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ABSTRACT 
 
 
 

ONE-DIMENSIONAL RADIAL FLOW TURBOMACHINERY  
 

PERFORMANCE MODELING 
 
 
 

Robert J. Pelton 
 

Department of Mechanical Engineering 
 

Master of Science 
 
 
 
 The Two-Element In Series (TEIS) and Two-Zone models have been used 

successfully for over twenty years to model test data for radial flow compressors and 

pumps.  The models can also be used to predict the performance of new machines 

provided that the model inputs can be accurately specified.  Unfortunately, use of the 

TEIS and Two-Zone models as a predictive tool has been limited because an accurate and 

broadly applicable method of predicting the modeling parameters, ηa, ηb, χ and δ2p does 

not exist.  

 Empirical models have been developed to predict the TEIS and Two-Zone 

modeling parameters based on a large database of centrifugal pump and compressor test 

results.  These test data were provided by ConceptsNREC and have been collected over 

the past 40 years.  The database consists of a wide range of machines including some that 

were designed and tested by ConceptsNREC and others from the open literature.





 

 

  Only cases with a vaneless diffuser or volute have been included in the analysis to avoid 

any possible impeller-diffuser interactions. 

 From the database, models for all of the TEIS and Two-Zone parameters have 

been derived using basic regression techniques.  Three different models are proposed for 

each of the two TEIS modeling parameters, ηa and ηb.  One model for pumps, another for 

compressors, and a combined model applicable for all machines is given.  For the Two-

zone parameters, χ and δ2p, a single set of models was developed to represent the design 

point performance and another showing how χ and δ2p vary off-design. 

 The combined models for ηa and ηb are 30% and 70% more accurate than the 

current state-of-the-art models, respectively.  The new models account for the variance in 

χ and δ2p at off-design flow conditions and further refine the accuracy of the overall 

prediction by correctly modeling the loss mechanisms in the impeller passage.  

Validation work has shown that the set of models that predict ηa, ηb, χ and δ2p can be 

solved to consistently produce sensible results and yield a reasonable “blind” prediction 

of the performance of a wide range of radial compressors and pumps.  These models 

constitute the first broadly applicable method for predicting the required TEIS and Two-

Zone variables and are sufficiently accurate to provide initial performance estimates of 

new impeller designs. 
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1 Introduction 

The centrifugal flow impeller is an integral component of many industrial 

machines.  It is used in a wide range of applications including refrigeration, aviation, 

automotive and the chemical processing industry.  Efficient application of centrifugal 

flow machines has increased as the ability to predict their performance has improved.  

Accurate performance predictions can be made using a combination of the TEIS (Two 

Element In Series) and the Two-Zone flow models.  Together they form a One-

Dimensional, or meanline, modeling system that represents the basic physics of the flow.  

The models have several input parameters that must be accurately specified to make 

reliable predictions.  These parameters vary for every machine based on the specific 

geometry and flow conditions.  This research presents a set of empirical models that 

estimate the modeling coefficients required for use with the TEIS and Two-Zone 

equations.  This set of models can be used to predict both on and off-design performance 

of all radial and some axial flow turbomachines.   

1.1 Motivation 

Centrifugal flow machines are often used where high levels of performance and 

reliability are required.  Building and testing impellers is both time consuming and 

expensive.  A simple, accurate design process decreases the overall time-to-market and 

1 



 

increases the probability of satisfying the design specifications.  The TEIS model used in 

conjunction with the Two-Zone model has been shown to be able to accurately model test 

data from many types of turbomachines [1].  However, an accurate method has not 

previously existed to predict the model input variables and the performance of untested 

designs could not always be predicted confidently.  This work has focused on the 

development of empirical models that can be used to predict the values of the dependent 

design coefficients used in the TEIS/Two-Zone modeling system.  The models are based 

on basic geometric and fluid dynamic properties, enabling designers to accurately predict 

the performance of new machines.  Work to develop similar models was conducted in the 

late 90’s [2].  The resulting models were referred to as “Enhanced TEIS”, but did not 

yield results that could be used with confidence in practice.  The goal of this study was to 

improve the accuracy of blind performance predictions by 50% compared to the 

Enhanced TEIS models. 

1.2 Background 

The flow through a compressor or pump passes through four basic components, 

an inlet, rotor, diffuser and a discharge element.  The inlet for most machines is axial and 

directs the flow into the eye of the impeller.  An impeller serves to energy to the flow 

through a set of the rotating blades, or vanes.  The impeller inlet, also referred to as the 

inducer, is designed to get the flow from the inlet into the rotor with minimal losses.  In 

an axial flow machine the impeller exit region, or exducer, is in line with the inducer at a 

similar mean radius.  For a centrifugal flow machine the fluid is turned from axial to 

radial in the impeller passage.  In a radial machine, energy is added both by increasing 
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the tangential velocity and the mean flow radius of the working fluid.  While in axial 

machines, energy is primarily added by changing the tangential velocity of the fluid.   

At the exit of the impeller, the flow contains a significant amount of kinetic 

energy.  A diffuser can be used to recovery this energy and increase the performance of 

the stage.  A diffuser is essentially a passage with an increasing area that will reduce the 

fluid velocity and recover a fraction of the kinetic energy before it is discharged.  In 

radial flow machines a volute is often used to collect the discharge flow.   A volute wraps 

circumferentially around the discharge of a radial diffuser and channels the flow into an 

exit pipe oriented perpendicular to the axis of rotation of the impeller.  Other discharge 

elements are used in industry, but they are not studied in this work.   

1.2.1 Approach 

Flow through the blade passages of a typical radial impeller may include both 

accelerating and diffusing regions and is subject to the effects of viscous shear, flow path 

curvature, Coriolis forces due to rotation, etc.  Several analytical models, of varying 

complexity and accuracy, have been developed to aid in the design process.  The most 

basic type of design analysis used is a one dimensional (1-D) or station-by-station 

analysis, commonly referred to as meanline.  1-D analyses are based on a finite control 

volume analysis and yield predictions of the mass averaged output conditions without 

performing detailed modeling of the entire flow path.  Detailed 3-D analysis tools, which 

provide a detailed description of the entire flow, are also being used more frequently as 

computational fluid dynamic (CFD) packages become more user-friendly and 

computational power increases.  1-D models will always have a place in the design 

process, however, since they are efficient to execute, compared to the complex CFD 
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codes, and can produce accurate first order performance predictions based on basic 

geometric inputs. 

1.2.2 Meanline Design 

Several different methods of performing a 1-D analysis exist, and have been 

divided into three levels of increasing complexity and accuracy.  A Level-One design 

involves direct scaling of an existing design using similitude equations to create a new 

design.  Whitfield & Baines [3], Dixon [4] and Japikse & Baines [5] all provide a 

description of the application of similitude laws to the scaling of centrifugal machines.  

Scaling is often employed in industry because it is a fast and accurate method to design 

an entire family of machines.  Although Level-One designs are accurate and simple to 

use, they are only valid within the limits of the scaling laws, and they don’t generally 

allow designers to improve on past performance.   

A Level-Two analysis builds on a Level-One analysis by combining performance 

correlations for individual machine components, such as rotor efficiency, to yield a 

prediction of the overall machine performance.  This increases the range of designs that 

may be developed compared to a Level-One design.  Rodgers [6] gives a detailed 

example of a Level-Two analysis using component correlations.  A Level-Two design 

allows for greater flexibility than a Level-One design, but it is still limited by the range 

and accuracy of the bulk component performance correlations used in the model.  Level-

One and Two design methods are sufficient for many design applications, but when a 

new type of machine must be developed or if significant performance improvements need 

to be made over past designs, only a Level-Three method will suffice.   
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Level-Three designs use a comprehensive set of models to represent the internal 

physics of the flow and to predict output conditions.  Since a Level-Three analysis 

models the physics of the flow, new machines can be developed confidently that deviate 

further from the realm of past experience.   For example, many Level-Two flow 

calculations are based on loosely correlated values of rotor efficiency, whereas by using 

the TEIS model in conjunction with the Two-Zone model, rotor efficiency can be 

modeled directly. 

Further development and enhancement of the TEIS model, which is the focus of 

this work, will create a functional Level-Three, 1-D modeling tool that may be used to 

predict the performance of many radial or mixed flow turbomachines.  TEIS model 

predictions will extend the range and accuracy of previous design procedures while using 

a basic flow model that is computationally simple, facilitating quick design work and 

optimization. 

1.2.3 Two-Zone Modeling 

Detailed flow field analyses by Eckardt [7] and others have shown that the flow 

through a rotor is often divided into two regions, classically referred to as the Jet and 

Wake.  Dean [8] first proposed a separated flow model in which the Jet was 

approximated as isentropic, while the Wake was comprised entirely of low momentum 

fluid and contained all flow losses.  Further investigations by Johnson and Moore [9] 

have shown that the Jet is nearly isentropic, but the Wake is not always stagnant and can 

carry some of the mass flow.  The original Jet-Wake model included many limiting 

assumptions that hindered the models performance.  Japikse [10] increased the accuracy 

of the Jet-Wake model by refining some of the original modeling assumptions.  The 
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improved model was renamed as the Two-Zone model to reflect the changes made.  The 

Two-Zone model includes a region of primary flow that is isentropic, and a region of 

secondary flow that is only specified as being non-isentropic.  This allows properties in 

the secondary zone to vary with flow conditions.  Japikse [10] also showed statistically 

that the Two-Zone model yields better performance predictions than those made using 

similar Level-Two, or so-called Single-Zone modeling techniques.  

To complete the Two-Zone model and calculate the change in fluid properties and 

kinematic parameters, two variables were introduced.  First, the ratio of mass flow in the 

secondary zone to that in the primary zone (χ) must be specified.  Second, the exit 

deviation (δ2p), which is the difference between the exit flow direction and the blade 

angle, must also be determined.  Many correlations have attempted to predict deviation.  

Wiesner [11] presented a review of several common slip factor correlations that can be 

used for a wide range of machines.  In most Two-Zone models, χ is generally assumed to 

be a constant in the range of 0.15 to 0.25.  Use of a constant χ has been considered to be a 

good assumption, and Dean [12] showed that performance prediction was not very 

sensitive to the specified value of χ.  Frigne and van den Braembussche [13] suggested 

using the ratio of Wake and Jet velocities (ν) instead of χ to better understand the extent 

of the wake. 

The Two-Zone model provides designers with an accurate method to predict 

thermodynamic state change through a radial impeller.  To completely specify the output 

state of the rotor, the kinetic properties of the fluid must also be found.  This is 

accomplished using the TEIS model that provides a simple flow diffusion model of the 
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fluid.  By coupling the TEIS model kinetics with the Two-Zone flow thermodynamic 

calculations, the complete outlet conditions can, in theory, be accurately predicted. 

1.2.4 TEIS Model 

Japikse [5] developed the TEIS model by recognizing several similarities between 

impeller flow and the performance of conventional diffusers and nozzles.  This lead to 

the development of a conceptual model based on diffuser or nozzle geometry (Figure 

1-1).   

 

 

Figure 1-1:  Conceptual representation of the TEIS model showing the series arrangement of the two 
flow elements [1]. 

In the TEIS model, the blade passages of an impeller are modeled conceptually as 

two nozzles or diffusers in series, referred to as Elements “a” and “b” (Figure 1-1).  

Element “a” represents the inlet portion of the blade passage and is considered a variable 

geometry element which may either accelerate or diffuse the flow depending on geometry 

and mass flow rate.  Figure 1-2 shows the basic geometry of Element “a” as it is used in 

the TEIS model.  In Element “a”, the throat area (Ath) is constant as defined by the 

impeller geometry, but the inlet area (Ain) changes with flow rate.  The inlet area is a 
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maximum at high flow rates and a minimum at low flow rates, as show in Figure 1-2.  

Therefore, at high flow rate fluid must accelerate through the inlet and the element acts as 

a nozzle.  Conversely, at low flow rates the inlet actually diffuses the flow.  Element “b” 

models the passage portion of the impeller from the throat to the exit of the rotor.  For 

incompressible fluids, Element “b” acts as a fixed geometry diffuser or nozzle.  For 

compressible flows the passage portion may function as a variable geometry diffuser due 

to the change in density.  Figure 1-3 details the geometry of the passage region.  

 

 

Figure 1-2:  TEIS model inlet portion (Element “a”) showing variable geometry characteristic of the 
model [1]. 

 

Figure 1-3:  TEIS model passage portion, element “b” [1]. 
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As with diffuser design, the performance of each element may be specified using 

a corresponding effectiveness value, called ηa and ηb for the inlet and passage elements, 

respectively.  The effectiveness of each element is defined according to a typical diffuser 

or nozzle effectiveness as shown in various turbomachinery texts, such as Whitfield & 

Baines [3] and Dixon [4].  The effectiveness of Element “a” is calculated using 

Equation 1. 

 

ipa

pa
a C

C

,

=η           (1) 

 
In the above expression Cpa and Cpa,i are the actual and ideal pressure recovery 

coefficients, respectively.  For Element “a” the pressure recovery terms are calculated as 

follows [1]. 
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where q is the dynamic head (½ρW1t
2 ) calculated using the density, ρ, and inlet velocity, 

relative to the impeller tip, W1t, and Δp is the change in static pressure through the 

element.  ARa is the area ratio of the inlet to the throat, β1 is the relative flow angle at the 

inlet and β1b is the inlet blade angle and I1t is the inlet tip incidence, defined as blade 

angle minus flow angle.  
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The ideal pressure recovery coefficient shown in Equation 3, is typical of those 

used in the design of channel diffusers.  Japikse [14] comments further on the derivation 

of this coefficient using Bernoulli’s equation, conservation of mass, and its application to 

diffuser technology.  Although in Japikse’s derivation, the fluid was assumed to be 

locally incompressible, the TEIS model has proven accurate in representing both 

incompressible and compressible fluid systems.  Adding compressibility directly to the 

model has only shown to complicate the calculations without significantly increasing the 

model’s accuracy [15].  

For the passage portion, ηb is calculated in a similar fashion as ηa, equation 4.  

