934 x2

2  .119x1x2          (2.3) 

where μ1 is in percent-by-weight and the variables x1 and x2 are in coded form.  Figure 

2.4 shows a graphical representation of this model.  Recall from the previous discussion 

that thermal-resistance is inversely related to cobalt content, therefore lower values of 

cobalt are more desirable for this objective. 

 

 

Figure 2.4:  Cobalt content response surface model plotted against the experimental data 

 

A few important observations can be made from this model.  First, the cobalt 

content is consistent with the trends in the literature for grain size (i.e. cobalt content 
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increases with decreasing grain size [2-3]).  Second, it was previously reported that cobalt 

content cannot be changed systematically for a given diamond grain size [2].  However, 

we can clearly see that the cobalt content for a fixed grain size can be changed by 

adjusting the pressure.  This is important because it gives the designer another degree of 

freedom for controlling the cobalt content objective.  

2.4 Response Surface Model for Transverse Rupture Strength 

The regression analysis of the transverse rupture strength data gives the 

relationship 

                      2  838.7  66.78x1  214.4x2 166.0x1
2  72.484 x2

2  23.92x1x2        (2.4) 

where μ2 is in MPa and the variables x1 and x2 are in coded form.  Figure 2.5 illustrates 

the response surface for this model.  

 

 

Figure 2.5:  Transverse rupture strength response surface model 
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 The first thing we notice in Figure 2.5 is that the transverse rupture strength 

increases with decreasing grain size, which is consistent with the trend reported by 

Lammer [2].  We also notice a large amount of scatter in this data compared to the cobalt 

content data.  This type of scatter is expected when subjecting brittle materials to bending 

stresses because of their sensitivity to flaws in the samples. 

Next, notice that for a constant grain size the model predicts transverse rupture 

strength to be lowest at a pressure of 66 kbar.  This curvature trend in the model might be 

an artifact of the different variances among individual data sets, and will be validated by 

running additional experiments and comparing those results to the predictions of the 

model.  The results of these additional experiments are shown in the next section.  

Finding the correct empirical model between the design variables and the response is 

important because the Pareto frontier is generated using the empirical models.  An 

alternative model to the quadratic may be needed if there exists a large discrepancy 

between the Pareto frontier model and the actual Pareto frontier that we observe in the 

data.  This is why we have added the step in the Pareto frontier development process to 

check for acceptable error in the Pareto frontier model (see Figure 1.2). 

2.5 Manufacturing Cost Model 

In Chapter 1 we mentioned that the equipment for manufacturing PCD is costly to 

maintain.  This is largely due to the high replacement costs associated with the tungsten 

carbide anvils used in a typical high pressure, high temperature diamond press.  Because 

the anvils experience dozens of cycles per day, any increase in stress due to an increase in 

pressure and/or temperature will reduce the tungsten carbide fatigue life.  No general 

model was found in the literature that describes cost as a function of the design variables.  
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However, for this paper we obtained a model from an experienced manufacturer of PCD 

that shows the percent increase in manufacturing cost as a function of pressure.  The 

model is given as 

    3  .04058e
1.0595x1  .00912             (2.5) 

where μ3 is the percent increase in cost and x1 is the pressure in coded units.  Note that μ3 

is equal to zero at the lowest possible sintering pressure (55 kbar, or -1.41 in coded units).  

This model assumes that diamond grain size has no affect on the increase in cost.   

To this point in the thesis we have completed the first two steps of the Pareto 

frontier development process outlined in Figure 1.2.  We determined the important design 

variables, and developed and executed the experimental program.  We then developed 

empirical models that describe cobalt content and transverse rupture strength as functions 

of sintering pressure and diamond grain size.  These models are useful because they show 

the designer how to manipulate the design variables to meet a desired value of the 

objective. 

Another potential use for these models relates to benchmarking products made by 

different manufacturers.  If the designer could measure cobalt content in a product 

manufactured at unknown conditions of pressure and grain size, he could use the 

response surface to find the most likely values of these design variables that would 

produce that particular product.  And if one of the design variables were known, by 

calculation or test or inspection, the other could be estimated from the empirical relation.  

This could potentially provide competitive benchmarking information to engineers and 

managers involved in new product development. 
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With empirical relationships established between the design variables of interest 

and the objectives, we can now proceed to Step 3 in the Pareto frontier development 

process.  Before doing so however, we will briefly review the development of the normal 

constraint method and its advantages in characterizing tradeoffs between competing 

objectives. 

2.6 The Normal Constraint Method 

The normal constraint method was developed by Messac and Mattson [20] and is 

an effective way to find the Pareto frontier between any number of competing objectives.  

