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ABSTRACT 
 
 
 

REDUCING CURVATURE IN COMPLEX TOOL PATHS  

BY DEVIATING FROM CAM-PRODUCED TOOL 

PATHS WITHIN A TOLERANCE BAND 

 

G. Benjamin Naseath 

Department of Mechanical Engineering 

Master of Science 
 
 
 

This thesis develops an algorithm to decrease high-curvature sections in tool paths 

for complex parts to achieve shorter machining times resulting in higher production rates.  

In the research sample cases, the algorithm decreased machining times by 1% to 9% for 

design-induced sections of high curvature and by 16% to 75% for CAM induced ripples 

using high path tolerances.  High-curvature sections in tool paths are caused by complex 

part geometry, noise, and discontinuities in the model.  The curvature is decreased by 

deviating the tool path within an allowable path tolerance.   

The feedrate along the tool path is directly related to the curvature of the tool 

path. High-curvature sections cause the NC machine to reduce the feedrate along the tool 

path due to acceleration and jerk limits.  These lower feedrates increase machining time 

and slow production rates.  This new algorithm decreases curvature, which increases 



 

feedrates and decreases machining times, thereby increasing production rates for 

manufacturing companies.   

The tool paths are represented by cubic B-splines.  The algorithm is based on the 

basic principle that the curvature of a B-spline directly relates to the geometry of its 

control polygon.  If the control polygon’s geometry has many tight corners then the B-

spline will have high curvature.  If the control polygon’s geometry is a straight line then 

the B-spline will be a straight line with zero curvature.  The algorithm deviates the 

control polygon’s points so that they move towards forming a straight line.  The control 

polygon will rarely form a straight line because the spline is limited by the path tolerance.  

However, as the control polygon moves towards forming a straight line, the curvature 

decreases, which allows the feedrate to increase.  

Six sample cases are explored in which the machining time is decreased.  Three of 

the cases are tool paths that contain curvature sections with a range of unnecessary 

curvature from low to high.  One sample is the tool path for the complex geometry in a 

snow tire mold.  Another sample tool path contains ripples caused by noise in the CAD 

model.  The last tool path contains ripples caused by tangency discontinuities in the CAD 

model.  The percent of time saved directly relates to the severity of the curvature in      

the part.   

This thesis provides a quick and efficient means to reduce curvature in complex 

parts, resulting in decreased machining times and increased production rates. 
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1 Introduction 

This thesis decreases machining times on numerically controlled (NC) machined 

parts, resulting in increased profits for manufacturing companies.  This was accomplished 

through developing an algorithm that deviates cubic B-spline tool paths produced by 

computer-aided manufacturing (CAM) within a path tolerance to reduce tool path 

curvature in high-curvature sections.   

Manufacturers constantly look for ways to cost-effectively decrease product 

manufacturing times to increase profits.  One of the best ways to reduce manufacturing 

times is to lean a process by eliminating unnecessary steps and improving the efficiency 

of required steps.     

NC machines are increasingly used to manufacture complex part geometries 

because they efficiently and accurately machine parts.  High-curvature sections exist in 

B-spline tool paths that cause the NC to decrease the tool feedrate to maneuver these 

high-curvature sections.  High-curvature sections can be created by the designer or result 

from anomalies in the computer aided design (CAD) model.  Slow feedrates increase 

machining times, which decrease profits.     

During part design using a CAM system, a surface tolerance is defined according 

to the quality specifications.  A path tolerance radius is specified that limits the tool path 

to a tolerance band that is dependent on the surface tolerance.  A larger path tolerance 
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allows the path to deviate further and produces a smoother path at the expense of surface 

accuracy.  Deviating the tool path within this tolerance band can smooth the high-

curvature ripples resulting in an overall reduced-curvature tool path.  The new path 

allows higher feedrates resulting in reduced machining times and improved profits.  A 

tool path that has been smoothed within a tolerance band is shown in Figure 1-1. 

 

 

Figure 1-1 Tool path before (blue) and after smoothing (red) that is limited to path tolerance (black) 

 

The sum of the path tolerance and the machine tool’s accuracy must be less than 

the part’s surface tolerance to ensure that the part will remain within tolerance. The tool 

path is allowed to touch the edge of the tool path tolerance band.  Any inaccuracies in the 

machine tool will stack on top of the path tolerance.  The path tolerance equation is 

shown in Equation (1-1).  