Cpb is also computed in the same manner as Cpa except across element “b”, and Cpb,i is 

given by the following Equation [1]: 
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ARb is the passage area ratio, Ath is the throat area and Aex is the impeller exit area 

as shown in Figure 1-3.  To complete the TEIS model, it is necessary to define the 

diffusion relative velocity ratio (DR2) for the overall machine:   
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where W2p is the relative velocity of the primary flow zone at the impeller exit.  To 

extend the range of the TEIS model, the affects of stall must also be accounted for.  The 

onset of stall in a radial compressor effects component performance and can be difficult 

to accurately predict.  In practice, there are many different modes of stall that combine to 

affect to the overall performance and onset.  In general, stall can be roughly 

approximated using knowledge of the diffusion or pressure loss characteristics of an 

impeller.  In the TEIS model, a constant value of diffusion ratio DR has been used to 

approximate the effects of stall.  

Japikse [1] derived the following equation for DR2
2 to relate the performance 

model to the output thermodynamic state: 
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Using Equation 7 in conjunction with Equation 6, the change in fluid velocity 

through a rotor can be predicted using ηa and ηb.  Furthermore, when ηa and ηb are 

known the results can be combined with those from the Two-Zone model and the 

complete output state of any machine can be modeled.   

Since accurately predicting ηa and ηb for a new design has previously been 

impossible, use of the TEIS model has been challenging.  Although ηa and ηb could not 

be predicted in advance, they can be determined after the fact based on machine test data.  

Using impeller test data, actual effectiveness values are derived by varying ηa and ηb to 

yield the best match of the model prediction to the test results.  Values of ηa and ηb have 
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been determined for a variety of machines and have consistently yielded rational 

numbers, typically between 1 and -1.  Following this procedure, the TEIS model has been 

used to represent test results for many machines with excellent accuracy. 

Matched results are unique to each specific machine and cannot be applied to 

another geometry or at another flow condition.  Early matching results showed a general 

dependence of ηa and ηb on parameters such as rotor diameter, rotation number, etc.  

These types of relations suggest that a correlation exists, relating the values of ηa and ηb 

to the geometry and flow conditions of an arbitrary machine.  Japikse [1] proposed that a 

correlation would likely be a function of several geometric and flow parameters, 

including Reynolds number, a Rotation number, inlet clearance and possibly blade 

thickness, etc.   

1.2.5 Current State-of-the-Art 

Early work by ConceptsNREC [2] focused on the development of both linear and 

non-linear regression models to predict ηa and ηb.  At that time the database of test cases 

only consisted of about 25 cases.  This regression work produced high order models that 

could accurately represent the test data.  These models are referred to as the Enhanced 

TEIS models.  The Enhanced TEIS model calculates a single value of ηa and ηb, based on 

geometric and flow parameters, that is applied to all speedlines.  These values are then 

used with user-defined value of χ, δ2p, and cf to predict the stage performance.   

Figure 1-4 [2] shows the reduced test data for a centrifugal compressor, dashed 

lines, compared to performance predictions made with the older Enhanced TEIS model, 

solid lines.   A 2-D cartoon of the compressor is shown in the lower right.  The rotating 
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impeller is light red and the blue regions represent the stationary vaneless diffuser and 

collector.  The plot in the lower left shows the rotor efficiency against mass flow rate, M.  

Each line is a different color and corresponds to one of the different test speeds, in rpm, 

shown just above the plot (i.e. N = 10000, etc.).  Total-to-static stage pressure ratio is 

plotted in the upper left panel.  The upper right panel shows the actual Mach number 

ratio, MR2= M1t /Mrel2p, calculated at the inlet and exit of the impeller, compared to the 

ideal Mach number ratio, MR2I= M1t /M2mi.   

 

 

Figure 1-4:  Enhanced TEIS model predictions for a centrifugal compressor [2] 

At the lowest speedline the predicted trend in rotor efficiency is very close to the 

measured data.  At the higher speedlines, the error in predicted rotor efficiency is as high 
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as 10% at off-design flow rates.  The variation in the stage pressure ratio with flow rate 

(top left panel) is well matched in the stable operating range, but the overall magnitude is 

in error by several percent.  At low flow conditions the impeller begins to stall and the 

pressure rise profile becomes flat; this is not captured with the TEIS models. 

Continued testing of these models has shown that the underlying equations are 

very “stiff” and often give irrational results for cases outside the range of those included 

in the development.  Since the database that the models were built upon was so small, 

none of the final models were broad enough to be used for general engineering purposes.  

These early models will be used as a benchmark for comparison to the refined models 

developed over the course of this project. 

1.3 Contributions 

Use of the TEIS and Two-Zone flow models as an accurate one-dimensional 

modeling tool has been frustrated since an accurate method to predict the design variables 

ηa, ηb, χ, δ2p and cf does not exist.  Currently only experienced engineers can set these 

values with a high degree of confidence.  Through this research, a procedure was 

developed to predict a priori the values of the design variables (ηa, ηb, χ, δ2p and cf) used 

in the TEIS and two-Zone models based on basic machine geometry and flow conditions.  

This procedure will enable even inexperienced engineers to sensibly predict the 

performance of many new designs.  This will both speed up the design process and help 

accelerate the development of higher performance machines.  
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1.4 Delimitations 

TEIS modeling has proven to be very robust and facilitates accurate modeling of 

most types of turbomachines.  The majority of the cases examined in this study are radial 

flow machines, although several mixed and axial flow machines have also been included 

to provide a broader range to build correlations on.   All axial flow machines included in 

this work are single stage pumps.  Although the models are equally valid for multi stage 

axial compressors, none have been examined in this work.   

Many modern machines employ a diffuser at the exit of the impeller to recover 

excess kinetic energy from the fluid.  Both vaned and vaneless diffusers are used in 

industry. Vaned diffusers are typically used to maximize the performance of a machine at 

specific operating conditions, but may reduce the overall operating range of the machine. 

The presence of diffuser vanes alters the overall performance of the machine making it 

more difficult to quantify the actual performance of the rotor itself due to the coupling 

effects.  Consequently, machines tested with a vaned diffuser have been excluded from 

this study. 

Two types of exit element are considered in this study.  The first most basic 

design is that of a collector.  Collectors are often used in testing since they eliminate 

nearly all circumferential variation in the diffuser, as compared to other exit elements.  In 

this work collectors are modeled as a sudden expansion, which is an approximate 

representation of their geometry.  Volutes are the second type of exit element that will be 

included in this research.  Volutes are common in many commercial applications since 

they direct the discharge fluid into a duct.  The losses though a volute must be modeled to 

completely specify the stage performance.  An estimate of volute losses is calculated 
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assuming all meridional component of velocity is lost, in addition to radial conservation 

of momentum [1].   

There are some flow conditions where the TEIS/Two-Zone model cannot predict 

performance, including regions of choke or stall.  Steady flow usually occurs where the 

design point is found and where the machine is designed to operate.  Since most 

machines are designed to operate only under conditions of steady flow, it is important to 

accurately model these conditions.  The TEIS model was developed using locally 

incompressible flow assumptions that work well in stable flow regions even with 

moderate compressibility.  Stall is still a poorly understood phenomenon and in general 

performance modeling in this realm is not attempted. 



 

2  Procedure 

The goal of this work is to develop empirical correlations to estimate the meanline 

modeling coefficients required for use with the TEIS and Two-Zone models.  Figure 2-1 

presents the general method used in achieving this goal.  The first phase of the project, 

represented by the upper left block, involved identifying and classifying a large collection 

of test data.  From this data the TEIS and Two-Zone modeling coefficients were 

calculated, upper right block.   

 

Figure 2-1:  Overview of project approach 

Database

Empirical Models

TEIS/Two-Zone 
Coefficients Test Data 

Performance 
Predictions
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The test data was then combined with the deduced modeling coefficients to create a 

large database.  This database included the measured performance, geometry and the 

associated TEIS and Two/Zone modeling coefficients that best matched the performance 

of each case.  From this database empirical correlations were developed to relate the 

modeling coefficients to the geometry and flow conditions.  These models can now be 

applied to calculate the meanline modeling coefficients and used estimate the 

performance of machines during the design process.   

2.1 Database Development 

The first phase of research involved the development of a large database of 

turbomachines.  All of the data used in this research was provided by Concepts NREC 

and has been collected over the past 35 years.  The database includes test results for a 

wide range of centrifugal flow machines, including pumps and compressors.  Industrial 

machines, and cases from the open literature, where test data is publicly available, have 

also been included in the database.  The final database contains approximately 125 

different machines, including 50 pumps and over 75 different compressor designs.  This 

equates to about 300 speedlines and over 1000 discrete data points.  Although this study 

does not focus on axial machines, the TEIS/Two-Zone models are applicable for axial 

geometries and can be used to accurately model their performance as well.  

Consequently, several mixed flow and some axial machines have also been included in 

this study to increase the range of the resulting correlations. 

 This database constitutes one of the largest compilations of test data ever 

available for a comprehensive study of this type.  Japikse [16] estimated that if this data 
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were taken today it would cost over 50 million dollars to compile.  A large database was 

necessary to ensure that any correlations deduced from the data would be statistically 

significant and broad enough for use in general engineering.  This research is therefore an 

attempt to glean further knowledge out of the test data by considering the ensemble set of 

results.  Any additional data that could be used to increase the size or range of the 

database would also be valuable.   
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Figure 2-2:  Range of cases represented in the database 
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Figure 2-2 shows histograms of six different impeller parameters represented in 

the database; impeller tip radius (R2), dimensionless specific speed (NS), average 

Reynolds number (ReD), inlet relative tip mach number (Mrel,1t), the ratio of impeller 

passage length to hydraulic diameter (L/Dhyd) and the exit blade angle (β2b).  ReD, Mrel,1t 

and NS are defined in Equations 8 – 10, respectively, with relevant variables defined in 

Table 2-1.  
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Table 2-1:  Definition of variables associated with equations 8 - 10 

Name Definition
D Hyd,Th Impeller inlet hydraulic diameter (m)
D Hyd,Ex Impeller exit hydraulic diameter (m)
υ1 Kinematic viscosity, impeller inlet (m2/s)
υ2 Kinematic viscosity, impeller exit (m2/s)
a Inlet speed of sound (m/s)
N Shaft speed (rpm)
Q Volume flow rate (m3/s)
g Gravitational constant (m/s2)
Δ h Head rise (m)
W 1t Inlet relative velocity, tip (m/s)
W 2m Exit relative velocity (m/s)  
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  Very small impellers as well as large industrial stages have been included.  The 

smallest machine has an impeller exit radius of 1.4 cm while the largest has a radius 

greater than 30 cm.  A wide range of specific speed machines is also covered in the 

database, where the high values represent axial pumps.  The data spans approximately 

three orders of magnitude of Reynolds number with the bulk of the cases between 5·104 

and 105.  The inlet tip Mach number ranges from 0 to 1.5, with the large clustering of 

cases at low mach numbers being pumps.  Exit blade angle, β2b, ranges from –75º to 0º, 

and L/D varies from 2 to more than 26.  This range of machines spans the vast majority 

of commercial machines in service today.  Some early historical designs of pumps and 

compressors have also been included in the database for completeness. 

Because this data was gathered from a variety of sources, the exact type and 

quality of the measurements vary from machine to machine.  Much of the data has been 

taken in a laboratory test facility.  Laboratory tests usually have high quality detailed data 

collected at multiple measurement locations.  Several sets of laboratory data have been 

included that contain flow measurements from inlet and exit traverses.  In contrast to 

controlled laboratory tests, data for some machines have been gathered at on-site 

industrial settings where it was only possible to obtain data concerning the overall stage.  

Although more detailed internal data is desirable, it is necessary to include some low 

quality test data when developing models because for some classes of machine there is 

little, or no other data available.   

2.1.1 Data Classification 

A simple classification procedure, based on the outline proposed by Japikse [1], 

was used to organize all of the data used in this study.  Table 2-2 details how a particular 
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set of test data is classified based on both the quality and type of measurements made.  

The highest quality laboratory test data, where detailed inlet and exit traverses were 

preformed, is classified as 1a data.  Very little class 1a data exists, but several class 1b 

tests have been included in the database.  It is much more common and cost effective for 

researchers to compile class 1b and 2a data.  Class 4 is reserved for the lowest quality 

data, usually pumps and blowers, where only basic measurements of the head, speed and 

flow rate are available.  All other test data can be assigned to an intermediate class and is 

also useful in model development.  The final database contained approximately 50 class 

1, 70 class 2, 60 class 3 and 10 class 4 cases. 

 

Table 2-2:  Data classification used to organize the test cases 

Internal static pressure data with traverses, plus overall pressures and temperatures
a. Static pressures at all stations, traverses at the inlet and exit of each element, power 

input to 1% or better
b. Static pressures at all stations, partial traverses, power input to 2% or better
c. Static pressures at all stations, occasional traverses, power input to 3% or better

Internal static pressure data without traverses, plus overall pressures and temperatures
a. Static pressures at all stations, power input to 1% or better
b. Static pressures at all stations, power input to 2% or better
c. Static pressures at all stations, power input to 3% or better

Overall pressures and temperatures only
a. Overall pressure and temperature rise, power input to 1% or better
b. Overall pressure and temperature rise, power input to 3% or better
c. Overall pressure and temperature rise, power input to 6% or better

4 Overall pressures only

Data Classification

1

2

3
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2.2 Data Reduction Tools 

2.2.1 Modeling Tools 

 Two commercially available software packages were used to process the test data 

and evaluate the model performance for each machine.  These programs are COMPAL® 

and PUMPAL® used for compressors and pumps, respectively, and are referred to as the 

meanline code.  The programs were supplied by ConceptsNREC and are configured to 

run on a WINDOWS® based operating system.  Each program is designed to operate in 

three different modes; analysis, data reduction, and design, the last of which was not used 

in this work. 

 The first mode, analysis, is used to predict the performance of a given geometry.  

The TEIS and Two-Zone models are built into the code and can be used to make a 

meanline performance prediction based on the modeling coefficients input by the user.  

The basic geometry and operating conditions of the machine are also required inputs to 

the meanline code.  Other loss models are included in the code to account for additional 

stage losses.  These losses may include factors such as disk friction, seal leakage and 

diffuser skin friction. 

