
Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2007-04-16

Panoramic Video for Efficient Ground Surveillance
from Small Unmanned Air Vehicles
Joseph Aaron Jackson
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Mechanical Engineering Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Jackson, Joseph Aaron, "Panoramic Video for Efficient Ground Surveillance from Small Unmanned Air Vehicles" (2007). All Theses
and Dissertations. 870.
https://scholarsarchive.byu.edu/etd/870

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F870&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F870&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F870&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F870&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F870&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarsarchive.byu.edu%2Fetd%2F870&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/870?utm_source=scholarsarchive.byu.edu%2Fetd%2F870&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

PANORAMIC VIDEO FOR EFFICIENT GROUND SURVEILLANCE

FROM SMALL UNMANNED AIR VEHICLES

by

Joseph A. Jackson

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Mechanical Engineering

Brigham Young University

August 2007

Copyright c© 2007 Joseph A. Jackson

All Rights Reserved

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Joseph A. Jackson

This thesis has been read by each member of the following graduate committee and
by majority vote has been found to be satisfactory.

Date Timothy W. McLain, Chair

Date Michael A. Goodrich

Date Deryl O. Snyder

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the thesis of Joseph A.
Jackson in its final form and have found that (1) its format, citations, and biblio-
graphical style are consistent and acceptable and fulfill university and department
style requirements; (2) its illustrative materials including figures, tables, and charts
are in place; and (3) the final manuscript is satisfactory to the graduate committee
and is ready for submission to the university library.

Date Timothy W. McLain
Chair, Graduate Committee

Accepted for the Department

Matthew R. Jones
Graduate Coordinator

Accepted for the College

Alan R. Parkinson
Dean, Ira A. Fulton College of
Engineering and Technology

ABSTRACT

PANORAMIC VIDEO FOR EFFICIENT GROUND SURVEILLANCE

FROM SMALL UNMANNED AIR VEHICLES

Joseph A. Jackson

Department of Mechanical Engineering

Master of Science

As unmanned air vehicle (UAV) utilization increases in Wilderness Search and

Rescue (WiSAR) efforts, onboard sensors yielding more information will be desired.

UAVs can assist WiSAR efforts by accelerating the ground search process through

returning quality aerial footage of the terrain. Additionally, tracking the progress of

a search by populating a digital map with video resolution data increases confidence

that a comprehensive search of the region has been made.

This thesis presents methods for acquiring video from multiple video sen-

sors and fusing them into a single rendered video stream as a Virtual Gimbal. The

panoramic video stream is the first of its kind to be constructed from video transmis-

sions from a small UAV, and the first known video panorama to be used to quickly

survey a region within a WiSAR context. The Virtual Gimbal comprises two video

transmissions from a three camera array mounted in a downward-looking configura-

tion on a UAV. This video stream has been shown to decrease the amount of time

required to thoroughly survey a region by more than 40 percent.

ACKNOWLEDGMENTS

This research has been completed with advice and assistance from nearly all

of my peers. I appreciate my advisor, Tim McLain, for encouraging me to be bold

and innovative in my experiments. Brett Millar has been my right-hand man in

prototyping code using OpenCV and C++. Bryce Ready has been of great service in

offering instruction in the art of image processing and multi-threading. He has also

proven essential in proof-reading my algorithms.

Nate Knoebel and Andrew Eldridge were critical as pilots to test-fly my hard-

ware. I would also like to acknowledge Neil Johnson, Andres Rodriguez, Joe Egbert,

and Justin Bradley for helping maintain aircraft for the project. Marc Killpack and

Greg Alldredge performed some excellent prototyping of the Virtual Gimbal hardware

down in the machine shop. Joseph Cooper, Nathan Rasmussen, and Brad Huber

served as consultants always willing to offer the Computer Science point of view. Of

course, all the great ones who have graduated before me have offered much advice and

mentoring on the project also, including Blake Barber, Brandon Call, Dave Johansen,

Andrew Eldredge, and Steve Griffiths. I appreciate the support from the rest of the

MAGICC Lab and HCMI Lab for offering insights on ways to reach the goals of this

project.

The greatest amount of credit as one who bolstered up this research belongs

to my lovely wife, Jennifer, who cared for Ian on the many long days I sat working

behind my desk. Many praises are due to God, whose algorithms and implementation

for panoramic vision and locating that which is lost are perfect.

Table of Contents

Acknowledgements xi

List of Tables xvii

List of Figures xx

1 Introduction 1

1.1 Small UAV Surveillance . 1

1.2 Improving the Quality of Aerial Footage 3

1.3 Presenting Panoramic Video Footage 4

1.4 Previous Work with Video Panoramas 5

1.5 Contributions . 7

1.6 Thesis Outline . 8

2 Image Processing and Geo-Referencing 9

2.1 Computing Transformations . 9

2.1.1 Euclidean Transformations . 10

2.1.2 Similarity Transformations . 11

2.1.3 Affine Transformations . 11

2.1.4 Perspective Transformations 13

2.2 Recovering a Homography . 14

2.2.1 The Direct Linear Transformation Algorithm 14

2.2.2 The RANSAC Algorithm . 17

xiii

2.3 Geo-referencing Imagery to World Coordinates 19

3 Monitoring Search Progress 25

3.1 Storing Search Progress into a Resolution Map 26

3.1.1 Computing the Resolution of a Quad 29

3.1.2 Writing Into the Resolution Map 30

3.2 Waypoint Generation for Exhaustive Searches 31

4 Experimental Implementation of the Virtual Gimbal 39

4.1 Hardware Setup for the Virtual Gimbal 39

4.1.1 Acquiring Simultaneous Video Streams 40

4.1.2 Designing the Camera Fixture 42

4.1.3 Integrating with an Experimental Aerial Platform 43

4.2 Assembling the Panorama in Software 43

4.2.1 Image Pre-conditioning . 44

4.2.2 Establishing the Relationship Between Cameras 46

4.2.3 Rendering the Panoramic Video 52

4.3 Using the Software . 55

4.3.1 Video Options . 55

4.3.2 Telemetry Options . 57

4.3.3 Overview of Data Handling 59

5 Experimental Results 61

5.1 Video Panorama Results . 61

5.2 Pixel Resolution Map Results . 65

5.3 Search Efficiency Results . 67

5.3.1 Time to Completion versus Desired Resolution 68

xiv

5.3.2 Constraints on Waypoints from Desired Resolution 68

6 Summary and Conclusions 73

6.1 Observations . 73

6.2 Future Work . 75

A Methods for Coding 77

A.1 Multi-threaded Applications . 77

A.2 Buffering Data in an Application . 78

A.3 Enabling Thread to Thread Communication 79

B Colormaps 83

B.1 Continuous Colormaps . 83

B.2 Custom Colormaps . 85

Bibliography 89

xv

xvi

List of Tables

5.1 Capture Rates using Various Groundstations 63

5.2 Comparison of Flight Time Results. 68

A.1 Variables Necessary for Sharing Data using Buffers. 79

xvii

xviii

List of Figures

2.1 Four types of transformations . 12

2.2 Camera Model . 21

2.3 Angles for rotation matrices . 21

2.4 Ray from UAV to a point . 22

3.1 Image and image grid . 27

3.2 Image in world . 28

3.3 Remapping the pixel density data . 28

3.4 Test for determining if a point is inside a polygon 31

3.5 Lawnmower waypoint pattern . 32

3.6 Zamboni waypoint pattern . 33

3.7 Calculating the number of passes . 35

3.8 Zamboni path generation . 36

4.1 Hardware framework . 41

4.2 Capture hardware . 41

4.3 Fixtures for mounting cameras . 42

4.4 Typical UAV platform for Virtual Gimbal 43

4.5 Pre-conditioning the images . 44

4.6 Virtual Gimbal camera alignment . 47

4.7 Geometric relationship of viewing angles 48

4.8 Comparison of overlap at different distances 51

xix

4.9 Finding point correspondences . 51

4.10 Calculating frame alignment . 53

4.11 Alpha blend . 54

4.12 Rendering schemes . 55

4.13 The Virtual Gimbal GUI . 56

4.14 Resolution map initialization GUI . 58

4.15 Data handling within the Virtual Gimbal 60

5.1 Total field of view from Virtual Gimbal 62

5.2 Images from the Virtual Gimbal . 64

5.3 Effects of noise on interlaced footage 65

5.4 Resolution maps . 66

5.5 Comparison of simulation and flight data resolution maps 67

5.6 Time trial results . 69

5.7 Maximum altitude for resolution . 69

5.8 Maximum footprint for resolution . 70

5.9 Number of passes required . 71

B.1 Illustration of different colormaps . 85

xx

Chapter 1

Introduction

1.1 Small UAV Surveillance

The realm of unmanned air vehicle (UAV) technology and autonomous flight

control have matured to the point that commercially available autopilots reliably

auto-takeoff, navigate GPS1 waypoints, and auto-land. Now that autonomous flight

is readily achievable, research has turned to incorporating multiple agents into various

missions, integrating new sensors into flying platforms, and enhancing flight charac-

teristics such as endurance, payload capacity, and energy efficiency.

Common utilization of UAVs include military surveillance and reconnaissance,

battle damage assessment, convoy following, ordnance delivery, border patrol, and

other law enforcement applications. While such security and military applications

certainly comprise a large sector of the UAV market, other data collection applica-

tions for UAVs are beginning to emerge. For example, recent development and studies

have focused on using UAVs for high-resolution terrain mapping, fire-monitoring, con-

sumer interest sampling, and wilderness search and rescue. Nearly all of the proposed

applications for UAVs include sensing details about ground scenery. Data collection

from UAVs has included visual sensing from color cameras, infra-red cameras, and

synthetic aperture radars (SARs), and structural sensing using devices such as Sick

1Global Positioning System, a network of satellites used for ascertaining accurate locations on
the earth’s surface.

1

LADARs2. Of particular interest within this research is the use of UAVs to assist

wilderness and search and rescue (WiSAR) teams on the ground by providing an

aerial perspective.

The utility of using a small UAV platform for such purposes is fairly evi-

dent: UAVs afford greater safety for operators monitoring system progress remotely,

allow various field-deployment scenarios because they are man-portable and hand-

launchable, are able to fly safely at low altitudes, and are maintained at relatively

low cost. Compared to individuals searching from the ground, UAVs are able to cover

a wider variety of terrain safely and traverse the land more quickly. Small UAVs may

also carry a payload, though the complexity and size of the payload are limited by

the size of the UAV.

As beneficial as UAVs are in enabling WiSAR efforts, there are still several

inhibiting limitations which must be addressed. Such limitations include bounded

range (both data transmission and actual flight duration), inherent motion on sur-

veillance footage from UAV dynamics (both from jitter and disorienting maneuvers),

and low quality of video imagery (resolution, sharpness, directed viewpoint).

To solve these problems, there are various solutions. Range issues can be

countered by increasing the size of the UAV and powering it by internal combus-

tion instead of battery power. Data transmission distances can be augmented by

establishing a higher powered data link or flying a network of cooperative aircraft.

Inherent video motion from the UAV can be removed from video footage by image

stabilization, mosaicking, or other methods as discussed in [1]. This research proposes

solutions to the ever-increasing demands for retrieving high quality video imagery to

assist WiSAR ground teams in performing effective searches quickly and thoroughly.

2Laser Detection and Ranging, an optical remote sensing technology which measures properties
of scattered light to find range and/or other information of a distant target. Laser is an acronym
for Light Amplification by Stimulated Emission of Radiation.

2

1.2 Improving the Quality of Aerial Footage

Aerial surveillance requires the consideration of two competing variables—level

of detail and degree of coverage. A high degree of detail can be imaged if the UAV

flies at low altitudes, but a thorough search of an area would require more time since

the effective footprint3 of the camera would be smaller than if the UAV flew at higher

altitudes. On the other hand, the region could be quickly searched from a higher

altitude, though the level of detail in the video would be much coarser. Ideally, the

demand for high detail and wider coverage can both be satisfied.

One approach involves image collection using a mini-gimbal, an actuated plat-

form aiming a camera, which allows the UAV carrying the gimbal to return multiple

viewpoints without varying its course. Current research utilizes a mini-gimbal to per-

sistently image and localize targets while following a prescribed waypoint path [2, 3].

This hardware solution lends itself to a parallel software solution employing multiple

video sensors on a single UAV posed with different viewpoints. The video data from

these sensors may be fused together to yield a higher resolution panoramic video.

The benefits of higher resolution panoramic footage are two-fold. First, for

any field-of-view lens, a panoramic video from multiple cameras has more pixels—and

hence more features—than a comparable video taken from a single camera. Second,

at a given pixel-density, driven primarily by altitude, more pixels of data implies that

the sweep of a region yields a larger swath of covered terrain. Thus, the product

of a panoramic video combines the two benefits: The UAV enabled search increases

the likelihood of object detection by returning high detail, and the larger surveillance

footprint increases the rate of coverage. Meeting these two objectives enables WiSAR

teams to perform a comprehensive search of a region more quickly than by using a

single camera-equipped UAV.

If bandwidth allows, having multiple sources offers the advantage of represent-

ing different views of the scenery, ultimately yielding more information about what

3The term camera footprint refers to the region on the terrain being imaged by the camera.

3

is being surveyed. Most analog video data links only allow NTSC4 standard trans-

missions (480 lines interlaced at 30 frames per second). A digital video link could

possibly broaden the abilities, since digital standards are much more varied. How-

ever, current small UAV payload allowances preclude a digital video downlink, which

weighs more than two pounds. The bandwidth issue can be temporarily side-stepped

by assuming that video streams can be sent via parallel analog data links.

1.3 Presenting Panoramic Video Footage

Because too much information presented in a disorganized manner can be a

hindrance, simply transmitting and monitoring multiple video streams from a single

UAV is unlikely to yield increased efficiency and quality of a WiSAR operation. On

the other hand, fusing the data into a single panoramic video on a ground station

provides a context for how the data are related and reduces the number of searchers

required to interpret the footage.

A panoramic video offers benefits that a typical gimballed camera cannot pro-

vide. A gimbal is typically used to aim a camera by driving two servos controlling tilt

in elevation and pan in azimuth. Gimballing a camera allows for a focused search of

many viewpoints relative to a UAV airframe, but the field of view is fixed to whatever

the lens provides. Also, only a small sector of the range of motion of the gimbal can

be viewed at a time. This may result in the camera relaying footage of a region which

is less helpful than if the camera had been aimed in a different direction. Panning

the camera to focus on a region of interest might often disorient a search team on the

ground. A Virtual Gimbal, or array of multiple video cameras whose output is fused

together in software, requires no moving parts and can mimic a gimballed camera

by offering digital pan and tilt capabilities. In addition, a Virtual Gimbal allows the

user to view high resolution panoramas by incorporating digital zoom functionality.

4The National Television Systems Committee established the analog transmission standard in
1941, originally in monochrome. This standard is used in North America and many other countries
around the globe. NTSC III is the current version and is compatible with digital television routing.