 

machinesurfacepath AccuracyToleranceTolerance −≤     (1-1) 
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1.1 Objectives 

The objectives of this thesis are:  

 Developed an algorithm that reduces the curvature in CAM-produced cubic B-spline 

tool paths to reduce machining time.  The algorithm modifies the splines within a 

path tolerance.  The algorithm quickly and efficiently performs all calculations.   

 Wrote a C++ program that parses CAM-produced spline data, modifies the data 

according to the above algorithm, and outputs the modified spline data. 

 Developed test data and criteria to ensure that the algorithm improved the tool path. 

 Compared the curvature values of the tool paths from before and after the 

application of the smoothing algorithm to ensure that the curvature 

decreased. 

 Used a trajectory generator that incorporates S-curve velocity profiles to 

test the tool paths before and after the application of the algorithm to 

measure the reduction in machining time.   

1.2 Scope 

This research focuses on the feasibility of smoothing B-spline tool paths.  It 

smoothes tool paths with high-curvature sections that are created by the designer or by 

anomalies in the CAD model. It does not produce commercial software to smooth tool 

paths nor does it upgrade a specific CAM or NC software.  The research does not 

consider calculations before the creation of the initial spline and all of the required data 

for the initial spline’s position is generated using current CAM software.  Only cubic B-

splines with Bezier end conditions are used to represent the tool paths. The methods 
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discussed are extendable to any degree B-spline.  Only paths for 3-axis end mills will are 

considered, meaning that only the position and not the orientation of the tool is 

considered. Only 2D planar paths are created, smoothed, and tested. Extending the 

methods in this thesis to 3D tool paths is discussed in theory only and was not tested.  

The tool paths are open-ended and not closed. Closed tool paths are discussed 

theoretically only. Tool paths are tested for a single pass without repeating similar tool 

paths for multiple passes.  Nothing beyond the creation of the reduced curvature B-spline 

is included.  Hence, reparameterizing the curve and calculating the inverse kinematics is 

not be done.  
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2 Background 

After a part is fully designed and drawings are created using a Computer-Aided 

Drafting (CAD) system, a process plan is created using a Computer-Aided Manufacturing 

(CAM) program.  The CAM program determines the tool paths that the machine needs to 

follow in order to machine the finished part.  It creates mathematical representations of 

tool paths and sends them to a numerical control (NC) machine that commands the 

machine tool to follow the paths.   

2.1 Tessellated Tool Paths 

The simplest way to represent a complex path is to tessellate the path into small 

line chordal segments.  Figure 2-1 shows a simple tool path tessellated with line chordal 

segments.  By using a large number of line segments, the CAM system is able to 

represent the tool path with reasonable accuracy.  However, a major problem with these 

linear paths is that they contain tangency and curvature discontinuities, which cause the 

motion planning algorithms of the machine’s controller to slow or even stop the tool 

feedrate.  Tangency (C1) and curvature (C2) continuity are reviewed in Section 2.3.5.  The 

machine tool must slow down, as it cannot instantaneously change direction at each     

line intersection.  
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Figure 2-1 Tool path (black) that is represented by line chordal segments (red). To increase accuracy, 
spline can be tessellated into more line segments. 

 

Jacobs, Sellen, and Wilfong (1989; 1995; 1989) use blending arcs to eliminate the 

tangency discontinuities and smooth the motion in a tessellated tool path. Figure 2-2 

illustrates two line segments blended together with a circular arc.  Even though these 

algorithms are successful in creating short, piecewise, C1 continuous paths, they do not 

satisfy the requirements of this thesis.  They still contain C2 discontinuities that cause 

unnecessary decelerations of the tool.  These decelerations are unacceptable because they 

unnecessarily increase the part’s machining time. 

 

 

Figure 2-2 Intersection of two line chordal segments blended with arc.  Removes tangency 
discontinuities. 

 

By using the higher order functions cubic spirals and clothoids instead of circles 

to connect the lines, Kanayama and Scheuer (1997; 1997) eliminate the C2 discontinuities 

Part Surface 

Tool Path 
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in the tool paths.  See Figure 2-3.  The machine tool is able to remain at higher speeds, 

due to the C2 continuity in the path.  

 

 

Figure 2-3 Intersection of two line chordal segments blended together with clothoid. Removes 
curvature discontinuities 

 

The amount of data needed for these piecewise functions increases computational 

machining time.  To produce the smoothest paths using the minimum data, this thesis will 

use cubic B-splines, which require relatively few control points. Figure 2-4 shows a 

simple tool path that is represented using a cubic B-spline.  The spline and the tool path 

are practically identical.  