When the code is used to process measured test data, such as temperatures and 

pressures, it is operating in data reduction mode.  Data reduction mode is used to convert 

the raw measured data into results that are easier to interpret and present graphically such 

as efficiency, pressure rise, loss coefficient, etc.  The accuracy of the reduced test results 

is directly related to the quality and type of data collected.  If internal static pressure 

measurements are available then the performance of the individual stage elements can be 
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accurately deduced.  When only flange-to-flange data are available the component losses 

cannot be correctly separated from each other.  In these cases, assumptions about the 

performance of one or more of the components must be made to complete the analysis.  

Any error in modeling one component will force a corresponding error in another 

component to match the stage data. 

2.2.2 The Modeling Approach 

Using both the data reduction and analysis mode in the meanline code allows for 

the model coefficients to be determined for each machine.  A simple overlay and 

compare (OC) procedure is used to determine the coefficients that best represent each 

machine.  First, test results from a given machine are reduced to yield complete stage 

performance details including, pressure ratio (PR), diffusion ratio (DR2), impeller 

efficiency (ηrotor), diffuser pressure recovery (CP), etc.  These results are then compared 

to the performance predictions made in analysis mode.  A graphical comparison is made 

to examine how well the stage performance has been predicted based on various 

parameters deduced from test data including pressure rise, efficiency, loss coefficient, 

etc.  Figure 2-3 shows an example of the quality of match that can be achieved using the 

TEIS and Two-Zone meanline models in a sample compressor case.  The test data is 

shown as blue squares connected with a dash line and the model is shown as a solid red 

line and triangles.  The TEIS and Two-zone modeling coefficients have been manually 

adjusted, following the overlay and compare method, to visually match the predicted 

performance to the measured test data. 
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Figure 2-3:  Typical overlay and compare method for comparing test data to model predictions 

2.2.3 Impeller TEIS Matching 

Achieving a good match of test data requires that an accurate prediction of the 

diffusion characteristics (DR2) of the impeller can be made, as shown in the top right 

panel of Figure 2-3.  Matching the impeller diffusion profile specifies the TEIS model 

parameters.  Figure 2-4 shows a typical plot of the actual diffusion ratio (DR2) compared 

to the ideal diffusion ratio (DR2I), W1t/W2p,i.  This plot provides a baseline for 

determining ηa and ηb for a machine.  DR2 is calculated using Equation 6 and the ideal 

diffusion ratio, DR2I, is calculated assuming ideal flow with zero deviation.  Solid boxes 

connected by a dashed line represent the reduced test data.  The analysis results have 

been overlaid using a solid line.   
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If the impeller exit static pressure (P2) has been measured, then the diffusion 

characteristics of the machine are fixed.  For these cases, ηa and ηb can be identified by 

adjusting the TEIS parameters to reduce the residual error between the model prediction 

of DR2 and the test data.  The ηa setting essentially changes the slope of the diffusion 

curve, pivoting around Cpa,I = 0, or the point of zero incidence (I1t = β1b - β1), Equation 3.  

ηb shifts the entire curve up or down and does not affect the slope of the curve.  Some 

stall may appear in compressor test data and is identified as the region where DR2 stops 

increasing and the curve becomes flat.  A simple first order approximation has been used 

to model stall which forces the predicted diffusion curve to be horizontal. 

 

Choke Stall

ηa

ηb

Cpa,I = 0

 

Figure 2-4:  Influence of the TEIS parameters, ηa and ηb, on matching the diffusion ratio curve 
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Cases with tip static pressure measurements, data classes 1 and 2, are the simplest 

to match, but this data it is not always available.  Without a measured tip static pressure, 

the diffusion characteristics can change slightly as the Two-Zone modeling parameters 

are adjusted.  Therefore, values of ηa and ηb must be identified iteratively as χ and δ2p are 

set.  ηa and ηb have the strongest impact on the shape and position of the overall head 

characteristic of the stage, while χ and δ2p have a much lesser effect.  Therefore, when 

using the TEIS and Two-Zone models, ηa and ηb  can be deduced with good accuracy, 

even for stages with low quality test data, since these parameters dominate the overall 

stage performance prediction.   

2.2.4 Impeller Two-Zone Matching 

The Two-Zone modeling parameters χ and δ2p must also be specified to define the 

performance of a machine.  Traditionally, χ and δ2p have been set based on their values 

when the impeller recirculation loss (IRL) is at a minimum.  This was achieved by 

adjusting the modeling parameters, χ and δ2p, until the point of minimum loss is at, or 

slightly above, zero.  Zero IRL indicates that there is little or no recirculation at the inlet 

or exit of the impeller.  This is generally a good assumption for a well-designed rotor.   

IRL includes losses due to flow recirculation as well as all other unmodeled 

losses.  Impeller recirculation losses are most evident in the power measurement where 

losses cause a rise in the required power to drive the machine.  Recirculation losses are 

adjusted to set the point of minimum loss equal to zero, and never below.  At off-design 

flow rates the recirculation increases with leading edge incidence, I1t, as stall occurs and 

backflow is engendered, and typically assumes a “bucket” shape over the full operating 
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range.  Figure 2-5 shows a typical loss variation with I1t for a radial machine showing a 

characteristic bucket shape.  The data for this case and most others does not give a 

perfectly smooth profile to the loss bucket.  This is likely due to uncertainly in the data or 

an artifice of the complicated secondary flows that constitute recirculation. 
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Figure 2-5:  Typical impeller recirculation loss profile over a range of inlet blade incidences 

The position of the loss bucket is controlled by the specific values of χ and δ2p.  

Increasing the value of χ will shift the entire IRL bucket lower, while assuming more 

deviation shifts it higher.  In the past, engineers set these values based on historically 

observed trends.   Figure 2-6 shows a set of simple empirical correlations for χ and δ2p 

[17] that were developed to provide some guidance in setting these parameters for new 

designs.  The correlation on the right proposes that primary flow deviation increases with 
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decreasing backsweep angle, β2b.  The correlation on the left suggests that χ is typically 

near 0.2 for average to high specific speed compressors and may rise for low specific 

speed machines.  While these correlations provide a baseline for selecting sensible values 

for modeling purposes, they are not accurate enough for use in blind modeling.  
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Figure 2-6:  Historical guidelines for selecting two-zone model coefficients [17], χ and δ2p as a 
function of NS and β2b, respectively. 

In the two-zone modeling system the secondary flow deviation (δ2s) can also vary.  

Traditionally, δ2s has been set to zero since no method existed for predicting the 

complicated secondary flow regime.  Laser velocimetry data exists for a few select cases 

and suggests the actual δ2s may vary from +20˚ to -5˚.  However, several sensitivity 

studies were conducted over the course of this study that showed that δ2s has only a slight 
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effect on the overall stage performance.  Performance is most sensitive to δ2s when χ is 

large, but these cases make up only a small fraction of the total database.  For this work 

δ2s was set to zero for all cases unless specific information indicated that another value 

was more appropriate. 

Some uncertainty exists in determining the recirculation losses because an 

estimate of the disk friction and leakage power must be made.  The leakage path includes 

the cavities between the rotating impeller and the casing, and some variety of mechanical 

seal.  In the case of shrouded impeller there is both a front face leakage path, typically 

from the impeller exit to the inlet.  Estimates of the leakage flow and losses are made 

using simple meanline models that account for the individual seal type and the specific 

cavity geometry.   

Disk friction is a measure of the heat that is generated and may be added to the 

flow due to viscous dissipation in the cavity between the back face of the impeller and the 

machine casing.  Disk friction may also occur in the region between the shroud and the 

blades.   Basic models exist to estimate the total heat generation in these areas [18].  

Assumptions must be made, however, regarding the fraction of heat that is transferred 

into the working fluid and the portion that is lost to the atmosphere.  The actual values are 

dependent on the quality of insulation and the layout of the test rig.  

A basic disk friction model, based on equations proposed by Daily and Neece 

[18], is implemented in the data processing code.  This estimate can be varied by the use 

of a multiplier, DFm, if deemed necessary.  For an insulated compressor it is generally 

assumed that the loss multiplier would be within the range 0.7 to 1.1.  Increasing the 

DFm, or the assumed fraction of heat added to the flow, shifts the IRL profile up, while 
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assuming less heat is added to the fluid shifts the profile down.  For the cases included in 

the database, the DFm was always set to 1 unless specific testing details were available to 

indicate another value was more appropriate. 

2.2.5 Two-Zone Design Space 

A careful study of the design space revealed a weakness in the traditional data 

matching procedure used with level 2 or lower data, cases where only static pressure 

measurements are available.  In these cases a unique solution for χ and δ2p cannot be 

identified based only on static pressure data.  Figure 2-7 shows a 3D contour plot 

comparing the match quality using the overlay and compare (OC) approach for various 

settings of χ and δ2p in a typical centrifugal compressor.  The objective function, on the z-

axis, is the sum of the actual residual error between the model prediction and the test data 

for the following variables; efficiency, power, pressure ratio, DR2, and others.  The 

residual error is calculated as the square root of the difference between the square of the 

data and the model value.  Maintaining the impeller recirculation loss near zero was also 

added as an objective to ensure that the resulting solution was rational.   

In Figure 2-7 it is clear that a unique solution for χ and δ2p cannot be determined 

based on minimizing these objectives alone.  Instead of finding a clear minimum point, 

where the model best matched the data, a valley appears.  This valley traverses the design 

space and identifies a wide range of χ values where a corresponding δ2p exists, and their 

combination produces a good match between the model and the test data.  But there is no 

unique minimum. 
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Figure 2-7:  Two-Zone design space for a sample centrifugal compressor data reduction case 

To identify the minimum point, additional information about the flow state at the 

exit of the impeller is required.  This type of information can be derived from point-wise 

traverse measurements made just downstream of the impeller exit in a vaneless diffuser, 

as will now be described.  Since class 2 data does not contain adequate information to 

derive the actual two-zone values exiting an impeller, class 1 data, where traverse 

information has been measured, must be used to make a unique determination.  Although 

the bulk of the database is comprised of class 2 or lower data, several cases of high 

quality class 1 data are available.  For class 1 data, traverse measurements are taken near 

the impeller exit, typically within R/R2 = 1.05-1.10.  Traverse measurements include the 

spanwise distribution of static and total pressure measurements, and the associated flow 
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angle at a given radius in the diffuser.  Since the meanline code only predicts bulk flow 

parameters, the spanwise data is mass-averaged to produce a single representative value.  

These measurements provide significant insight into the flow conditions at the exit of the 

impeller and can be used to uniquely identify the appropriate values of δ2p and χ.    

Although different values of χ and δ2p can produce similar predictions of impeller 

performance, based on a bulk flow analysis, each set will result in different flow structure 

at the inlet of the diffuser.  In cases where traverse data have been collected, the diffuser 

flow structure is completely defined and can be used to identify a single value of χ and 

δ2p that best matches the mass averaged traverse data.  Because the flow continues to 

evolve through the diffuser, χ and δ2p can be determined with the greatest certainty when 

traverse data at multiple radii are available.   

Using traverse data, in conjunction with the basic static pressure measurements at 

the impeller tip, the valley seen in Figure 2-7 is eliminated and a unique set of modeling 

parameters can be identified.  Figure 2-8 shows the same design space as seen in Figure 

2-7 except the objective, the z-axis, has been modified to include the residual error in 

matching the mass average traverse data, collected in the vaneless diffuser, as well as the 

bulk performance parameters considered previously.  With this additional constraint, the 

open ended valley evident in Figure 2-7 has vanished and an optimum point can be 

identified from the data.  The design space show in Figure 2-8 appears uneven because a 

relatively small number of sample points was calculated to minimize processing time.  If 

more data points are evaluated than the representation of the design space is smooth and 

the global optimum can be readily identified without the existence of false minimums.   
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Minimum

Figure 2-8:  Two-Zone design space for a sample centrifugal compressor data reduction case using 
traverse data to help identify the minimum model settings 

2.2.6 Vaneless Diffuser Processing 

Traverse data cannot be used effectively without an accurate model of the 

vaneless diffuser loss.  The Stanitz model [19] has been an industry standard in 

evaluating vaneless diffusers for the past 50 years.  The Stanitz model evaluates the 

vaneless space using a control volume approach.  The control volume is comprised of 

infinitesimal differential elements that are integrated from the impeller exit to the diffuser 

exit.  The Stanitz model assumes the flow in the diffuser is fully mixed at both the 

diffuser inlet and exit.  It can be applied most accurately to diffusers that are sufficiently 
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long to allow the primary and secondary flow to fully mix.  At a radius ratio of 1.5, the 

flow is usually fully mixed and the Stanitz model is valid.  In reality, at the inlet to the 

diffuser, the jet and wake structure that developed in the impeller still exists.  A separate 

mixing calculation is made to account for the losses due to the jet and wake when using 

the Stanitz model.  In the meanline code, the impeller exit radius is used as a mixing 

plane.  Using the primary and secondary flow properties at the impeller exit, a simple 

mixing calculation is made according to basic conservation laws [1].   

An average skin friction, cf, is used to calculate the losses in the passage.  When 

static and total pressure measurements are available at the inlet and exit, the performance 

of the diffuser can be accurately calculated and an average value of cf can be determined.  

In cases without test data, a correlation for cf is used to close the system of equations that 

model the control volume.  Equation 11 shows a simple model used to predict the average 

cf based on inlet Reynold’s number [1]. 
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2.2.7 Time Cyclic Vaneless Diffuser 

Initial attempts to derive χ and δ2p using traverse data (Class 1) were frustrated 

because use of the Stanitz model would not allow the test data to be matched for traverses 

near the impeller exit.  The assumption of instantaneous mixing results in large errors 

when processing traverse data collected near the impeller.  To accurately model the flow 

at the diffuser inlet, an improved model was needed that removed the mixing plane 

assumption.  The Traupel model [20], although slightly more advanced than the Stanitz 
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model, still struggles to model the vaneless space near the impeller exit where mixing 

losses dominate the flow.   

Dean and Senoo [21] recognized the shortcomings of the Stanitz model and 

outlined a periodic mixing model that allows mixing to occur gradually.  Their proposed 

solution was not sufficiently well developed for broad application in a meanline code.  