4

1.4 Previous Work with Video Panoramas

Capturing panoramic video is still a relatively new pursuit. Within the last

decade, researchers have applied increases in computer processing power to employ

image stitching techniques for mosaicking photo stills, stitching movie frames to-

gether into a single mosaic, and blending streams of frames together into panoramic

videos. The proposed applications range from high-resolution surveying to immersive

teleconferencing.

In 1991, a design was submitted for patent by McCutchen [4] such that an array

of cameras fixed in a dodecahedral pattern coupled with an array of projectors could

display continuous video across the interior surface of a dome or spherical theater.

While this development did not incorporate blending the videos into a single stream,

the functionality of having a high-resolution panoramic video image was introduced.

Compositions of many sequential video frames into large panoramic images of

surveyed environments can be useful for establishing situational awareness. Szeliski [5]

presents algorithms and methods to align images from sequential frames using pro-

jective transformations and recovering depth using structure from motion techniques.

This environment map is useful inside virtual reality environments, computer game

settings, and movie special effects.

Swaminathan and Nayar [6] present a method for calibrating and arranging

a real-time polycamera, as they call it, composed of four small cameras. Their im-

plementation was similar to the approach taken within this research, but all designs

were for in-lab experimentation only. These researchers had previously investigated

the use of catadioptric video sensors in [7], where a combination of lenses and mir-

rors are carefully arranged to capture a panoramic video using a single video sensor.

Since only one sensor is used, catadioptric video sensors have lower resolution than

the polycamera approach.

5

Immersive teleconferencing is another application that is being developed using

video panoramas. Majumder et al. [8] blend together an array of video streams to

render a cylindrical view of a teleconference. To view the video, the scenes are

projected onto a cylinder to give a feeling of presence at the teleconference session.

Algorithms are presented for geometric rendering and intensity blending.

Foote and Kimber [9] use the FlyCam system developed jointly from University

of California Santa Barbara and FX Palo Alto Laboratory to digitally combine images

from an array of video cameras. With the merged panoramic video, Sun et al. [10]

(of the same research group) present a method for steering a “virtual camera” to a

region of interest, which is a subset of the panorama. Sun et al. [11] then extract a

region of interest from the wide-angle video stream and capture to a file. The camera

array is fixed with respect to the background allowing simple motion analysis to track

objects and people of interest. Algorithms for motion analysis and automatic camera

control are also presented in [12].

Akin to imaging panoramas along a cylindrical axis, research has been pre-

sented by Firoozfam and Negahdaripour [13] where an array of multiple video cameras

were utilized to gather conical5 video for mapping the ocean floor . This research in-

tended to gather visual information similar to video that could be garnered from a

2-axis gimbal mounted to the underside of a UAV or UUV6. Mathematic models of

projection and image motion are presented for a down-look conical camera installed

on a mobile platform. This system is then used to achieve greater accuracy in three

dimensional motion estimation than a single camera could provide.

Many other related works investigate synthetic vision systems which combine

video streams with data files, such as geographic relief, to render video with greater

information than cameras can provide. Calhoun et al. [14], for example, employ

synthetic vision so that buildings can be labeled, no-fly-zones can be marked, and

5Firoozfam refers to conical video as video where the camera arrays are down/outward looking,
but the sensors are arranged in a ring parallel to the sea floor producing a ring of video.

6Unmanned Underwater Vehicle.

6

other pertinent information can be overlayed directly on the video stream. Ongoing

research addresses how to capture a rendered panoramic video and perform other

complex operations on these high resolution movies at frame rate.

As many of the aforementioned research groups are working on the task of

improving the alignment and registration of panoramic video arrays, the scientific

approach for constructing the seamless high-resolution panoramic video will likely

not be unique to this research. All previous research has required a wired connec-

tion to the video cameras, and the camera arrays have been on a fixed platform, as

in conference rooms or mounted to ground vehicles. These systems have required

computer hardware dedicated to receiving the video streams over FireWire7 or serial

connections.

1.5 Contributions

This research presents methods for developing a Virtual Gimbal from inexpen-

sive NTSC video sources, followed by results demonstrating the increased effectiveness

in comprehensively searching a region of interest from a single small UAV. Incorpo-

rated into this research are several novel approaches for acquiring video panoramas

and equally unique methods for generating information about search quality from the

UAV-enabled search.

1. This research constitutes the first known attempt to build panoramic videos

with the video sources at a remote location from the processors, and the first

known attempt at using video from analog sources.

2. This is the first Virtual Gimbal to be used on a small UAV, designed with the

needs of Wilderness Search and Rescue operations in mind.

7Apple’s trademark name for the IEEE 1394 cabling standard. FireWire is a fast and versatile
interface used to connect DV cameras to computers.

7

3. With three video cameras mounted to the UAV and the ground station operator

choosing which two to stream into the Virtual Gimbal software, this panoramic

video will also be able to render two distinct viewpoints.

4. A method is presented for updating a digital map answering these three ques-

tions:

• Which regions the Virtual Gimbal have been imaged?

• How good was the best view of a certain location?

• How quickly was a thorough search of a region completed?

5. Algorithms are presented for planning waypoints for a UAV which allow the

onboard Virtual Gimbal to retrieve video which meets quality criteria and also

search a region in 40 percent less time than required for a UAV with a single

camera.

1.6 Thesis Outline

The basic mathematics necessary for building video panoramas from multiple

sensors will be discussed in Chapter 2. Here the algorithms for geo-referencing video

and calculating planar homographies between two scenes will be presented. Within

Chapter 3, the algorithms for estimating the quality of coverage will be developed,

and a simple method will detail how to generate waypoints designed for comprehen-

sive coverage of a search region. Chapter 4 will be devoted to describing the overall

hardware implementation and software integration of the Virtual Gimbal which gen-

erates the panoramic video. Experimental results indicating the improved efficiency

of search will be presented in Chapter 5. Chapter 6 concludes with observations and

recommendations for future research.

8

Chapter 2

Image Processing and Geo-Referencing

To make effective use of the sensors on the UAV, it is desirable to fuse the

video information from multiple cameras with the telemetry from the inertial sensors

and GPS. The output from such processes yields wide-angle panoramic video and geo-

referenced image data. This chapter presents some of the fundamental computations

for finding the planar homography between scenes captured from different vantage

points and finding world coordinates of features from video and telemetry.

2.1 Computing Transformations

The view of a certain region will likely look very different when compared

to a view of the same region from a different point in space. As such, there are

many considerations to take into account when investigating applications of image

processing and computer vision. To make visual information more useful, the image

data should be registered to a coordinate frame. In a basic case, images can be

registered to other images. Essentially, one image is considered a basis or truth, and

the other image is manipulated until a geometric relationship between the two frames

can be established mathematically. The degree of complexity required for registering

images to one another is related to what motion is expected between the frames. If

a set of point correspondences1 can be established within a pair of images, then a

transformation matrix can be computed representing a mapping from one image to the

next [15]. Mapping imagery together into a new image based upon common features

1Point correspondences are pairs of coordinates which match like features from two images which
are related by a transformation. See Figure 2.1(a) for an illustration.

9

is often called mosaicking [16], since a larger image can be built up from many other

component images. The following sections address typical transformation formats

progressing from the most basic to the most general.

2.1.1 Euclidean Transformations

For the most simple example, images taken from a camera that has moved

along a plane parallel to the image without changing its orientation require only a

simple translational model. Images of distant scenery taken from a camera after sim-

ple translation remain nearly unchanged. If the image is presumed to have translated

and rotated in the parallel plane, then Euclidean transformation, which models rigid

body motion, represents the image motion. In block form, the simple translations

and rotations map a point x = (x y 1)⊤ to a new point x′ = (x′ y′ 1)⊤ using the

relationship

x′ =

R t

0⊤ 1

x, (2.1)

where R is a rotation matrix—defined by orthonormal eigenvectors—and t is a trans-

lation vector. In other words, for a point to be transformed from x to x′, the matrix

equation

x′

y′

1

=

cos θ − sin θ tx

sin θ cos θ ty

0 0 1

x

y

1

(2.2)

should be used, where θ is the angle of rotation and tx and ty are translations along

the x and y axes, respectively. Euclidean transformations preserve angles and lengths,

and can be calculated from two point correspondences as illustrated in Figure 2.1(a).

10

2.1.2 Similarity Transformations

At the next level of complexity, similarity transformations are Euclidean trans-

formations with scaling. In computer vision, such scaling could be an artifact of zoom

on a camera or having an element of translation along an axis orthogonal to the scene.

The scaling is applied by multiplying the rotation matrix R by a scaling factor, s,

according to

x′ =

sR t

0⊤ 1

x. (2.3)

As inferred from the definition of similarity, images which maintain similarity

have proportional lengths and maintain the same angles. Euclidean transformations

are similarity transforms with a unit length scaling factor. Similarity transforms can

also be computed from two point correspondences.

2.1.3 Affine Transformations

An affine transformation is any non-singular linear transformation followed by

a translation. A transformation matrix cannot be singular since the mapping must

be able to be reversed by applying the inverse of the transform. The key difference

between this type of transform versus the similarity transform is that the rotation

matrix R is replaced by any non-singular matrix, A. Thus the transform is given by

x′ =

A t

0⊤ 1

x, (2.4)

where A is a 2 × 2 invertible matrix and t is a translation vector. To apply an affine

transformation to a point x to yield x′ , the equation

11

(a) Euclidean (b) Similarity

(c) Affine (d) Perspective

Figure 2.1: (a)Euclidean transformations incorporate in-plane translations and rota-
tions only. Points a1 and a2 correspond to points b1 and b2. (b) Similarity transforms
move in the Euclidean plane, but also scale uniformly by a sclae factor s. (c) Affine
transformations allow different scale factors in two orthogonal directions. (d) A per-
spective transformation allows points to be scaled or rotated out of the plane at z = 1
before projecting the coordinates back onto the plane.

x′

y′

1

=

a11 a12 tx

a21 a22 ty

0 0 1

x

y

1

(2.5)

should be used. A geometric interpretation of an affine transformation includes all of

the translation, rotation, and scaling properties of a similarity transform, but adds

two additional scaling factors along a pair of orthogonal axes oriented in a specific

12

direction in the image plane. An affine transformation can be determined from three

point correspondences.

2.1.4 Perspective Transformations

All of the transformations discussed to this point have transformed points

homogeneously within the image plane: Area has scaled equally for an object trans-

formed anywhere on the plane. Because of the zeros in the bottom row of the trans-

formation matrix, we are guaranteed to convert from a point (x y 1)⊤ to a point of the

form (x′ y′ 1)⊤. These coordinates are considered homogeneous coordinates, because

the points all lie on the plane z = 1, as shown in Equation 2.5. However, if the zeros

in the third row were replaced with non-zero values, so that the equation becomes

x′ =

A t

v⊤ 1

x, (2.6)

where v⊤=[v1 v2], then the third element of the output could be non-unity, since

the third element will be one plus a linear combination of the x and y values. This

is a mapping to a different depth than the plane at z = 1, representing perspective

warping. A perspective transformation of a point, x, in a plane to a corresponding

point in another plane, x′, is called a 2D homography.

To compare the transformed point to the original point, the transformed point

must be projected2 into the same viewing coordinates as the original. The homo-

geneous coordinates (the plane z = 1) are the standard viewing coordinates. The

points are projected onto the plane z = 1 by normalizing the point in R
3 by the third

element, thus mapping the point back into R
2. Because of this required scaling to

accomplish a perspective transformation, the process is nonlinear. Four point cor-

2As a note of interest, a homography is different from a projection in that a projection typically
reduces the dimensionality of an image. For example, if a set of data represented an object in three-
space, a projective mapping could be found that rendered the object onto a planar scene. Videos
and pictures are inherently projections of a three-dimensional world onto an imaging plane.

13

respondences are required in order to compute a projective transformation between

two planes, as long as no three of the points are collinear.

2.2 Recovering a Homography

Knowing what transformation has taken place is necessary when attempting

to interpret scenes or take measurements from an image. Within the context of video

from a UAV, the points contained in the image have experienced a perspective trans-

formation from the world coordinate frame to the coordinate frame of the camera.

Only by calculating this transformation matrix can points in the world be compared

to points in the camera frame. This matrix is a composition of rotation matrices

known from the UAV states, and will be discussed in section 2.

Within the context of a Virtual Gimbal, a perspective transformation relates

the features within video frames acquired from multiple cameras. This transforma-

tion is not known precisely, since slight differences in how the cameras are mounted

greatly affects this transformation matrix. Finding this transformation is the key to

projecting the image from a different viewpoint.

In order to begin recovering the homography—which includes all rotations

and translations of the camera with respect to the scene—at least four points must

correspond between the source image and the destination image. These points can

be chosen manually or matched by some feature detection algorithm. With this

set of point correspondences, the homography can be found using the Direct Linear

Transformation Algorithm, as follows.

2.2.1 The Direct Linear Transformation Algorithm

The Direct Linear Transformation (DLT) method is perhaps the most common

method for recovering a planar homography from four or more points [15]. If it is

known that the homography, H, maps at least four point correspondences from xi to

14

x′

i in R
2, then we could equivalently write x′

i = Hxi. The vectors x′

i and Hxi are in

the same direction, but may be scales of one another, due to mapping x′

i back into

homogeneous coordinates. Therefore, the vector cross product of the two parallel

vectors is zero,

x′

i × Hxi = 0. (2.7)

The homography H typically contains nine elements:

H =

h1 h2 h3

h4 h5 h6

h7 h8 h9

. (2.8)

The row elements of H can be stacked into a single 9 × 1 vector,

h =

h1

h2

h3

, (2.9)

where

h1 =

h1

h2

h3

, h2 =

h4

h5

h6

, and h3 =

h7

h8

h9

. (2.10)

The product Hxi can be written as

Hxi =

h⊤

1 xi

h⊤

2 xi

h⊤

3 xi

, (2.11)

15

and with x′

i = (x′i y
′

i w
′

i)
⊤, the cross product can be taken explicitly to give

x′

i ×Hxi =

y′ih
⊤

3 xi − w′

ih
⊤

2 xi

w′

ih
⊤

1 xi − x′ih
⊤

3 xi

x′ih
⊤

2 xi − y′ih
⊤

1 xi

. (2.12)

This relationship is known to be equal to zero from Equation 2.7 and can be equiva-

lently written in matrix form as

x′

i ×Hxi =

0⊤ −w′

ixi y′ixi

w′

ixi 0⊤ −x′ixi
−y′ixi x′ixi 0⊤

h1

h2

h3

= 0. (2.13)

These equations are generally of the form Aih = 0, where Ai is a 3 × 9 matrix.