The method is especially useful when large differences in scale exist between design 

objectives because it can be normalized to provide an even distribution of Pareto 

solutions [18].  This set of solutions is guaranteed not to over represent or under represent 

any single area of the Pareto frontier, which ensures that the designer does not miss out 

on potentially optimal designs [17]. 

In this section we present the normal constraint method for the bi-objective case, 

where both objectives are to be minimized, and refer the reader to Messac and Mattson 

[5] for the development of the general n-dimensional case.  Note that a maximization 

problem can be turned into a minimization problem by changing the sign of the objective.  

A graphical representation of this method is shown in Figure 2.6. 
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Figure 2.6:  Graphical representation of the normal constraint method for bi-objective 

problems [17] 

 

 

The process [21] of generating the Pareto frontier is as follows. 

Step 1 – Obtain Anchor Points: Obtain the ith anchor point μ1* and μ2*, by   

       

 i*  min
x

i

s.t.

g(x)  0

h(x)  0

xL  x  xU

 

Step 2 – Define utopia line vector: In this case, the utopia line vector is 

      1*  2*             (2.6) 

Step 3 – Compute increments: Compute an increment δ along the vector 


  

 for a prescribed number of solutions, m, along the vector as 
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      
1

m 1
            (2.7) 

Step 4 – Generate utopia line points: Evaluate the kth point on the utopia   

 line as 

     *kkp              (2.8) 

where the non-dimensional parameter k  satisfies the conditions 

      10  k          (2.9) 

and 

        k  1
k1

m

                   (2.10) 

By varying k from 0 to 1 with a fixed increment of δ, a distribution of   

 points on the utopia line can be generated. 

Step 5 – Generate Pareto points: Solve Problem 1 for a set of Pareto   

 solutions for each point kp generated in Step 4.  Do this for the prescribed   

 number of solutions m. 

Problem 1: Normal constraint bi-objective optimization problem for point kp  

       )(min 2 x
x
        (2.11) 

subject to        0)( xg        (2.12) 

         0)( xh        (2.13) 

        ul xxx               (2.14) 

where g(x) includes the inequality constraint          

        (  pk )  0       (2.15) 



25 

The normal constraint method can be implemented with any optimization 

software package.  Equations (2.6) through (2.15) were used to generate the Pareto 

frontier by utilizing the fmincon algorithm provided in the Matlab
®
 optimization toolbox. 

Next, the tradeoff model development between μ1 and μ2, and between μ1 and μ3 is 

presented. 

2.7 Characterizing the Tradeoff Between 1 and 2 

2.7.1 Iteration 1 

Using equations (2.3) and (2.4) in the normal constraint method, we obtain the 

initial Pareto frontier model shown in Figure 2.7.  The Pareto frontier represents the 

tradeoff between μ1 and μ2, and shows that μ2 increases as μ1 increases.  This trend is what 

we expected to see since our goal is to minimize μ1 and maximize μ2.  What we did not 

expect to see, however, is the existence of two distinct segments of the Pareto frontier.  In 

general, Segment 1 contains low values of μ1 at the expense of μ2, and Segment 2 

contains high values of μ2 at the expense of μ1.  The gap between each segment is a non-

convex region where no Pareto optimal solutions exist.  This means that any design in-

between these two segments is dominated by a design on Segment 1. 

This brings us to the last part of Step 3 in the tradeoff development process, which 

is to check the adequacy of the Pareto frontier model.  In order to check this, we must 

determine how far away from the model we can reasonably expect a true Pareto optimal 

design to exist.  Since the Pareto frontier is generated using empirical relations that are 

subject to error due to variation in the experimental data, the Pareto frontier itself is also 
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subject to the same error.  We can quantify this error by including confidence intervals on 

every design point that is generated by solving Problem 1 in Section 2.6 for each point pk. 

 

 

Figure 2.7:  The Pareto frontier for μ1 and μ2, generated using equations (2.3) and (2.4) 

 

 For ease of illustration, we draw a region around the Pareto frontier based 

on the 95% confidence intervals for the mean as shown in Figure 2.8. An “adequate” 

Pareto frontier should capture the Pareto optimal designs from the experimental data 

within this region.  The range of a confidence interval on a mean depends on the values 

of the design variables, and performing the calculations by hand can be quite rigorous 

[14].  We used a commercially available statistical analysis software package [22] to 

perform the calculation of all confidence intervals and to find the regression coefficients 

for the response surface equations. 
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Figure 2.8:  The Pareto frontier with a “confidence region” drawn around the 95% 

confidence limits on the mean for each segment 

 

Figure 2.9 shows the cobalt content and transverse rupture strength data from 

Tables 2.2 and 2.3 plotted against the Pareto frontier model.  According to the model, 

designs B and D can be considered Pareto optimal because they fall within the confidence 

region of the Pareto frontier.  However, when compared to the experimental data, the 

Pareto optimal designs include B, C, D, and G.  These are Pareto optimal because they 

dominate at least one of the other five experimental designs.   