This forced the development of an advanced time-cyclic diffuser model.  In the time-

cyclic model, proposed by Dubitsky and Japikse [22], the mixing plane assumption is 

eliminated and the jet and wake structure is allowed to mix out gradually through the 

diffuser.  This substantially improved the modeling of both pressure and flow angle near 

the impeller exit and allowed much better matching of the traverse test data.   

Figure 2-9 illustrates the modeling improvement that was achieved using the 

time-cyclic diffuser model compared to the standard Stanitz model.  The pressure and 

flow angle distribution are shown compared to radius ratio, R/R2, in the diffuser.  Figure 

2-9 corresponds to a single operating point from one compressor test, but the results are 

typical of the improvement achieved.  The Stanitz model can predict the diffuser exit 

conditions reasonably well (R/R2≈1.7), which has kept the model in use for more than 50 

years, but performs very poorly near the impeller exit (R/R2≈1.0).  In fact, the Stanitz 

model produces a rising trend in total pressure, shown with a dashed line and open 

circles, near the inlet due to the mixing plane assumption (n.b. the measured static 

pressure is forced as an input in this treatment giving an implied or deduced cf).  The 

improved Time-Cyclic model, represented with a solid line and open circles, corrects this 

problem and produces a good prediction in the entry region and at the exit.   
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Figure 2-9:  Performance of the Time-Cyclic diffuser model compared to a Stanitz calculation in a 
vaneless diffuser using measured static pressure as an input 

A comparable improvement in the predicted flow angle is also evident with the 

Time-cyclic model.  The improved fidelity at the inlet is crucial to accurately processing 

traverse data.  The time-cyclic model was tested on several dozen sets of traverse 

measurements and was able to consistently match the measured test data.  The entire set 

of traverse data in the database was processed to determine the associated values of χ and 

δ2p. 

The time-cyclic model also improved the accuracy of the deduced diffuser skin 

friction.  Since a differential control volume analysis is used to characterize the diffuser, 

with matching to the local static pressure, any losses that are otherwise unaccounted for 

in the diffuser will increase the resulting cf calculation. Figure 2-10 compares the 
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calculated skin friction variation though a constant area ratio diffuser using the advanced 

time cyclic mode and the traditional Stanitz approach.  The Stantiz model produces 

artificially inflated values of cf since the mixing losses are not properly handled in the 

model.   
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Figure 2-10:  Deduced skin friction as a function of radius ratio in a vaneless diffuser calculated with 
the Time-Cyclic diffuser model compared to a Stanitz calculation. 

The discrepancy between the cf values predicted by the two models is greatest at 

the inlet of the diffuser where mixing of the primary and secondary zones discharging 

from the impeller dominate the losses in the flow.  The time-cyclic (TC) model produces 

a much more realistic prediction of the skin friction development through the diffuser, 

with values that follow a more classical trend.  The predicted values of total pressure and 

flow angle are also more accurate with the time cyclic model since the mixing losses are 

more correctly accounted for and the thermodynamic state is more precisely predicted. 
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2.2.8 Level 2 Data Processing 

Since class 2 and lower data sets do not contain sufficient information to uniquely 

determine χ and δ2p, it cannot be processed accurately without an additional constraint. In 

this situation, knowledge gained from processing the high-level traverse data can be 

applied.  It is only necessary to constrain one of the two variables since they are linearly 

dependent.  An empirical correlation for δ2p, based on the processed traverse data, has 

been used to bound the problem.  The correlation was developed using manual curve 

fitting and basic linear regression analysis to set the modeling coefficients. 
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Figure 2-11:  δ2p calculated from traverse data as a function of exit blade angle 
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Historically good correlations for deviation have been developed based on exit 

blade angle (β2b), and a strong dependence is seen in the data.  Figure 2-11 shows how 

the magnitude of the blade backsweep corresponds to the level of primary flow deviation.  

The solid black dots represent data where more than one radial traverse location was 

measured.  The open circles indicate cases only with a diffuser inlet traverse.  The values 

of δ2p less than –15° are associated with impellers without backsweep and the other data 

points correspond to cases with backsweep.  A significant amount of scatter exists in 

Figure 2-11, suggesting that deviation depends on more than just exit blade angle.   

An empirical model for δ2p was developed using the 53 data points shown in 

Figure 2-11.  The model, Equation 12, uses only two geometric variables, β2b and exit 

solidity, S2.  The variables in the equations have been replaced with constants, k1, k2, etc. 

to preserve the proprietary value of this work and the data upon which the equations were 

based.  S2, defined in Equation 13, is based on β2b and exit blade count, ZR.  This model 

was developed using simple regression techniques to match observed trends in the data.  

In the first term, sine was used to scale the value of β2b and in the second term, an 

exponential was employed because it produced the best match of the data.  
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Figure 2-12 compares the prediction of δ2p using Equation 12 to the measured 

values for these 53 points.  The quality of the model can be assessed by calculating the 
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coefficient of determination [23].  The coefficient of determination is a measure of the 

variability in the data that is captured by the model.  A perfect model would represent the 

data with an R2 = 1, while a model that does not represent the data will have a 

significantly lower value.  An R2 ~ 0 would imply that the model does not predict the data 

at all.  In this case, the model represents the test data with a coefficient of determination, 

or R2, accuracy of 0.92. Although only geometric variables are used in the model, it is 

believed that some fluid dynamic parameters are important in determining the exit 

deviation.  The data set is insufficient, however, at this point to reveal any fluid dynamic 

dependence at a statistically significant level. This model was tested against the entire 

database and has shown to produce reasonable results for all cases.  For no cases were 

any positive or extremely large negative values of deviation predicted. 
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Figure 2-12:  Predicted δ2p compared to measured values obtained from traverse data 
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2.3 Variation in Two-Zone Modeling Parameters With Flow Rate 

2.3.1 Variation in χ 

Using traverse data, the appropriate values of χ and δ2p were found for multiple 

points on an individual speedline.  The resulting values of χ and δ2p are different, 

however, at each flow rate along the speedline.  Traditionally the values of χ and δ2p had 

been assumed to be constant across a speedline for meanline modeling.  Figure 2-13 

shows the deduced values of χ calculated using traverse data for several speedlines in a 

centrifugal compressor.   
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Figure 2-13:  χ values for Eckardt rotor “O”[24] as a function of incidence calculated from traverse 
data 
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A clear trend is evident in the plot showing that χ increases as the flowrate 

changes from a nominal incidence.  In this case the minimum value of χ exists for each 

speedline at about 5º incidence.  Several other cases were examined, and they all showed 

the same characteristics as seen above, except the minimum point was slightly different 

for each case.  A simple parabolic function was used to model the change in χ at off-

design operating conditions.  The parabola is centered on the incidence angle where the 

minimum χ occurs.  This point of minimum impeller recirculation loss is hereafter 

referred to as the Benign Incidence Point (BIP). 

2.3.2 Off-BIP δ2p Variation 

 The traverse data was also used to examine the variance in δ2p across a speedline.  

Japikse [1] suggested that Mach number ratio, MR2 (MR2=Mrel1t/Mrel2p), might substitute 

as a type of loading coefficient and showed that δ2p varies with this parameter.  Figure 

2-14 shows the deviation angle calculated by Japikse, based on the class 2 data, compared 

to MR2 for the three Eckardt rotors, A, B and O.  Figure 2-15 shows the same plot of δ2p 

as derived from traverse data for the same three rotors as in Figure 2-14.  Using the 

traverse data and through careful control of the data reduction procedure a significant 

amount of error has been removed from the resulting calculation of δ2p.  In the updated 

plot, the deviation of rotor B was calculated to be less than zero for all points, while in 

Figure 2-14 most of those points showed positive deviation which is not rational since 

there is no physical mechanism to enable the primary to lead the blade since it is modeled 

as near isentropic.  Although it is possible that the secondary zone may show positive 

deviation since it is non-isentropic. 
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Figure 2-14:  Calculated flow deviation for the three Eckardt rotors made by Japikse [1] 
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Figure 2-15:  Deduced δ2p for Eckardt rotor O, A and B [24,25,26] calculated from traverse data 
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The calculations made with the traverse data show that δ2p is fairly constant 

across each speedline below MR2 ≈ 1.45.  At MR2 > 1.45, however, or at low flow 

conditions, the magnitude of the deviation begins to increase rapidly.  This variation was 

modeled with an exponential function based on MR2 and a baseline, or BIP, δ2p value.  

Equation 14 shows the proposed off-BIP model for δ2p.  The model reproduces the 

uniform distribution as seen from the test data for an MR2 < 1.45, and allows the 

deviation angle to increase rapidly, following an exponential profile above MR2 ≈ 1.45.  

The Off-BIP value of δ2p was constrained to differ by no more than six degrees from the 

BIP value of the deviation. 

( ) 1exp )(2
5
21)(2 ++⋅−=− BIPpBIPOffp MRk δδ      (14) 

2.3.3 Two-Zone Model Coupling    

When using the proposed data reduction procedure detailed earlier, χ and δ2p are 

coupled parameters, so variations in one influence the other.  Figure 2-16 illustrates this 

dependence, as evidenced in data deduced from the Eckardt A impeller traverse 

measurements [25].  The plot on the left in Figure 2-16 shows δ2p compared against inlet 

tip incidence, which is proportional to flow rate.  The plot on the right shows the 

corresponding values of χ for the same data also compared to incidence.  For the lowest 

speedline, 10,000rpm, δ2p is nearly constant for the entire tested range, which results in a 

parabolic variation in χ.  For the three higher speedlines, the value of δ2p begins to 

increase rapidly with increasing incidence while at the same time the corresponding value 

of χ also begins to increase dramatically.  Three points that exhibit this trend have been 

highlighted in Figure 2-16. 
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Figure 2-16:  Two-zone parameters calculated for Eckardt rotor A [25], illustrating the coupling 
between χ and δ2p 

Equation 15 was developed to model the off-BIP variation in χ.  It contains four 

separate variables, χBIP, I1t, IBIP and MR2.  IBIP is the tip incidence at the Benign Incidence 

point and χBIP is the corresponding value of χ at this point.   

 

( )( )1exp)( 5
232
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Both IBIP and χBIP must be estimated using an empirical model; a model for each 

has been created from the database and will be presented later.  The second term in the 

model, (I1t - IBIP)2, defines the nominal parabolic increase in the value of χ as the 
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incidence increases from the BIP point.  The third term, containing MR2, accounts for the 

increase in δ2p that occurs far off-design as MR2 becomes large, following the same form 

as in Equation 14 and effectively couples the off-BIP χ and δ2p predictions.  

2.3.4 Impeller Recirculation Loss 

The impeller recirculation loss (IRL) measures all unaccounted losses through the 

impeller, principally due to recirculation, but perhaps others as well.  Consequently, the 

shape of the impeller recirculation loss bucket also changes when χ and δ2p are allowed 

to vary off-BIP.  Traverse data showed that both χ and δ2p can vary significantly along a 

speedline.  Assuming they are constant leads to artificially high levels of IRL to 

compensate for losses that are actually due to changes in χ and δ2p. When the off-BIP 

models are applied a more realistic level of IRL can be found.  In many cases, the 

deduced level of impeller recirculation losses may be reduced by a factor of two or more 

when using the off-BIP models for χ and δ2p.  The difference between the deduced IRL 

with and with out the assumption of constant two-zone parameters, χ and δ2p, is shown 

below in Figure 2-17.  When the off-BIP models are used, the losses are reduced 

dramatically suggesting that earlier models were somewhat inaccurate and bookkeeping 

needed improvement.  At BIP the losses calculated with the traditional and off-BIP 

models are comparable.  As the flow rate increases from the BIP the reduction in IRL 

becomes more significant as χ and δ2p increase from their BIP values. 
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Figure 2-17:  Impeller recirculation loss for a typical centrifugal compressor calculated within 
COMPAL using both constant two-zone values and with the variable off-BIP models. 

2.4 Processing Various Classes of Data 

 When class 1a data is available, all of the relevant modeling parameters can be 

accurately deduced from the data.  When lower quality data is processed a unique set of 

modeling parameters cannot be identified and supplemental information deduced from 

the higher level data can be used to close the system of equations.  Although it would be 

desirable only to work with high quality, class 1a data, this is not often possible.  Full 

flow field traverses are expensive to conduct and they are rarely performed in certain 

industries, such as in most pump and blower companies.  Fortunately, several sets of 

class 1a data were available to guide this work.   
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The flowchart shown in Figure 2-18 is broken up into three branches that 

represent different classes of data and show how each class can be processed to yield the 

maximum amount of useful information.  The branch on the left, micro-database 1, 

represents the highest quality data, class 1, where all of the pertinent modeling 

parameters can be determined.  Class 1 data includes cases with full internal 

measurements and inlet and exit traverses.  From class 1 data the two-zone modeling 

coefficients χ and δ2p can be accurately deduced.   

From this subset of the database three important models have been developed.  

One model to predict the BIP value of δ2p, and the other two predict the off-BIP variation 

in χ and the δ2p, respectively.  The model for δ2p,BIP, Equation 12, is required when 

processing the lower class data in order to bound the design space.  Recall that without 

this model a valley in the design space exists and χ and δ2p cannot be uniquely 

determined.  The second set of models, Equations 14 and 15, define how χ and δ2p vary 

off-BIP, and are applied when processing lower class data. Without these additional 

constraints, a sensible and consistent match of class 2 - 4 data cannot be made.  The 

branch on the right is comprised of a second subset of the main database, micro-database 

2, which contains cases with traverses and a string of static pressures through the diffuser.  

From this data, detailed information about the skin friction development, cf, in the 

diffuser can be gathered.  This information can than serve as a guide in estimating the 

frictional influences on diffuser performance in cases were internal pressures were not 

measured. 
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Figure 2-18:  Data processing flowchart detailing use of various data levels 
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2.5 Automatic Data Reduction 

2.5.1 Easy Control 

Historically, all test data were processed manually to determine the values of ηa, 

ηb, χ and δ2p.  These values were determined by matching the model prediction to the 

reduced test data.  Manually matching the data required an individual to compare 

predicted performance plots generated using the TEIS/Two-Zone models to those of the 

test data.  The modeling coefficients were then adjusted to produce the most accurate 

match of the test data.  Manual data processing was used for many years and proved that 

sensible values for the TEIS and Two-Zone model variables could be found to match test 

data for virtually all machines.   

