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ABSTRACT 

 
 

A GEOMETRY-BASED MOTION PLANNER FOR  

DIRECT MACHINING AND CONTROL 

 
 

Robert Marshall Cheatham 

Department of Mechanical Engineering 

Master of Science 

 
 
Direct Machining And Control (DMAC) is a new method of controlling machine tools 

directly from process planning software.  A motion planning module is developed for the 

DMAC system that operates directly off path geometry without pre-tessellation.  The 

motion planner is developed with the intent to process Bezier curves.  The motion 

planning module includes a deterministic predictor-corrector-type curve interpolator, a 

dynamics limiting module, and a two-pass jerk-limited speed profiling algorithm.  The 

methods are verified by machining an automotive surface in a clay medium and 

evaluating the resultant machine dynamics, feed rate, and chordal error throughout the 

machining process. 
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1 INTRODUCTION 
 
 

1.1 DIRECT MACHINING AND CONTROL 

Direct Machining And Control (DMAC) is a new method of controlling machine tools [1, 

20]. Developed at Brigham Young University, DMAC is designed to make 

manufacturing processes CAD-centric as opposed to the current ASCII-based, M&G 

code-centric process. The DMAC concept provides for an open-architecture PC software 

controller. One of the unique differences between DMAC and traditional machine control 

is that the process planning software (CAD/CAM systems, robotic simulation software, 

coordinate measuring software, process optimization software, etc.) resides on the same 

computer as the machine control software.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Controlling PC 

CPU 1 CPU 2

Process Planning 
Software 

DMAC API 
USER INTERFACES Servo Loops 

Motion Planning 

DMAC Controller

Motors

Commands 
Geometry 

Figure 1.1.  DMAC Architecture 
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The DMAC controller consists of a dual processor or dual core computer running two 

operating systems, currently Windows XP and Ardence RTX. One processor runs 

Windows and the process planning software while the other runs RTX and the DMAC 

control software (Fig. 1.1).  Running these two operating systems simultaneously is 

necessary because the most common process planning software packages support the 

Windows operating system, but Windows does not provide a real time control capability.  

This is provided by RTX, where the control portion of DMAC is housed.  These 

operating systems are linked by shared memory. Thus the process planning software can 

be linked directly to the machine tool. Information in the form of tool paths, I/O 

commands, machine states, and sensor readings are passed between the process planning 

software and the controller via function calls and shared memory.  This gives real time 

decision-making capability to process planning and factory control software so that 

changes can be made at the process plan level while the job is in-process.  Also, since 

manufacturing operations are controlled directly from the process plan there is no 

disassociation from the original part file.  No translation is necessary so the data remains 

in its native format and no error is introduced. 

 

This is in contrast to the current industry standard of M&G code, as illustrated in Fig. 1.2. 

Controllers adhering to M&G code standards accept process steps and sequences in the 

form of ASCII block-formatted commands.  These process steps consist of mechanism 

commands, such as speed, coolant flow, and tool changes, and movement commands that 

consist of tessellated geometry – line segments and arcs.  The tessellated moves require 
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blending to achieve smooth motion.  For contouring operations in particular, some 

controllers refit the tessellated tool paths with splines as a preprocessing operation.  

 

A weakness in this methodology is that once the ASCII files are generated, they are no 

longer associated with the original process plan.  No information or changes can flow to 

or from the original process plan without regeneration of the ASCII file or manual 

intervention.  This is strictly a unidirectional data flow. Another weakness is that the 

tessellated geometry does not reflect the native geometric data in the process plan, since 

many process planning systems store their tool paths as splines such as NURBS. Upon 

postprocess, these splines are tessellated to work with the M&G code standard. The 

refitting of tessellated moves by the controller (discussed above) introduces error and 

further disassociates the manufacturing operation from the original CAD model and 

process plan. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ASCII 
File 

Process Planning 
Software Refitting 

Motion Planning 

Servo Loops 

M&G Code ControllerMotors 

Disassociation

Figure 1.2.  M&G code architecture. 
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Direct Control uses the native process geometry (splines, lines, arcs, etc.). This maintains 

the original manufacturing intent and also gives the process planning system an 

additional degree of control over the machine motion. Many spline generation methods 

have been developed for achieving smooth motion, but Direct Control allows the process 

planning software to choose a spline generation method that is best suited to the 

application. 

 

1.2 THESIS TOPIC 

A typical machine controller architecture is shown in Fig. 1.3.  Path geometry is input 

into the controller, which is then pre-processed and fed into the motion planner.  The 

motion planner generates position commands and feeds them to the servo controller, 

which generates the proper commands for the amplifiers and motors. 

 

This thesis will develop a working parametric curve module for the DMAC controller’s 

motion planner.  Specifically, this module will be applicable to parametric polynomial 

curves such as Bezier and NURBS curves.  The philosophy behind Direct Machining is 

to use the actual geometry provided by the process planning software.  Therefore the 

parametric curve module will be completely geometry-based, meaning there is no pre-

tessellation of the curves into linear segments. 

 

1.2.1 BEZIER-BASED APPROACH 

NURBS curves are the dominant curve definition used in today’s CAD/CAM systems.  

However, Bezier curves offer cleaner algebraic expressions and simpler algorithms than 



 

 5  

NURBS curves.  This thesis will therefore develop algorithms with reference to Bezier 

curves.  Little is lost in this approach since algorithms for Bezier curves can be 

generalized for NURBS by readers experienced in computer-aided geometry.  

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1.3 CONTRIBUTIONS 

Traditional control methods rely on pre-tessellation of the data, where the original 

geometric entities are discarded after being digitized into a set of points.  This tessellated 

Path Entities 
Machine Commands 

Preprocessor and Translator 

Settings & User Input 

Servo Control 

Motors 

Amplifiers 

Motion Planner 

Lines, arcs, curves, commands 

Joint set points

Prepared data

Torque commands 

voltage/current

Figure 1.3.  Typical controller architecture. 
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data is then loaded into large buffers known as look-ahead buffers, and the motion 

planned over the tessellated points.  This thesis will explore the nuances of planning 

motion directly on path geometry and will present methods to solve the associated 

problems. 

 

Currently no papers deal satisfactorily with operating directly on parametric path 

geometry.  A complete method is necessary to account for the complexities that develop 

due to interactions between the various elements in a motion planner including speed 

profiles, dynamics, path accuracy, and accurate feed rate.  Most path-following papers 

deal with only one of these aspects individually, and nearly all ignore motion dynamics.  

This thesis will develop methods for path-following that integrate all necessary elements 

of a motion planner, comprised of 3 main parts: 

 

1) A stable predictor-corrector for selecting the appropriate evaluation point 

of the curve.  This is necessary due to the difficulty of predicting the 

parameter associated with a specific length along a parametric curve.  

Current algorithms in the literature can have low convergence rates and 

are mainly extrapolative.  These extrapolations are inherently unstable and 

can cause errors in the prediction process unless additional constraints or 

stable correction methods are used.  Fig. 1.4 illustrates this, where the use 

of Lagrange interpolation to generate a prediction curve yields a 

decreasing region.  The predictor-corrector will be verified by plotting the 

feed rate errors for motion along a process plan. 
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2) A reliable and accurate speed profiler to maintain controlled motion.  This 

is necessary because current algorithms only consider a simple speed 

profile over a single move and do not account for dynamics.  With current 

methods, situations quickly develop where a feasible speed profile cannot 

be generated.  Fig. 1.5 illustrates this condition, where the third profile 

segment cannot decrease speed enough to reach the allowable speed for 

the following segment.  The speed profiler will be verified by plotting the 

tool speed along a process plan along with the desired and allowable 

speeds. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.4.  Extrapolative prediction method doubling back on 
itself.  
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3) An approach to motion dynamics and path accuracy that keeps the speed, 

acceleration, and jerk of machine axes within set limits.  This will be 

verified by plotting the machine dynamics and chordal error along a 

process plan. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1.4 DELIMITATIONS  

This thesis will focus on 3-axis milling; 5-axis methods will not be considered.  Also, the 

thesis will follow the provided paths, meaning that no methods will be devoted to curve 

generation, path smoothing, or blending between paths. 

 

Since this thesis explores new subject matter, the focus will be on finding stable methods 

that work and are reasonably fast.  The development of more advanced methods will be 

left to future research. 

Figure 1.5.  Infeasible speed profile caused by violation of allowable 
speed.  