The Pareto frontier model only represents two out of four possible Pareto optimal 

designs.  We consider this an inadequate representation of the data.  Also, the gap in the 

model is questionable because we find no scientific basis for such a deficiency of Pareto 

optimal solutions in the range 6.60% ≤ μ1 ≤ 9.00%.  This conclusion induces an iteration 

and leads us back to Step 2 in our tradeoff model development process. 
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Figure 2.9:  A comparison of the first Pareto frontier model to the experimental data 

 

2.7.2 Iteration 2 

In this section we develop a second approximation of the tradeoff relationship 

between μ1 and μ2 by altering equation (2.4).  Although the general trend of the first 

Pareto frontier model is what we expected to see, we believe that the model is not a good 

approximation of the true Pareto frontier because (1) the model predicts that no Pareto 

optimal solutions exist between the range 6.60% ≤ μ1 ≤ 9.00%, for which we find no 

scientific basis, and (2) the model only captures two out of the four non-dominated data 

points within the confidence region, which is not an acceptable fit to the data. 

In order to more fully establish confidence in the adequacy of a second Pareto 

frontier model, we needed to collect more data.  However, since the first nine 

experiments were quite costly (~$33,000 US), we could only run four more designs in 

two regions of interest.  Since we suspect that the empirical model for transverse rupture 
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strength underestimates the response at pressures of 66 kbar, we chose to run two 

additional experiments at 66 kbar.  These are designs J and K shown in Figure 2.10.  The 

other two designs, L and M, were run at 77 kbar using the same diamond grain sizes as J 

and K and are also shown in Figure 2.10.  According to the first Pareto frontier model, 

designs L and M correspond to Pareto optimal designs along Segment 1 of the tradeoff 

curve.  The four additional designs are summarized in Table 2.4 along with the 

experimental values obtained for μ1 and μ2. 

 

 

Figure 2.10:  Contour plot of transverse rupture strength showing the pressure and grain 

size values of experiments J - M 

Table 2.4:  Summary of the additional experimental runs, J-M 

 J K L M 

Pressure (kbar) 66 66 77 77 

Grain Size (μm) 20 30 20 30 

Mean Cobalt 

Content (Wt.%) 
6.971 6.740 5.747 5.425 

Stan. Dev. (Wt.%) 0.091 0.162 0.130 0.079 

Mean R (MPa) 1375 1357 1204 1114 

Stan. Dev. (MPa) 214.1 193.5 214.4 197.4 
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With this additional data, we were able to examine the accuracy of equation 2.4 in 

predicting values of μ2.  Figure 2.11 is a plot of the average values for transverse rupture 

strength for designs C, J, and D compared to the average values predicted by equation 2.4 

(Quadratic Model) with 95% confidence intervals.  From this graph we notice that (1) the 

trend in the average values is fairly linear and not quadratic as equation 2.4 predicts, and 

(2) the predictions for designs C and D are close to falling within the confidence 

intervals, but the prediction for design J is significantly under-estimated. 

The second Pareto frontier model was developed by eliminating the statistically 

insignificant terms from the response surface model of equation (2.4) – the x1x2 and x2
2
 

terms – and then eliminating the x1
2
 term.  The judgment for statistical significance is 

based on the p-value for each  term in the regression model.  We chose to drop the x1x2 

and x2
2
 terms because they have higher p-values compared to the rest of the  coefficients 

as shown in Table 2.5.  The p-value represents the probability that the  coefficient is 

zero.  Since the chances are high that the  coefficients are zero for these, we will remove 

them from the model.  The basis for eliminating the third term is that the scatter in the 

data is causing the regression estimate of curvature to be inflated as illustrated by Figure 

2.11. 
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Figure 2.11:  Average values compared to quadratic model predictions of μ2 for designs 

C, D and J 

 

Table 2.5:  Output data from Statistica used to obtain equation (2.4) 

Factor Effect 
Std.Err. 
Pure Err p 

-95% 
Cnf.Limt 

+95% 
Cnf.Limt 

Coeff. Std.Err. 
Coeff. 