Manual data processing produced many useful insights and illustrated the validity 

and effectiveness of the TEIS model for representing a wide range of machines.  Manual 

data reduction had several drawbacks, however.  First, it is a very time consuming, 

iterative process that could be difficult for an inexperienced engineer.  Second, different 

users would often model the same test case using slightly different settings.  In these 

cases, each individual user incorporated some personal bias when setting the TEIS and 

Two-Zone model variables.  This bias was not uniform and often based on historical 

modeling assumptions or personal preference.  This bias created noise in the data that 

was difficult to quantify and hindered modeling efforts. 

ConceptsNREC developed an automatic data-matching program, EasyControl, in 

parallel with this work, to address the problems associated with manual data matching.  

The final version of the software was designed specifically by ConceptsNREC to meet 

the needs of this project, and is now commercially available. The software was designed 
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to eliminate user bias and increase numerical accuracy by automating and standardizing 

the overlay and compare (OC) procedure.  The program automatically runs the meanline 

codes, COMPAL or PUMPAL, and iterates on the setting of the modeling parameters 

while monitoring the OC match quality. It was designed to function following the same 

basic procedure that was used in manual data reduction.  Specific procedures and 

constraints were applied to match the physics of the modeling system and incorporate the 

practical knowledge gained from years of experience with manual data matching.   

EasyControl determines the best data match by iterating on the dependent 

variables using a simple optimization algorithm.  The optimization routine functions by 

minimizing a user-defined fitness function that represents the quality of the models match 

of the data.  The fitness function used in EasyControl is a weighted sum of the residual 

error between the test data and analysis prediction for eight different performance 

measures.   

Table 2-3 contains a list of the objectives and constraints that constitute the 

objective function that ConceptsNREC developed to be optimised by EasyControl.    

Each of the eight parameters has been assigned a weighting factor.  The weighting factor 

is representative of the relative importance that each factor would receive if the data had 

been processed manually.  In cases where the impeller tip static pressure has been 

measured the weighting applied to the rotor performance parameters is increased by a 

factor of two because the performance of the impeller can be calculated independent of 

the other stage components. Correctly setting the weighting factors is critical to help the 

solver converge quickly and consistently to an optimum.   
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Table 2-3:  Weighting values and constraints used by EasyControl 

 

 

Several design constraints, shown on the bottom half of Table 2-3, must also be 

satisfied to keep the solution in a physically rational domain.  Constraints are applied 

using penalty functions that increase the objective value when a constraint is violated.  

One of the parameters that is set using a penalty function is the point of minimum 

impeller recirculation loss.  The impeller recirculation loss (IRL) can never be less than 

zero, which would signify that energy had been added to the flow.  At the design point, a 

well-designed impeller will have little or no recirculation. Although in some situations, 

such as off design speeds or poorly designed impellers, it is possible to have some 

recirculation at all flow rates.  The penalty function was set to increase gradually to allow 

the point of minimum impeller recirculation loss (MIRL) to be slightly greater than zero 

if a significant improvement to the overall match could be made.   
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The two-zone modeling parameters are also constrained to be within physically 

rational bounds.  δ2p is constrained to be less than zero because the primary zone flow 

cannot lead the blade.  χ is constrained to within the range of past experience, between 

0.05 and 0.95.  It was also necessary to impose a constraint to keep the skin friction, cf, 

above zero.  Using these constraints and the listed objectives, EasyControl is able to 

automatically determine a value of ηa, ηb, χ, δ2p, and all other modeling variables, which 

results in the best match of the given test data.   

2.5.1 Design Space Search 

The first task that EasyControl must accomplish is to identify a valid start point 

for the optimization routine where IRL is close to zero.  The starting place must be close 

enough to the global optimum so that the solution does not converge to a local minimum.  

Three different methods have been included in EasyControl to evaluate the design space 

and select a starting point.  Each method systematically searches a portion of the design 

space by evaluating the model predictions compared to the test data made using various 

Two-zone parameter settings.  The location with the minimum valued fitness function is 

selected as the starting point for the optimization.   

The most time consuming, but most thorough analysis, is a Latin Hyper Cube 

(LHC) search.  This method is commonly employed in optimization cases to evaluate the 

design space and select a starting point.  A LHC search covers the entire design space by 

sampling at least 200 randomly distributed points.  If the density and the range of the 

LHC search are sufficient, then a starting point can be found that will lead to the global 
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optimum.  To perform a full LHC search of the entire domain is very time consuming and 

often unnecessary.   

A Gaussian Hypercube (GHC) search was developed to reduce the number of 

sample points required to identify an adequate starting point.  The GHC search starting 

point is based on historical guidelines in setting values of χ and δ2p.  Instead of 

performing a full LHC search, sample points are selected that follow a classical Gaussian 

distribution around the predictions of χ and δ2p, made following the trends shown in 

Figure 2-6.  This approach greatly decreases the number of search points that must be 

tested to determine a starting point, but relies on the accuracy of the historical χ and δ2p 

correlations.  Typically the models for χ and δ2p are sufficiently accurate to position the 

search region over a valid starting point.  A typical GHC search requires 75 samples to 

find a start point, or less than half the time of an LHC search. 

The simple χ search is the third search method in EasyControl and requires the 

fewest sample points.  The χ search assumes that the design space for χ and δ2p is similar 

for all machines and forms a valley, as seen in Figure 2-7.  If this assumption is correct, 

then for any value of δ2p a corresponding value of χ exists that would yield a starting 

point that is along the valley floor.  To identify such a point, a single value of δ2p is 

selected as a starting point and χ is varied until IRL ≈ 0.  Following this logic a valid 

starting point can be identified in fewer than ten iterations as opposed to 200 with a LHC 

search. 

Once a starting point is selected, EasyControl uses a hill climb method to 

optimize the full set of design variables to yield the best match of the data.  The hill climb 

algorithm (method of steepest accent or descent) calculates the gradient of the objective 
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function based on changes in the design variables.  At each iteration, all design variables 

are adjusted in the direction of steepest descent to minimize the objective function.  This 

method is very robust and will always proceed toward a minimum.  Hill climb algorithms 

work best on smooth design spaces, and require a starting point that is near the global 

optimum. 

Since the design space for level 2-4 data forms a valley instead of a unique 

optimum point, an additional constraint must be used when processing these cases.  The 

model for δ2p, developed from the traverse data, has thus been included in EasyControl.  

The overall OC match is penalized as it deviates from the value of δ2p predicted by 

Equation 14.   

 

Minimum

Figure 2-19:  Two-zone design space with δ2p constrained to produce an optimum 
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The penalty function applied for δ2p is relatively small compared to the other 

constraints so that final match may use a slightly different value of δ2p if a significant 

improvement to the overall match can be made.  The addition of δ2p as an objective 

creates a clear optimum that EasyControl can readily identify.  Figure 2-19 shows the 

same design space as seen in Figure 2-7, evaluated with the addition of the δ2p constraint.  

The resulting objective function produces a smooth design space with unique optimum 

near δ2p = -4º and a χ = 0.25. 

2.6 Data Archiving 

After the data have been processed the results are added to a database for further 

review and use in model building.  Only a single representative point from each speedline 

is included in the database.  Each entry in the database includes the complete meanline 

geometry of the machine, a wide variety of fluid dynamic variables and the associated 

modeling parameters that were used to match the test data.  Careful consideration was 

made in selecting what point should be included in the database.  The performance of a 

stage or machine is often referenced to a “Design Point” that corresponds to a specific 

operating speed and flow rate that the machine was designed for.  The design point is not 

a good value to add to the database because it is arbitrary and inconsistent between 

different designs and designers.  The Best Efficiency Point (BEP) is also commonly used 

to describe performance, and typically occurs at the design speed near zero incidence.  

Unfortunately, the BEP can only be determined from testing and can not be known in 

advance so it would be difficult to use in the database. 
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To avoid the problem associated with the BEP and design point positioning, the 

database was selected to be at Cpa,i = 0 because it is near zero incidence where losses are 

typically low.  At this point the values of ηa and ηb are independent of each other, which 

reduces the interaction effects between the two parameters and improved the model 

fidelity.  It is also a point that can be readily calculated based on geometry and flow, 

unlike the BEP, which cannot be accurately predicted.  In most cases a data point does 

not exist exactly at the point of Cpa,I = 0 so EasyControl is designed to interpolate to this 

point.  At the selected database point, Cpa,I = 0, all of the relevant flow and geometric 

variables are calculated and written to a data file.  This data file contains information on 

the final dependent variable settings and approximately 1000 corresponding independent 

variables calculated by the meanline code.  The data file can be easily read into a 

spreadsheet to facilitate further analysis and model development. 

 



 

3 Model Development 

Initial attempts to develop models to predict the meanline coefficients were 

frustrated due to a relatively small number of quality datasets that were available.  The 

current database, with over 300 points, has reduced many of the statistical limitations 

encountered in earlier modeling attempts.  As the size of the database grew it became 

increasingly necessary to have robust tools to help process and model the data.  A variety 

of model building tools were evaluated during this project to determine which would be 

most applicable.  Initial efforts were focused on developing the most accurate models 

possible for each coefficient using powerful regression tools.  Two fully automatic 

modeling tools, neural networks (NN) and genetic algorithms were tested, but both failed 

to produce models that fully satisfied the objectives of this project. 

3.1 Advanced Regression Tools 

Use of neural networks and genetic algorithms were explored because of their 

ability to automatically capture complex variable couplings.  A neural network is 

comprised of a series of basic mathematical operators that are linked together.  Training 

the model sets the exact order of the operators and their coefficients.  Training is 

accomplished by tuning the model to use the provided inputs, or dependent variables, to 

match a given set of data, independent variables.  Although neural network solutions 
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produced accurate models of the TEIS and Two-zone parameters, the formulation of the 

solution could not be reviewed to identify weaknesses such as unusual asymptotes or 

singularities.   

 Genetic algorithms were developed [27] for solving complex problems where an 

exact solution form was unavailable.  Genetic algorithms are similar to neural networks 

in their capability to model complex phenomena, but they produce solutions in the form 

of mathematical models that can be easily evaluated.  Genetic Programming (GP) mimics 

nature by creating a solution based on natural selection and evolution.  Genetic 

algorithms begin with an initial population of randomly generated solutions for the 

specified problem.  In this case each solution, or individual in the population, is 

expressed as a mathematical equation comprised of a unique arrangement of several 

independent variables included in the database.  The performance of each individual is 

evaluated based on how well it predicts the dependent variable.  Equations that perform 

poorly are eliminated from the population.  A group of the best performing models are 

identified and reordered into new equations, based on terms from two separate models.  

These new equations are added to the population to replace the poor performing models 

that were removed and the entire population is re-evaluated.  This process is continued 

until no further improvement is noticed and a solution is found that best matches the data. 

 Although models developed using Genetic Programming produced mathematical 

expressions, they were often very large and complex.  A GP solution usually appeared as 

very unconventional equation that incorporated diverse terms and frequently failed to 

satisfy known physical trends and avoid singularities.  In some instances these problems 

could be corrected manually, but the final equation form was still too large and 
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cumbersome to use with confidence.  Both NN and GEP demonstrated that accurate 

models of the dependent variables could be developed from the database.  They also 

illustrated that the most desirable solutions needed to be both accurate and simple to 

understand.  Ideally the user should control which variables are used in the model and 

evaluate their application to ensure that the resulting model is both physically rational 

and accurate.  The most practical tool to achieve this goal proved to be stepwise linear 

regression. 

3.2 Linear Regression 

After evaluating the automatic modeling tools it was decided that manual linear 

regression offered the necessary control over the model form, with minimal compromise 

in accuracy.  Stepwise regression is advancement over simple linear regression 

techniques.  In stepwise regression an initial linear regression is preformed using a base 

set of variables.  Once a basic regression model has been created the P-Value [23], and 

other statistical measures are reviewed to determine the relevance of each variable in the 

model.  Any insignificant variables are removed from consideration and another 

regression model is created.  In subsequent iterations additional independent variables are 

added to the base set and evaluated.  If the additional variable improves the resulting 

model then it is retained or eliminated if it does not contribute.  One of the weaknesses 

associated with linear regression is that it cannot identify important variable couplings or 

automatically capture non-linear trends.  Since the models for ηa, ηb, χ and δ2p are both 

coupled and non-linear, these effects must be manually added to the models. 
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3.3 Variable Selection 

 The basic database contains nearly 1000 independent variables for each speedline.  

Past experience suggested that only a small fraction of those variables had any effect on 

dependent variable.  So, before any modeling was done this data set was reduced to 

include only those variables that had a significant effect on the dependant variable in 

question.  Some basic statistical tools were used to filter the full set of nearly 1000 

variables, and identify the primary dependencies for each model coefficients. 

 First, a correlation matrix, including all 1000 variables, was constructed to 

determine if any linear dependencies exist to represent the dependent variables.  The 

correlation value is calculated by scaling the covariance by the standard deviation [23] to 

normalize the result.  The correlation value ranges between –1 and +1.  Positive values 

suggest that an increase in one variable is associated with an increase in the other. 

Negative values indicate that a rise in one parameter results in a decrease in the other. 

The correlation statistic can be used to analyze a very large array of parameters and easily 

identify linear relationships between any two variables.   

Table 3-1 shows a sample correlation analysis for ηa and ηb.  The correlation 

analysis for ηa and ηb identified many variables that are linearly dependent on the TEIS 

modeling parameters.  Non-linear relations were also evaluated by calculating the 

correlation matrix on the database with the independent variables raised to various 

powers, such as 0.5 and 2.  Couplings were determined in a similar manner by calculating 

the correlation statistic on the product of different variables.  The important linear, non-

linear and coupled terms were then introduced to the stepwise regression model.  In the 
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regression analysis both the coefficients and exponents on individual variables were 

allowed to vary, but the structure of the equation was fixed. 

Table 3-1:  Correlation values for ηa and ηb vs. various independent variables in the database 

 

  

Not all of the variables identified via the correlation analysis were used in the 

final models.  Rather, some were removed from consideration because they may not be 

independent of other important parameters.  For example, several different calculations of 

Rossby number (Ro), which are all related, appear to be important factors controlling ηa.  