Allowable Speed V 

t 
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1.5 VERIFICATION OF METHODS 

An automotive body panel will be 3-axis machined in a clay medium on BYU’s Tarus 

styling mill.  Since the motion waypoints will always be located exactly on the tool paths, 

the motion is assumed to be accurate.  The main concern is maintaining speed and 

respecting motion dynamics.  Therefore, this panel will only be visually inspected for 

surface quality.  During the machining process, data will be collected concerning the feed 

rate error, tool speed, machine dynamics, and chordal error.  The three main portions of 

the path following methods will be verified by: 

 

1) Inspecting the results for the feed rate error.  If these results are within the 

allowable feed rate error, the predictor-corrector method is acceptable. 

 

2) Inspecting the tool speed, machine dynamics, and chordal error for the 

process plan.  If the tool speeds do not violate the allowable speeds and 

hold the desired speed well, the machine dynamics are kept within bounds, 

and the chordal error is kept within the machining tolerance, then the 

speed profiling and motion dynamics methods are acceptable. 
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2 BACKGROUND 
 
 

The first computer-controlled (Numerically Controlled or NC) machine tool came online 

in 1952 at the MIT Servomechanisms Laboratory.  This machine was the result of a 

project commissioned by the Parsons Aircraft Company and supported and funded as a 

US Air Force project.  This machine was the fulfillment of a need for a machine control 

system that could manufacture the increasingly complex parts used in aircraft. 

 

This first machine controller accepted command inputs from punched tape.  These 

commands were discrete machine commands such as “spindle on.”  Motion commands 

were simple “goto” commands.  The servo algorithms were simple chaser algorithms that 

attempted to move the servo motors to the next point.   

 

Since there were no algorithms to slow the machine, this would result in overshoot after 

the machine reached the desired point, and the machine would oscillate as the controller 

attempted to settle onto the point.  This effect could be minimized by breaking long lines 

into shorter segments and specifying decreasing speeds near the end of the movement 

[25].  However, this process was time-consuming and increased the size of part programs 

resulting in greater data storage and processing needs. 
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Motion planning modules were developed to remove the burden of ensuring proper 

acceleration and deceleration from the part program and place it on the controller.  This 

was again accomplished by breaking long lines into shorter segments, but motion 

planners accomplished this online and at much finer resolutions.  Motion planners also 

enabled the controller to process curves such as conics and parametric curves. 

 

By the early 1970’s, NC machines had been combined with microprocessor technology to 

form Computer Numerically Controlled (CNC) machines.  These new controllers could 

read in an entire part program and store it in memory [16].  This allowed for faster 

execution of the program, yielding higher feed rates and better accuracy.  CNC machines 

also had simple motion planners, resulting in better feed rate control and better control of 

overshoot. 

 

These first motion planners were simple, consisting of interpolators and basic 

acceleration/deceleration algorithms.  Interpolators discretized the moves to yield specific 

positions for the motors to go to.  The accel/decel algorithms helped to regulate forces on 

the motors and power transmission assemblies [16]. 

 

The remainder of this chapter describes the historical development of motion planning 

algorithms.  Section 2.1 explains the development of curve interpolation methods.  

Section 2.2 follows the development of speed control methods.  Section 2.3 describes the 

methods for limiting basic motion dynamics. 
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2.1 CURVE INTERPOLATION 

NC and CNC machine controllers are digital.  This means that the motors are controlled 

at finite time intervals.  Waypoints are provided by the motion planner’s interpolation 

module to the servo controller at a specified frequency.  The frequency, position, and 

spacing of these waypoints determine the motion and speed of the machine.  Correct 

spacing of the waypoints along a path is critical for maintaining path accuracy, proper 

tool speed, and acceptable machine dynamics.   

 

Section 2.1.1 explains the two basic types of interpolation modules.  Section 2.1.2 

follows the development of interpolation techniques for parametric curves. 

 

2.1.1 THE TWO TYPES OF CURVE INTERPOLATORS 

In machining control methods, there are two main types of curve interpolators: reference-

pulse interpolators and reference-word (also referred to as sampled-data) interpolators.  

To understand these, the concept of a basic-length unit (BLU) must be explained.  BLU 

refers to the resolution of the controller for an individual axis.  For a controller with n bits 

of resolution and an axis travel L, the BLU is 

 

 
n2

LBLU =  (2.1) 

 

Reference-pulse interpolators work on a timed clock cycle.  For every cycle of the 

interpolator, the output for each axis is either a one or a zero.  If the output is a zero, the 
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axis is held steady.  If the output is a one, the axis is incremented by one BLU.  

Reference-pulse interpolators are usually used in open-loop control (no feedback) in 

concert with stepper motors.  Since reference-pulse interpolators can only increment the 

axis by one BLU per cycle, the maximum speed an axis can be moved is 

 

 BLUfVmax ⋅=  (2.2) 

 

where f is the frequency at which the interpolator is executed [16].  The most commonly 

used reference-pulse interpolator is the digital differential analyzer (DDA) due to its 

ability to hold uniform velocity around a circular arc [17]. 

 

Reference-word interpolators, such as the Tustin Method for circular arcs [16], are able to 

hold higher speeds due to the fact that they can generate a target at any point along a 

path.  This effectively allows them to specify motion at any velocity.  Whereas the 

velocity of machines controlled with reference-pulse interpolators is typically controller-

limited, the velocity of machines controlled with reference-word interpolators is limited 

by the capabilities of the motors and transmission systems on the machine.  Reference-

word-type interpolators are used for today’s parametric curve interpolation modules. 

 

2.1.2 PARAMETRIC INTERPOLATORS 

With Bezier curves, the difficulty lies in reconciling the highly nonlinear relationship (see 

Farouki [10]) between the parameter and the arc length along the curve.  This aspect of 

Bezier- and NURBS-based machining has received the most discussion in the literature.  
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The correct parameter must be selected based on a desired arc length along the curve.  

The parameter is then used to evaluate the curve yielding the waypoint. 

 

Most papers use extrapolative techniques to predict the necessary parameter.  Horsch and 

Jüttler [13] used a tangent-based method with parameter correction supplied by the 

Regula Falsi method. Yang and Kong [37] use either tangent-magnitude or second-order  

derivatives to do the prediction.  Taylor expansions were used by Zhang and Greenway 

[42], Shpitalni et al. [30], Yeh and Hsu [39], Tsai and Cheng [32] to do the prediction.  

Yeh and Hsu [39] used a second Taylor expansion to correct for the parameter error.  

Tsai and Cheng [32] developed an analysis of the convergence rate of their algorithm. 

 

Interpolation-based approaches are also used.  Günter and Parent [12] devised a lookup 

table method that calculates arc length by Gaussian Quadrature.  They divide the curve 

into several intervals based on the accuracy of the quadrature method and, given an arc 

length, perform Newton-Raphson iteration on the subinterval to find the corresponding 

parameter.  Yang and Red [38] combined the algorithm of Günter and Parent [12] with a 

predictor-corrector based on an extrapolative Lagrange curve predictor and a Taylor 

series-based corrector.  Bemporad et al. [2] use an algorithm to get an upper bound on the 

parameter and then do a binary search until the available calculation time is exhausted 

 

Other methods (Wang and Yang [35], Farouki and Shah [11]) use their own curve 

definitions to make the correlation between arc length and parameter easier.  These 

algorithms are not transferable to general Beziers. 



 

 16  

2.2 SPEED PROFILES 

Regulation and planning of the tool speed is done through speed profiles, which are 

mathematical descriptions of speed as a function of time.  The two most common speed 

profiles are the trapezoidal profile, which is a piecewise linear curve that yields velocity 

continuity, and the s-curve profile, which is a piecewise quadratic curve that yields 

velocity and acceleration continuity.  Fig. 2.1 gives simple examples of these two 

profiles.  Fig. 2.1a shows the trapezoidal profile, Fig. 2.1b shows the accompanying 

acceleration profile.  Figs. 2.1c through 2.1e show the s-curve profile with the 

accompanying acceleration and jerk profiles (jerk is the time derivative of acceleration). 

 

As an example of how speed profiles are used, a line of length SL is to be traversed, 

starting and ending at rest, using a desired speed Vd and desired acceleration Ad with a 

trapezoidal speed profile.  In order to traverse the line in a controlled fashion, a speed 

profile must be constructed such that the area under the speed profile is equal to SL.  This 

is illustrated in Fig. 2.2.  The speed profiler attempts to reach Vd using the acceleration 

rate Ad.  If it is possible to accelerate to Vd and decelerate to zero in the length available 

(i.e. the length SP required to traverse the speed profile is less than SL), as in Fig. 2.2a, the 

speed profiler then adds a constant speed portion sufficient to cover the remaining length 

(Fig. 2.2b).  If it is not possible to reach Vd within SL, the speed profiler achieves the 

highest speed possible within SL (Fig. 2.2c). 
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Figure 2.1.  Trapezoidal and s-curve speed profiles. 
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The same basic process outlined above must be done for all the moves in a process plan.  