Mean/Interc. 838.7 52.75 0.000000 733.7 943.7 838.7 52.75 

x1 -133.6 37.30 0.000582 -207.8 -59.35 -66.78 18.65 

x1
2
 332.0 61.85 0.000001 208.9 455.0 166.0 30.93 

x2 -428.8 37.30 0.000000 -503.0 -354.6 -214.4 18.65 

x2
2
 144.9 61.85 0.021557 21.88 268.0 72.45 30.93 

x1x2 -47.8 52.75 0.367214 -152.8 57.12 -23.9 26.38 

 

Removing these terms and re-analyzing the data gives a linear model for μ2, 

where 

   2 1050.7 66.78x1  214.4x22 .           (2.16) 

This model shows that μ2 decreases with increasing pressure and grain size.  Figure 2.12 

compares the average values of μ2 for designs C, D and J with their predictions from 

equation (2.4) and equation (2.16), which are listed as the quadratic model and linear 

model, respectively.  Although the new linear model still under-predicts the actual 
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average values, the discrepancy between the prediction for design J and the actual value 

is much smaller.  The reason that both models under-predict the actual values, as shown 

in Figure 2.11 and 2.12, is because of the significant difference in variance discussed in 

Section 2.2. 

 

 

Figure 2.12:  Average values of μ2 for designs C, D and J compared to the linear and 

quadratic model predictions 

 

The response surface models of equations (2.4) and (2.16) are shown in Figure 

2.13 for comparison.  We expect equation (2.16) to better approximate the relationship 

between μ2 and the design variables, and should therefore lead to a more adequate Pareto 

frontier model. 
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Figure 2.13:  Comparison of the quadratic (a) and linear (b) response surface models for 

μ2 

 

Using the normal constraint method with equations (2.3) and (2.16), we obtain the 

new Pareto frontier approximation shown in Figure 2.14.  Unlike the first approximation, 

the new Pareto frontier is one continuous segment. 

Figure 2.15 illustrates the new Pareto frontier in comparison to all of the 

experimental data with a 95% confidence region.  It is interesting to see that all four of 

the additional experimental runs are Pareto optimal compared to the rest of the data.  

Seven of the eight non-dominated designs fall within the confidence region of this new 

model. 

 



34 

 
Figure 2.14.  Comparison of the first and second Pareto frontier approximations 

 

 

 
Figure 2.15:  The second and final Pareto frontier model with the 95% confidence region 

 



35 

As a check, the first Pareto frontier model is reproduced in Figure 2.16 with the 

additional data.  Once again, only two of the four new designs fall within its confidence 

region, as shown in Figure 2.16.  Although the second Pareto frontier approximation does 

not completely encompass all of the non-dominated designs, it provides a better 

approximation than the first, as measured by the number of designs that fall within its 

confidence region. 

 

 

 
Figure 2.16:  The first Pareto frontier model plotted against all 13 experimental runs 

 

 

Finally, from a design standpoint, we would like to know what combinations of 

design variables produce the best designs.  Figure 2.17 illustrates the new Pareto frontier 

model mapped to the design variable space.  The greatest area of interest appears to be 
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the range of pressures between 70 and 77 kbar, and grain sizes between 12 μm and 55 

μm. 

 

 
Figure 2.17:  The second Pareto frontier mapped to the design variable space 

 

In summary, the normal constraint method was used to characterize the tradeoff 

relationship between cobalt content (μ1) and transverse rupture strength (μ2) of 

polycrystalline diamond.  The first approximation is a tradeoff curve that tends to 

overestimate the values of μ2 for the Pareto-optimal experimental data, and only captures 

four of the eight optimal designs within its confidence region.  The second approximation 

is a tradeoff curve that tends to slightly underestimate the values of μ2, but captures seven 

of the eight non-dominated designs in the confidence region of the Pareto frontier.  For 

this reason, the second Pareto frontier model was deemed adequate. 
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2.8 Characterizing the Tradeoff Between 1 and 3 

The emergence in recent years of a significant number of new PCD 

manufacturers, mostly in countries where labor costs are low, has heightened cost-

sensitivity among PCD consumers.  This increase in competition is requiring engineers 

and business managers to become more aware of the costs that they incur for improving 

the performance of their materials.  Therefore, understanding the influence of 

manufacturing cost on the first tradeoff model developed in this study is important to its 

practical implementation.  For this reason, we are interested in characterizing the tradeoff 

between cobalt content and manufacturing cost.   

The characterization of the tradeoff between μ1 and μ3 is also accomplished using 

the normal constraint method, and is shown in Figure 2.18.  The percent increase in 

manufacturing cost rises sharply as the value of μ1 drops below 5.00%. 

  

 

Figure 2.18:  The Pareto frontier between μ1 and μ3 
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By plotting the experimental data on the same graph as the Pareto frontier in 

Figure 2.19, we can make several important observations.  First, since manufacturing cost 

is only related to the sintering pressure, from equation (2.5), the experimental data falls 

on five distinct horizontal lines that directly correlate to the pressure at which they were 

processed.  Second, the designer can reduce the amount of cobalt in the PCD for a given 

pressure by increasing the diamond grain size.  This is one way that a manufacturer can 

potentially improve thermal stability without incurring additional cost.  Third, because of 

the exponential nature of the cost model, an increase in pressure at the low end adds 

much less to the cost than the same incremental pressure increase at the high end.  For 

instance, increasing pressure from 55 kbar to 66 kbar only increases the cost by 3.2%.  