It would only add redundancy to the final model to include multiple variables that are 

directly related. 

Different data classes required different processing during regression to ensure 

that the models did not include any unnecessary noise or uncertainty.  To avoid biasing 

the regression model with the low quality or low performance data, a weighting function 

was used.  The different data classes, 1a – 4, were assigned a multiplier of 1 to 0.1 
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respectively.  This multiplier was applied to the calculated residual for each case included 

in the regression.  Linear regression fits the model to the data by minimizing the sum of 

the squares residual error for the sum of all cases.  By reducing the calculated residual on 

the low class data cases, the model puts more weight on matching the higher quality data, 

where the modeling parameters are known with more certainty. 



 

4 Results and Model Performance 

4.1 ηa Models 

Three separate models for ηa were developed: a combined model appropriate for 

all types of machines, a model for pumps only, and a model for compressors only.  The 

combined model is the least accurate, but the most broadly applicable.  The individual 

models for pumps and compressors alone results in more accurate prediction and uses 

simpler mathematical expressions than for the combined model.  However, the scope of 

the subset models is smaller and the statistical confidence is lower because it is based on 

fewer data points.  To increase the statistical confidence in the pump and compressor 

models, the combined model was used as a starting point from which the basic equation 

form was set for the pump and compressor models.   

When building models for ηa it proved to be difficult to achieve high R2 values, 

although acceptable levels of standard error, calculated as the standard deviation of the 

difference of the model prediction and the data, have been achieved.  This difficulty 

suggests that some of the important parameters that control ηa may not be captured yet in 

the meanline geometry.  Some of these additional parameters may include inlet blade 

turning or the effects of tip recirculation. 
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4.1.1 ηa Combined Model 

 The combined model is the broadest of the three models developed for ηa.  It is 

applicable for all types of turbomachines included in the database, including radial and 

mixed flow machines and axial flow pumps.  Since the majority of the database consists 

of radial compressors, the model will be most accurate for similar machines.  The final 

model, Equation 16, consists of nine separate independent terms.  The model was 

developed using the stepwise regression techniques detailed previously. 
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The terms in the model include both geometric and flow based variables.  The 

individual non-dimensional variables used in the model are defined in Table 4-1.   

Table 4-1:  Definition of non-dimensional variables used in the 
combined pump and compressor model for ηa 

Name Definition
Re R1t Density * Inlet tip radius * Inlet Relative Velocity / Kinematic viscosity

B 1 /R 1t Inlet blade height / Inlet tip radius
L/D Impeller passage length / Impeller passage hydraulic diameter

Ro W2 Impeller exit relative velocity / (Impeller radius of curvature*shaft speed)
Clr R /B 2 Clearance / Exit blade height

I 1t Inlet blade tip incidence
β 1t Inlet relative velocity, Tip / Absolute inlet velocity
Z r Exit blade count
AK Impeller inlet meridional velocity ratio, tip/rms  
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The terms in the equation are arranged in order of decreasing statistical 

significance, as measured by the P-value.  The first and most important term in the model 

shows that the inlet effectiveness is strongly related to inlet Reynolds number and the 

relative inlet blade height, B1/R1t.  The next most important parameters are non-

dimensional passage length, L/D, and the shroud type, OC.  Rossby number, RoW2, 

relative tip clearance, ClrR/B2, and inlet blade incidence, I1t, also appear in the model, but 

are less important.  Exit blade number, ZR, is also included in the model, but has a very 

modest effect on the result.  Since the bulk of the cases in the database are small to 

medium centrifugal compressors, the model gives the best prediction for similar types of 

machines.  The database value of ηa is plotted vs. the prediction made with Equation 16 

in Figure 4-1.   
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Figure 4-1:  Regression results for the combined ηa model 
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The combined ηa model represents the test data with an R2 of 0.54 and a standard 

error of 0.08.  The value of R2 is lower than would be desired; however the standard error 

is at an acceptable level.  The ηa model was constrained to be within the range of 0 to 1.2 

since values outside this range are irrational and do not represent a valid solution.  

Although none of the model predictions, for the validation cases shown in Figure 4-1, 

were limited by these constraints 

4.1.2 ηa Model for Compressors Only 

The final expression derived from a stepwise linear regression approach is given 

in Equation 17.  The model for compressors contains eight separate terms, one fewer than 

the number used in the combined model.  As fewer cases are included for model building, 

as with the compressor or pump only models, the data can be represented more accurately 

with fewer terms, but the applicability of the model is reduced.  The most important 

variables are again the inlet Reynolds number (ReR1t) and the relative blade height at the 

inlet, B1/R1t.  The compressor model includes three additional terms that were not 

included in the combined model, inlet aspect ratio (AS1), inlet solidity (S1), and DR2i.  

Several variables were used in the combined model that did not appear in the compressor 

only model including, L/D and RoW2, which were both moderately significant in the 

combined model.  A broader range of data would likely help bridge the gap between the 

pump, compressor and combined models and result in a more uniform set of variables in 

each subset model.  Overall, the ηa model for compressor only performs similar to the 

combined model, although it more accurately predicts the performance of certain types of 
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compressors.  For example, the performance of process compressors, which are not well 

represented with the combined model, are modeled much better by Equation 17. 
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The results of the regression analysis are shown in Figure 4-2 where the actual 

database values of ηa are presented vs. the predicted value of Equation 17.   
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Figure 4-2:  Regression results for the ηa compressor specific model calculated at the BIP point 
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The regression analysis yields an R2 match of approximately 0.5 and a standard 

error of nominally 0.069.  Although the R2 value is comparable to the combined model, 

the standard error is approximately 15% lower.  The model appears to yield the largest 

error when ηa is large.  Specifically when ηa is larger than approximately 0.75 the model 

tends to yield an under-prediction in the magnitude of ηa.  Below a value of 0.75 the 

model slightly over-predicts the data. 

4.1.3 ηa Model for Pumps Only 

Modeling pumps alone presents some challenges since the range of machine types 

is so broad.  The database consisted of some very low-tech industrial pumps that perform 

poorly, as well as high performance rocket turbopump impellers.  It also contains the 

widest range of machine type, with many mixed and axial cases along with the basic 

radial flow impellers.  The values of ηa deduced from test data of pumps are much 

broader than those found for compressors, ranging from 0.1 to 1 for pumps, compared to 

0.5 to 1 for compressors.  The ηa model for pumps only, Equation 18, uses nine different 

variables.  The form of the equation is significantly different from the combined model 

for ηa.  Although the combined model was used as a baseline, significant improvements 

in performance prediction were realized by including additional variables.  The additional 

non-dimensional variables that we used in this model are defined in Table 4-2. 
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Table 4-2:  Definition of non-dimensional variables used in the pump only model for ηa 

Name Definition
Ri 2 Exit blade height / Impeller radius of curvature

Rot CA Average blade height *Shaft speed / Average meridional velocity at the inlet and exit
PHI 1 Impeller inlet inclination angle
AS 1 Blade aspect ratio at inlet
AS 2 Blade aspect ratio at exit  

 

Figure 4-3 shows the model prediction of ηa compared to the values of ηa 

deduced from the test data.  The model accurately captures the performance of most class 

1 and 2 data in the range of 0.4 to 1.0.   
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Figure 4-3:  Regression results for the ηa pump specific model 
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The outliers that are under-predicted correspond to several different turbopumps 

and inducers.  There is more scatter as ηa becomes small, but this is not a serious concern 

since most modern designs achieve higher values of performance.  The final model 

matched the test data with an R2 of nominally 0.74 and a standard error of approximately 

0.11. 

4.2 ηb Models 

4.2.1 ηb Model for all Machines 

An accurate model for ηb that can be applied to all machine types was developed 

using seven different independent variables.  Equation 19 shows the final expression 

developed to model all types of machines.  Table 4-3 defines the variables not previously 

defined in the text including two different calculations of Rossby number.  The variables 

exerting the greatest influence in the prediction of ηb are the passage length to hydraulic 

diameter ratio, L/D, and the passage area ratio, AR=A2/A1, terms traditionally used in 

mapping diffuser performance.  L/D and AR both appear multiple times in the expression, 

producing a coupled, non-linear affect.  Two separate Rossby numbers also appeared to 

be significant.  In each case the Rossby number was calculated based on ideal parameters.  

Traditionally Rossby number is defined using the actual flow velocity at the rotor exit.  

When using the TEIS/Two-Zone modeling system, the actual impeller exit state is closely 

related to the assumed value of ηb.  A model of ηb should not be built on variables 

defined by the actual impeller exit state since these values are unknown when making a 

prediction.  Using ideal parameters ensures that the result of the ηb model is independent 
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of the model inputs.  Equation 19 shows the final model for ηb and is based only on 5 

different geometric parameters and two different ideal flow parameters. 
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Table 4-3:  Definitions of the non-dimensional variables not previously 

 defined used in the ηb combined model 

Name Definition
Ro C,2i Absolute impeller exit velocity, ideal / (Shaft speed * Impeller radius of curvature)
Ro W2i Relative impeller exit velocity, ideal / (Shaft speed * Impeller radius of curvature)
MT Machine type (1 Comp; -1 Pump)  

 

 

The final model matched the class 1 and 2 test data with an R2 of approximately 

0.79 and a standard error of 0.149.  Figure 4-4 compares the model prediction of ηb to the 

test data for values within the range of –1.5 and 1.  Class 1 and 2 data are well 

represented by the model.  The residuals for the low class data were reduced by a factor 

of four during the regression analysis to focus the model on the high class, level 1 and 2 

data.  This resulted in a larger error on average for the low class and low performance test 

data but this is not a concern since there is much greater uncertainty in actual values of ηb 

for the lower class data.  Some of the low class data for pumps show significant error 

between the data and the model prediction, such as the point shown in the lower right of 
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Figure 4-4.  Low class pump data typically contains the most uncertainty of all the cases 

in the database.  Much of the low class pump data was collected from industrial machines 

where the quality of the design, manufacturing, and test procedure may be far below that 

of a typical laboratory test case.  Therefore little attention was paid to these outliers since 

there was so much uncertainty in the data itself.  
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Figure 4-4:  Regression results for the combined ηb model 

4.2.2 ηb Model for Compressors Only 

The combined model was used as a basis for developing models for specific 

machine types.  The basic equation form and variables remained the same, but the 
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coefficients and exponents were allowed to vary.  The ηb model for compressors only, as 

presented in Equation 20, uses only one less variable than the combined model.  

However, it is a much simpler expression.  The R2 of the compressor only model is 

approximately 0.83 and the standard error is nominally 0.144. 
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Figure 4-5 compares the model performance to the test data.  The class 1 and 2 

data, solid black dots, are well matched and more scatter is seen in the lower quality data, 

represented by the open circles.   
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Figure 4-5:  Regression results for the ηb compressor specific model 

75 



 

This difference in match quality is a result of the weighting that was applied to the 

data.  The same weighting was used for the compressor only model as was used for the 

combined model.  Data weighting was necessary to prevents the uncertainly in the low 

quality data from biasing the final model. 

4.2.3 ηb Model for Pumps Only 

 The number of pump cases was relatively small, thus it was important to have the 

pump specific model based on the combined ηb model to ensure that it was statistically 

sound.  The ηb model for pumps only, as expressed in Equation 21, is much simpler than 

the combined model.  However, Equation 21 predicts ηb with similar accuracy as 

Equation 19. 
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 The most notable change between the ηb model for pumps and the combined and 

compressor only models is the change in sign of the exponent associated with B2/R2t in 

the third term.  The model matched the test data with an R2 of approximately 0.87 and a 

mean standard error of nominally 0.16.  This is an improvement from the combined 

model where the standard error for pump cases was about 0.18. 
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Figure 4-6:  Regression results for the ηb pump specific model 

4.3 Models for χ 

4.3.1 χ Μodel at BIP 

The model for χ was developed following the same procedure used for the other 

variables.  The final model developed consists of six different variables organized into 

four separate terms, as shown in Equation 22.   
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The associated non-dimensional variables that have not been previously defined 

are given in Table 4-4.  Three of the six variables are geometry based, and three are flow 

based. 

Table 4-4:  Variables used in modeling χ 

Name Definition
AR 12 Density * Pressure at impeller exit / (Density * Pressure at impeller inlet )
Rot W1 Inlet blade height * Shaft speed / Inlet relative tip velocity  

 

The final model yields an R2 of approximately 0.69 with a mean standard error of 

nominally 0.09.  Figure 4-7 shows the predictive model, Equation 22, compared to the 

BIP values of χ deduced from the database.  Level 1 and 2 data are shown with solid dots 

and level 3 and 4 data are represented with open circles.  While χ may theoretically range 

from 0 to 1, no cases in the database had a value greater than 0.95 or smaller than 0.01.  

So, when utilized as a predictive model, the expression is constrained to produce results 

within 0.01 and 0.95.  The upper constraint is rarely encountered, while in practice the 

lower constraint does occasionally limit the model prediction.  The lower constraint 

limits the prediction more frequently for pumps than compressors.  Most of the scatter in 

the model prediction shows the actual value of χ is under-predicted, which could lead to 

an optimistic prediction of performance.  A constant of 0.05 could be added to the model 

to produce a more conservative performance estimate. 
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Figure 4-7:  Regression results for the χ−BIP model 

4.3.2 χ Model for Off-BIP Conditions 

The off-BIP models were developed in an attempt to more accurately represent 

the loss mechanisms in an impeller.  The complete development approach of the off-BIP 

χ model was detailed in section 2.3.1.  Equation 23, shown below and presented earlier as 

Equation 15, was developed in the previously described manner using all available 

traverse data.  The model increases the value of χ at off-BIP conditions as the inlet blade 

tip incidence, I1t, varies from the BIP value.  
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4.4 δ2p Model at BIP 

The final model for δ2p at the BIP was also developed using the traverse data as 

described in section 3.2.  The final developed expression is shown in Equation 24.  It 

combines the BIP and off-BIP models presented earlier, Equations 12 and 14, 

respectively, into a single expression.  It predicts the database values of δ2p, Figure 4-8, 

with and R2 of approximately 0.96 and represents the data with a mean standard error of 

nominally 1.10.   
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Figure 4-8:  Regression results for δ2p model compared to database values identified using 
EasyControl 
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The δ2p model represents the test data more accurately than do the models for ηa, 

ηb or χ.  This is expected since the bulk of the test data included in the database does not 

include traverses and required the value of δ2p to be constrained in order to find a unique 

solution.  As discussed in section 2.2.8, Equation 24 was used as the constraint when 

processing class 2 or lower level test data.  The model is naturally a good representation 

of the deduced data since it was used as a guide in selecting a δ2p in most cases. 