Of the rows in Equation 2.13, the last is linearly dependent on the first two,

as can be seen from the sum of the first row multiplied by x′i and the second row

multiplied by y′i. As such, the set of homogeneous equations represents two lin-

early independent equations. It follows that Equation 2.13 could appropriately be

re-written as

0⊤ −w′

ixi y′ixi

w′

ixi 0⊤ −x′ixi

h1

h2

h3

= 0. (2.14)

Now Ai is 2 × 9 (instead of 3× 9) for each pair of point correspondence. The

matrix A can be composed by stacking each 2 × 9 matrix, Ai, representing a point

correspondence. As discussed earlier, if four point correspondences are found then

the system of equations Ah = 0 has dimension 8×9 (instead of dimension 12×9 with

rank 8). Therefore, H may be determined up to an arbitrary non-zero scale factor.

The elements of the homography can be found by computing the singular

value decomposition (SVD) of Ai. The singular vector corresponding to the smallest

singular value is the solution h. The matrix H can be reconstructed as given in

16

Equation 2.9. Typically, the solution h is then scaled such that the norm of h is unit

length.

Since scaling can be an issue with sets of point correspondences that have a

wide, non-normalized distribution, it is considered good practice to normalize input

points before performing the DLT. Normalizing the points in the corresponding im-

ages shifts the points to cluster around the unit circle centered at the origin. Using

normalized points results in a more accurate homography since points are weighted

more evenly. Acquiring normalized points requires finding a similarity transform,

T for the first image, and T ′ for the second image. This transform consists of a

translation that moves the centroid of the points in each image to the origin, and a

scaling factor such that on average, the points are a distance of
√

2 from the origin.

With the points re-centered and scaled, the set of correspondences are conditioned

to find a good homography, H̃. The value of H relating the unnormalized point

correspondences can be found by evaluating H = T ′−1H̃T .

In review, the Direct Linear Transformation algorithm requires four pairs of

points which correspond between two images for computing 2D homography. To find

the solution, first normalize the points as described above, then build the Ai matrix

according to Equation 2.14. The result should be a compilation of n, 2 × 9 matrices

into a single 2n × 9 matrix A. The homography, H, contains the elements of the

singular vector corresponding to the smallest singular value of Ai.

Since the SVD is used to find the minimum norm solution, the problem lends

itself well to an overdetermined set of equations. Therefore, if more than four point

correspondences can be found, then a more robust homography can be calculated

assuming that some of the correspondences are not satisfactory matches.

2.2.2 The RANSAC Algorithm

If a data set has outliers, then the minimum norm homography may not accu-

rately reflect the perspective warp between two data sets. Statistical methods such as

17

the Random Sample Consensus (RANSAC) [17] algorithm can be effective at sorting

outliers from the data set. The RANSAC algorithm can be used to establish a valid

transformation by computing a homography based upon a randomly chosen subset of

the points, then measuring how well that homography would fit the rest of the points.

The points that are well represented by the computed homography are inliers, and

those that are not are considered outliers.

To use the RANSAC algorithm outlined in Algorithm 1, several assumptions

must be made. First, the system must be over-determined; while a total of M data

items total, only N < M items are required to establish the model. For computing a

homography, N is four; four points are required to compute a homography. Second,

it is necessary to supply an estimate of the probability that a randomly selected data

point is part of a good model, pg, and the probability that the algorithm will exit

without finding a good model if one exists, pfail . These probabilities are used to

determine the number of iterations, L, to calculate sample homographies. The value

of L can be determined by evaluating the probability of L consecutive failures:

pfail = probability of L consecutive failures

= (prob of a single trial failing)L

= (1 − prob of trial being successful)L

= (1 − (prob that a random point fits the model)N)L

= (1 − (pNg))L. (2.15)

With pfail, pg, and N given, it is possible to solve for the number of times to repeat

the random sampling, L, by rearranging Equation 2.15 to meet the given criteria as

L =
log(pfail)

log(1 − (pg)N)
. (2.16)

18

Before beginning the algorithm, one should determine how many inliers, K,

are necessary to label the model as valid. The algorithm then follows this general

process:

Algorithm 1 RANSAC Hypothesis Testing and Inlier Selection
1: repeat

2: Randomly select N data items from the total set of M (homography requires
four point correspondences)

3: Estimate the model (the homography, use the normalized DLT)
4: Establish how many of the M data items fit the model within a tolerance, K
5: If K is large enough, consider the model acceptable and exit with success
6: until Random samples have failed L times
7: Process fails if no valid model is found in L attempts

Since the RANSAC algorithm finds the best model based upon a noisy data

set and the expected statistics of the data set, the resulting output of RANSAC is

still limited by the quality of its inputs. As a general rule, the data set should have

more expected inliers than outliers. Within this research, rather than accepting the

homography which was generated as a hypothesis, a new homography is computed

using all of the point correspondences which were considered inliers for the acceptable

homography. Populating the homography using the SVD of the system ensures a

minimum norm homography calculated from the inliers of the data set, since the

SVD method produces an optimal solution in the least-squares sense.

2.3 Geo-referencing Imagery to World Coordinates

Fundamental to all aerial WiSAR missions is the ability to associate what is

seen in video footage to locations for ground response teams to investigate. Since

the UAV is navigating by inertial and GPS sensors, this information can be used to

reconstruct the ground locations of points of interest once the pose of the camera is

computed. Geo-referencing points is not unique to this research [18, 19], but will be

discussed for the sake of completeness. The pose of the camera is a composition of the

19

attitude of the camera with respect to the vehicle frame, the attitude of the vehicle

frame with respect to the inertial frame, and the location of the inertial frame with

respect to some known origin.

As a common camera model simplification, the pinhole camera model will

be used. The pinhole camera model, as diagrammed in Figure 2.2, assumes that

all imaging rays pass through a single point called the center of projection before

intersecting with the imaging plane. The imaging plane is a distance f from the

center of projection, often called the focal length. This ideal model also requires all

image rays to continue in straight lines from the object point, P, to the target point

on the image plane located at (xtp, ytp). The resulting image on the imaging plane

is flipped vertically and horizontally. Most video cameras return images that have

already been corrected to render the image as seen with the naked eye. Imperfections

in camera lenses stretch images through radial distortion and have a tendency to blur

sharp edges due to light diffraction. Th pinhole camera model can be used if radial

distortion inherent in wide-angle lenses is removed. All images retrieved from the

video cameras in this research are pre-conditioned to remove radial distortion so this

assumption is valid.

To find the ray from the plane to the target, two rotation matrices are needed.

First, the rotation from the camera frame to the vehicle frame is represented by

Rcb =

cazcel −saz cazsel

sazcel caz sazsel

−sel 0 cel

, (2.17)

where az is the azimuth angle of the camera and el is the elevation angle of the

camera, and cx = cosx and sx = sin x . Since the z coordinate axis of a camera is

into the image and elevation is measured with respect to the nose of the UAV, it is

necessary to use the complement of el in the rotation matrices according to

sel = sin
(π

2
− el

)

, and cel = cos
(π

2
− el

)

, (2.18)

20

Figure 2.2: In the pinhole camera model, the image plane is rotated from the body
frame by π

2
. Note also that the origin of the image is offset from the center of the image,

(x0 y0).

(a) Camera Azimuth (b) Camera Elevation

Figure 2.3: (a) The azimuth angle, αaz, is measured about the body frame Z-axis.
((b)) The camera elevation angle, αel, is measured about the camera frame Y-axis. The
other angles, φ, θ, and ψ, follow the tradition conventions of being measured about the
body frame X, Y , and Z-axes, respectively.

as diagrammed in Figure 2.2.

Second, the rotation from the body frame to the world, or inertial frame is

shown by

Rbw =

cψcθ cψsθsφ − sψcφ cψsθcφ + sψsφ

sψcθ sψsθsφ + cψcφ sψsθcφ − cψsφ

−sθ cθsφ cθcφ

, (2.19)

where φ, θ, and ψ, are roll, pitch, and heading of the UAV, respectively.

With these rotation matrices in hand and the pose of the aircraft and camera

centers available, it is possible to rotate a ray from image coordinates to camera

coordinates to world coordinates.

21

Figure 2.4: The point q can be located on the ground by calculating where the viewing
ray intersects the ground from the UAV’s position.

To ascertain a ray in image coordinates, camera calibration parameters must

be known. Consider the camera’s intrinsic parameters as elements of a matrix C.

MATLAB has a popular toolbox [20] for determining these camera parameters,

C =

fx 0 x0

0 fy y0

0 0 1

. (2.20)

Here, fx and fy are scaled focal lengths in pixel units. The unscaled focal length

is the width of a pixel multiplied by fx, or the height of a pixel multiplied by fy

pixels. Since pixels on CCD3 arrays are nearly square, the values for fx and fy will

be nearly the same. The values for x0 and y0 represent the center of the CCD array.

For a 640×480 array, these values are 320 and 240, respectively. To align the camera

coordinate frame with the body coordinate frame, the pixel coordinates are rotated

22

by π
2
, as shown in Figure 2.2, yielding a ray to the target pixel in units of focal length

of

uc =

1

fy

(y0 − ytp)

1

fx

(xtp − x0)

1

. (2.21)

Rotating this ray into the world frame using the matrices in Equation 2.17 and 2.19,

the ray now points from the origin of the inertial frame toward the point of interest

on the terrain according to

u = RbwRcbuc. (2.22)

The ground coordinate of the target can be found by calculating where the

ray from the plane to the target intersects the terrain as in Figure 2.4. To find

where this ray intersects the terrain, either a terrain model must be known a priori,

a sensor must be able to detect the height above ground, or a flat earth model must

be assumed. For this work, all targets are assumed to be at the same altitude. The

vector from the origin to the target at point q, q, can be expressed as the sum of

two vectors: the vector to the UAV, w=(x y z)⊤, and some multiple, s, of the ray

pointing from the UAV to the target u, as detailed by

q = w + su. (2.23)

The planar constraint requires that the inner product 〈w + su, ẑ〉 be equal to

zero, since a vector along the ground will always be orthogonal to the z-axis. The

vector ẑ is a unit vector equal to (0 0 1)⊤. This can be used to obtain

〈w, ẑ〉 + s 〈u, ẑ〉 = 0. (2.24)

3Charge-coupled device (CCD) is a collection of tiny light-sensitive diodes, which convert photons
(light) into electrons (electrical charge). These diodes are called photosites.

23

The scalar multiple of the ray found in 2.22 can then be deduced by the relation

s = −〈w, ẑ〉
〈u, ẑ〉 . (2.25)

Since the z-axis has only one component, the scalar multiple to find the position of

the pixel in world coordinates is

s = − z

zu
. (2.26)

This scalar may then be substituted into Equation 2.23 to give the target location

relative to home

q =

x− z
zu

xu

y − z
zu

yu

0

. (2.27)

The fundamental geo-referencing relationship is vital to the success of this

project. It is only through knowing the location of the camera’s footprint that

WiSAR teams can have confidence that a thorough search of a given region has

been accomplished. The methods described here are implemented within the algo-

rithms described in Chapter 3 for geo-referencing each frame to a map, then finding

coordinates of corners of pixels for calculating the pixel densities of search footage.

24

Chapter 3

Monitoring Search Progress

When performing an exhaustive search of a region, it is desirable to track how

thoroughly areas in the search region have been surveyed. The information required

to track what the UAV-mounted cameras have seen includes the pose of the UAV

in world coordinates and the pose of the camera relative to the UAV. These values

are included in standard telemetry. The telemetry can be utilized to indicate the

path of the search and can be used to accurately place scenes from video into world

coordinates [21]. Synchronization algorithms for precision alignment of video with

telemetry are under development [22], increasing the utility of real-time search from

UAVs.

Depending on the nature of the mission, it may not be sufficient merely to have

imaged a region. Images taken from high altitudes or from a camera with a wide-angle

lens provide very different visual cues than low-flying aircraft or cameras with narrow

field-of-view lenses. For example, searching for a lost hiker implies a requirement for

much higher resolution imagery than searching for a building or automobile. If the

footage is to be used by autonomous feature detection and extraction software, it

has been suggested by Hansen [19] that a feature should fill at least 20 pixels in the

image. Stabilization and video mosaicking techniques have been shown to increase

the likelihood that an operator can detect targets of this size [1]. In a worst-case

scenario, consider a search where the desired feature is a person and the search is

taking place at a time void of shadows. A top-down view of a person might be as

small as a half meter by a half meter, requiring a resolution of at least 80 pixels per

square meter. On the other hand, if shadows accentuate the person’s location or if the

25

person is lying down, the person may be detectable with image resolution as coarse

as 20 pixels per square meter.

3.1 Storing Search Progress into a Resolution Map

To monitor both coverage of geographical regions and the resolution of sur-

veillance footage of those regions, a resolution map can be built to store both tiers of

this information. A resolution map is a digital map of the search area representing

the best resolution at which points have been surveyed. This matrix can be rendered

as a bitmap using a colormap1 to reflect thresholds of acceptable coverage.

As mentioned above, the information necessary to build the resolution map

includes six degree-of-freedom pose information for the UAV and camera in addition

to calibration data for the camera. The six degree-of-freedom pose of the aircraft—

roll, pitch, heading, east position, north position, and altitude—is returned with

telemetry. The orientation of the camera with respect to the UAV—azimuth and

elevation—depends only upon how the camera is mounted in the UAV. The intrinsic

parameters of the camera—focal lengths fx and fy, and center locations cx and cy—

should be determined a priori using methods discussed in [23]. The method for

building and populating the resolution map follows Algorithm 2.

In practice, rather than iterating the resolution computation for each pixel,

the image is divided into rectangular groups of pixels (quads). The pixels within a

quad have approximately the same resolution. This simplification reduces both the

number of computations at each telemetry update and the size of the matrix that

must be warped by the homography. Computationally, warping a 1200×1200 matrix

requires 77 milliseconds, while warping a 100 × 100 map requires only 1 millisecond.

As an overview of Algorithm 2 pictorially, consider an image that is gathered

from a camera, as in Figure 3.1(a). Pixel resolution or other pertinent information

1A colormap converts single-channel image data into red, green and blue (RGB) by dividing the
single channel into bins. The bins can be assigned RGB values with continuous gradients or fixed
for the entire bin. See Appendix B for more details on using and customizing colormaps.

26

Algorithm 2 Populating a Resolution Map

1: for Each new telemetry update do

2: Estimate the location image corners in world coordinates using telemetry.
3: Calculate the homography mapping image points to world points.
4: for Each pixel within the image do

5: Find the world coordinates of four corners of the pixel.
6: Compute the area of the pixel in meters.
7: Find resolution of the pixel (1/area).
8: Store the current resolution information.
9: end for

10: Map the resolution information using the homography from image coordinates
to world coordinates.

11: for Each pixel in the resolution map do

12: If the current value at each pixel is greater than the value already in the
resolution map, update the resolution map with the current value.

13: end for

14: end for

about the image can be stored in matrix form as in Figure 3.1(b). The world coordi-

nates of the image corners are computed using the telemetry as shown in Figure 3.2.

(a) Image (b) Image Grid

Figure 3.1: (a) The image contains the visual information for each video frame.
(b) The image grid contains other data about the image at corresponding image loca-
tions.