However, increasing the pressure from 55 kbar to 77 kbar increases the cost by 17.2%.  

Now notice that there is very little difference in the cobalt content between designs D, E, 

and L, but there is a significant difference in cost.  The same is true of designs G and I.  

The only way to decide which designs are optimal is to include the second objective – 

transverse rupture strength.  We will discuss this in Chapter 3. 
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Figure 2.19:  The Pareto frontier between μ1 and μ3 plotted against the experimental data 
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3 Design Evaluation and Selection Using Pareto Frontier Models 

 

To this point in the thesis, we have used multi-objective optimization methods to 

characterize the tradeoff between the competing objectives of cobalt content, transverse 

rupture strength, and cost of PCD.  We have also briefly discussed how these tradeoff 

curves can be used to make design decisions.  In this section, we illustrate the usefulness 

of the tradeoff curves in selecting the optimal PCD designs.  We then validate the optimal 

designs by evaluating their performance in rock cutting tests. 

3.1  Selection of the Optimal PCD Design 

In the last chapter we observed that seven of the eight Pareto optimal designs 

from the first tradeoff model were all pressed at 66 kbar and above.  The second tradeoff 

model showed that developing designs at 66 kbar and above will incur the largest cost 

increase.  What we lacked in that discussion was a visual representation of how the 

transverse rupture strength influences manufacturing cost. 

We did not develop a tradeoff model between μ2 and μ3 because when using 

equations (2.4) and (2.5) in the normal constraint method, the best design for μ2 is also 

the best design for μ3.  This means that no tradeoff exists between these objectives, and it 

makes sense because lower sintering pressures (i.e. lower costs) produce higher values of 

transverse rupture strength for a given diamond grain size. 
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Even with this lack of a tradeoff, it is still helpful to plot the values of μ1, μ2, and 

μ3 of the experimental data all on one plot as shown in Figure 3.1.  The plot in Figure 

3.1b is the same data as in 3.1a, only shown at a slightly different perspective in order to 

provide more clarity.  The designs located in the shaded volume are all Pareto optimal 

designs in the μ1 - μ2 plane.  The three designs grouped at the very top part of the shaded 

region in Figure 3.1b happen to be the most expensive designs to manufacture because 

they are all pressed at 77 kbar.  The two designs just below this group also fall along the 

μ1 - μ2 Pareto frontier and are the second most costly Pareto designs.  These designs are 

likely to be the best compromise considering all three objectives. 

 

 

Figure 3.1:  Three-dimensional plots of μ1, μ2 and μ3 

 

Imagine that all of the red dots from Figure 3.1 are translated straight down onto 

the μ1 - μ2 plane.  This is what Figure 3.2 represents.  Eight of the 13 experimental 

designs shown in the figure are Pareto optimal (we consider design D to be Pareto 

optimal because it is obviously a Pareto design in relation to the rest of the experimental 

data).  An infinite number of Pareto optimal designs are possible, but we will only focus 
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on designs that have been built and tested.  Notice the shaded ellipse surrounding five of 

the designs.  These designs are highlighted in red because they represent the best 

compromise in terms of both objectives.  To narrow things down even further, notice how 

there is not a significant difference in μ2 between designs D, J, and K.  The optimal 

design of these three is D.  Also, there is not a significant difference in μ1 between 

designs D and L, but there is a noticeable difference in μ2.  It seems that from this 

perspective, design D offers the best tradeoff between cobalt content and strength.  Now 

let us look at manufacturing cost. 

 

 

Figure 3.2:  The tradeoff characterization for μ1 and μ2 

  

The three designs highlighted by the blue circle in Figure 3.3 are designs G, L, 

and M.  The latter two are considered to be two of the five optimal designs.  However, 

these two designs are also the most costly to manufacture.  Since neither L nor M was 
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considered the optimal design in terms of μ1 or μ2, we will exclude them both from 

consideration at this point.  The two designs highlighted in the orange oval are the next 

most expensive designs.  The design with the arrow pointing to it is design D, which was 

found to be the optimal design in terms of the first two objectives.  The fact that D is not 

the most expensive design to manufacture also increases its desirability. 