4.5 Impeller Recirculation Loss (IRL) 

Losses due to flow recirculation at the inlet or exit of the impeller must be 

correctly accounted for if the overall performance of the impeller is to be accurately 

modeled.  Most well designed impellers have very little impeller recirculation loss (IRL) 

at the design point.  All compressors and pumps will develop some recirculation at 

sufficiently high levels of incidence at off-design conditions.  The actual magnitude of 

impeller recirculation loss cannot be correctly deduced unless all of the other losses are 

accurately modeled.  Using the off-BIP models, Equations 23 and 24, produces a more 

accurate match of the actual impeller performance and consequently the calculated 

impeller recirculation loss is also more accurate.   

Currently, no models exist for predicting the impeller recirculation loss.  Most 

engineers assume a common loss profile for all machines that is representative of past 

experience.  A set of models that can be used to predict the impeller recirculation loss has 

been developed in this work, and are presented below.  These models were developed 

based on the understanding of how χ and δ2p vary off-BIP as described by the traverse 

data.  The impeller recirculation loss is modeled using two piecewise parabolas defined 
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by three control points, as shown in Figure 4-9.  PHIr is the ratio of the mass flow at each 

control point to the flow rate at Cpa,i = 0, Equation 25.  Wbf represent the magnitude of 

the impeller recirculation loss at each corresponding control point.  The suffixes Y, X and 

D indicate the control points at the high, low and nominal and mass flow points, 

respectively.  While a parabola may not be the best representation of the actual loss 

distribution in a machine, this approximation was made since there was insufficient data 

to better support any other theories.   
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Figure 4-9:  Graphical representation of variables used to define the IRL bucket 
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Accordingly, the point of minimum loss is assumed to be at PhirD.  PhirD is 

approximately 1, where Cpa,i and tip incidence are approximately 0, although there may 

be a few percent variation.  Equation 26 was developed following the same linear 

regression procedure detailed earlier, to model the point of minimum loss, PhirD.  It 

contains three separate independent variables, Row2pi, R1h/R1t, and exit solidity (SR), 

defined in Equation 27.  Figure 4-10 shows how the model for PhirD compares to the test 

results.   
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Figure 4-10:  Regression results for PHIrD 
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 Level 1 and 2 data are shown with solid dots and the class 3 and 4 data are shown 

with open circles.  The data were weighted following the same procedure as was used for 

the other cases.  The final model for PhirD is shown below in Equation 26, and the only 

previously undefined non-dimensional variable, SR, is defined in Equation 27. 

WbfD, or the level of minimum impeller recirculation loss, is set by the designer 

and should be near zero for most cases.  Two empirical models were developed to predict 

the values of wbfX and wbfY at the specified setting of PHIrX and PHIrY, respectively.  

The model for wbfX is shown as Equation 28 and the individual terms in the expression 

are arranged in order of decreasing significance.  The most important factors in the model 

are the rotation number, RotCAI, and the difference between user specified value of PHIrX 

and PHIrD.  The models for wbfX matched the test data with a mean standard error of 

nominally 0.09.   
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 The model for wbfY, Equation 29, predicts the magnitude of the impeller 

recirculation loss at high flow rates.  It is very similar to the model developed for wbfX.   
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The most significant terms in the model are the rotation number, RotCAI, and the 

difference between user specified value of PHIrY and PHIrD as was the case in Equation 

28.  The model for wbfY matched the test data with a mean standard error of nominally 

0.03.   

One additional application of the model for PHIrD (Equation 27) is in predicting 

the value of IBIP used in the off-BIP χ model (Equation 15).  While PHIrD represents the 

point where the impeller recirculation loss is a minimum, IBIP is the location of the 

minimum value of χ for a given speedline.  Although PHIrD is defined as the ratio of the 

flow rate at point of minimum impeller recirculation loss to design flow rate, and IBIP is 

expressed in degrees incidence, they each model the same point of minimum loss.  

Therefore, Equation 30 can be used to calculate IBIP from the predicted or model value of 

PHIrD.   
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Figure 4-11 compares the deduced value of IBIP to the inlet tip incidence at 

PHIrD, IPHIrD.  Some discrepancy exists between the value of IPHIrD and IBIP since they 

were calculated independently of each other within EasyControl.  PHIrD was selected to 

match the IRL bucket while IBIP was optimized to satisfy the objectives shown in Table 

2-3.  For most cases the comparison is very good, but some error can be seen at the 

extreme high and low values.  This error arises since IBIP was loosely constrained to be 

between –3 and +6° of incidence when calculated in EasyControl.  This constraint was 
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set to ensure that no irrationally large offset values were deduced from the test data.  This 

same constraint was used when predicting IBIP from the PHIrD model, Equation 26.   
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Figure 4-11:  Inlet tip incidence at PHIrD, IPHIrD, compared to IBIP 

4.6 Skin Friction 

To make a performance prediction of a complete stage, the losses in the vaneless 

diffuser space must also be calculated.  The Time-Cyclic diffuser model [22], and most 

others, requires the user to specify a model for the skin friction at the diffuser wall.  An 

empirical model to predict the skin friction on the wall in a vaneless diffuser was 
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developed from the database. The resulting model for skin friction in a vaneless diffuser, 

Equation 31, is structured similar to classical expressions of cf corresponding to flow over 

a flat plate.  The model is applicable for any length diffuser processed with the time 

cyclic model.  It can also be used with the Stantiz model, provided the diffuser is 

sufficiently long to have well mixed flow.  Equation 31 shows the final model for diffuser 

skin friction derived from both pump and compressor tests.   

 

3.0Re x
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It was recognized that the exponent in the denominator of Equation 31, of 0.3, is 

approaching what is commonly assumed in models of laminar flow, 0.5, and that a value 

of 0.15 – 0.2 would be more traditional for turbulent flows.  This value was set solely 

based on the available test data and was not intended to imply anything about the flow 

structure entering the diffuser, although it is believed to be turbulent for most cases 

included in this research.  Where the Reynold’s number, Rex, is defined in Equation 32.  

The velocity component is defined as the average of the inlet and exit diffuser velocities, 

C2m and C5.   
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The radial position, R5, is used to calculate the approximate flow path length, s, 

shown in Equation 33.  To estimate the flow path length also requires that the inlet flow 

angle, α2m, be specified, Equation 34.   
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In traditional models of skin friction in turbulent flow over a flat plate the 

numerator is a constant.  For diffuser data it was found that use of a constant numerator 

does not allow all of the test data to be matched sufficiently well.  Figure 4-12, shows the 

local skin friction calculated in the vaneless diffuser as a function of R5 for several 

different compressors.  The legend details the case name given to each compressor when 

it was added to the database, followed by the shaft speed in rev/min.  For example, the 

general distribution in cf that results indicate that each case is in general similar, and 

somewhat approximated by Equation 32.  The magnitude of cf for each case can be more 

accurately matched by varying the numerator, k, for each specific case. 

A change in the value of k shifts the cf curve, predicted with Equation 31, up or 

down proportionally. Equation 35 predicts how k varies for different machines based on 

several additional terms that characterize the flow entering the diffuser.  Seven variables 

are used in the final model.  
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Figure 4-12:  Calculated skin friction in the vaneless diffuser of several different centrifugal 
compressors 

The most important variables in predicting the value of k are the impeller exit 

aspect ratio, AS2 and s/b2.  The rotation number, RotCA, the secondary flow area ratio, ε, 

tip clearance to exit blade height ratio, Clr/B2, and the Mach number at the diffuser inlet, 

M2M, are also included in the model. 

 

( ) 122102927

54
2

21

118

6
3

2

kMkkk

kRotkb
sASkk

k
mB

Sk
B

Clr

k
CA

k
k

−⋅+⋅−⋅

+⋅−⋅+⎟
⎠
⎞⎜

⎝
⎛⋅⋅= ε

     ( 35 ) 

 

89 



 

 Since class 3 and 4 data does not include a measured pressure at the impeller exit, 

P2, the impeller performance cannot be separated from the diffuser.  Without a measured 

P2 the value of skin friction cannot be accurately deduced from the test data.  To avoid 

the error of building the model on inaccurate data, cases without a P2 were not included 

in the regression analysis.  Figure 4-13 shows the results for both sets of data.  The model 

for k matches the Level 1 and 2 test data with an R2 of approximately 0.75.  The error in 

matching the low quality data is much larger, but the model still predicts reasonable 

values for all cases in the database.  The lack of a P2 in the low class data is a critical 

weakness when developing models. 
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Figure 4-13:  cf Regression model results 
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4.7 Validation of Predictive Equations 

4.7.1 Impeller Diffuser Ratio, DR2 

A first validation that should be performed is to ensure that the system of 

predictive equations can accurately calculate the actual diffusion ratio (DR2) at the BIP.  

Predicting a correct value of DR2 is critical to accurately modeling the stage efficiency 

and pressure or head rise.  Figure 4-14 shows the value of DR2 calculated from the 

models developed during this project compared to the actual values obtained from the 

measured test data.   
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Figure 4-14:  Predicted DR2 compared to measured values 
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The models produce a reasonable match of DR2 within the range 0.9 to 1.35.  The 

predicted value of DR2 matched the measured value with an R2 of approximately 0.7 and 

a mean standard error of nominally 0.06.  The level 1 and level 2 data is well predicted 

for almost all cases.  The class 3 and 4 data show significantly more scatter, and make up 

the bulk of the outliers. 

4.7.2 Comparison to State-of-the Art 

Current state-of-the-art (SOA) modeling uses a combination of the Enhanced 

TEIS model to predict ηa and ηb, and single variable empirical models for χ and δ2p, 

Figure 2-6.  Predictions made using SOA modeling have been compared to those made 

with the models developed during this study.  Table 4-5 summarizes the accuracy of the 

separate modeling approaches for predicting the TEIS and Two-Zone modeling 

parameters.  Table 4-5 contains a row for each of the TEIS and Two-Zone modeling 

parameters, ηa, ηb, χ and δ2p.  The two columns compare the average error in predicting 

the modeling parameters for the database cases using the newly developed predictive 

models compared to the current SOA models.   

For the TEIS parameters a significant improvement was realized using the new 

models compared to the older Enhanced TEIS models.  The average error for ηa was 

reduced from 0.127 to 0.088 or approximately 30%.  An even greater improvement was 

made for predicting ηb.  The SOA models produced an average error of 0.616, and with 

the new model the average error is only 0.162.  This corresponds to a 70% reduction in 

prediction error.  One reason that such a dramatic increase in the prediction capability of 

ηb was realized is because the older Enhanced TEIS model uses a single value of ηb to 
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model an entire stage.  The new model, Equation 19, allows the value of ηb to vary with 

speed and flow characteristics to better match the test data. 

Table 4-5:  Performance of the new models compared to SOA predictions 

SOA models New Models
ηa 0.127 0.088
ηb 0.616 0.162
χ 0.080 0.081
δ2p (deg) 2.00 1.13

Average Error

 

 

While the Enhanced TEIS model seemed to produce sensible predictions for some 

cases, in others it performed very poorly.  This is likely because it was developed based 

on a significantly smaller dataset, thus the resulting models may be unstable if any of the 

input parameters are outside of the validated range.  A much larger and more diverse 

database was used in developing the new models that increases the statistical confidence 

in the resulting equations.   

Using the SOA method for calculating δ2p according to exit blade angle, the 

average prediction error was only 2º.  While this is generally an acceptable level of error, 

the new model further reduced it to just above 1º on average.  A much less noticeable 

improvement was made in modeling the χ at the BIP.  The new model for χ was no more 

accurate than the simple model based only on specific speed.  There are several possible 

explanations for why an improvement was not seen.  First, for most cases the simple 

model predicts a value of χ equal to 0.2 and the average value of χ found in the test data 

is 0.21 with a standard deviation of only 0.12.  Since there is not much range in the bulk 

of the test data the simple model can adequately predict it for most cases.   
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Second, the values of χ used in building Equation 26 were deduced from the test 

data using EasyControl.  Only in cases with traverse data could a value of χ be accurately 

determined.  In all other cases, the majority of the database, the solution was constrained 

using the model for δ2p, Equation 12, to allow a unique solution to be found.  

Consequently any error in the δ2p model will increase the error in predicting χ.  

Fortunately the overall performance prediction is dominated by ηa and ηb.  So some error 

in χ can be tolerated without significantly reducing the accuracy of the overall 

performance prediction.  

4.7.3 Prediction Performance and Comparisons 

The cases in the original database have been re-analyzed using the new models 

for ηa, ηb, χ, δ2p, IRL and cf to verify that they perform as intended when solved together 

inside the meanline code.  The performance comparisons were made using the meanline 

codes Compal and Pumpal.  The models for ηa, ηb, χ, δ2p, IRL and cf were solved 

simultaneously and the resulting modeling coefficients were used by the meanline code to 

predict the performance.  An iterative approach was necessary; since, as the modeling 

coefficients changed, so did some of the model inputs.  For example, the equation for χ 

includes the dimensionless specific speed, NS.  The specific speed is a function of head 

rise, which is strongly dependent on ηb.  Therefore, different values of ηb correlate to a 

different prediction of χ.  So, the variables in the individual models had to be carefully 

selected to ensure that the final system of equations would converge.  The validation 

cases demonstrated that the models converged quickly and reliably for all types of 

machines.  Validation cases included those used in the initial model building since the 
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resulting prediction of each individual variable will change based on difference in the 

flow parameters calculated with these variables. 