The difference being that the speed does not begin and end at zero for each move 

segment.  Additionally, each move can have a different desired speed and length and the 

speed that the machine can traverse each segment can vary.  A machine controller must 

successfully generate speed profiles on-line while maintaining smooth, continuous 

motion.  Most of the literature on this subject is relatively basic, showing how to set up 

Figure 2.2.  Construction of a simple speed profile. 
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simple profiles but not discussing the intricate logic needed to robustly define useable 

profiles over multiple moves of varying length and dynamic requirements, such as those 

found in machining process plans. 

 

Using jerk limited profiles, Red [24], Erkorkmaz and Altintas [8], and Nam and Yang 

[22] show how to compute the distance it takes to achieve a speed given a starting speed 

and simultaneously calculate the profile.  Each of these papers takes a different approach 

but they all end up doing about the same thing, with Red [24] taking it one step further to 

allow for nonzero starting acceleration. 

 

Recent research has been focused on generating optimal or near-optimal speed profiles 

for single moves, meaning that the process plan is executed as quickly as possible, 

subject to process constraints and the dynamic limitations of a given machine.  Renton 

and Elbestawi [24] developed a two-pass algorithm that determines a minimum time 

speed profile subject to speed and acceleration constraints.  The method is 

computationally expensive and determines the speed profile in the parametric domain.  

Dong and Stori [7] extended Renton and Elbestawi’s method to account for and limit the 

effects of actuator limitations on contour error during path following.  Timar et al. [31] 

developed a method for time-optimal speed profiles for single moves subject to speed and 

acceleration constraints.  The method develops piecewise rational functions which are the 

square of the time-optimal feed rate. 
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2.3 LIMITING DYNAMICS 

Closely related to speed profiling is the limiting of machine dynamics.  Speed, 

acceleration, and jerk must be modulated appropriately to keep the forces on the machine, 

tool, and workpiece within required parameters and to control vibration.  This is a 

difficult topic, and most papers on NURBS control avoid it completely. 

 

Liu et al. [21] used a look-ahead buffer of set points and a Fast Fourier Transform to 

detect high jerks.  They then smooth out the movement to correct for the excessive 

dynamics.  This method is not completely geometry-based since it requires pre-

tessellation.  It only applies to instantaneous jerks such as corners and does not apply to 

jerk encountered in smooth portions of a path.  Chou and Yang [6] derive the kinematics 

of motion for a NURBS tool path and relate them to the dynamics of a 3-axis machine 

tool.  Yang and Chou [36] show how to analyze the resultant dynamics imposed on a 

machine tool when applying a given speed profile to a path. 
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3 METHOD: PARAMETER SELECTION 
 
 

This chapter presents a method for choosing a parameter value that is associated with a 

specified length along a curve.  Choosing a correct parameter value is necessary to ensure 

the desired speed is being followed, to maintain smooth motion, and to avoid unnecessary 

forces and vibrations.  Two questions are immediately apparent.  Should speed be 

controlled according to arc length or according to the actual point-to-point distance 

traveled by the tool, and what performance requirements are necessary for the method? 

 

As shown in Fig. 1.3, the motion planner outputs set points to the servo control.  The 

purpose of the servo control module is to track these set points while automatically 

compensating for unmodeled system dynamics and external inputs such as resistance to 

the tool, mechanism friction, and workpiece inertia.   

 

Modern servo control is done in a point-to-point, or tessellated, fashion.  The servo 

controller attempts to follow the set points in straight-line motions.  This differs from the 

ideal curvilinear motion.  It is therefore logical to inquire if the speed should be 

controlled based on curvilinear distance between set points or on the straight-line distance 

between set points.  The straight-line distance will yield a more accurate speed, while the 

curvilinear distance will yield a slightly lower-than-expected actual speed, due to the fact 

that the curvilinear distance is equal to or higher than the straight-line distance.  From this 
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point of view it is appealing to use the straight-line distance, but another problem is more 

critical. 

 

Speed profiles (see Chapter 4) govern the rate at which each move segment is traversed.  

These are computed using the curvilinear distance of the move segment.  If straight-line 

distance is used to control speed, the end of the move will be reached before the speed 

profile is complete.  This causes speed discontinuities at the junctions between move 

segments.  Using curvilinear distance will allow for continuous speed transitions and will 

maintain smooth motion.  Therefore the curvilinear distance is used to control speed. 

 

The selection of a method for choosing parameter values must take into account the real-

time nature of machine control.  The servo control operates on a timer, accepting set 

point data from the motion planner at a specified frequency.  The set points must arrive 

on time since the servo control is always trying to move to the most recent set point.  If 

the next set point does not arrive, the servo control will attempt to maintain the most 

recent commanded position, essentially bringing motion to a halt in a single time step.  

When the next set point finally arrives, the servo control will attempt to continue motion 

at the previous speed, causing high accelerations.  These rapid changes stress the 

mechanism, causing premature wear, disrupt the manufacturing process, and can cause 

catastrophic damage in the worst case.  The algorithms used to select the parameter must 

therefore be bounded so a timer frequency can be selected.  Higher frequencies will yield 

a denser tessellation of the curve, giving better resolution to the servo control and 
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resulting in smoother motion and better tracking of the curve.  It is therefore desirable to 

have a fast algorithm with a known maximum computation time. 

 

Section 3.1 explains the difficulties associated with choosing the correct parameter.  The 

nonlinearities involved in the calculations are presented with a brief discussion of the 

requirements for an effective algorithm.  Section 3.2 presents the method for choosing the 

correct parameter. 

 

3.1 THE NONLINEAR PROBLEM 

With parametric curves such as Bezier and NURBS curves, the relationship between the 

parameter and the length along the curve is nonlinear (see Farouki [10]).  Fig. 3.1 

illustrates this, showing the variation of the parametric-Cartesian speed relation (ratio of 

change in length to change in parameter) for the Bezier curve shown in Fig. 3.2, whose 

control points are listed in Table 3.1.  Specifically, the speed at which a curve is traversed 

is related to the speed at which the parameter domain is traversed by 

 

 ( )uuSV &′=  (3.1) 

 

where 

 

 ( ) )u(uS P′=′  (3.2) 
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Control Point # X Y Z 

1 1 2 2 

2 2 5 78 

3 4 6 3 

4 5 3 4 
 

 

So if the Bezier curve in Fig. 3.2 is defined in millimeters and the curve is traversed at a 

constant parametric rate of S1u =& , then the Cartesian speed varies between a maximum of 

230 mm/s and a minimum of 6 mm/s.   

 

Parametric-Cartesian Speed Relation S'(u)
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Figure 3.1.  Nonlinear relationship between parameter u and 
parametric-Cartesian speed ratio. 

Table 3.1.  Cartesian coordinates of control points for example Bezier curve. 
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Figure 3.2.  Example Bezier curve with control polygon. 
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In digital motion control, points along a path are specified at discrete time intervals.  To 

specify a point Pi on a parametric curve P(u) such as a NURBS or Bezier, an appropriate 

parameter value ui must be chosen that matches the desired length along the curve Si. To 

do this, the relationship (3.3) between the parameter value u and the length S(u) along the 

curve must be resolved.  

 

 ( )∫ ′=
u
u0

duuS)u(S  (3.3) 

 

Since (3.3) cannot be solved in closed form, ui cannot be calculated exactly without 

resorting to iterative methods.  Due to the real-time nature of machine control, calculation 

time must be made deterministic by avoiding iterative methods, but errors in ui will 

negatively affect motion dynamics and must be controlled.  These effects can be kept 

within acceptable levels if the controller can specify the maximum length error εlength, 

where 

 

 iilength S)u(S −≥ε  (3.4) 

 

To do this, some iteration will be necessary, so to satisfy the requirements of real-time 

control, a method with rapid convergence must be used. 

 

Previous efforts to tackle this problem [2, 11-13, 30, 32, 35, 37-39, 42] yielded 

algorithms that are either nonlinearly extrapolative (and thus inherently unstable) or 

highly iterative (such as first-derivative extrapolations and interval halving methods).  
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While the latter may seem attractive at first due to the simplicity and speed of such 

algorithms, their overall calculation time can quickly surpass that of more complicated 

methods since (3.3) must be evaluated as part of every iteration and checked against 

(3.4). 

 

3.2 METHOD 

To develop a stable, fast algorithm that minimizes iteration, this thesis uses modified 

versions of [12] and [38].  A basic predictor-corrector algorithm, such as is found in [38] 

is outlined in Fig. 3.3.  First, the curve is initialized and a lookup table for the parameter-

length relationship is populated.  When a length command comes down, a prediction is 

made for the corresponding parameter.  A length check is performed to confirm the 

accuracy of the parameter.  If the parameter does not hold the required tolerance, a 

correction operation is performed.  The check and correction are repeated until the 

tolerance or some other criterion is met, such as a limit on the number of iterations.  Then 

the parameter is passed on and is used to establish the next waypoint. 