 

 

Figure 3.3:  Three-dimensional plot of μ1, μ2 and μ3 showing the most “optimal” PCD 

design, D (indicated by the arrow) 

 

Now that we have decided that design D is the is the most desirable design in 

terms of all three objectives, we will evaluate this design against the others in cutting 

tests to validate this choice. 
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3.2   Evaluation of the Optimal PCD Design 

We have assumed that tensile strength and cobalt content (i.e. thermal-resistance) 

are important properties related to wear, and that characterizing the tradeoff between 

them will help lead to the design of more wear-resistant parts.  To check this assumption, 

the PCD designs A – I were subjected to rock cutting tests, specifically to see how the 

wear-resistance of designs D, J, K, L, and M compared with the rest of the designs. 

A common method for testing the wear rate of PCD in the drilling industry is to 

mount a PCD compact in a vertical turret lathe and machine a piece of granite.  A picture 

of the apparatus we used for the tests is shown in Figure 3.4.  The volume of rock 

removed per unit of diamond worn away is typically used as a measure of the wear and is 

referred to as the grinding ratio (G-ratio).  Rock cutting tests were conducted on PCD 

compact samples that were prepared at the same manufacturing conditions as groups A – 

I, only the diamond layers were left attached to the tungsten carbide substrate. 

Two tests were carried out using the cutting parameters listed in Table 3.1.  Test I 

was designed to emphasize actual drilling conditions of a PCD compact in service on a 

drill bit.  Test II was designed to put a significant thermal load on the diamond, which 

eventually caused the diamond to graphitize and stop cutting.  The linear distance 

traveled by the cutter before burning up was used as the measure in Test II and will be 

referred to as the distance-to-failure.  This test is a measure of the thermal resistance of 

the PCD. 
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Figure 3.4:  Vertical turret Lathe apparatus used for testing the wear rate of PCD 

 

 

Table 3.1:  Rock cutting parameters for Test I and Test II. 

Test 

Depth of 

Cut (mm) 

INFEED 

(mm/rev) RPM 

SURFACE 

SPEED (m/s) COOLANT 

I 0.254 6.35 101 Variable Yes 

II 1.270 1.524 Variable 21.3 No 

 

 

To analyze the results, a response surface was generated from the results of each 

rock cutting test in terms of the design variables.  Contour plots of these surfaces are 

illustrated in Figure 3.5 (Test I) and Figure 3.6 (Test II).  The shaded region in each of 
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these figures represents the Pareto frontier mapped to the design variable space, as shown 

previously in Figure 2.17.  

 

 

Figure 3.5:  Contour plot of the G-ratio for designs A – I (Test I), with Pareto frontier 

highlighted 

 

 

Figure 3.6:  Contour plot of distance-to-failure for designs A – I (Test II) 
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These rock cutting results show a correlation between the Pareto frontier and the 

wear-resistance of PCD.  Figure 3.5 shows that the maximum G-ratio occurs in the region 

where sintering pressure is high and where diamond grain size is small.  Figure 3.6 also 

shows that the maximum distance-to-failure occurs in this area.  This region corresponds 

to the portion of the Pareto frontier where transverse rupture strength is relatively high, 

and where cobalt content is low.  In other words, the designs with the best compromise 

between these material properties are also the designs that maximize the wear-resistance 

of the PCD.  Design D had the highest wear-resistance.  This correlation is important 

because it provides some validation for the Pareto frontier model. 

Another important implication of this correlation is that it provides support for the 

assumption made in the beginning that cobalt content is a good substitute measure for 

thermal-resistance.  With respect to rock cutting under the conditions described in Table 

3.1, the distance-to-failure is a meaningful representation of thermal-resistance because it 

measures the point at which the diamond graphitizes and becomes useless as a cutting 

tool.  Figure 3.6 clearly shows that an increase in sintering pressure is desirable for 

extending the distance-to-failure for a fixed grain size.  This result correlates very well 

with the response surface model in Figure 2.4, which shows that the cobalt content 

decreases as sintering pressure increases for a fixed grain size. 

With this validation from the rock cutting results, the Pareto frontier is useful to 

designers because it quantifies how much a designer must “give up” in strength in order 

to gain in thermal-resistance.  It also implies that further improvements to the wear-

resistance and thermal-resistance can be made by increasing pressure and decreasing 

grain size.  Having a reliable correlation between the wear-resistance of PCD and its 
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material properties gives the designer a way to gauge the relative cutting performance of 

a new design without necessarily going to the expense of running wear tests.  Also, the μ1 

- μ2 model in combination with the μ1 - μ3 model shows that the best performing designs  

come at a price.  This information can also be useful for engineers and managers in new 

product development, because they can see where existing products lie in relation to the 

Pareto frontier. 
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4 Conclusion 

 

4.1  Conclusions 

In this thesis, multi-objective optimization methods are brought to bear in 

characterizing the tradeoff relationship between cobalt content (i.e. thermal-resistance), 

transverse rupture strength, and manufacturing cost of polycrystalline diamond. 