The next step involves computing the homography between the image corners

in camera coordinates and the world coordinates using the normalized DLT discussed

in Section 2. This homography is used to map the frame resolution information into

the resolution map. Since applying a perspective warp to a frame is computationally

27

expensive, it is desirable to warp only the pixels pertinent to the image. In this imple-

mentation, a minimal bounding box is found for the location of the pixel information,

and the perspective warp is computed only over that region.

Figure 3.2: By finding where the world coordinates of the image corners, a homogra-
phy can be calculated that performs the needed transformation on the image.

Figure 3.3: The perspective warp from the camera corners into world coordinates is
applied to the pixel density data. The collection of warped data becomes a resolution
map to validate that an exhaustive search has been performed.

28

3.1.1 Computing the Resolution of a Quad

Computing the frame resolution map for warping, as shown in Figure 3.3, only

requires knowledge of the north and east world-coordinates of vertices on each quad.

The area is computed from these coordinates. Pixel resolution is equal to the area

divided by the number of image pixels within the quad.

When considering a purely down-looking camera, one might properly note

that the pixel resolution is fairly uniform across the entire image when in steady level

flight. This can be deduced since the distance from the UAV to the edge of the image

footprint is not much larger than the distance to the center of the image.2 As the

UAV banks in a turn, however, the roll of the UAV causes the edges of the image

to approach the horizon so that each pixel will encompass more ground area. In roll

conditions, resolution is greatly decreased.

Image resolution can be represented in square meters per pixel. The inverse of

resolution is pixel density, which has units of pixels per square meter. Both metrics

require computing the geographic area of a pixel. For any convex polygon3 with n

sides, the vertices can be arranged determinant style so the area, S, can be computed

from

S =
1

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x1 y1

x2 y2

x3 y3

...
...

xn yn

x1 y1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
1

2
[(x1y2+x2y3+x3y4+. . .+xny1)−(y1x2+y2x3+y3x4+. . .+ynx1)].

(3.1)

2This observation is akin to the small angle assumption that sin(θ) ≈ θ.
3Convex polygons require every internal angle to be at most 180 degrees.

29

Following this format, the area of a quad, Sq, with corners (xi, yi)i=1..4 is

Sq =
1

2
[(x1y2 − x2y1) + (x2y3 − x3y2) + (x3y4 − x4y3) + (x4y1 − x1y4)]. (3.2)

From the area and the number of pixels inside the quad, the pixel resolution

can be determined and stored into a matrix. As described previously, once the grid

is populated, it can be warped according to the homography for that image.

3.1.2 Writing Into the Resolution Map

For values of pixel resolution to be accepted into the resolution map, two

qualifications must be met. First, the current pixel density must be greater than

the value already recorded in the resolution map for a given location. This test is

important because a more recent view of a region does not indicate that the view

was more detailed. Second, the value at the pixel must be greater than a certain

minimum. This prevents pixels from being updated if the look was merely from the

UAV banking and returning images of the horizon.

When monitoring the performance of the search pattern, it is also desirable to

monitor the progress toward completion. A counter is updated each time a new region

within the search boundaries has been adequately imaged according to a specified

threshold. This count, when divided by the total area of the search region, represents

the percentage of the total area monitored with acceptable detail.

A simple test to determine if a pixel is within the search region involves the

cross product of boundary vectors and vectors from vertices to the point. Consider

the search area abcd in Figure 3.4. A series of cross products can be computed to

determine if the points p and q are within the boundaries.

To determine if point p is inside the polygon, perform the cross product of

each boundary vector with the vector from the head of the boundary vector to the

30

Figure 3.4: The convex polygon abcd represents a search area. Points p and q must
be found to be inside or outside of the polygon using successive cross products.

point in question. Proceeding around the vertices in order, the cross product of vector

~ab with ~bp yields a negative z component (into the page.) Then crossing ~bc with ~cp,

the sign is also negative. Continuing around the circle, if the z components are all

in the same direction, then the point is inside the polygon. For point p, all of the

resultants are negative, so p is inside abcd. Contrast those results by evaluating point

q. Starting at point a, ~ab× ~bq is negative, but ~bc × ~cq positive. Without needing to

continue for all boundaries, point q already cannot be within the convex polygon.

3.2 Waypoint Generation for Exhaustive Searches

The overarching goal of this research is to assist WiSAR ground teams in

performing effective searches quickly and thoroughly. The Virtual Gimbal provides

a video panorama as described in Chapter 1 to broaden the swath of terrain covered

per pass of the UAV. The resolution map mentioned in Section 3 is designed to track

the path of the viewing area and indicate the level of detail the search was able to

achieve.

A comprehensive search using these tools can be accomplished if an effective

method for generating waypoint paths which maximizes coverage without undue over-

lap is developed. The goal in generating waypoints is to calculate a set of waypoints

that meet three criteria: the images must meet a given pixel resolution threshold,

31

(a) Lawnmower Desired Path (b) Experimental Lawnmower Flight Path

Figure 3.5: (a) The lawnmower-type search pattern sweeps back and forth across a
search region. (b) In an experimental flight test, four circuits of a lawnmower path
indicated that the UAV had difficulty tracking the waypoints around switchbacks.

the region must be thoroughly surveyed, and the waypoint path should require as

few passes as possible over the region. Comprehensive search patterns have followed

many styles [24]. Preliminary investigation determined that a lawnmower-type search

pattern is able to attain the desired coverage. However, turning radius constraints on

UAVs and the possibility of strong winds render the repeated switch-backs difficult

for small UAVs. A sample waypoint path and a plot of flight-test data from a UAV

following a lawnmower path are included in Figure 3.5.

Another option for comprehensive search patterns involves a Zamboni-style4

waypoint path. Similar to the lawnmower pattern with its parallel passes through the

region and comprehensive design, the Zamboni-style waypoint path allows wide turns

by alternating which half of the search region is imaged, as illustrated in Figure 3.6.

The Zamboni is also conducive to searching using a Virtual Gimbal since neighboring

swaths are imaged with the UAV flying the same general direction, preventing a need

for the Virtual Gimbal to switch viewpoints for each pass. As such, a search can

be performed completely with left turns only. This assists the Virtual Gimbal since

the video panorama may be set up with a primary video feed straight down and

4A Zamboni is a truck-like ice resurfacer that is used to clean and smooth the surface of an ice
rink, originally developed by Frank J. Zamboni in 1949.

32

(a) Zamboni Desired Path

−100 0 100 200 300 400

−100

−50

0

50

100

150

200

250

300

350

400

East

N
or

th

Zamboni, 50 M Altitude, 2.5 m/s wind, Comprehensive Coverage

(b) Experimental Zamboni Flight Path

Figure 3.6: (a) The Zamboni pattern achieves comprehensive coverage while not
requiring a tight turn radius for the UAV. (b) As shown here, the UAV in this flight
test followed this Zamboni pattern surveying the entire region while only requiring
gentle left turns.

an auxiliary feed to the left or the right. In this research waypoints are generated

assuming the auxiliary camera is right looking.

Several parameters must be known in order to generate Zamboni waypoints.

Given corners for the search area, the width of the camera in pixels, the number of

passes to make, P , and a desired altitude, zdes, it is possible to generate an exhaustive

search path for a given camera. Consider the scenario where the searchers would

like to generate waypoints yielding surveillance footage that meets a desired pixel

resolution. Using geometry, the camera parameters and the search corners provide

enough information to generate suitable altitude commands and the required number

of passes. The number of passes, P , is used to partition opposing boundaries of a

search region into equal length line segments. Waypoints are placed on each line

segment to minimize the amount of video footprint overlap from the UAV.

Since video during turns is less helpful to WiSAR efforts, the number of re-

quired turns should be minimized. This can be accomplished by directing the UAV

along the longest dimension of the search area. The Zamboni pattern then proceeds

along paths between the shorter boundaries. As a note of interest, maintaining useful

33

footage as the UAV turns can be accomplished by coordinating the direction of the

turn with the direction the cameras are aimed. For example, if the Virtual Gimbal’s

primary video stream renders video from the down and right-looking cameras, then

it is wise to order the waypoints so the UAV performs clockwise turns. Having the

turn direction aligned with the camera viewpoint helps maintain the usefulness of the

surveillance footage5.

When the search region is not symmetric, it is critical to maintain complete

coverage with the video footprint over the widest part of the path. This distance,

xcrit, is used to calculate the number of required passes by ensuring that the minimal

width of the pass, xpass is greater than xcrit/P . The number of passes be rounded up

to the nearest integer through the relationship

P = (floor)
xcrit
xpass

+ 1, (3.3)

where floor indicates that the decimal result of the division is truncated. Remember

that fx is the scaled focal length in pixels and x0 is the number of pixels to the center

of the image, both known from the camera’s intrinsic parameters (from Equation

2.20). The value of xpass can be calculated using

xpass =
w

√

Tpix
, (3.4)

where Tpix is a desired pixel resolution threshold, and w is the width of the image.

For a single camera, the width of the camera is 2x0, while a panoramic video

from the Virtual Gimbal has a width of approximately 3.6x0. Keep in mind that the

threshold value is in square pixels per square meter, so taking the square root will

convert the threshold to a linear pixel per meter value. Substituting Equation 3.4

5The idea of looking “into a turn” is somewhat inspired by the 1948 Tucker automobile, which
had headlamps that were actuated along with the wheels. Rather than illuminating the road in
front of the chassis, the lamps illuminated the path along the direction the front wheels take the
automobile.

34

Figure 3.7: The number of passes and altitude required depends on the degree of
detail desired and the camera’s intrinsic parameters

into 3.3, the number of passes can be found to be

P = (floor)
xcrit

√

Tpix

w
+ 1. (3.5)

The desired altitude for the waypoints follows the similar triangle relationship

for a downward facing camera,
zdes

xpass/2
=
fx
x0

, (3.6)

so that the desired altitude is given by

zdes =
xpassfx

2x0

. (3.7)

Substituting from Equation 3.4 yields an equivalent expression,

zdes =
wfx

2x0

√

Tpix
. (3.8)

35

Figure 3.8: This diagrams the general goals of generating Zamboni waypoints. The red
dotted lines are paths for the aircraft to follow and the black solid lines are boundaries
between the passes. The order of the passes are numbered 1-5, proceeding in the
direction of the arrows.

To ensure that the waypoints overlap by a small percentage, it is wise to

consider some of the pass width xpass to be redundant. This can be accomplished by

multiplying the right hand side of Equation 3.4 by some percentage to indicate how

much of the image should be new footage. This research assumed 90 percent of the

image width should gather new footage. The number of passes and altitude are also

adjusted according to effective pass width.

Once the desired number of passes are determined and the altitude is set,

calculating the actual waypoints is straightforward. As diagrammed in Figure 3.6

and Figure 3.8, all that remains to be generated is a correct sequence of waypoints

along opposite sides of the search region. The waypoints are computed by selecting

a pair of adjacent corner points to start from and the associated boundary lines that

span the rest of the search area. As an example, selecting points a and b in Figure 3.8

as the starting points, waypoints progress along the boundary line segments ad and

bc. Based upon the number of required passes, the normalized center of each pass

can be represented by

Rctr =
2i− 1

2P
. (3.9)

36

The waypoints divide the line segments between corner points according to the center

ratio, Rctr, such that all waypoints are along the two boundaries.

For this research, waypoints must also be generated for flying a Virtual Gimbal,

which fuses imagery from two cameras arranged in a three-camera array. The center

camera is mounted with a down-looking perspective, and the two side cameras are

rotated 40 degrees to view the terrain to the left and the right of the UAV. The desired

waypoints for the Virtual Gimbal are planned such that a down-looking camera and

right-looking camera can return images that thoroughly survey the search region.

As such, a bias must be added so the asymmetry of fused image will return footage

within the region. This bias can be computed according to

xbias =
w − 640

2
√

Tpix
. (3.10)

Note that if a single camera is used, the bias naturally goes to zero since w = 640.

From these relationships, the waypoints can be expressed as

xi = a−Rctr · ad± xbias, xi+1 = b−Rctr · bc± xbias, (3.11)

where the sign of the bias changes based upon what direction the pass proceeds6. As

seen in Figure 3.8, the second search segment begins on the other side of the search

region and returns to the starting boundary, requiring a bias opposite to the bias on

the first pass.

Also worthy of note, odd and even numbers of passes require special considera-

tion for where to begin the second Zamboni pass. For the return passes, the following

modified center calculation is used,

Rctr2 =
2i+ P − 1 +mod(P, 2)

2P
, (3.12)

6A right-looking video panorama should be biased so the first pass is pushed away from the
border, and the second pass is biased the opposite direction

37

where mod(P, 2) returns a 1 for an odd value of P and a 0 for an even value of P .

This formula correctly calculates the return waypoints whether the number of passes

is even or odd.

If the waypoints are generated according to these equations, the resolution

map that is generated from UAV telemetry will indicate that a thorough search of

the region has been completed after all waypoints have been visited. The waypoints

can be generated to follow a course that allows the UAV to return footage that meet

a minimum pixel resolution value, Tpix. In addition, waypoint biasing allows the non-

symmetric video output from the Virtual Gimbal to return images within the search

area without excessive overlap.

38

Chapter 4

Experimental Implementation of the Virtual Gimbal

The fundamental methods for generating panoramic video from multiple video

sources has been presented in Chapter 2. A resolution map quantifying the quality

of a search of a region was presented in 3. Equations to determine a set of waypoints

which allow a UAV to efficiently and thoroughly survey a region of interest were

also presented. The Virtual Gimbal is a combination of specialized hardware that is

capable of retrieving multiple video streams from a single UAV and software designed

to manage and monitor the data—both video and telemetry—returned from the UAV

to a ground station. The hardware and software implementation of the Virtual Gimbal

is combined into a system which enables a UAV to exhaustively search a region more

quickly than a UAV equipped with a single down-looking camera.

4.1 Hardware Setup for the Virtual Gimbal

The Virtual Gimbal increases search efficiency by returning more video footage

for each pass of a UAV over a search region. The ground station processes video

transmissions from three cameras that are mounted within the UAV. The specialized

hardware required for using the Virtual Gimbal can be divided into three primary

components: the image acquisition system, the camera fixture, and the UAV per-

forming the search.

39

4.1.1 Acquiring Simultaneous Video Streams

For ground vehicles, acquiring simultaneous video is straightforward using

FireWire cameras or multiple webcams, which are easily supported on a single ma-

chine. For the typical small UAV, however, onboard vision processing with wired

cameras is not possible due to limited payload capacity. Rather, small UAVs often

employ inexpensive NTSC video cameras transmitting via 2.4 Gigahertz analog video

channels. Early investigations considered multiplexing the video over a single chan-

nel and then parsing the stream back into individual videos. The NTSC standard is

limited to 30 frames per second, so the best possible transmission of three cameras

on a single data channel would be 10 frames per camera per second. Additionally,

this method is only possible if the multiplexer is synchronized with the clock driving

the scan lines and the source camera of each frame could be accurately identified.