 

The same basic approach Fig. 3.3 will be used in this method to calculate the parameter.  

The remainder of this chapter develops improved prediction and correction steps.  

Section 3.2.1 reviews the Length Calculation method of Günter and Parent [12].  Section 

3.2.2 outlines a method of establishing a lookup table for the parameter-length 

relationship, which will be used in the prediction and correction steps.  Section 3.2.3 

presents an interpolative prediction method using a monotonic curve scheme.  Section 

3.2.4 gives a simple method for reducing the parameter error to an acceptable level. 
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3.2.1 LENGTH CALCULATION 

The first thing a predictor-corrector needs is a reliable way to calculate the length along a 

curve (the arc length) at a parameter value.  This is done by integrating (3.3).  Günter and 

Parent [12] developed such a method using a lookup table and Gauss-Legendre 

quadrature, and the method was clarified by Yang and Red [38], which also added an 

error analysis.  This method is reviewed here, with minor changes. 

 

Figure 3.3.  Typical predictor-corrector algorithm. 
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Gauss-Legendre quadrature is a numerical method of integration that is exact for 

polynomials of degree ≤ (2n-1), where n is the degree of the quadrature.  Gauss-Legendre 

quadrature integrates a function by summing weighted evaluations of that function. If the 

function S’(u) is to be integrated over an arbitrary interval u=[a,b], the quadrature 

equation is 

 

 ( ) ( ) ( )∑∫
=

′ε+′=′
n

0i
ii

b
a

b,a,n,SuSwduuS  (3.5) 

 

where ε( S’,n,a,b) is the error function and wi are tabulated weights.  From Kythe and 

Schaeferkotter [19]: 
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 30  

and xi and wi are tabulated constants that depend on the degree of the quadrature.  These 

constants can be found in most texts that deal with Gaussian quadrature, such as [19]. 

 

3.2.2 LOOKUP TABLE 

The first thing that must be done in establishing a lookup table is to determine the number 

of entries that are needed.  The error function (3.7) can be used to do this.   

 

The value S’max = max[S(2n+1)(ξ)] can be substituted into (3.7) to find the number of 

divisions in the lookup table necessary to hold the length-calculation error: 

 

 
( )

length

maxn
1n2

table
SKab

N
ε

′−
=

+
 (3.9) 

 

Using Ntable (rounded up to the next largest integer) to calculate the parameter interval Δu 

on which to set up the lookup table: 

 

 
tableN

abu −
=Δ  (3.10) 

 

A quadrature operation is performed on each interval to populate the “Length” column of 

the lookup table, as in Table 3.2. 
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Subsequent length calculations are performed on a subinterval.  For example, if a 

parameter u is chosen such that ui < u < ui+1, then the quadrature operation will be 

performed on the interval [ui, u] and the result added to Si. 

 

 
  
  

Node Parameter Length 

0 a 0 

1 u1 S1 

... ... ... 

Ntable-1 uNtable-1 SNtable-1 

Ntable b SNtable = S(b) 
 
 

3.2.3 PARAMETER PREDICTION 

With a lookup table established, a method must be defined to predict a parameter u given 

a desired length S.  Some predictors use a first- or second-order Taylor expansion or a 

tangent magnitude method of prediction.  Other papers use polynomial predictors based 

upon previous waypoints.  Yang and Red [38] used Lagrange interpolation over previous 

waypoints to predict the next waypoint parameter.  Second-order expansions and 

polynomial predictors have the disadvantage of doubling back, i.e. they can reach a point 

where an increase in length results in a decrease in parameter, as in Fig. 1.4.  This is not 

representative of the monotonic nature of (3.3) and can easily defeat the prediction 

scheme.  First-order and tangent magnitude methods may suffer from low convergence 

rates.  All current methods in the literature are extrapolative.   

Table 3.2.  Lookup table for parameter-length relationship. 
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The current methods in the literature usually work for step sizes that are small in relation 

to the length of the curve.  However, as the step sizes increase, the extrapolations break 

down.  A prediction method will now be presented that is both interpolative and 

representative of the monotonic nature of (3.3).  This method is stable and will provide 

better convergence rates for larger step sizes. 

 

Sarfraz [27] developed a curve definition with specifiable endpoints and derivatives.  

This curve is guaranteed to be monotonic.  An interpolative prediction method using a 

monotonic curve with specifiable end conditions will generally follow the length curve 

better than extrapolative polynomial and derivative methods, as illustrated in Fig. 3.4.   

 

The Sarfraz curve is a rational cubic spline that is guaranteed to be monotonic.  While the 

curve is presented in [27] as a spline, for clarity it will be defined here as an individual 

curve segment (3.12).  Some minor simplifications are also made that result from the 

constraints of the present application.  Given endpoints (S0, u0), (S1, u1) and derivatives d0 

and d1 where 

 

 ( )i
i uS

1d
′

=  (3.11) 

 

the Sarfraz curve is defined as 
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The monotonicity of this curve is proven in [27]. 
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Figure 3.4.  Comparison of Lagrange curve and monotonic Sarfraz 
curve for parameter prediction. 



 

 34  

To predict a parameter value, the lookup table is searched to find the interval on which 

the desired length resides.  Using the endpoints of this interval and the corresponding 

derivatives, a Sarfraz curve segment is set up over the interval.  Evaluating the Sarfraz 

curve at the desired length yields a parameter prediction.  The actual length along the 

curve at the predicted parameter can be obtained by performing a quadrature operation 

from the beginning of the interval to the predicted parameter. 

 

3.2.4 PARAMETER CORRECTION 

The predicted parameter may violate the length tolerance εlength.  In this case a correction 

operation must be performed on the predicted parameter.  This is easily done by setting 

up another Sarfraz curve.  If the predicted parameter is too high, the new Sarfraz curve is 

set up between the beginning of the table interval and the predicted parameter.  If the 

predicted parameter is too low, the new Sarfraz curve is set up between the predicted 

parameter and the end of the table interval.  The new parameter is then predicted.  If 

necessary, another Sarfraz curve can be set up for another prediction.  If this method is 

combined with simple interval halving, the convergence rate is very rapid.  The method is 

also algorithmically stable. 
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4 METHOD: SPEED PROFILING 
 
 

 
This chapter presents a method for planning the speed along a curve.  Planning speed is 

important for generating smooth accelerations and decelerations and for respecting 

dynamic limitations on the machine and the manufacturing process. 

 

Section 4.1 presents the definition of a simple jerk-limited speed profile.  Section 4.2 

explains the dynamic limitations a set of moves places on the speed profile.  Section 4.3 

defines a speed profiling algorithm that meets the requirements of real-time control. 

 

4.1 THE JERK-LIMITED SPEED PROFILE 

In machining operations, a desired tool tip speed is specified for any particular portion of 

the process plan.  However, each machine has its own dynamic limitations, so the tool 

cannot always be moved at the desired speed along the entire path.  Thus, the controller’s 

job is to control the tool as close to the desired speed as possible while respecting 

machine limitations.  This is accomplished by the proper construction and following of 

speed profiles.  A speed profile is a map of the speed across an individual move or set of 

moves. 

 

Trapezoidal profiles used to be the norm in machine control.  Over time the jerk 

capabilities of motors advanced to the point where they began to stress mechanisms, 
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causing premature wear.  Jerk is the time derivative of acceleration and can be thought of 

as a measure of impact.  Jerk-limited speed profiles were developed to reduce these 

stresses.  A typical jerk-limited speed profile section and its derivatives are defined by the 

following time-dependent equations 

 

 ( )
6
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 ( ) tJAtA 0start +=  (4.3) 

 

 ( ) 0JtJ =  (4.4) 

 

Note that if J0 = Jmax, the speed profile allows for the optimal (shortest) transition time 

between speeds.  Therefore, the maximum allowable jerk is always used. 

 

Jerk-limited speed profiles consist of seven types of profile sections, classified by their 

shape and behavior.  These types are listed below and represented in Fig. 4.1. 

 
1) Concave Rise 

2) Linear Rise 

3) Convex Rise 
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4) Constant Speed 

5) Convex Fall 

6) Linear Fall 

7) Concave Fall 
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Setting up speed profiles of this nature is relatively straightforward using algorithms 

currently found in the literature (Red [24], Erkorkmaz and Altintas [8], Nam and Yang 

[22]).  A more difficult problem is maintaining the desired speed while handling 

sequential moves of all sizes and dynamic requirements.  Indeed, defining the logic 

necessary to create a robust speed profiler is a much more rigorous task than defining the 

mathematics for individual profile segments.  The specifics of the problem are explained 

in Sections 4.2 and 4.3.  A solution to the problem is given in Section 4.3. 