 

 

Figure 2-4 Ideal tool path (black) that is represented using cubic B-spline (red) and its control 
polygon (also red). Control polygon for Spline is all that can be seen. B-spline is almost perfectly 
lined up with ideal tool path and is difficult to see. 

Control Polygon 

Part Surface Tool Path 
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2.2 Spline Tool Paths 

Researchers are exploring spline use for tool paths to reduce the amount of data 

necessary and guarantee Cn-1 continuity, where n is the degree of the spline.  Several 

researchers (Berglund, 2003; Eilers, 1996; Erkorkmaz, 2001; Fleisig, 2001; Geraerts, 

2007; Jung, 2005; Langeron, 2004; Wang, 1993) have proposed methods of interpolating 

data using various types of splines that are all at least C2 continuous and that allow the 

tool to move smoothly along the path.  However, they all possess a critical flaw, which 

this thesis intends to minimize. Undesirable high-curvature oscillations (ripples) develop 

in these curves during the interpolation of the tool path.  Even though the mathematical 

representation of the tool path is C2 continuous, these ripples cause sections of high 

curvature that slow the desired feedrate.   

The main cause for these high-curvature ripples is discontinuities in the position, 

tangency, and curvature of the model part surface.  Discontinuities that cause high-

curvature sections can be created in a model in many ways. International TechneGroup 

Incorporated (2003) explains how gaps and overlaps in CAD models caused by accuracy 

constraints create inefficiencies in NC programming.  An inexperienced designer may 

create a model with tangency and curvature discontinuities.  Bohez (2002) says that 

tangency discontinuities in CAD models cause these high-curvature sections.  Figure 2-5 

shows a tool path with high-curvature ripples caused by a severe tangency discontinuity. 

Even when a B-spline is interpolated to fit a curvature-continuous surface, small 

ripples can still form because interpolation points are non-continuous values along a 

continuous surface.  The position, tangent line, and curvature of the surface change 

discretely between interpolation points creating the same affect as a surface with minute 
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discontinuities. These minute discontinuities create small ripples in the tool path.  The 

amplitude of the ripples correlates directly to the severity of the discontinuity. 

 

 

Figure 2-5 High-curvature ripples caused by a tangency discontinuity.  Blue line represents surface 
and purple line is tool path  

 

Not all high-curvature sections are created by anomalies. Most are created by the 

designer to fulfill a design requirement.   Complex parts may contain unnecessarily small 

radii with high-curvatures.  The designer may not realize the affect that these small radii 

have on machining times.  If there is enough surface tolerance on the part, smoothing can 

decrease the curvature in these high-curvature regions. Examples of parts with 

unnecessarily high-curvature are the molds for children’s toys shown in Figure 2-6.  

Many researchers have tried to decrease the curvature of splines.  Bohez, Lee, and 

Tang (2002; 1993; 1999) effectively filter noisy models, but none minimizes curvature 

and limits the tool path to within the path tolerance band.  Eilers (1996) minimizes 

curvature by putting a penalty on sections with high curvature.  He smoothes out splines 

that represent statistical data, but he does not consider NC tool paths constrained to a   

path tolerance.   
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Figure 2-6 Molds for children’s toys that contain very high-curvature.  Curvature of molds could be 
slightly reduced without affecting their quality. 

 

Langeron (2004) limits his tool paths to within a tolerance tube.  He interpolates 

random points along the desired part surface without regard to curvature.  As long as the 

spline remains within the tolerance band, he uses the spline parameters.  However, 

Langeron’s splines can produce even more high-curvature sections as the path wiggles 

back and forth within the tolerance band.  Figure 2-7 shows an ideal tool path (turquoise), 

a path tolerance around that path (blue), and a splined tool path (purple) that interpolates 

random points.  

 

 

Figure 2-7 Ideal tool path (turquoise), path tolerance around that surface (blue), and splined tool 
path (purple) that interpolates random points. Splined tool path has excessive curvature. 
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The techniques used to smooth the paths along high-curvature sections in racecar 

tracks can be applied to high-curvature radii in tool paths.  Velenis (2005) calculates the 

optimal path around a single corner given the physical limits of a racecar.  The work of 

Beckman, Blinkhorn, Line (racing), Racing Line, the Racing Line, and Velenis        

(2007; 2006; 2007; 2007; 2007; 2005) can be used to better understand the optimal path 

around a curve.  