While this method for capturing the streams is intriguing, separating the streams

using various image signatures is quite difficult and controlling the clock would re-

quire additional hardware complexity. Therefore, the problem was approached by

transmitting two simultaneous video feeds to the ground station.

Ideally, all three video streams should have a dedicated data transmission line

to the ground station. This approach affords continuous availability of all of the view-

points. Current hardware limitations prevented the possibility of more than two video

capture devices. Since the Virtual Gimbal was intended for use on man-portable,

hand-launchable UAVs, the ground station hardware was chosen to complement those

needs. Two USB 2.0 frame grabbers receiving video over two video transmitter chan-

nels can be captured on a single laptop. The number of devices capturing to the

ground station is limited both by device drivers and available capture libraries. Since

having three cameras on the Virtual Gimbal is helpful in a search scenario and only

two capture devices are available, the UAV autopilot was used to control a switch

selecting which auxiliary input to transmit over one of the video streams. The down-

40

Figure 4.1: The Virtual Gimbal received two of three videos at a time, assisted by a
serial output from the Kestrel Autopilot selecting the right or left camera on a video
switch.

(a) KWorld USB 2.0 Capture De-
vices

(b) Video Switching Chip

(c) Kestrel Autopilot

Figure 4.2: The two live streams come via the KWorld USB 2.0 capture devices, with
the logic for selecting the left or right camera being sent from the Kestrel autopilot
through a video switching chip.

looking camera footage was continuously transmitted. The general video hardware

framework on the UAV is illustrated in Figure 4.1.

41

Figure 4.3: Two mounts were made for the Virtual Gimbal at 40 and 30 degree angles.

4.1.2 Designing the Camera Fixture

A rigid fixture was designed so the three cameras could be mounted in the plane

without being susceptible to vibration between the cameras. Maintaining constant

camera orientation between cameras was essential for computing a homography that

was valid for the entire flight. Initial investigations into lightweight aluminum fixtures

indicated that even small vibrations or flexure in the jig greatly affect the quality of

the alignment for the video panorama. As such, a more solid fixture was desired.

A plexiglass mount was designed to maintain rigid-body relations between

cameras. The mount allowed the lenses to slide snugly into place with the camera

boards held to the fixture with screws. Two different fixtures were fabricated as

shown in Figure 4.3 to allow experimentation with different lenses and angles between

cameras. Since the field of view (FOV) and the hardware arrangement are directly

related, each fixture was designed for a specific lens.

42

4.1.3 Integrating with an Experimental Aerial Platform

The weight and size considerations for the on-board hardware indicate a need

for a Big-Bird class1 of UAV, as designed by Brigham Young University’s MAGICC2

Lab. This class of UAV, shown in Figure 4.4, has a wingspan of about 1.5 meters and

typically weighs about 1.5 kilograms. They typically are capable of carrying up to a

half-kilogram of payload. Many of these UAVs are already outfitted with hardware

gimbals, so researching an alternative system using a Virtual Gimbal is appropriate.

Figure 4.4: The Virtual Gimbal mounts inside a small UAV custom built by BYU.

4.2 Assembling the Panorama in Software

The thrust of this research is to demonstrate how using a high-resolution multi-

source video panorama allows a UAV-enabled WiSAR team to attain greater coverage

of a region in less time. Of central importance to achieving this result is the actual

fusion of video frames taken simultaneously from different sources. Generally, this

process requires three steps. First, the frames must be pre-conditioned by removing

all radial distortion and deinterlacing frames to remove artifacts caused by motion.

Second, a relationship must be established between the different viewpoints. Lastly,

1These UAVs constructed of expanded poly-propylene (EPP) and reinforced with kevlar and
carbon spars.

2Multi-Agent Intelligent Coordination and Control

43

(a) Interlaced (b) Deinterlaced

(c) Distorted (d) Undistorted

Figure 4.5: Here we see a need for image pre-conditioning due to distortion and
interlacing. In (a) the jagged lines are caused by motion of the camera between the scans
of successive fields. Figure (b) shows how a deinterlacing can improve the smoothness
of the frame. If the lens is wide enough to cause distortion, the intrinsic parameters of
the camera can be used to remove distortion as shown in (c) and (d).

the images must be rectified to the same plane and assembled into a single fused

image.

4.2.1 Image Pre-conditioning

All distortion caused by the camera lenses must be removed for the assump-

tions required by the geo-location equations to be met. This fisheye effect—an artifact

of a curved lense projecting images onto a planar CCD array—can be seen in Figure

4.5. The Virtual Gimbal utilizes the a 50 degree HFOV (horizontal field of view) lens,

44

which is sufficiently wide to cause distortion. Distortion causes features to change

shape and scale based upon location within the image.

To remove radial distortion from an image, the camera’s intrinsic parameters

including the size of pixels (meters in x, meters in y), the focal length, and two

other distortion parameters must be determined. Using these parameters, a mapping

matrix can be created that establishes the destination of the new x and y locations for

each of the points. An open-source computer vision package managed by Intel called

OpenCV3 accommodates undistortion with a pair of functions, cvInitUndistortMap

and cvRemap. The cvRemap function also performs a resizing operation that crops

the image at the maximal bounding box to exclude pixels remapped with no data.

As illustrated in Figure 4.5(c), the edges of the picture are effectively pulled inwards,

rectifying all lines which were straight in the world to be straight in the image. The

image is cropped to the largest rectangle that contains image data, then resized to

fit the original image dimensions4. As noted in research by Steven Hansen [19], the

probability of detection of an object decreases with proximity to an edge, so losing

highly distorted pixels near an edge will have only minimal effects on our search.

Interlacing is the result of cameras gathering pixel information in two sweeps

through the image to generate one frame. The first field, or set of scan lines, proceeds

from top to bottom, and contains the pixel data for the odd lines. The second field

contains the data for the even lines. Each field is generated in 1/60 of a second,

then the data is interlaced—or read out every other line from the two fields—within

the NTSC standard. Because the data in the odd field is gathered before the even

field, significant motion in the scene may cause edges to be jagged due to temporal

misalignment. If motion is expected to be rapid between the video frames, deinter-

lacing can smooth the video by interpolating data from the odd field to replace the

delayed data in the even field. One common method for generating this new field is

3Open Computer Vision Library.
4The footage in Figures 4.5(a) and 4.5(b) was from a 640×480 source, then captured at 720×480.

The camera parameters were calibrated for the 640 × 480 camera, so the undistorted figure must
truncate more of the right side of the image in Figure (d).

45

to convolve a 3 × 3 deinterlacing kernel,

kD =
1

8

1 2 1

0 0 0

1 2 1

(4.1)

with the image to estimate what the even field would have contained had it been

imaged simultaneously with the odd field. Another method is to simply copy the

data from the odd field directly into the even field. This method rejects misaligned

data, but sometimes results in jagged features. For better quality, the first method

is used within the Virtual Gimbal. While deinterlacing will improve the quality of

footage with significant frame-to-frame motion, performing this convolution actually

ignores all data from the even field, losing potentially valuable information.

Once these operations are complete, the images are considerably better suited

for geo-referencing to world coordinates, maps, or other planar images through trans-

formations. For a panoramic video to be realistic, the images must be pre-conditioned

so that a relationship can be established between video sources. Then, knowing the

pose of the cameras relative to the UAV and given telemetry from the UAV’s autopilot

system, it is possible to geo-locate points of interest within the video images.

4.2.2 Establishing the Relationship Between Cameras

With the frames undistorted, images of a planar scene are merely perspective

transformations of one another. In other words, for every pair of viewpoints, there

exists a transformation that can map from one viewpoint to the other, and the inverse

transformation will map it back again. This principle is helpful when given two

cameras which partially overlap. If a common region is found between a pair of images,

as in Figure 4.6, assuming there are features that can be accurately detected and

matched to each other within that region, then a transformation can be established

using the method described in Section 2. The hardware for the Virtual Gimbal was

46

Figure 4.6: This figure illustrates the concept of aligning the frames from the three
non-parallel image planes associated with the three cameras of the Virtual Gimbal.

designed to offer about fifteen percent overlap, which provides plenty of features for

the DLT and RANSAC to arrive at a good homography for the neighboring frames.

Because the camera fixture assures a constant spatial relationship between cameras,

and the cameras are synchronous, then the homography only needs to be calculated

once. This mapping remains valid throughout the remainder of the video since there

is no relative motion of the image planes or the neighboring images.

Before finding features and tracking them between frames, it is important to

isolate which portions of the images overlap. This can be computed from what is

known about the camera system. Knowing the region of overlap is important, since

the algorithm which searches for the point correspondences will search within a fixed

region. The function that establishes the point correspondences requires two images

and two regions of interest (ROIs). The Virtual Gimbal assumes cameras are mounted

side by side with little variation in vertical alignment.

Since the cameras do not have identical centers of projection, or locations of

the centers of the cameras, it is necessary to investigate the geometric assumptions

and implications related to the system in order to relate the orientation of the cameras

to their common overlap.

Generally speaking, assume two cameras have lenses with known HFOV of ψ1

and ψ2, respectively, and a short baseline, or distance between centers of the cameras,

47

Figure 4.7: The camera arrangement is shown for establishing the geometrical rela-
tionship and understanding the percent overlap.

relative to the size of the plane being imaged as shown in Figure 4.7. With the baseline

much smaller than the other distances involved, the cameras have approximately the

same center of projection. The camera system is a distance h from the plane being

imaged. One of the requirements for the images to return overlapping fields of view

is that the edges of the viewable region must not intersect as h approaches infinity.

This requirement combined with the assumption about the center of projection allows

h to drop out of the final relationship with expressions based upon similar triangles.

The desired measure of overlap should be normalized so that the metric is invariant

to scale. Therefore, the desired measure will be percent overlap, Γ, of the form

Γ =
xoverlap
xtotal

. (4.2)

48

For simplicity, assume that one of the cameras is orthogonal to the plane. Ul-

timately, these relations are invariant to rotation, since the cameras are fixed relative

to one another. As such, the swath being imaged is of width

xtotal = 2h sin
ψ1

2
. (4.3)

Because of the small baseline assumption, the centers of projection of the first

and second cameras are approximately the same, so the region of overlap can be

computed as

xoverlap ≈ h sin
ψ1

2
− h sin γ, (4.4)

where γ is the angle from the normal to the target plane to the overlapping edge

of the right-looking camera. If it is known that the camera center is rotated by an

angle β, then the angle γ can be deduced by geometric principles of congruency and

complementary angles,

π

2
= (

π

2
− β) + γ +

ψ2

2
, (4.5)

so that

γ = β − ψ2

2
. (4.6)

Combining Equations 4.2, 4.3, and 4.4, the percent overlap can be reduced to

the relation

Γ ≈ h sin ψ1

2
− h sin

(

β − ψ2

2

)

2h sin ψ1

2

Γ ≈ 1

2
− sin

(

β − ψ2

2

)

2 sin ψ1

2

. (4.7)

49

Notice that the h term drops out of each of the lengths, rendering the ratio

completely independent of distance to the target plane, and only dependent upon the

HFOV of each of the cameras (ψ1 and ψ2) and the angle between the cameras (β) .

This is important, since the camera fixture will be mounted within a moving UAV

platform relative to the target plane (the ground).

To verify that the small baseline assumption is valid requires brief analysis.

Given that the actual baseline is about three centimeters, the actual overlap can be

computed at different distances, h, from the target plane as shown in Figure 4.8.

As expected, the small baseline assumption becomes more accurate as h grows much

larger than the baseline measurement. Since surveillance flights are not flown below

40 meters for the sake of safety, the worst errors in that estimate are less that 0.2

percent, and at more typical altitudes (above 80 meters), the overlap error is less than

0.1 percent. In any case, the accuracy of the overlap is only required to be in the right

neighborhood for the feature tracking algorithms to find good point correspondences

between the images, since the overlap percentage will be different for cameras with

different perspectives. Essentially, cameras not normal to the plane being imaged have

a longer image length in world coordinates and therefore smaller overlap percentages.

One of the methods for tracking the relationship between frames is by mon-

itoring optical flow. Optical flow is a measure of how features in an image move

between frame updates. Within the scope of this research, optical flow methods are

used as a means to find point correspondences within two separate, but synchronous

video streams. These point correspondences will be used to compute the homography

following the basic flowchart in Figure 4.9.

The features can be found in an intensity image (grayscale) using a Harris

Corner detection algorithm ([25, 26]). Once good features are found in one image,

a pyramidal Lucas-Kanade [27] scheme is used to find corresponding feature points

in the other image. This classical method is implemented in the OpenCV library

50

0 20 40 60 80 100
19

19.5

20

20.5

21

21.5

22

22.5

23

Distance from target plane (m)

P
er

ce
nt

 o
ve

rla
p

(%
)

Validity of Similar Triangle Assumption

Similar Triangles
Actual

Figure 4.8: A comparison of the actual overlap of the frames plotted against altitude
and the overlap given the small-baseline assumption.

Figure 4.9: This diagrams how point correspondences are found for computing the
homography between the cameras.

51

as cvCalcOpticalFlowPyrLK. This function returns the locations of the features that

were found in the second image.

Since the images were gathered on different imaging devices and captured us-

ing different capture devices, there are likely to be several false correlations between

the images. This is particularly noticeable on cameras that have auto-gain and auto

white-balance capabilities. For example, if the UAV is in a roll and one of the cam-

eras is capturing mostly sky, while the other camera captures mostly ground, then

the auto-gains will be vastly different, which may result in more outliers. Once a

good set of point correspondences is established, the DLT and RANSAC algorithms

are performed to return the homography between the matched regions. Figure 4.10

contains an example of how the selected ROIs are matched so a valid homography

can be calculated for warping the images together.

4.2.3 Rendering the Panoramic Video

While capturing video streams and calculating image relationships are cer-

tainly important in constructing a panoramic video, the rendering of the fused videos

is most important for utilizing the Virtual Gimbal in a WiSAR context. With the

frames and the homography between them in hand, rendering the frames together

seems like it should offer few challenges. The frame assumed to be the basis is copied

directly into the empty canvas, and the other frame is warped with perspective to align

the common features to the first image. This can be done quite efficiently on the video

card by rotating OpenGL5 textures. However, since the neighboring cameras often

have different brightness and color balance characteristics, there is merit to warping

the image on the central processing unit (CPU) and performing a blend to make the

output more visually appealing. In practice, the perspective warp contributes about

90 percent of the process time for capturing and blending the videos.

5The Open Graphics Library is a cross-platform, cross-language Application Programming In-
terface (API) for writing applications that require 2D and 3D computer graphics. OpenGL is used
widely in CAD, virtual reality, flight simulation, and other visualization applications.