 

1 

2 

3 
4 5 

6 
7 

Figure 4.1.  The seven types of speed profile sections. 
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4.2 DYNAMIC LIMITATIONS ON SPEED PROFILES 

Every move has its own dynamic limitations.  In other words, each move interacts with 

the machine differently so as to limit the feasible speed, acceleration, and jerk across that 

move.  A simple example is found in traversing a circular path at constant speed.  Here, 

the radial acceleration Ar depends on the traversal speed V and the radius of curvature R 

of the path as 

 

 
R

VA
2

r =  (4.5) 

 

If there is a maximum allowable value for Ar, then it can be seen by inspection that the 

value of R will have an effect on the allowable values of V.   

 

A sequence of moves may have allowable speeds resembling the contrived example in 

Fig. 4.2, but in the general case can take on essentially any shape.  In addition to limited 

speed, each move will have its own limits on allowable acceleration and jerk.  The 

calculation of these limits is discussed in Chapter 5.  Since the current chapter is strictly 

concerned with the construction of speed profiles, it is assumed that these limits have 

already been calculated. 

 

4.3 SPEED PROFILE CONSTRUCTION 

Fig 4.2 shows an example of allowable (solid lines) and desired (dashed line) speeds for a 

set of moves.  It is important to realize that the allowable speeds for one move are 

completely independent of every other move.  Therefore the allowable speed plot can 
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assume any configuration.  A speed profiler must be able to handle any set of moves, and 

perform well.  The problem is to construct such a speed profile over a given set of moves.  

The requirements are as follows: 

 
1) Increase as quickly as possible to the desired speed 

2) Maintain as close a speed as possible to the desired speed 

3) Respect the allowable speeds, accels, and jerks 

4) Reach zero speed by the end of the last available move 

 

 

 

 

 

 

 

 

 

 

 

Requirements 3 and 4 are of particular interest.  Many published algorithms use 

estimations of remaining length to plan their speed profiles or ignore this requirement 

altogether, but if the speed profile is calculated incorrectly, so that zero speed profile does 

not reach zero speed by the end of the move sequence, dynamic limitations will be 

Figure 4.2.  Example of allowable and desired speeds. 
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exceeded.  Additionally, most papers ignore dynamics in order to simplify the algorithms.  

These requirements, however, cannot be ignored in a real implementation. 

 

In order to make the logic and accompanying explanation feasible, some simplifying 

constraints will be applied to the speed profiling problem.  That is, zero acceleration will 

be specified at the endpoints of moves.  This allows convergence to be guaranteed for the 

algorithm, without iteration.  Additionally, once the waypoint enters a segment, the speed 

profile for that segment will not be adjusted.   

 

The reader may assume that (referring to Fig. 4.1) accelerating profiles consist of a 

sequence of profile segments of types 1 and 3 and that decelerating profiles consist of 

profile segments of types 5 and 7.  In other words, the explanations in this chapter refer to 

speed profiles containing “perfect S-curves”, which do not contain portions of constant 

acceleration or constant speed.  The logic for using speed profiles with constant 

acceleration or constant speed portions is similar to that for perfect S-curves.  Including 

speed profiles with constant acceleration or speed would unnecessarily multiply the 

number of cases that need to be explained.  Thus, in order to facilitate reader 

understanding of the underlying speed profiling concept, the specific cases for profiles 

including constant acceleration and speed portions are not discussed. 

 

The algorithm comes in two parts, a forward recursion and a backward recursion, 

explained in detail in Sections 4.3.1 and 4.3.2.  The purpose of the forward recursion is to 

attain and maintain the specified speed.  The backward recursion ensures that allowable 
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speeds are respected and that the speed profile can reach zero before the end of the move 

sequence.  The backward recursion is only needed if the forward recursion fails to 

generate a feasible profile.   

 

The logic for the forward and backward recursions are given in Sections 4.3.1 and 4.3.2, 

respectively.  A pseudocode summary of the speed profiling algorithm is given in Section 

4.3.3.  A peculiarity of s-curve speed profiles is that the profile may have a “dead spot,” a 

range of speed that cannot be reached with the specified acceleration and jerk.  A 

mathematical explanation for this is given in Section 4.3.4. 

 

4.3.1 FORWARD RECURSION 

The forward recursion attempts to reach the desired speed by accelerating over one or 

more upcoming move segments.  It then attempts to reach zero speed by decelerating 

over the remaining segments.  This process is shown in Fig. 4.3.  Each time the waypoint 

enters a new move segment, the speed profiler attempts to increase speed over the 

following move (optionally, several upcoming moves), and then decreases to zero.  This 

also happens on the first step after starting from zero, as in Fig. 4.4.  In this way, the 

speed profile is always increasing, but only over the minimum number of segments 

necessary.  This allows the profile to define a path to zero speed with as little calculation 

time as possible.  In both Figs. 4.3 and 4.4 the ‘X’ indicates the current position in the 

speed profile.   
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There are a number of cases that arise during the forward recursion.  These cases and the 

logic for handling them are presented in Section 4.3.1.1 for the acceleration stage and 

Section 4.3.1.2 for the deceleration stage. 

 

 

 

Figure 4.3.  Example forward recursion beginning from zero speed. 
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4.3.1.1 ACCELERATION STAGE 

In the acceleration stage, the speed profiler attempts to reach the desired speed by 

increasing speed over a segment of known length.  If it is necessary to decrease speed 

over that segment to maintain allowable speeds, the profiler tries to hold the highest 

Figure 4.4.  Example forward recursion upon stepping into a new 
move segment.  
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V 
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V 
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V 

S 
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acceptable speed.  The cases for the acceleration stage are illustrated in Fig. 4.5, and 

explained below. 

 

Cases: 

a) Unobstructed – The speed profile is not constrained by allowable speeds.  

In this case the maximum possible speed change over the segment is used. 

b) Limited – The speed change over the current move is constrained by the 

allowable speed, not the length of the segment.   

c) Limited Decelerating – Here the allowable speed for the following 

segment is lower than the starting speed for the current segment.  In this 

case, instead of increasing over the segment, the speed is reduced to the 

allowable speed for the following segment.  This case occurs when there is 

sufficient length in the segment to make the change. 

d) Jerk Constrained – Similar to the Limited Decelerating case in that the 

allowable speed for the following move is lower than the starting speed for 

the current move.  The difference is that the quadratic nature of the speed 

profile comes into play.  Because of the limited jerk, there are two separate 

regions of reachable speeds (see Section 4.3.4), so if the allowable speed 

for the following move is between the attainable regions, the allowable 

speed for the following move cannot be exactly reached.  The highest 

possible attainable speed is chosen that is below the allowable speed for 

the following move. 
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e) Violating – The allowable speed for the following move will be violated.  

Here the starting speed for the following move is set to the allowable 

speed and a backward recursion must be performed. 

f) End of Buffer – Zero speed could not be reached by the end of the last 

segment.  The ending speed of that segment is set to zero and a backward 

recursion is begun. 

 

4.3.1.2 DECELERATION STAGE 

The deceleration stage is much simpler than the acceleration stage.  Here the speed 

profiler simply tries to decrease to zero speed as fast as possible.  The cases for the 

deceleration stage are found in Fig. 4.6, and explained below. 

 

Cases: 

a) Unobstructed – The speed profile is not constrained by allowable speeds.  

In this case the maximum possible speed change over the segment is used. 

b) Violating – The allowable speed for the following move will be violated.  

Here the starting speed for the following move is set to the allowable 

speed and a backward recursion must be performed. 

c) End of Buffer – Zero speed could not be reached by the end of the last 

segment.  The ending speed of that segment is set to zero and a backward 

recursion is begun. 

d) Stopped – The speed profile has reached zero speed. 
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4.3.2 BACKWARD RECURSION 

The backward recursion attempts to construct a feasible speed profile when the forward 

recursion fails, such as when an allowable speed violation occurs (Fig. 4.7).  The 

backward recursion begins where the forward recursion ended, at zero speed.  It then 

constructs a speed profile in the reverse direction, always trying to “connect” with the 

speed profile currently in use. 