Following this approach, performance predictions were made for all of the 

machines in the original database, and a few additional cases that were not used in model 

building.  The combined pump and compressor model was used to predict ηa and ηb for 

all cases, unless otherwise noted.  The results of several of these tests are presented in this 

section.  The same basic performance parameters were evaluated in the validation effort 

as were considered in the overlay and compare procedure used to deduce the modeling 

variables.  This included DR2, which illustrates how well ηa and ηb have been predicted.  

Power, stage efficiency and pressure ratio are also presented since they are usually design 

goals.  The rotor efficiency is also shown to differentiate the performance of the models 

for the impeller compared to any downstream elements.   

The first case, Figure 4-15, is an open centrifugal impeller that was included in 

the original database.  A cartoon cross-section of the stage is shown in the lower right 

pane.  The impeller is shown in red, and the diffuser is shown in blue.  The reduced test 

data is shown as solid symbols and lines.  The model prediction is displayed with dashed 

lines and open symbols.  The models do an adequate job of matching the important 

design parameters and they produce a good match of the overall machine performance.  

The models matched the measured DR2 curve, which indicates that the prediction of ηa 

and ηb is accurate.  The trend in stage pressure ratio with flow rate is well captured, 

although the predicted magnitude is about 2.5% low.  Stage power is also predicted 

reasonably well at the low speeds with error becoming more apparent at the higher 
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speeds.  Some error exists in the prediction of stage efficiency at the off design 

conditions, but the peak value is predicted within 1% of the measured value.  
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Figure 4-15:  Performance prediction of a radial compressor case that was included in model 
building 
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Figure 4-16 contains four additional plots detailing additional measures of stage 

performance.  In the lower right pane the predicted impeller pressure ratio is shown to 

match the test data very well.  The prediction of impeller recirculation loss follows the 

general trend of the test data.   The data for the higher speedlines shows that the IRL is 2-

3 points above zero at the minimum.  The model assumes that each speedline has a 

minimum at zero.  This difference contributed to the error in the predicted rotor 

efficiency seen in Figure 4-15.   
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Figure 4-16:  Additional performance calculations of a radial compressor case that was included in 
model building 
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The upper right and left panes show the diffuser loss and pressure recovery 

coefficient, LC and CP, respectively.  LC is defined as the total pressure drop through the 

diffuser divided by the inlet total pressure minus the inlet static pressure.  CP is defined 

as the static pressure rise through the diffuser divided by the inlet total pressure minus the 

inlet static pressure.  For this case the diffuser losses are slightly over-estimated, resulting 

in an under-prediction of the stage pressure ratio.  Some error exists in the prediction of 

LC and CP, which are based on a constant cf value, although this modeling coefficient 

may vary with flow.  

The second case considered for comparison is also a centrifugal impeller that was 

included in the database used for model development.  Figure 4-17 shows the same set of 

plots that were presented for the previous validation case.  Again, the reduced test data is 

shown as solid symbols and lines while the model prediction is displayed with dashed 

lines and open symbols.  From the plot of DR2 and DR2I, in the lower left, we can 

determine that ηa has been accurately predicted since the slope is approximately correct.  

It is also evident that ηb has been slightly over predicted since the predicted value of DR2 

is higher than the test data indicates.  The error in ηb appears to be most significant for 

the lower speedlines.  However the magnitude of error is relatively small, less than 0.05, 

so the overall performance prediction is still quite accurate.  The upper left plot, in Figure 

4-17, show that the overall stage pressure ratio data was well matched for all operating 

speeds by the new models.  This would not have been possible without allowing ηb to 

vary between speedlines, as the new ηb model allows.  The combined model for ηb has 

shown that it typically produced results that follow the observed trend of decreasing ηb at 

off-design speeds.  In the upper right pane is a plot of stage efficiency vs. flow rate.  The 

98 



 

position of peak efficiency is accurately modeled, but the magnitude is underestimated by 

2% to 4%.   
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Figure 4-17:  Prediction of a radial compressor performance for a case included in model building 
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 Although stage efficiency is under-predicted, the rotor efficiency is over-

predicted.  Figure 4-18 shows plots of four additional performance parameters that help 

identify the cause of the error in prediction of stage performance.  In the lower left pane 

the impeller recirculation is shown.  In this case, the minimum point on the model bucket 

closely matches the flow rate where the minimum losses in the data were measured and 

the magnitude of the losses is correct. 
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Figure 4-18:  Additional predictions of the performance of a radial compressor case included in 
model building 
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In the lower right pane the impeller pressure ratio is plotted.  The model 

prediction over-predicts the pressure ratio by about 5%, which is similar to the error in 

prediction of DR2.  In the upper left pane is a plot a diffuser pressure recovery, CP, and in 

the upper right pane is shown the corresponding loss coefficient, LC.  The LC is 

significantly over-predicted, due to the model over prediction of cf, which results in a low 

prediction of stage efficiency. 

Figure 4-19 shows the combined models prediction for a covered pump.  This 

case was included in the database and was used in model building.  The same set of 

variables as those shown for the first two cases are shown again here.  Although in this 

case, the stage pressure ratio plot has been replaced with a plot of total dynamic head, 

TDH, a common measure of pump performance.  Again the data is shown with solid lines 

and the prediction with dashed lines.  In the lower left is a plot of DR2 vs DR2I.  Since the 

model matched the slope and magnitude of the DR2 curve we can assume that ηa and ηb 

were accurately predicted.  The DRstall value was set manually to match the test data at 

high values of DR2.  The peak stage and rotor efficiency is predicted within about 1% of 

the actual value, but the model slightly under-predicts the level of efficiency at low flow.  

The upper left plot shows that the slope of the head rise curve, TDH, is well matched and 

only about 5% error at the highest and lowest flows.  The predicted power, middle plot on 

the left, shows the correct magnitude, but the slope of the curve does not exactly match 

the measured data.  This error corresponds to the error in the predicted rotor efficiency of 

off-BIP conditions. 
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Figure 4-19:  Performance prediction of a radial pump case that was included in model building 
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 As with the other validation cases, four additional plots of stage performance are 

included in Figure 4-20.  The impeller head rise is matched within 10% of the test data.  

The diffuser CP and LC are calculated from the impeller exit to the entry of the 180º 

bend.  The losses in the first diffuser are slightly over estimated, resulting in an under-

prediction of the stage total-to-static efficiency, seen in the upper right pane of Figure 

4-19.  The magnitude of the impeller recirculation loss is well modeled, lower left pane, 

but the bucket is shifted slightly to higher flow than seen in the test data.  This shifts the 

predicted peak rotor efficiency to a higher flow rate too.   
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Figure 4-20:  Additional performance predictions of the radial pump shown in Figure 4-19 
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  The case compared in Figure 4-21 was not included in the database from which 

the models were developed.  This case is an unshrouded radial compressor with a specific 

speed of 0.97 and was tested with an unpinched vaneless diffuser and a collector.  Data 

from three separate speedlines has been reduced and compared to model predictions.  The 

plot of DR2 vs. DR2I shows that the models significantly under-predict the level of DR2.  

Since the slope of the DR2 data is accurately matched, the prediction of ηa is 

approximately correct.  While the slope is correct the magnitude of DR2 is incorrect, 

which implies that the prediction of ηb is low.  The error in ηb seems to increase with 

increasing speed, and the error in DR2 is greatest at the highest speedlines.  The models 

yield a prediction of the peak rotor efficiency that is within 1% of the measured value for 

all but the lowest speedline.  The error in predicted stage efficiency is slightly worse than 

for the rotor alone.  While the peak efficiency is well matched at the middle speedline, it 

is off by +2% and -2% at the low and high speedlines, respectively.  At the low and mid 

speedline the pressure ratio, shown in the upper left, is predicted within 5% but the error 

is much larger at the highest speedline due to the error in ηb at for these points.   

The model prediction of four additional performance measures are shown in 

Figure 4-22, and compared to the measured data.  In the upper right and left panes, 

respectively, the diffuser CP and LC are shown.  The data for this case shows much 

higher losses than the model predicted.  One possible reason that the losses are larger 

than predicted is because the diffuser is unpinched, which is not common and was not a 

layout that was included in the database that the cf model was developed from.  The 

impeller recirculation loss is compared to the test data in the lower left pane.  Again, the 

magnitude is approximately correct, but the minimum point is not well predicted.   
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Figure 4-21:  Performance prediction of a radial compressor case that was not included in original 
database 
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 The last comparison plot shown in Figure 4-22, impeller pressure ratio, is shown 

in the lower right pane.  For the lower two speedlines the model produces and acceptable 

prediction of the pressure rise.  For the highest speedline the error becomes much larger.  

This same trend can be seen in the plot of DR2 vs. DR2i, show in the lower left of Figure 

4-21.  The error in DR2 is directly due to errors in the prediction of ηa and ηb, which are 

most severe at the highest speed. 
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Figure 4-22:  Additional performance calculations for a radial compressor case that was not included 
in original database 
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The Enhanced TEIS models were also run on this case to evaluate their 

performance, in comparison to the new models.  The Enhanced TEIS models produced a 

prediction that under-estimated the design point efficiency by more than 20%, and the 

pressure ratio by 30%.  This compares to an error from the new models of 5% and 4% for 

the stage efficiency and pressure ratio, respectively.  In this case, the new models are a 

significant improvement over the Enhanced TEIS model and produce a much more 

accurate estimate of the stage performance. 

The results of the initial validation effort confirmed two important facts about the 

models.  First, it was shown that the system of equations can be solved simultaneously 

and will consistently converge to yield valid predictions of the model coefficients.  This 

required that the variables in the individual models be sufficiently independent from each 

other that small changes in one would not result in large variations in another while 

converging to a solution.  Second, it was shown that when applied together, the models 

can estimate the performance of a wide variety of machines, including some not included 

in the original dataset more accurately than with previous models.  At this time only the 

combined models have been studied in detail, but the pump and compressor models 

should converge equally well since they rely primarily on the same variables. 



 

5  Conclusions and Recommendations 

5.1 Conclusions 

Empirical models to predict the TEIS and Two-zone modeling parameters have 

been developed based on test data for a wide range of centrifugal pumps and 

compressors.  The test data were provided by ConceptsNREC, and a large portion of the 

cases was both designed and tested by them.  The test data were then reviewed and 

classified according to the type and quality of measurements collected.  A weighting 

factor was associated with the different classifications.  Regression models were 

developed using the weighting factor so that matching the performance of the high 

quality data, where there is less uncertainty, was given higher priority.  For the TEIS 

parameters, ηa and ηb, the new models are 30% and 70%, respectively, more accurate 

than the current state-of-the-art models, as detailed in Table 4-5.  One enhancement that 

allowed improvement on current state-of-the-art predictions was to allow the TEIS 

modeling parameters to vary with individual speedlines.  This greatly improved the 

quality of match for off-design compressor speedlines.   

Several contributions were also made to improve the modeling of the Two-Zone 

parameters.  First, it was recognized that unique values of χ and δ2p could not be 

identified using only static pressure data.  The actual values of χ and δ2p can only be 
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determined based on impeller exit traverse data.  From the traverse data, both BIP and 

off-BIP values of the two-zone parameters were identified.  For the first time, data were 

available showing how χ and δ2p vary at off-design conditions.  Based on this data, 

models were developed to account for the off-BIP variation in χ and δ2p.  Modeling the 

off-BIP variation allows the losses in the impeller passage to be more accurately defined, 

instead of simply assuming all the additional off-BIP losses were due to recirculation. 

Based on the results of the off-BIP χ and δ2p correlations, a model was developed 

to define the impeller recirculation loss bucket.  Until now the impeller recirculation loss 

was estimated using a default bucket profile that was applied to all cases.  The impeller 

recirculation loss models predict a bucket shape that is dependent on the specific 

geometry and flow of the machine being analyzed.  A model was also developed to 

identify the flow rate, or incidence, where the losses are a minimum.  Accurately 

predicting this point of minimal losses allows the point of peak rotor and stage efficiency 

to be correctly estimated. 

Finally, an improved model was developed to predict the skin friction in the 

vaneless diffuser.  This model was developed based on the results of detailed diffuser 

measurements that were matched in the meanline code using an advanced time-cyclic 

calculation.  The time cyclic model can accurately calculate the properties in a vaneless 

diffuser in the entry region where the flow is not mixed.  With this model, and the new cf 

correlation, good prediction of any length vaneless diffuser can be made.   

The combined set of models developed by this project specify all of the modeling 

parameters necessary to predict the performance of an impeller and can be applied to a 

wide range of cases.  The current state-of-the-art models still require several parameters 
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to be defined by the user and are applicable to such a small range of cases that they 

cannot be effectively used in engineering design. 

5.2 Recommendations 

All of the models developed for use in predicting stage performance exceeded the 

accuracy of the state-of-the-art models with the exception of χ−BIP.  To improve the 

accuracy of this prediction even further, a wider base of cases should be collected to base 

the regression model on.  This should include primarily traverse data so that the Two-

Zone parameters can be accurately modeled.  It would also be desirable to include cases 

where the measured χ value is large.  Most of the traverse cases available currently have 

χ values in the range of 0.2.  Low specific speed cases with traverse data may indicate 

higher values and give greater range to the database. 

This work has laid the foundation for additional work in applying the TEIS and 

Two-Zone models to other vaned elements.  Some preliminary work was done at 

ConceptsNREC to explore the application of the TEIS and Two-Zone models to various 

diffuser vanes.  This was further explored in another thesis project conducted in parallel 

with this study by Bitter at Brigham Young University (BYU) [28].  This work 

approached processing the data and modeling various diffuser vanes in a similar manner 

to that presented in this thesis.  The conclusion of this work also produced complex 

mathematical models to predict, ηa, ηb, χ and δ2p based on geometric and flow variables 

to represent the flow in the diffusers.  To simplify the task of modeling the diffuser, the 

performance of the rotor was assumed to be fixed at a level deduced from vaneless 
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diffuser tests.  The merits of Bitter’s work cannot be fully realized until further work is 

done to account for impeller-diffuser interactions.   

It would also be valuable to further examine the physical phenomena that govern 

the structure of the models used to predict the TEIS and Two-Zone modeling parameters.  

A continued effort should be made to add additional cases to the data and further validate 

the existing models and improve them if necessary.  The most valuable test data to collect 

would be traverse data that can be used to deduce all of the relevant modeling parameters. 
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