52

(a) Left View (b) Right View (c) Assemebled

Figure 4.10: From this figure, we see that the 4.10(a) points from the left camera can
be matched with 4.10(b) points from the right camera. The point correspondences are
mostly accurate, but several false correspondences can be rejected using the RANSAC
algorithm. After finding a suitable homography, 4.10(c) the images can be projected
onto the same plane and blended to become portions of a larger image. This section of
the panoramic video shows the two frames blended together.

The rendering framework for the Virtual Gimbal uses the Microsoft Founda-

tion Class Library (MFC) as the graphical user interface (GUI) framework, seen in

Figure 4.13, and OpenCV’s HighGUI library to display the actual image. The render-

ing implemented by the Virtual Gimbal begins with copying the portion of the image

that is neither warped nor blended with the second image. Then the perspective warp

is applied to the image that is rotated from the basis. The information is somewhat

truncated to reflect what a wide angle CCD would see rather than an array of typical

53

Figure 4.11: At the overlapping region, the one image gradually fades out while th
other fades in. This blending technique smooths coloring inconsistencies as well as
minor asynchrony.

CCDs. Then the overlapping regions are blended as described in Figure 4.11: As one

of the images fade out, the other fades in.

This computation and rendering method applies to both viewpoints for the

Virtual Gimbal, whether looking left and center, or center and right. Hence, one

of the frames can be copied directly into the new image and the other is warped

according to the homography found from point correspondences.

In addition to rendering the visual information to a new panoramic image,

this portion of assembling the footage lends itself well to providing the simple gim-

balling functionality. In order to use virtual pan and tilt, the operator must first

digitally zoom into the video panorama. Then the virtual pan and virtual tilt allow

the operator to traverse within the video panorama inspecting regions for details of

significance. It should be noted that the zoom functionality is purely a digital zoom.

No additional information is learned about the scene than what the camera trans-

mitted to the panoramic video. However, isolating a region of interest may provide

useful insights in a search scenario.

Although designed specifically for real-time search scenarios, the Virtual Gim-

bal operator has the opportunity to save the panoramic video frames to a video file

for off-line searching. After the render of each frame, the panoramic video is half-

sampled and recorded back into a 640× 480 video file. The full resolution panoramic

video could be saved at the expense of frame rates.

54

(a) Panoramic Video (b) Virtual Gimballing

Figure 4.12: The different control schemes for rendering the panoramic video in-
clude (a) viewing all of the assembled video data in a panoramic video or (b) using the
digital zoom capablities along with pan and tilt within the panoramic video.

4.3 Using the Software

The operator interface to the Virtual Gimbal is shown in Figure 4.13. To use

the Virtual Gimbal, one needs two video streams of the same dimension (i.e. 640

pixels by 480 pixels). While developing this software, both files and camera feeds

served as video sources. The default is for Cameras to provide the video frames, but

by checking the Files bullet, synchronous files can also be built into a video panorama.

Some experimentation was performed with rendering styles using OpenGL compared

to OpenCV. As such, the button to switch rendering engines is still evident. Once a

source and rendering method is selected, the user can begin building video panoramas

by clicking the button Run Virtual Gimbal. The panorama at this point will

utilize a default left and right homography, be interlaced, and have the center-right

viewpoint.

4.3.1 Video Options

The operator at this point may calibrate the Virtual Gimbal for the fixture

used to gather the synchronous videos by clicking the Recompute H check box. The

homography will be calculated according to the current viewpoint for each successive

pair of input frames. To assist in choosing which homography is best, the SLOW

55

Figure 4.13: This is the operator interface for accessing all aspects of the Virtual
Gimbal’s functionality.

button indicates to the software to only render every eighth frame. As soon as the

operator unchecks Recompute H, the current values for H are stored into the matrix

for the remainder of the program. In addition, each time a new homography is

selected, it will be written to a text file. Both viewpoints should be calibrated if

using three cameras.

With the viewpoints initizalized and calibrated, the operator may digitally

pan, tilt, or zoom using the slider bars in the center of the interface. Other options

include the Deinterlace button, which allows the operator to turn on and off the

deinterlacing function. The Record button allows the operator to choose a file and

56

codec for writing the video panorama to a file. The Switch Cameras check box

allows the operator to indicate that the video feeds from the capture devices should

be switched to allow proper rendering: The first capture might not have been to the

left of the second capture.

4.3.2 Telemetry Options

As mentioned before, the Virtual Gimbal not only displays video footage, but

also quantifies the progress of the search by means of a pixel resolution map. This

map, also referred to as an accumulator of search information, requires current teleme-

try from the UAV, which is accessed through a TCP/IP6 connection. The searches for

this research were performed using BYU’s Virtual Cockpit, which can be queried for

pertinent state information about the UAV. The TCP/IP connection is particularly

valuable if multiple ground-stations are used during the search operation. While the

connection can be looped back to a single machine, using multiple computers allows

one operator to manage the UAV, and another to search the footage using the Virtual

Gimbal.

With the telemetry data, current search status information can be accumulated

whether the resolution map is shown or hidden. The window can be hidden by

selecting or deselecting the Show Accumulator check box. While the accumulator

continues to be updated, the window displaying the information will be closed until

re-opened.

A nice feature of having telemetry available includes being able to mouse-

click features of interest and have the virtual gimbal calculate the coordinates of the

feature in either meters from the ground station or GPS latitude and longitude. All

coordinates are both rendered to the screen and written to a text file.

6The Transmission Control Protocol (TCP) and the Internet Protocol (IP), were the first two
networking protocols defined. They were designed by the Department of Defense for sharing infor-
mation between computers.

57

Figure 4.14: This graphical user interface is used to initialize or reset the search
resolution map coordinates and other variables.

To manage the search resolution map effectively, critical search requirements

should be initialized through a second pop-up window. This is accessed by selecting

Initialize in the Accumulator group box of the Virtual Gimbal Interface. The

window that pops up looks like Figure 4.13.

Within this interface the mission critical values such as grid coordinates of the

search area are entered, the desired pixel threshold is set, and waypoint generation

options are selected. In addition, the operator can enter information on the level of

detail desired within the accumulator through a subsample factor, which represents

the length of one side of a quad (as discussed in chapter 3) and a render factor

relating pixels to meters. The sizes of the resolution map—the actual matrix holding

the resolution data—and monitor—a scaled version of the resolution map—can be

set in pixels. In addition, the operator should indicate the width and height of the

camera image being used for the search. This is important since some searches might

be performed without the full functionality of the Virtual Gimbal, utilizing a single

down-look camera. The Virtual Gimbal Configuration renders about 1150 pixels wide

by 480 pixels in height.

58

A cosmetic function for rendering the resolution map may be accessed by

the Colormap drop-down box. The Pixel Resolution data can be rendered in color

using standard colormaps such as Hot, Jet, Copper, or Autumn, or custom colormaps

including Threshold and Tiered (see Appendix B). The Threshold colormap renders

regions with suitable surveillance in teal, twice resolution in yellow, and three times

in red. Regions that have been seen but have not satisfied the threshold are colored

blue. The Tiered colormap renders colors according to pixels per meter in length,

beginning with three up to twelve, progressing with the rainbow. Regions seen with

less than nine pixels per square meter should be surveyed again.

4.3.3 Overview of Data Handling

For the sake of understanding the high-level code structure for the Virtual

Gimbal system, a brief discussion on data handling is appropriate as outlined in

Figure 4.15. As mentioned earlier, the UAV is managed by software external to

the Virtual Gimbal, and the Virtual Gimbal accesses telemetry data via a TCP/IP

connection. This data is used for all geo-referencing and search progress management.

The video is sent from the plane via two video transmitters to the ground station,

which is equipped with a pair of video receivers and associated USB capture devices.

When the telemetry arrives, it is placed onto a buffer so that the TCP/IP

connection can be freed for listening for more telemetry. Likewise, video frames are

placed on a buffer, which is limited by the capabilities of the capture software. Since

the panoramic video update is computationally expensive, it is placed within its own

thread, allowing the capture to run unencumbered. The accumulator is threaded

since all computations to update the accumulator are independent of other functions

of the Virtual Gimbal. Algorithm designs for creating a buffer or for safely passing

information between threads are outlined in Appendix A.

As the accumulator and panoramic video are updated in each respective thread,

the output can be rendered or saved, according to the operator’s instructions. Since

59

Figure 4.15: This diagram illustrates the flow of information through the program.
Each rectangle with sharp corners represents an independent thread within the process.

recording video is ongoing through a search, a second video buffer is created to house

the assembled panoramas before being appended to the AVI7 file.

The hardware and software components of the Virtual Gimbal are designed to

allow easy reconfiguration for a WiSAR team’s search needs. The camera fixtures can

be quickly and easily swapped for wider or narrower search swaths. The autopilot-

driven switch enables searchers to change their primary viewing direction between

left and right if an item of interest is near the border of the panoramic imagery.

Software-enabled digital zoom, accompanied with pan and tilt capabilities can isolate

smaller regions for searching even while all footage received by the ground station is

recorded to a file. When the WiSAR team leader calls for a change of search region,

the desired boundaries can be updated in software, generating a new waypoint path

and rendering into a new resolution map. All data from the Virtual Gimbal can be

stored, enabling offline searching after the UAV has been landed.

7Audio-Video Interleaved format, produced by Microsoft for media files within Windows.

60

Chapter 5

Experimental Results

Experimental results demonstrating the success of this research can be divided

into three main sections. First, since the primary purpose of the Virtual Gimbal was

to improve video quality for ground teams to monitor in WiSAR operations, sample

images and statistics regarding the images rendered in the Virtual Gimbal are pre-

sented. Second, inasmuch as search teams must be able to quantify the thoroughness

with which a region has been searched, sample pixel resolution maps with information

typical of a search scenario are included. Third, data is presented showing how the

video panorama increases the rate of search by covering a region at the prescribed

pixel resolution in less time than a single down-looking camera.

5.1 Video Panorama Results

Following the methods described in Chapters 3 and 4 for assembling the trans-

mitted videos into a panoramic video, the images were stitched together and blended

into a near-seamless sequence of wide-angle frames. Based upon the geometry of the

camera fixture and the intrinsic parameters of the cameras, a total view of 135 degrees

HFOV is achievable. At any instant in time, two of the cameras can be blended into

a 92 degree HFOV video panorama. Beyond this field of view, the images have a high

degree of perspective warp.

The underlying code within the Virtual Gimbal is multi-threaded, facilitat-

ing agressive image processing when executed on a multi-core processor. While

61

Figure 5.1: The three cameras mounted in the Virtual Gimbal can return two unique
video panoramas. A left-looking panorama returns the left view plus the center, or
alternately a right-looking panorama returns the center view plus the right view. Note
that after the side-looking frames are warped, they can be cropped to show the most
pertinent information.

most of the development of the software was performed using a HP1 Pavilion lap-

top (3.2 GHz Pentium 4, 1 Gb RAM), later experimentation on a IBM2 Thinkpad

LenovoX60 (1.8 GHz Centrino Duo, 512 Mb RAM) accelerated the frame rate. The

IBM was preferable for achieving higher frame rates since it has a dual core proces-

sor and the HP only ran a hyper-threaded Pentium 4 processor. The capture and

rendering was performed using OpenCV, so much of the loop-time was consumed in

retrieving the frames from the hardware and warping the component images into the

panoramic video frames. Intel, the company sponsoring OpenCV, produced an accel-

erator package called Integrated Performance Primitives (IPP) which includes a set

of dynamically loaded libraries (DLLs). These libraries are used in the place of the

typical libraries distributed with OpenCV. After installing IPP on both comptuers,

the frame rate of the rendering on both platforms increased drastically. Frame rates

of the systems are recorded in Table 5.1. The increases in performance indicate that a

significant limiting factor on achievable frame rates is the CPU processing the images.

It should be noted that though the rendering was accelerated, the process time for

capturing the images from hardware is roughly the same. Thus, the capture time is

the greatest limiting factor.

1Hewlitt-Packard
2International Business Machines

62

Table 5.1: Capture Rates using Various Groundstations

Computer Capture from File (fps) Capture from Camera (fps)
Pentium 4 8-10 2.5-3.5

Pentium 4 with IPP 20-22 5-7
Centrino Duo 10-12 4-6

Centrino Duo with IPP 20-22 5-7

Certain characteristics of the Virtual Gimbal should be noted. First, the

images have been preconditioned, both deinterlaced and undistorted, according to

the methods described in Section 4. This process removes artifacts caused by the

camera lenses and the motion of the UAV. Second, the three cameras have different

white balance settings. Each camera has a gain that is auto-adjusted according to

the brightness of the scene being imaged. If the gains were manually controlled, the

differences in brightness might be avoided. Third, an indicator carat has been added

to the image to mark the center of the down-looking camera. This carat gives the

operator a better sense of orientation, since both images are rectified onto the same

image plane. Fourth, the telemetry is integrated with the Virtual Gimbal through

mouse-clicking on the image, returning the GPS location of the point in question.

Also, a north-up indicator is rendered in the upper left corner to give ground search

teams greater context for the orientation of the UAV. Four typical panoramic video

frames from the Virtual Gimbal are shown in Figure 5.

While the panoramic video yields much more information about the surveyed

scene, in the course of the experiments it was found that special attention must be

directed toward maintaining a low-noise video connection. Transmission noise cannot

be removed from the videos through pre-conditioning. In fact, preconditioning poor

quality images simply undistorts and deinterlaces noise as though the static were

provided from the cameras. Figure 5.3 provides an example of how noise on the

transmission channels is rendered using raw footage. A simple solution for returning

crisp footage is to use powered antennas for both receivers.

63

Figure 5.2: These images are typical when flying the Virtual Gimbal with a right-
looking viewpoint. When a camera views the horizon, the auto-white balance for that
camera allows a better use of the color spectrum.

64

Figure 5.3: Noise is undistorted as if it were real image data. Here, the image is not
deinterlaced, so the edges or the road are mis-aligned within the left image since the
odd and even fields are out of synchronization due to motion of the UAV.

5.2 Pixel Resolution Map Results

The telemetry is vital for monitoring the progress of the search. Likewise, the

presentation of the information garnered from the telemetry is crucial for understand-

ing the effectiveness of the search.

The following figures illustrate the different aspects of rendering the pixel res-

olution map. In Figure 5.4(a), the actual resolution map contains only values reflect-

ing the pixel resolution within the search area. In addition to resolution information,

gridlines and boundaries can be plotted to assist the operator in interpreting the

resolution map. For example, typical resolution maps include search area boundary

lines (shown as red lines), 100 meter gridlines (mustard yellow lines), the coordinate

system relative to the ground station (green lines), and 3-channel rendering indicating

the level of detail seen. In Figure 5.4(b), the colormap follows a threshold scheme

coloring pixels which meet the prescribed resolution yellow, half resolution teal, dou-

ble resolution red, and outside these limits blue or magenta. For more information

on designing colormaps for rendering, see Appendix B.