Figure 4.6.  Forward recursion, deceleration stage cases. 
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There are two main cases that arise during the backward recursion, the case when the 

motion is starting from zero and a speed profile is not yet established, and the case when 

the motion is already moving on a speed profile and the motion planner is attempting to 

construct a new speed profile.  These cases and the logic for handling them are presented 

in Section 4.3.2.1 for the case where a current speed profile is established and Section 

4.3.2.2 for the case where there is no current speed profile in use. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.3.2.1 PROFILE ESTABLISHED 

If a useable speed profile has already been established, the goal of the backward 

recursion is to connect with that speed profile.  The cases encountered are shown in Fig. 

4.8, and explained below. 

 

 

Figure 4.7.  Example of a failed forward recursion. 
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Cases: 

a) Converged Increasing – The backward recursion converges with the 

established speed profile. 

b) Jerk Limited – The backward recursion can reach above and below the 

established speed profile but cannot converge with it.  Here the higher 

speed will be kept. 

Figure 4.8.  Backward recursion cases with profile established. 
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c) Decreasing – The backward recursion tries to converge with the 

established speed profile by decreasing speed but cannot converge.  The 

lowest attainable speed is kept. 

d) Converged Decreasing – The backward recursion converges with the 

established speed profile by decreasing speed. 

 

4.3.2.2 NO PROFILE ESTABLISHED 

If no useable speed profile has been established, the goal of the backward recursion is to 

connect with the forward recursion.  Because the forward recursion can have 

discontinuities, if the backward recursion converges with the forward recursion, the 

backward recursion will still construct a full profile back to the beginning of the buffer.  

The cases encountered are shown in Fig. 4.9, and explained below. 

 

Cases: 

a) Nonconverged – The backward recursion does not converge with the 

forward recursion.  In this case the highest attainable speed is kept. 

b) Converged – The backward recursion can converge with the forward 

recursion.  The backward recursion is continued, always trying to follow 

the forward recursion. 

c) First Segment – The backward recursion reaches the first segment and 

decreases to zero. 

 

 



 

 50  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3.3 ALGORITHM SUMMARY 

Presented below is a pseudocode summary of the speed profiling algorithm. 
 

//begin forward recursion 
//begin acceleration phase 
if Current speed is zero 
  start on current segment 
else 
  start on segment after the current segment 
Test for the highest attainable speed 
if allowable speed is lower than the attainable speed 
  keep the allowable speed 
else 

Figure 4.9.  Backward recursion cases with no profile established. 
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  keep the attainable speed 
move to next segment 
//begin deceleration phase 
loop 
  test for the lowest attainable speed 
  if attainable speed is less than or equal to zero 
    keep zero as the speed 
    exit forward recursion 
  else if end of buffer is reached 
    keep zero as the speed 
    must do a backward recursion 
    exit forward recursion 
  else if allowable speed is lower than the attainable speed 
    keep the allowable speed 
    must do a backward recursion 
  else 
    keep the attainable speed 
    move to next segment 
 
//begin backward recursion 
if must do backward recursion 
  Start at end of forward recursion 
  loop 
    if at current segment 
      try to link with current segment starting speed 
      if successful 
        use backward recursion as the useable profile 
        exit backward recursion 
      else 
        discard backward recursion 
        exit backward recursion 
    if No useable profile 
      Test for the attainable speed 
        if we can attain same or higher speed than the forward 

recursion 
   if the forward recursion is lower than the current ending state 

    find the low speed we can attain 
     if we can reach down to the forward recursion 
       keep the forward recursion value 

    else 
       keep the lower attainable speed 
   else 
       keep the forward recursion value 
        else 
          keep the attainable speed 
    else 
      Test for the attainable speed 
        if we can attain same or higher speed than the useable profile 
          if useable profile is higher than the current ending state 
            use the rest of the useable profile 
          else   
            find the lowest attainable speed 
            if we can reach the useable profile or lower 
       if we can reach the exact value of the useable profile 
         use the rest of the useable profile 
       else 
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                keep the lowest attainable speed that is above the 
previous useable state 

     else 
       keep the lowest attainable speed 
        else 
          keep the attainable speed 
    move to previous segment 
else 
  use forward recursion as the useable profile 
 

 
 
 

4.3.4 JERK-CONSTRAINED DECELERATION PROFILES 

A peculiarity of the jerk-limited speed profile is that, when reducing speed, there may be 

two disconnected regions of attainable lower speeds.  It will be shown why this is, but 

first a few logical tools must be developed. 

 

Recall the types of speed profile segments as presented in Fig. 3.1.  The sequence of a 

Concave Rise speed profile section followed by a Convex Rise section (Fig. 4.10a), or a 

Convex Fall section followed by a Concave Fall section (Fig. 4.10b) constitutes a 

“perfect s-curve.”  These speed profile sections share a common jerk magnitude and a 

common maximum acceleration value.  This yields the ability to simplify the equations 

somewhat into a set of tools. 

 
 
Since the speed profile sections share a common jerk magnitude J0 and a common 

maximum acceleration value Amax, it can be seen that, for the rise portions, the 

acceleration changes over the speed profile segments have the same magnitudes: 

 

 0AAAA maxstartendconcave −=−=Δ  (4.6) 
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 maxstartendconvex A0AAA −==Δ −  (4.7) 

 

Dividing by their respective jerks it can be seen that 

 

 0maxconvex0maxconcave J/AtJ/At −−=Δ==Δ  (4.8) 

 

So the total time for the speed change is  

 

 0max J/A2T =  (4.9) 

 

Plugging this into (4.2) and subtracting starting velocities yields 

 

Figure 4.10.  Perfect s-curve speed profiles. 
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0

2
max

convexconcave J2
AVV =Δ=Δ  (4.10) 

 

so 

 

 
0

2
max

rise J
AV =Δ  (4.11) 

 

Plugging T into (4.1) and subtracting starting length yields 

 

 2
0

3
max

0

maxstart
concave

J3
A2

J
AVS +=Δ  (4.12) 

 

 
( )

2
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maxrisestart
convex

J3
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J2
AVV2S +
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=Δ  (4.13) 

 

 2
0

3
max

0

maxstart
rise

J
A

J
AV2S +=Δ  (4.14) 

 

where J0 is equal to the maximum jerk for the move segment and ΔS is equal to the length 

of the move segment. 

 

Similarly, for the fall portion  
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 2
0

3
max

0

maxstart
fall

J
A

J
AV2S −=Δ  (4.15) 

 

Vstart is also a constant.  This yields a cubic equation in Amax.  Solving (4.15) for real 

positive roots of Amax gives the useable ranges for Amax.  Also excluded are solutions 

which lead to the case ΔV > Vstart.  There are three possible cases: 

 
a) One useable Amax value.  Here the useable values for Amax are between 

zero and A1 or, if the profile can reach zero speed before the end of the 

move, between zero and the value of Amax which satisfies ΔV = Vstart.  

There is one connected region of attainable speeds (Fig. 4.11). 

b) Two useable Amax values.  Here the useable values for Amax are between 

zero and A1 and between A2 and the value of Amax which satisfies ΔV = 

Vstart.  There are two disconnected regions of attainable speeds (Fig. 4.12). 

c) Three useable Amax values.  Here the useable values for Amax are between 

zero and A2 and between A2 and A3.  There are two disconnected regions 

of attainable speeds (Fig. 4.13). 

 

Observe that the accelerating case (4.14) does not have disconnected regions of attainable 

speeds since there is only one real positive solution for Amax.  This can be shown by 

inspection since the coefficients of Amax are all positive, and the constant value is 

negative.  Thus the equation intersects the abscissa exactly once.  The useable values for 

Amax for the accelerating case are between zero and A1. 
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Figure 4.11.  Illustration of attainable speed region for 1 useable 
Amax value. 
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Figure 4.12.  Illustration of attainable speed region for 2 useable 
Amax values. 
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Figure 4.13.  Illustration of attainable speed region for 3 useable 
Amax values. 
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5 METHOD: DYNAMICS 
 
 

There are two types of dynamic limitations that arise in machining operations: process 

limitations and machine limitations.  Process limitations are machine independent and 

relate only to motion along the path and interactions between the tool and the workpiece.  

For example, forces on a cutting tool depend upon the speed, acceleration, and jerk at 

which the tool is moved through material.  Machine limitations apply to each joint of the 

machine tool and depend upon both the shape of the path and the motion along the path 

as defined by the speed profile.  Due to this relationship, the path dynamics (speed, 

acceleration, jerk) that will give acceptable joint dynamics must be determined. 

 

This chapter will outline a method for determining the allowable path dynamics for 

moves.  The allowable values for path dynamics can then be used by the speed profiler in 

Chapter 4 to develop feasible speed profiles.  Section 5.1 presents the mathematical 

relationship between motion along curves in path space and motion in joint space.  