In order to accomplish this, a process is developed that combines response surface 

methodology with the normal constraint method in an iterative fashion to generate Pareto 

frontiers between two empirically based objectives.  This method is summarized in the 

following three-step process: 

(1) Determine the objectives of interest and establish an experimental 

program to develop the empirical models for each objective. 

(2) Gather the data and build the models for each objective, or refine the 

models of interest. 

(3) Generate the Pareto frontier using the normal constraint method, establish 

a confidence region around the Pareto frontier, and check the adequacy of the 

Pareto frontier against a set of experimental data.  Repeat Steps 2 and 3 if needed. 

This method can be adapted to situations where the empirical models for an objective are 

well established or where they are not yet discovered.  The confidence region is 

established around the Pareto frontier by incorporating statistical confidence limits on the 



52 

Pareto solutions.  This is an essential part of this method because it allows the designer to 

gauge whether experimental designs are likely to be true Pareto designs or not, and 

therefore provides a way to measure the adequacy of a Pareto frontier model. 

 In the process of characterizing the Pareto frontier, empirical relationships are 

developed between the objectives of cobalt content and transverse rupture strength and 

the design variables of sintering pressure and initial diamond grain size.  The relationship 

for cobalt content shows that sintering pressure can be used to alter the cobalt content of 

PCD for a given grain size, and that as pressure is increase, the cobalt content decreases. 

 The Pareto frontier model for cobalt content and transverse rupture strength is 

non-linear.  As cobalt content drops below approximately 5%, the decrease in transverse 

rupture strength becomes more severe.  There is relatively little change in the transverse 

rupture strength of Pareto optimal designs once the cobalt content reaches approximately 

7.5%.  The best Pareto optimal designs occur at grain sizes of 20 μm and 30 μm, and at 

sintering pressures between 66 kbar and 77 kbar.  Of the experimental designs built and 

tested, the optimal design in terms of manufacturing cost as measured by wear tests 

occurs at 20 μm grain size and 73.8 kbar. 

 The Pareto frontier model for cobalt content and manufacturing cost shows that 

designers can minimize the cobalt content without incurring any cost by increasing the 

diamond grain size for a given pressure.  It also shows that improving the cobalt content 

objective other than by adjusting grain size requires an increase in the manufacturing 

cost. 

Also, the assumption that characterizing the tradeoff between cobalt content, 

transverse rupture strength, and manufacturing cost can help engineers design better wear 
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parts is validated by the wear results of rock cutting tests.  Response surface models of G-

ratio and the distance-to-failure of the cutting tests in terms of the design variables shows 

a strong correlation between the best designs for rock cutting and the best designs as 

indicated by the Pareto frontier models. 

Finally, this thesis provides design engineers, engineering managers, and business 

managers with a set of models that can be used to compare the relative performance of 

new PCD designs without going to the expense of building and testing samples.  And the 

models developed here provide a foundation for successful new product development in 

an increasingly competitive environment. 

4.2  Future Work 

Although this thesis establishes a solid foundation for understanding some of the 

important design tradeoffs in PCD, future work should include the following: 

(1) Characterization of the tradeoff between fracture toughness and transverse 

rupture strength [2,3,11]. 

(2) Efforts to further improve the adequacy and accuracy of the Pareto frontier 

model between cobalt content and transverse rupture strength.  These efforts 

should largely include reducing the variability in the transverse rupture strength 

measurements. 

(3) Developing a relationship that explicitly relates thermal stability to cobalt 

content and can be applied generally to the PCD industry. 

(4) Continuing to apply multi-objective optimization concepts to the models 

developed in this thesis; for example, constructing and implementing a smart filter 

for eliminating the designs of relatively insignificant tradeoff [23]. 
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(5) Evaluating the Pareto designs in terms of other industrial applications, 

such as wire-drawing, bearing surface applications, and cutting tools, to see if 

these models apply to more than rock cutting. 

These activities would greatly improve the application and understanding of the 

models and methods established in this thesis.    
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Appendix A Statistical Analysis 

 

 

This appendix provides the statistical details of the regression analysis that were 

used in evaluating the empirical models for cobalt content and transverse rupture stress in 

Chapter 2 and Chapter 3. 

All regression models have some error associated with them.  The error is the 

difference between the actual value of a measurement and the value predicted by the 

model.  In regression analysis, the errors in the model should be as small as possible and 

should represent the random noise in the system.  Therefore, the assumptions regarding 

the errors in any regression model [17] are, 

(1) The errors are normally distributed 

(2) The variance in the errors is constant 

(3) The errors are independent 

(4) The errors have a mean of zero (no bias). 