The resolution maps from search simulations compare very closely to resolution

maps from actual flight tests, although some distinctions are worthy of note. Since the

actual flight path sometimes differs from the waypoint path due to loose control gains

65

(a) Single channel resolution map (b) Threshold colormap rendering

(c) Single camera raw data (d) Single camera Tiered colormap

Figure 5.4: (a) The single channel pixel resolution map holds the actual resolution
information for the area that has been searched. (b) This resolution map is rendered
using the Threshold colormap. This colormap renders regions meeting the prescribed
pixel resolution in yellow. Those regions that have been seen at half resolution are teal,
and double resolution are red. The extremes are rendered as blue and magenta. (c) The
footprint of the single camera does not approach the horizon the way the panoramic
video does, since the field of view is much smaller. (d) The Tiered colormap renders
different colors at each square of integers. For example, colors are incremented at 9,
16, 25 pixels per meter squared and so on.

on the UAV, position estimation errors, or wind, the resolution maps are not identical

(see Figure 5.5 for examples). Additionally, windy conditions sometimes require the

plane to fly with a crab angle3, which results in the footprint being rotated.

3Crab angle is the difference between the direction the nose of the airplane points (heading) and
the direction of travel relative to the ground (course).

66

(a) Single channel resolution map (b) Threshold rendering of flight
data

(c) Virtual Gimbal data (d) Virtual Gimbal Tiered col-
ormap

Figure 5.5: These sample accumulators illustrate the subtle differences between actual
flight data and simulations. The pair of Figures in (a) and (b) show results from
a UAV with poorly tuned gains, resulting in oscillatory motions along the waypoint
path. Figures (c) and (d) are smooth, as a result of a limited disturbance simulation
environment.

5.3 Search Efficiency Results

In order to compare results from the searches employing the Virtual Gimbal, a

rigid set of search criteria were developed. First, a standard search area of 500 meters

by 500 meters was prescribed. While this search area is much smaller than a WiSAR

search scenario would likely be, it provides ample search area for multiple passes over

the region and different resolution thresholds. Likewise, searching a region of this size

can be done relatively quickly allowing multiple iterations of the experiment.

67

5.3.1 Time to Completion versus Desired Resolution

From the time trial data, the Virtual Gimbal achieves comprehensive coverage

more quickly than the traditional single camera, as seen in Table 5.2, and later plotted

in Figure 5.6. To establish repeatability with the flight data, four test runs were

performed at 36 pixels per meter using the single camera, and then four more searches

using the Virtual Gimbal. Once the repeatability of the tests was established, the

Virtual Gimbal was tested following waypoints generated given finer values of desired

resolution. In comparing scenarios where the panoramic video and the single camera

were tasked with imaging the region thoroughly, the Virtual Gimbal, on average,

required 40.4 percent less time than the single camera with a variance of 0.4 percent.

Table 5.2: Comparison of Flight Time Results.

Single Camera Panoramic Camera
Resolution Flight (sec) Sim. (sec) Flight (sec) Sim. (sec)

25 – 261 175 135
36 480 304 175 150
– 478 300 180 155
– 478 300 180 155
– 478 300 185 158
64 – 366 277 190
100 – 484 315 246
144 – 605 380 311
196 – 720 – 362

5.3.2 Constraints on Waypoints from Desired Resolution

Since effective waypoint generation for completing a thorough search is critical

to the metrics for this research, Figure 5.7 shows the relationship between the desired

waypoint altitude and the required pixel resolution for the search. The equations

for determining this altitude are discussed in Section 3. Notice that since intrinsic

parameters of the cameras used in the Virtual Gimbal are the same used for the

68

5 6 7 8 9 10 11 12 13 14
100

200

300

400

500

600

700

800

Desired Pixels/Meter Resolution

T
im

e
to

 9
5%

 c
om

pl
et

e
(s

ec
)

Time to Exhaustively search a 500m x 500m Region

Flight Data: Single (640 pix)
Flight Data: Panoramic (1150 pix)
Simulation Data: Single (640 pix)
Simulation Data: Panoramic (1150 pix)

Figure 5.6: This plot includes data from time trials for attaining 95% complete cov-
erage. Data from flight tests and simulations are represented.

4 6 8 10 12 14
0

20

40

60

80

100

120

140

160

Desired Pixels/Meter Resolution

M
ax

im
um

 A
lti

ud
e

M
ee

tin
g

T pi
x C

rit
er

ia
 (

m
)

Maximum Altitude Given Desired Resolution

Single Camera (640 pix)
Panoramic Video (1150 pix)

Figure 5.7: The maximum altitude that can be flown when constrained by the number
of pixels per square meter that must be seen to be considered adequate footage for
thorough coverage.

single camera experiment, the maximum altitudes for both the camara scenarios are

identical.

It is also interesting to note the size of the video footprint given a desired

resolution. Since the constraint on resolution fixes an altitude ceiling, there is an

69

4 6 8 10 12 14
0

50

100

150

200

250

Desired Pixels/Meter Resolution

M
ax

im
um

 F
oo

tp
rin

t i
f a

t M
ax

im
um

 A
lti

ud
e

(m
)

Maximum Footprint Given Desired Resolution

Single Camera (640 pix)
Panoramic Video (1150 pix)

Figure 5.8: The maximum footprint that can be acquired when staying within the
altitude limits for keeping the desired pixel resolution.

maximum desired footprint width for the search. If the waypoints are flown lower

than the altitude ceiling, then the footprint is smaller, yielding higher resolution than

required by the search metric. Flying higher than the desired altitude produces a

larger footprint, but the footage fails to meet resolution requirements. When the

UAV banks, regions of the video footprint will have a corresponding decrease in

resolution. A plot of the maximum footprint coverage which meets the search criteria

is shown plotted in Figure 5.8.

Not all search scenarios will allow steady, level flight throughout the course

of the search, so the UAV is unlikely to perfectly match the ideal altitude or desired

footprint size. To allow a small region of overlap between passes, the calculations for

altitude and waypoint passes should be based upon using a percentage of frame width

as new pixels, with the remainder being overlapping pixels. For example, rather than

calculating waypoints for a single camera using a width of 640 pixels, the effective

width of the camera can be set to 600 pixels so the remaining 40 will be allowed to

70

4 6 8 10 12 14
0

2

4

6

8

10

12

Desired Linear Pixels/Meter Resolution

R
eq

ui
re

d
P

as
se

s,
P

Required Passes for Meeting Search Criteria

Single Camera (640 pix)
Panoramic Video (1150 pix)

Figure 5.9: With the number of pixels per square meter resolution as the constraint,
the maximum waypoint altitude and video footprint are set. The minimum number of
passes required to complete a thorough search are related to those values.

overlap. This technique helps ensure that even amidst poor path following, the region

will be covered thoroughly.

The control variable for maximum altitude and maximum footprint is mini-

mum resolution threshold. In addition, the number of passes for the search is also

determined based upon resolution according to the equations in Section 3, and plotted

in Figure 5.9. Search passes are rounded up to the nearest integer value.

The experimental results presented here, from both hardware and simulation,

indicate that the Virtual Gimbal can effectively render video footage from multi-

ple cameras on a single UAV to a panoramic video. This video nearly doubles the

amount of visual cues that searchers can monitor when performing a WiSAR opera-

tion. The deinterlaced, undistorted images were accurately aligned to allow context

for the relationship between the viewpoints. As the UAV missions were performed

the resolution maps were populated to reveal how well the prescribed search area was

surveyed. From the information presented using the resolution maps, it was deter-

mined that the panoramic video allowed a complete search of the region in about

71

40 percent less time than the single camera required. These results indicate that

the Virtual Gimbal offers significant improvements in the ability to search a region

quickly and thoroughly.

72

Chapter 6

Summary and Conclusions

As UAV utilization increases in Wilderness Search and Rescue efforts, the

need for improved sensors yielding more information will be desired. One of the

ways for UAVs to become more useful in WiSAR efforts is to accelerate the field

search process by returning greater amounts of aerial footage on each pass over the

terrain. Additionally, tracking the progress of a search by building up a digital map

of information reflecting video footage resolution and coverage allows a ground team

to be more confident that a comprehensive search of the region has been made.

6.1 Observations

This thesis has presented methods for acquiring video from multiple video

sensors and fusing them into a single rendered video stream. The panoramic video

stream is the first of its kind to be constructed from video transmissions from a small

UAV, and the first known video panorama to be used to quickly survey a region

within a WiSAR context. The Virtual Gimbal comprises two cameras from a three

camera array mounted in a downward looking configuration on a UAV. This video

stream has been shown to decrease the amount of time required to thoroughly survey

a region by more than 40 percent. This observation is reasonable, since the cameras

are aligned with about a 15 percent overlap, yielding more information about a region

than a single camera on its own.

From the research, it was noted that garnering nearly double the visual in-

formation from the Virtual Gimbal requires two transmitters, two receivers, and two

73

frame grabbers. Since two video feeds are captured by a single ground station, it

was observed that special care must be taken to minimize transmission noise in the

signal. If the transmissions include appreciable amounts of noise, the panoramic

video quickly becomes difficult to search. Also, it was observed that deinterlacing

the footage before warping the side-looking scene produces somewhat blurry images,

since half of the information is removed before the scene is stretched to blend into

the other image.

In order to monitor the quality of the search, a pixel resolution map was

generated to register the degree of detail that was available within the footage. The

desired metric was chosen to be pixels per square meter, since generating waypoints in

response to this variable brings the camera sufficiently close to the terrain to see the

minimum level of detail. Care was taken to meet this pixel density constraint without

unduly monitoring regions that have already been searched. The pixel resolution

map was observed to also give context for the path the UAV was following, since

the operator of the Virtual Gimbal may be connected to the telemetry of the UAV

through a TCP/IP connection. The rendering within the resolution map provided

sufficient information to help a search team plan new waypoints over regions that

have not been sufficiently canvassed.

This measure of the quality of an exhaustive search proved to be useful not

only as an indicator of where the camera has imaged, but also as a metric for the

progress of the search, since a percentage counter reflected how much of the region

had been seen within the limits of the threshold. The speed of each search was directly

related to the number of passes required for thorough coverage. Therefore, a searches

requiring the same number of passes for a given camera would require approximately

the same amount of time, regardless of the altitude—and hence resolution of the

footage—of the UAV1.

1Since the number of passes is required to be an integer value, resolutions close to one another,
such as 40 pixels per square meter and 50 pixels per square meter, might require the same amount
of time if the search requires the same number of passes.

74

6.2 Future Work

The greatest limitations within this research were the ability to capture mul-

tiple simultaneous video feeds in real-time and performing perspective warps pixel by

pixel. Rather than using USB capture devices, performance might be improved by

using a 120 frame-per-second PCI frame grabber2 or a PCMCIA extension for such

hardware. Having the capture directly integrated with the ground station, rather

than communicating over a serial line, might improve frame rates.

With such a card, one might reasonably attempt to transmit all three cam-

era signals over dedicated video channels for building a wider, three-camera video

panorama. The addition of this live image to the video panorama would also ne-

cessitate another antenna for the ground station. As an alternative to this method,

one might consider calculating the homography a priori from the ground, then im-

plementing the perspective warps in dedicated hardware, such as an FPGA3 small

enough to be flown onboard. If digital video links are reduced in size sufficient for

including as UAV payload, transmitting the assembled panoramic video would be

feasible.

In order to make the imagery more uniform in color and brightness, the Virtual

Gimbal could comprise an array of cameras which have been tuned to one another

with fixed gains. This technique could alleviate much of the contrasting light and

dark regions seen in neighboring frames. Integrating the Virtual Gimbal imagery

with stabilization software would also improve the probability of detection by an

operator.

Integration of this work for efficient comprehensive search patterns with prob-

abilistic models might provide other benefits in the search and rescue application.

Ultimately, UAVs equipped with video panoramas or other high resolution video

2A PC card connects directly to the motherboard, thus accelerating the rate of data transmission
compared to a serial connection.

3Field Programmable Gate Array

75

equipment will greatly enhance the ability of ground WiSAR teams to quickly locate

missing persons.

76

Appendix A

Methods for Coding

A.1 Multi-threaded Applications

A thread, or thread of execution, is a way for a processor or set of processors to

run parallel tasks. While a single processor can really only perform one computation

at a time, the processor takes turns performing operations on different threads to

give the illusion of simultaneous processing. Multi-core processors are capable of

performing simultaneous calculations, so dividing an application into threads may

provide more efficient CPU usage. Since a thread should be able to run parallel to

other threads, operations within the thread should be somewhat independent of other

variables.

The real benefit of a thread is being able to run some function which re-

quires continuous looping. The function may require an input which relies on other

threads, but should not require other inputs within the loop. In MFC, the basic

method for starting a new thread follows this framework. First, establish a volatile

int, runMyThreadFunction, that will be available for setting from outside the thread

to stop execution. Then consider which function or event should be instantiate the

thread. Begin the thread with AfxBeginThread(MyThreadFunction,this); called

from an existing thread and exit the thread by setting runMyThreadFunction to zero.

The worker thread, or the thread which performs iterative operations in the

background while the main thread continues, and is created within the class and will

77

continue as long as the member variable of that class runMyThreadFunction is true.

A thread must follow the general format

UINT MyClass::MyThreadFunction(LPVOID pParam)

{

MyClass* me = (MyClass*)pParam;

while(me->runMyThreadFunction) {

\\Do all the sweet stuff here

}

return 0;

}.

The thread can read data out of the parent class using the pointer which was passed

to the thread and cast to be of type MyClass.

A.2 Buffering Data in an Application

A buffer is a structure that stores an array of information. Typically, the buffer

is populated sequentially in time. Buffers can serve two purposes. First, buffers allow

access to previous data. This provides opportunites to look back from a current spot

in the buffer, or in the scenario where operations on an element within the buffer

is paused, data can continue to be collected elsewhere in the buffer. Second, buffers

facilitate data handling within an application with multiple threads relying upon that

data. In this case, a single copy of the data is accessed by all threads, but the threads

“take turns” accessing the data.

To create a buffer, first allocate an array of storage members. A frame buffer

might be an array of IplImage pointers. A telemetry buffer might be an array of

telemetry structures. Then create a counter to indicate which element within the

buffer is the current location. For single-threaded applications, all reading and writing

to the buffer happens in turn. The buffer simply stores previously acquired data.

78

The more interesting purpose of a buffer is when a program is multi-threaded,

and multiple threads require access to the same information.

A.3 Enabling Thread to Thread Communication

When running a multi-threaded application, inevitably there will be a need

for the threads to share data. This section describes a simple method for storing

data on a buffer for threads to share for reading and writing. First a few terms

should be defined, as listed in Table A.1. The two new components to consider

include the CRITICAL_SECTION and the buffer itself. A CRITICAL_SECTION is used to

control read/write access so that threads do not attempt to simultaneously write to

the same location in memory. The other variables are used to manage which element

in the buffer is the current variable (current elem), and if it is available for reading

(buffer monitor[current elem]=1) or writing (buffer monitor[current elem]=0).

Table A.1: Variables Necessary for Sharing Data using Buffers.