Section 5.2 gives a quick overview of the variation diminishing property of Bezier 

curves.  Section 5.3 presents a heuristic method for determining allowable speeds based 

on the variation diminishing property. 
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5.1 PATH-JOINT RELATIONSHIPS 

A Bezier path is described by the equation 

 ( ) ( )
( )∑

=
=

n

0i
n
ii

n
iii
uBv
uBvu PP  (5.1) 

 

where 

 

 [ ]Tiziyixi PPP=P  (5.2) 

 

are points in Cartesian space,  
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are Bernstein polynomials,  
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is the binomial coefficient, and vi are positive definite weighting values. 

 

Section 5.1.1 presents the equations for relating a curve and its parametric derivatives in 

path space to joint space.  Section 5.1.2 presents the relations for derivatives with respect 

to arc length.  Section 5.1.3 presents the relations for derivatives with respect to time. 
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5.1.1 PARAMETRIC DERIVATIVES 

For 3-degree-of-freedom machines, such as those in Fig. 5.1, points in path space P can 

be related to points in joint space q by use of a machine-specific inverse kinematics 

transformation K, so that 

 

 ( ) ( )( )uu PKq =  (5.5) 

 

where 

 

 ( )
( )

( )⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

P

P
PK

m

1

q

q
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While the inverse kinematics transformations for 3-axis mechanisms are relatively 

simple, the relationship between path dynamics and joint dynamics are a bit more 

complicated.  These dynamics must be kept in check to ensure smooth motion along the 

path and stay within the capabilities of the machine. 

 
Parametric relationships for joint dynamics can be found by taking the derivatives of 

(5.5): 

 

 ( ) ( )( )PPKq ′=′ udu  (5.7) 

 

where 
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Similarly, 

 

 ( ) ( )( )( )( )( ) ( )( )PPKPPPKq ′′+′′=′′ ududu 2  (5.9) 

 

Figure 5.1.  Some simple 3-axis mechanisms.  a) Rectangular 
mechanism.  b) Cylindrical mechanism.
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 ( ) ( )( )( )( )( )( )( ) ( )( )( )( )( ) ( )( )PPKPPPKPPPPKq ′′′+′′′+′′′=′′′ udud3udu 23  (5.10) 

 

where 

 ( ) ( )
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5.1.2 ARC-LENGTH DERIVATIVES 

Using the parametric joint derivatives, the derivatives with respect to arc-length can be 

calculated. 
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5.1.3 TIME DERIVATIVES 

The time derivatives are calculated from the arc-length derivatives as follows: 

 

 ( ) ( ) ( )
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dSu
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udu Sqqq ==&  (5.17) 

 

Note that the final term in (5.17) is simply a speed term, so (5.17) can be written a little 

more clearly as  

 

 ( ) ( )Vuu Sqq =&  (5.18) 

 

Continuing with the next two derivatives, 
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Equations 5.18 - 5.20 map the relationship between the path dynamics and joint 

dynamics.  The left-hand terms are the machine joint dynamics and are known.  Inserting 

their maximum values and inverting the equations yields a method for calculating the 

allowable path dynamics: 

 
 ( )VminVmax =  (5.21) 

 

where 
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and the division of two vectors is a component-wise division. 

 

Likewise, 
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where 

 

maxmax VVV ≤≤−     

 

and      

 

maxmax AAA ≤≤− . 

  

Calculating the extrema of these dynamic equations is expensive.  Fortunately, the 

variation diminishing property (Section 5.2) of Bezier curves and a bit of heuristics can 

be used to make the job easier.  

 

 

5.2 VARIATION DIMINISHING 

The variation diminishing property of Beziers is that a line (for planar Beziers) or a plane 

(for 3D Beziers) will not intersect the curve more times than it intersects the control 

polygon.  The physical meaning of this is that the curve will not “wiggle” more than the 

control polygon.  This is illustrated in Fig. 5.2, where a variety of lines (dashed) are 

intersecting a Bezier curve and its control polygon.  The solid line represents the Bezier 

curve.  The dotted line represents the control polygon.  
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5.3 SAMPLING METHOD 

Since the curve cannot wiggle more times than its control polygon, the variation of its 

shape is limited. If the curve is sampled at an appropriate interval, say Δu = 0.1, this 

variation will be evident.  Fig. 5.3 gives an illustration of what such a sampling scheme 

would appear like when applied to a Bezier curve. 

 
 
In addition to revealing the shape of a curve, the sampling method can be applied to the 

dynamic equations (5.22, 5.24, 5.26).  A good approximation of the dynamics can be 

extracted by analyzing the dynamics equations at each of the sample points.  From that a 

set of points on the curve is determined at which we know the limits on path dynamics.  

This information can be used in a number of ways.  In this thesis, the simplest method is 

Figure 5.2.  Illustration of variation diminishing property. 
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used, where the most conservative of the path dynamics is chosen and applied to the 

entire curve segment. 

Figure 5.3.  Illustration of sampling method. 
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6 RESULTS & DISCUSSION 
 
 

This chapter presents the results of the methods developed in this thesis.  The methods 

were tested under real-world conditions.  The results are taken from the milling of the 

automotive surface shown in Fig. 6.1.  The milling was done at BYU on a Tarus styling 

mill similar to the one shown in Fig. 6.2.  Tool paths were generated using Unigraphics 

NX 2.0. 

 

Section 6.1 presents the results of the Predictor-Corrector module for calculating 

appropriate parameter values.  Section 6.2 gives the results of the Speed Profiling and 

Dynamics modules.  Section 6.3 presents the machined part.  Section 6.4 summarizes the 

results.   

 

 
 

Figure 6.1.  Automotive surfaces used for test. 
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6.1 PREDICTOR-CORRECTOR 

The job of the Predictor-Corrector is to evaluate the curve in a manner that will maintain 

the tool speed specified by the speed profiler.  The Predictor-Corrector does this 

successfully when the speed error is kept below a specified level. 

 

Figure 6.2.  Tarus styling mill. 
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Fig. 6.3 shows a line plot of the speed error for the Predictor-Corrector for each step, 

normalized to the specified maximum error fraction of 1E-6.  Note that all values are 

below one.  Thus the specified error fraction is being held by the Predictor-Corrector. 

 

 
 
 
 
 

6.2 SPEED PROFILING AND MOTION DYNAMICS 

The Motion Dynamics module analyzes each curve and decides the maximum allowable 

path speeds, accels, and jerks along that curve based on dynamic joint limitations and 

chordal error.  The speed profiler keeps the speed as close to the desired speed as possible 

without violating motion dynamics. 

 

Figure 6.3.  Predictor-Corrector error fraction for each step, 
normalized to the maximum allowable error fraction. 
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The Speed Profiling and Motion Dynamics modules are closely related, so they are both 

evaluated at the same time. 

 

Section 6.2.1 specifically evaluates the accuracy of the Speed Profiling module by 

examining the tool speed along the path.  Section 6.2.2 analyzes the chordal error 

generated by the motion along the curve.  Section 6.2.3 analyzes the dynamics of motion 

of each of the joints on the Tarus mill. 

 
 

6.2.1 TOOL SPEED 

The allowable speed is decided by the Motion Dynamics module and is different for each 

curve section.  Fig 6.4 shows a line plot of the tool speed at each step, normalized to the 

allowable speed.  All values are at or below one.  This means that the allowable speed 

settings are being obeyed by the Speed Profiler. 

 

It is interesting to note that, due to dynamic limitations, the speed profiler is not always 

able to hold the desired speed.  This does not mean that the speed profiler is failing, 

simply that it is reducing speed at certain points in order to obey dynamic limitations.  

Fig. 6.5 shows a line plot of the actual tool speed at each step, normalized to the desired 

speed of 80 mm/s. 
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Figure 6.4.  Tool speed, normalized to the allowable speed for each 
curve segment. 

Figure 6.5.  Tool speed, normalized to desired speed. 
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Figs. 6.6 to 6.18 show the behavior of the speed profiler at a more localized level.  Fig. 

6.6 shows the speed profile for the first sixteen seconds of the process plan.  The actual 

tool speed is shown in blue, the commanded tool speed in green, and the maximum 

allowable tool speed for each move is shown in red.  Fig. 6.7 shows the speed profile for 

the first four seconds of the process plan, with the same color scheme as in Fig. 6.6.  Figs. 

6.8 and 6.9 show the corresponding path acceleration and jerk profiles, respectively, with 

the actual value shown in blue and the allowable values shown in red and green.  Note 

that the speed profiler attempts to reach and maintain the desired speed while respecting 

the maximum allowable speed, acceleration, and jerk.  For reference, Figs. 6.10 to 6.18 

show the resulting dynamics effects on the individual axes. 