This appendix provides an analysis of the errors in each of the regression models 

developed in this thesis.  These models are equations (2.3), (2.4) and (2.16).  In the case 

of equations (2.4) and (2.16), the errors do not necessarily adhere to the assumptions 

listed above.  The reasons behind this are discussed in the last section of this appendix. 
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A.1  Normally Distributed Errors With a Zero Mean 

 This section shows how well the errors from the models developed in Chapter 2 

and Chapter 3 follow assumptions (1) and (4).  Figures A.1, A.2, and A.3 are normal 

probability plots.  These plots are indicative of how well the errors follow a normal 

distribution.  They also provide some indication about the variance in the errors, which is 

assumption (2).  Figures A.4, A.5, and A.6 are histogram plots of the errors.  These plots 

indicate how closely the mean of the errors is to zero.  They also provide a visual 

indication of how well the errors follow a normal distribution. 

 

 

Figure A.1:  The normal probability plot for the errors of equation (2.3) 
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Figure A.2:  The normal probability plot for the errors of equation (2.4) 

 

 

Figure A.3:  The normal probability plot for the errors of equation (2.16) 

 



60 

 

Figure A.4:  A histogram of the errors of equation (2.3) 

 

 

Figure A.5:  A histogram of the errors of equation (2.4) 
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Figure A.6:  A histogram of the errors of equation (2.16) showing a similar pattern to the 

errors of equation (2.4) 

 

A.2  Constant Variance and Independent Errors 

 This section provides the analysis for assumption (2) and (3).  Regression analysis 

assumes that the variance in the errors is constant regardless of the magnitude of the 

experimental measurement.  It also assumes that the error of each individual 

measurement is independent with respect to the order in which the measurement is taken.  

 The third assumption relates to the idea that we want the errors to represent the 

random noise in the system.  In order to test this assumption, the data is usually taken in a 

random order.  However, sometimes it is not possible to take measurements in a random 

order.  In the case of the transverse rupture strength test, we felt that running the samples 

in a random order could potentially risk the traceability of the data.  This is because the 

sample labels were not readable after they were shattered.  The cobalt content 
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measurements were also not taken in a random order.  However, the repeatability of the 

Koerzimat was evaluated after it had warmed up by taking measurements on a group of 

samples twice and observing the difference in the measured values.  The mean of each set 

of measurements was 5.283% and 5.294%, a difference of only 0.011%.  The standard 

deviations were also very similar with values of 0.088% and 0.086%.  This showed a 

high level of repeatability in the machine and provides confidence that no bias was 

introduced due to run order.  Unfortunately, we do not have the ability to check 

assumption (3) for the transverse rupture strength test. 

 Figures A.7, A.8, and A.9 are plots of the error compared to the predicted values 

for each model.  These plots indicate how the variance changes with the magnitude of the 

response.  Figure A.7 shows that the variance is constant for equation (2.3).  The variance 

for equations (2.4) and (2.16) is different between groups, as shown by Figures A.8 and 

A.9. 

 

 

Figure A.7:  A plot of the errors (vertical axis) vs. the values predicted by the model 

(horizontal axis) for equation (2.3) 



63 

 

Figure A.8:  A plot of the errors vs. the values predicted by the model for equation (2.4) 

 

 

Figure A.9:  A plot of the errors vs. the values predicted by the model for equation (2.16) 
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A.3  Discussion of Model Assumptions 

 The data in Sections A.1 and A.2 shows that the assumptions for the cobalt 

content model, equation (2.3), are satisfied.  This means that the errors in the model 

represent the random noise within the system, and therefore establishes confidence that 

the quadratic representation of the data is a reasonable approximation. 

 For the transverse rupture strength models, the scatter in the experimental data is 

large, varies between groups, and does not follow a normal distribution.  This is expected 

because tensile strength measurements in brittle materials are subject to a Weibull 

distribution [2], which is typically skewed to the left for time-to-failure data.  The main 

problem caused by non-normality in the errors is that equations (2.4) and (2.16) tend to 

under-predict the average value.  The data also shows signs of non-constant variance.  

The main problem this causes is that it tends to overestimate the curvature in the pressure 

term as discussed previously in Section 2.4.  Finally, the fact that the errors do not have a 

mean of zero is evidence that the data (1) follows a Weibull distribution that is skewed 

right (see Figure A.5 and A.6), and (2) that the model will under-predict the true mean 

value.  The bias in the model was reduced by simplifying the model of equation (2.4) 

down to the model of equation (2.16).  Overall, the best thing to do to improve the 

accuracy of equation (2.16) is to reduce the amount of variation in the measurements.  

 