Variable Purpose of Variable

CRITICAL SECTION threadRunning Used to lock variables for memory safety
int data stored Indicates if the read or write was successful
int* buffer monitor Manages which buffer elements are filled
int current elem Indicates the current spot
int buffer size The number of elements in the buffer

Function Purpose of Function

Lock() Enters the critical section
doSweetStuffWithData() Actually peform the operation
Unlock() Exits the critical section

The Lock() and Unlock() functions can be thought of like a microphone

allowing communication to the variables. Only one Lock() can be issued at a time.

If another function would like to obtain the Lock(),it must wait until the function

79

holding the Lock() calls Unlock(). The Lock() and Unlock() are defined as follows,

with the Enter and Leave funcion calls embedded in MFC.

void CVirtualGimbalDlg::Lock()

{ EnterCriticalSection(&threadRunning);}

void CVirtualGimbalDlg::Unlock()

{ LeaveCriticalSection(&threadRunning);}

As mentioned above, the thread can begin from any event handler or other

function. A sample implementation of reading data from the buffer follows.

while(threadRunning) {

int data_used=0;

while (!data_used){

this_buffer->Lock();

if (!this_buffer->buffer_monitor[this_buffer->current_elem]){

data_used=0;

Sleep(15);

}

else {

doSweetStuffWithData(this_buffer->data[this_buffer->current_elem]);

data_used=1;

this_buffer->buffer_monitor[this_buffer->current_elem]=0;

this_buffer->current_elem = (this_buffer->current_elem + 1)%buffer_size;

}

this_buffer->Unlock();

}

return 0;

}

80

The method for writing data into the buffer is very similar, except once the

data is written the buffer monitor should be set to 1 to indicate that the position in

the buffer is filled and ready to read.

81

82

Appendix B

Colormaps

The basic reason for establishing a colormap is render single channel informa-

tion into a color image. Assigning colors to represent data is purely for interpretation

of data, so the colormap must be chosen to provide the necessary outcome. Within

this research, the colormap was used to render information regarding pixel resolution

information, which describes how many pixels in the image would fit in a square meter

on the ground.

Colormaps are in common use among data analysis software such as MATLAB

and Microsoft Excel, as well as finite element modeling software such as ANSYS and

Fluent. Colormaps can be grouped into two main categories: continuous and custom.

B.1 Continuous Colormaps

Continuous colormaps assign red, green, and blue (RGB) values to the color

channels of an image using a sliding scale, based on where the input value lies. A

colormap takes an normalized input value, which implies that a range of expected

values should be determined. For the resolution maps, resolution was expected to

be less than 255 pixels in a square meter. Therefore, the input to the colormap was

the value divided by 255. Using the Jet colormap as an example, since it is most

common, the range is divided into five sections. The input value is interpolated into

the color channels such that the colors progress through the rainbow as the input

value increases.

83

Sample code for building the Jet colormap follows this format:

void UseJETColormap(float value){

double r,g,b;

if (value<(0.125)){ //Ramp Blue from .5 to 1

r=0.0;

g=0.0;

b=(value/0.125)*(0.5)+0.5;

}

else if (value<(0.375)){ //Ramp Green from 0 to 1

r=0.0;

g=(value-0.125)/0.25;

b=1.0;

}

else if (value<(0.625)){ //Ramp Red from 0 to 1 //Decrease Blue from 1 to 0

r=(value-0.375)/0.25;

g=1.0;

b=(0.625-value)/0.25;

}

else if (value<(0.875)){ //Decrease Green from 1 to 0

r=1.0;

g=(0.875-value)/0.25;

b=0.0;

}

else { //Decrease Red from 1 to .5

r=((1-value)/0.125)*(0.5)+0.5;

g=0.0;

b=0.0;

}

}

84

The methods for the other continuous colormaps follow a similar scheme, but

the weightings for each channel and the cut-offs for each interpolation scheme are

different.

(a) Copper (b) Hot (c) Jet (d) Yellow (e) Threshold (f) Tiered

Figure B.1: (a) The Copper colormap uses a sliding scheme of r = V ,g = .8V , and
b = .5V . (c) The Jet colormap uses five sliding scales to pass through the whole rainbow.
(b) The Hot colormap uses three sliding scales. (c) Only one sliding scale is used for
the Yellow colormap: r = V , g = V , and b = 0. The custom colormaps, (e) Threshold
and (f) Tiered, assign specific colors to entire ranges of values. For example in the
Threshold colormap with a Tpix of 64, values greater than 64 are colored yellow, greater
than 2*64 are red, and greater than 3*64 are magenta. Values less than 64 are teal and
less than .5*64 are blue.

B.2 Custom Colormaps

Since the resolution maps are being monitored for completeness of search,

having a continuous colormap is not suffient to determine which regions have met the

minimum threshold. Creating a custom colormap allows the operator of the Virtual

Gimbal to interpret the data presented in the three channel image. For example, the

threshold colormap uses a simple scheme to assign colors: If a point has a value that

meets the minimum threshold, it’s color is assigned to yellow. If the value is greater

85

than half the threshold, the color is teal. Resolutions less than half of the threshold

are colored blue. At the other end of the scale, pixel resolutions greater than twice

the threshold are colored red, and greater than three times the threshold are colored

magenta.

The tiered colormap is similar, with the color bins divided at squares of integers

three through 12. Thus, a gradation in color is evident at 9, 16, 25, 36, and so on.

Typical rendering uses 8-bit colors on each channel, so when the colors are assigned

back into the images, the returned RGB values must be multiplied by 255 in order to

appear correctly labeled.

The following sample code shows how a Threshold colormap can be generated.

void UseTHRESHOLDColormap(float value){

double r,g,b;

float thresh_val= threshold/256;

if (value<.5*(thresh_val)){ //Blue

r=0.0;

g=0.0;

b=1.0;

}

else if (value<1*thresh_val){ //Teal

r=0.0;

g=1.0;

b=1.0;

}

else if (value<2*thresh_val){ //Yellow

r=1.0;

g=1.0;

b=0.0;

}

86

else if (value<3*thresh_val){ //Red

r=1.0;

g=0.0;

b=0.0;

}

else { //

r=1.0;

g=0.0;

b=1.0;

}

}

Colormaps can be very helpful in interpreting data, but the ease of interpre-

tation is directly related to how carefully an appropriate colormap is chosen. For

this research, the operator of the Virtual Gimbal must know which regions have been

monitored at a sufficient resolution, so the Threshold colormap was used.

87

88

Bibliography

[1] D. Gerhardt, “Feature-based Mini Unmanned Air Vehicle Video Euclidean Sta-
blization with Local Mosaics,” Master’s Thesis, Computer Science, Brigham
Young University, Jan 2007. 2, 25

[2] M. Quigley, M. Goodrich, S. Griffiths, A. Eldredge, and R. Beard, “Target Acqui-
sition, Localization, and Surveillance Using a Fixed-Wing Mini-UAV and Gim-
baled Camera,” Robotics and Automation, 2005. Proceedings of the 2005 IEEE
International Conference on, pp. 2600–2605, 2005. 3

[3] B. Barber, J. Redding, T. McLain, R. Beard, and C. Taylor, “Vision-based tar-
get geo-location using a fixed-wing miniature air vehicle,” Journal of Intelligent
Robotic Systems, vol. 47, no. 4, pp. 361–382, November 2006. 3

[4] D. McCutchen, “Method and Apparatus for Dodecahedral Imaging,” United
States Patent no. 5,023,725 (http://www.immersivemedia.com/), 1991. 5

[5] R. Szeliski, “Video Mosaics for Virtual Environments,” IEEE Computer Graphics
and Applications, vol. 16, no. 2, pp. 22–30, 1996. 5

[6] R. Swaminathan and S. Nayar, “Nonmetric Calibration of Wide-angle Lenses and
Polycameras,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 22, no. 10, pp. 1172–1178, 2000. 5

[7] S. Nayar, J. Gluckman, R. Swaminathan, S. Lok, and T. Boult, “Catadioptric
Video Sensors,” Proceedings of the Fourth IEEE Workshop on Applications of
Computer Vision. (WACV 98), pp. 236–237, 1998. 5

[8] A. Majumder, W. Seales, M. Gopi, and H. Fuchs, “Immersive Teleconferencing:
A New Algorithm to Generate Seamless Panoramic Video Imagery,” Proceedings
of the Seventh ACM International Conference on Multimedia (Part 1), pp. 169–
178, 1999. 6

[9] J. Foote and D. Kimber, “FlyCam: Practical Panoramic Video and Automatic
Camera Control,” IEEE International Conference on Multimedia and Expo.
(ICME 2000), vol. 3, 2000. 6

[10] X. Sun, J. Foote, D. Kimber, and B. S. Manjunath, “Region of Interest Extrac-
tion and Virtual Camera Control Based on Panoramic Video Capturing,” IEEE
Transactions on Multimedia, vol. 7, no. 4, pp. 981–990, December 2005. 6

89

[11] ——, “Recording the Region of Interest from FlyCam Panoramic Video,” Pro-
ceedings of the International Conference on Image Processing, vol. 1, 2001. 6

[12] ——, “Panoramic Video Capturing and Compressed Domain Virtual Camera
Control,” Proceedings of the ninth ACM International Conference on Multimedia,
pp. 329–347, 2001. 6

[13] P. Firoozfam and S. Negahdaripour, “A Multi-camera Conical Imaging System
for Robust 3D Motion Estimation, Positioning and Mapping from UAVs,” Pro-
ceedings of the SPIE Defense and Security Symposium, 2006. 6

[14] G. Calhoun, M. Draper, M. Abernathy, M. Patzek, and F. Delgado, “Syn-
thetic Vision System for Improving Unmanned Aerial Vehicle Operator Situation
Awareness,” Proceedings SPIE, vol. 5802, pp. 219–230, 2005. 6

[15] R. Hartley and A. Zisserman, Multiple View Geometry. Cambridge University
Press, 2000. 9, 14

[16] R. Szeliski and H. Shum, “Creating Full View Panoramic Image Mosaics and
Environment Maps,” Proceedings of the 24th Annual Conference on Computer
Graphics and Interactive Techniques, pp. 251–258, 1997. 10

[17] M. Fischler and R. Bolles, “Random Sample Consensus: A Paradigm for Model
Fitting with Applications to Image Analysis and Automated Cartography,” Com-
munications of the ACM, vol. 24, no. 6, pp. 381–395, 1981. 18

[18] J. Redding, “Vision-based Target Localization from a Small, Fixed-Wing Un-
manned Air Vehicle,” Master’s Thesis, Mechanical Engineering, Brigham Young
University, Aug 2005. 19

[19] S. Hansen, “Coordinated Search for Multiple Targets using Fixed-camera
Forward-moving Unmanned Aerial Vehicles,” Master’s Thesis, Mechanical Engi-
neering, Brigham Young University, Jan 2007. 19, 25, 45

[20] K. Strobl, W. Sepp, S. Fuchs, C. Paredes, and K. Arbter, “Camera Calibration
Toolbox for MATLAB.” 22

[21] R. Kumar, H. Sawhney, S. Samarasekera, S. Hsu, H. Tao, Y. Guo, K. Hanna,
A. Pope, R. Wildes, D. Hirvonen, M. Hansen, and P. Burt, “Aerial Video Sur-
veillance and Exploitation,” Proceedings of IEEE, vol. 89, no. 10, 2001. 25

[22] D. Johansen, “Video Stablization and Target Localization Using Feature Track-
ing with Small UAV Video,” Master’s Thesis, Electrical and Computer Engi-
neering, Brigham Young University, Dec 2006. 25

[23] R. Tsai, “A Versatile Camera Calibration Technique for High-accuracy 3D Ma-
chine Vision Metrology using Off-the-shelf TV Cameras and Lenses,” Robotics
and Automation, IEEE Journal of [legacy, pre-1988], vol. 3, no. 4, pp. 323–344,
1987. 26

90

[24] A. Ryan and J. Hedrick, “A Mode-switching Path Planner for UAV-assisted
Search and Rescue,” 2005 Decision and Control and 2005 European Control
Conference, pp. 1471–1476, 2005. 32

[25] C. Harris and M. Stephens, “A Combined Corner and Edge Detector,” Alvey
Vision Conference, vol. 15, 1988. 50

[26] C. Harris, “Geometry from Visual Motion,” Active Vision, pp. 263–284, 1993.
50

[27] S. Baker and I. Matthews, “Lucas-Kanade 20 Years On: A Unifying Framework,”
International Journal of Computer Vision, vol. 56, no. 3, pp. 221–255, 2004. 50

91

	Brigham Young University
	BYU ScholarsArchive
	2007-04-16

	Panoramic Video for Efficient Ground Surveillance from Small Unmanned Air Vehicles
	Joseph Aaron Jackson
	BYU ScholarsArchive Citation

	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Small UAV Surveillance
	1.2 Improving the Quality of Aerial Footage
	1.3 Presenting Panoramic Video Footage
	1.4 Previous Work with Video Panoramas
	1.5 Contributions
	1.6 Thesis Outline

	2 Image Processing and Geo-Referencing
	2.1 Computing Transformations
	2.1.1 Euclidean Transformations
	2.1.2 Similarity Transformations
	2.1.3 Affine Transformations
	2.1.4 Perspective Transformations

	2.2 Recovering a Homography
	2.2.1 The Direct Linear Transformation Algorithm
	2.2.2 The RANSAC Algorithm

	2.3 Geo-referencing Imagery to World Coordinates

	3 Monitoring Search Progress
	3.1 Storing Search Progress into a Resolution Map
	3.1.1 Computing the Resolution of a Quad
	3.1.2 Writing Into the Resolution Map

	3.2 Waypoint Generation for Exhaustive Searches

	4 Experimental Implementation of the Virtual Gimbal
	4.1 Hardware Setup for the Virtual Gimbal
	4.1.1 Acquiring Simultaneous Video Streams
	4.1.2 Designing the Camera Fixture
	4.1.3 Integrating with an Experimental Aerial Platform

	4.2 Assembling the Panorama in Software
	4.2.1 Image Pre-conditioning
	4.2.2 Establishing the Relationship Between Cameras
	4.2.3 Rendering the Panoramic Video

	4.3 Using the Software
	4.3.1 Video Options
	4.3.2 Telemetry Options
	4.3.3 Overview of Data Handling

	5 Experimental Results
	5.1 Video Panorama Results
	5.2 Pixel Resolution Map Results
	5.3 Search Efficiency Results
	5.3.1 Time to Completion versus Desired Resolution
	5.3.2 Constraints on Waypoints from Desired Resolution

	6 Summary and Conclusions
	6.1 Observations
	6.2 Future Work

	A Methods for Coding
	A.1 Multi-threaded Applications
	A.2 Buffering Data in an Application
	A.3 Enabling Thread to Thread Communication

	B Colormaps
	B.1 Continuous Colormaps
	B.2 Custom Colormaps

	Bibliography