 

 
 
 

Figure 6.6.  Tool speed with commanded and maximum allowable 
speed for first sixteen seconds of the milling process. 
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Figure 6.7.  Tool speed with commanded and maximum allowable 
speed for first four seconds of the milling process. 

Figure 6.8.  Tool acceleration with maximum allowable 
acceleration for first four seconds of the milling process. 
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Figure 6.9.  Tool jerk with maximum allowable jerk for first four 
seconds of the milling process. 

Figure 6.10.  X axis velocity for first four seconds of the milling 
process. 
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Figure 6.11.  Y axis velocity for first four seconds of the milling 
process. 

Figure 6.12.  Z axis velocity for first four seconds of the milling 
process. 
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Figure 6.13.  X axis acceleration for first four seconds of the milling 
process. 

Figure 6.14.  Y axis acceleration for first four seconds of the milling 
process. 
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Figure 6.15.  Z axis acceleration for first four seconds of the milling 
process. 

Figure 6.16.  X axis jerk for first four seconds of the milling 
process. 
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Figure 6.17.  Y axis jerk for first four seconds of the milling 
process. 

Figure 6.18.  Z axis jerk for first four seconds of the milling 
process. 
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6.2.2 CHORDAL ERROR 

Chordal error is the maximum distance between the curve geometry and the straight lines 

generated by digital control.  Fig. 6.19 shows a line plot of the maximum chordal error 

for each step, normalized to the maximum allowable chordal error of 0.001 in.  This plot 

shows that the chordal error is not of much concern in the present process plan, as all 

values are well below one. 

 

 
 

 
 
 
 
 
 

Figure 6.19.  Chordal error, normalized to maximum error 
tolerance. 
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6.2.3 MOTION DYNAMICS 

The motion dynamics for each axis on the Tarus styling mill are shown in Sections 

6.2.3.1 to 6.2.3.4.  The line plots shown in these sections have been normalized to their 

maximum allowable values.  The maximum allowable values for each axis are shown in 

Table 6.1.   

 
 
 
 

AXIS Speed (mm/s) Accel (mm/s2) Jerk (mm/s3)

X 170 400 4000 

Y 180 600 6000 

Z 240 2000 20000 
 
 
 
Section 6.2.3.1 gives the position plots for each axis.  This is for reference purposes only.  

Section 6.2.3.2 gives the normalized speed plots for each axis.  Section 6.2.3.3 gives the 

normalized speed acceleration plots for each axis.  Section 6.2.3.4 gives the normalized 

jerk plots for each axis.  Section 6.2.3.5 presents an analysis of the dynamic plots. 

 

6.2.3.1 AXIS POSITIONS 

This section presents the position verses time for each axis of the Tarus styling mill.  

These are provided for reference purposes and do not indicate the performance of the 

algorithms in this thesis. 

 

Table 6.1.  Allowable axis dynamics for Tarus styling mill. 
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Figure 6.20.  Dynamic position plot for X axis. 

Figure 6.21.  Dynamic position plot for Y axis. 
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6.2.3.2 NORMALIZED AXIS VELOCITIES 

This section presents line plots of the normalized velocity verses time for each axis of the 

Tarus styling mill.  It can be observed that all the absolute values are less than unity and 

thus the velocity limitations of each joint are being obeyed. 

 
 

Figure 6.22.  Dynamic position plot for Z axis. 
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Figure 6.23.  Dynamic velocity plot for X axis. 

Figure 6.24.  Dynamic velocity plot for Y axis. 
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6.2.3.3 NORMALIZED AXIS ACCELERATIONS 

This section presents line plots of the normalized acceleration verses time for each axis of 

the Tarus styling mill.  It can be observed that all the absolute values are less than unity 

and thus the acceleration limitations of each joint are being obeyed. 

 
 

Figure 6.25.  Dynamic velocity plot for Z axis. 
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Figure 6.26.  Dynamic acceleration plot for X axis. 

Figure 6.27.  Dynamic acceleration plot for Y axis. 
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6.2.3.4 NORMALIZED AXIS JERKS 

This section presents line plots of the normalized jerk verses time for each axis of the 

Tarus styling mill.   

 

Figure 6.28.  Dynamic acceleration plot for Z axis. 
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Figure 6.29.  Dynamic jerk plot for X axis. 

Figure 6.30.  Dynamic jerk plot for Y axis. 
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6.2.3.5 ANALYSIS OF DYNAMICS 

All the dynamic plots show joint dynamics kept within limits except for the Axis 2 jerk 

plot (Fig. 6.30), which shows intermittent jerk violations of up to 40%. 

 

Some of these high jerk values are caused by the transition from one NURBS curve to 

another, where the ends of the curves are not curvature continuous.  The smoothing of 

such transitions is beyond the scope of this thesis.  Removing the steps that include such 

transitions yields a better picture of the performance of the algorithms in this thesis and 

gives the plot in Fig. 6.32.  This plot shows improved results, with most violations at 

Figure 6.31.  Dynamic jerk plot for Z axis. 
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around 10%, with occasional violations up to 25%.  While there is room for 

improvement, violations of this magnitude are of little concern.  Jerk is extremely 

sensitive to any perturbation, and disruptions of smooth motion typically show up as jerk 

violations of several orders of magnitude. 

 

 
 
 
 
 
 
6.3 MACHINED PART 

Fig. 6.33 shows the automotive surface as machined.  Visual inspection of the surface 

indicates that the part was machined correctly and yields results comparable to traditional 

machining methods. 

 
 
 

Figure 6.32.  Dynamic jerk plot for Y axis, transitions removed. 
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6.4 RESULTS SYNOPSIS 

The clay part was machined correctly.  Visual inspection confirms the shape of the CAD 

model was reproduced in the part.  More importantly, the geometry-based motion 

planning concept was validated. 

 

The three main portions of the motion planner appear to work well together.  The 

predictor-corrector is obeying the specified feed rate error, the Motion Dynamics module 

correctly limits the speed, save for some minor jerk infractions, and the Speed Profiler is 

correctly following the limits imposed by the Motion Dynamics module.   

 
 

Figure 6.33.  Machined automotive surface. 
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7 CONCLUSION AND RECOMMENDATIONS 
 
 

This thesis has developed a working geometry-based parametric curve module for the 

DMAC controller’s motion planner.  This module allows for motion over parametric 

polynomial curves such as Bezier and NURBS curves.  The actual geometry provided by 

the process planning software was used, providing for a parametric curve module that is 

completely geometry-based.  The four important aspects of motion: feed rate error, path 

accuracy, motion dynamics, and speed profiling were successfully integrated into a 

motion planning module and tested on a real-world part surface. 

 

A stable predictor-corrector was developed, allowing for accurate specification of the 

feed rate error to 0.0001%.  An approach to motion dynamics and path accuracy was 

developed that keeps the speed, acceleration, and jerk of machine axes and the chordal 

machining error within set limits.  A stable, reliable two-pass speed profiler was 

developed that maintains controlled motion and tool speed with minimal calculation time.  

 

These methods were tested on an automotive body panel, machined in a clay medium on 

BYU’s Tarus styling mill.  The results from this test verified that the methods proposed 

and implemented are working and fulfill the goals of this thesis. 
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7.1 FUTURE WORK 

This thesis opens up a new area of research within machine control.  That is, controlling a 

machine by directly following parametric geometry, without pre-tessellation.  

Suggestions for further research, including improvements and extensions to these 

methods, are listed below. 

 

• Optimize the speed profiler to allow more time at or near the desired speed.  The 

speed profiling algorithm in this thesis requires that the path acceleration be zero 

at the endpoints of each curve segment.  Better response from the machine can be 

attained if this requirement can be eliminated.  Additionally, the current speed 

profiling algorithms specify the worst-case allowable speed, acceleration, and jerk 

values for an entire curve segment.  Integrating methods, such as that of Timar et 

al. [31], that account for the continuous variation of these values will yield 

additional gains. 

 

• The speed and dynamic response of the machine tool is limited by the interplay 

between the tool path curve geometry and the kinematics of the machine tool.  

Developing and applying methods that morph the curve to be more compliant to 

the kinematics of the machine tool will allow for better path speeds and response.  

These methods must respect the manufacturing tolerance. 
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• Typical servo control algorithms operate on a point-to-point methodology.  

Integration of the curve definition with the servo control algorithms may yield 

some benefits. 

 

• Extension of methods to include orientation control will allow for geometry-based 

5-axis machining. 

 

• Comparisons of geometry-based methods to tessellated methods will give 

researchers and industry an understanding of the benefits and limitations of 

geometry-based methods.  Suggestions for such research include comparisons of 

processor requirements, suitability for different kinematic configurations, 

attainable path speeds, accuracy, and data management/product lifecycle impacts. 
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