In summary, although much work has been done to generate optimal tool paths, to 

date none creates smooth paths without unnecessary high-curvature sections nor does any 

deviate the tool path within a path tolerance band.  

2.3 B-splines Review 

This section is a review of B-spline concepts.  Most of this section is based on 

work available from Sederberg (2007).  B-splines are created by connecting Bezier 

curves end to end with Cn-1 continuity where n is the degree of the B-spline. 

2.3.1 Bezier Curves 

Bezier curves were created by Dr. Pierre Bezier in the early 1960’s as a tool for 

designers and artists who wanted to intuitively create splines. Bezier curves are created 

using a control polygon that is made up of control points as can be seen in Figure 2-8. 

Dr. Pierre Bezier designed the Bezier curve so that it would mimic the shape of its 

control polygon, go through the first and last point in its control polygon, and be tangent 

to the control polygon at the endpoints.  The equation for the Bezier Curve is similar to 

the equation for the center of mass of point masses. The center of mass is calculated 

using Equation (2-1).  
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Figure 2-8 Bezier curve (red) and its control polygon and points (blue) 

 

∑
=

=
n

i i

ii
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m

0

P
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If there are four equal masses distributed as shown in Figure 2-9 then their center 

of mass is  

 

3210

33221100

mmmm
mmmm

+++
+++

=
PPPP

P        ( 2-2) 

 

Bezier curves are created by using parametric equations to vary the masses of 

each point instead of using equal constant values.  The equations for the masses in   

Figure 2-8 become 

 

( ) ( )3
0 1 ttm −=           ( 2-3) 

             

Control Polygon 

Control Point P0 

Control Point P1 

Control Point P2 

Control Point P3  

Bezier Curve 
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( ) ( )2
1 13 tttm −=          ( 2-4) 

 

( ) ( )tttm −= 13 2
2          ( 2-5) 

             

( ) 3
3 ttm =           ( 2-6) 

 

As t changes from zero to one, the center of mass also changes. The Bezier curve 

is the path that the center of mass follows as t changes from zero to one. The curve 

formed in Figure 2-8 is a cubic Bezier curve (cubic is degree three).  Note in        

Equation (2-7) that the mass equations sum to one and the equation for the Bezier curve 

can be written as Equation (2-8). 

 

 

Figure 2-9 Center of mass of four points 

 

( ) ( ) ( ) ( )[ ] 1113131 33223 ≡+−=+−+−+− tttttttt      ( 2-7) 

 

( ) ( ) ( ) ( ) ( ) 33221100 PPPPP tmtmtmtmt +++=       ( 2-8)     

P0 

P1 

P2 

P3 

P  
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Figure 2-10 is the graph of the mass equations.   Note that when 0=t , the curve 

passes through 0P  because 10 =m  and 0321 === mmm . Also, when 1=t , the curve 

passes through 3P  because 13 =m  and 0210 === mmm .  

The locations, iP , are the control points of the control polygon while the variable 

masses, )(tmi , are normally called blending functions. In the case of Bezier curves, they 

are also called Bernstein polynomials. Bezier curves come in any degree and an n degree 

Bezier curve has n+1 control points. The Bezier blending functions are defined in 

Equation (2-9). 
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Figure 2-10 Mass functions of a Bezier curve.  They are also known as blending functions.  Bezier 
curve is weighted sum of these functions. 
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For a cubic Bezier curve, 3=n and ( )tB n
i  in Equations (2-10), (2-11), (2-12), and 

(2-13) represent the Bernstein polynomials. 
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2          ( 2-12) 

           

( ) 33
3 ttB =           ( 2-13) 

            

Equation (2-14) is the general equation for a Bezier curve.  See Dr. Sederberg’s 

text for more on Bezier curves including how to calculate position or curvature at any 

parameter value. 
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2.3.2 B-splines 

To create long complex curves in a simple yet robust way, a B-spline is formed by 

splining multiple Bezier curves together.  B-splines connect Bezier curves with Cn-1 

continuity.  This means that a cubic B-spline will be C2 continuous where the Bezier 

curves meet.  Not only does the B-spline guarantee Cn-1 continuity, it also uses less 

control points than would be used by representing the same spline with multiple separate 

Bezier curves. An open string of m Bezier curves will contain nm+1 control points while 

the same spline can be represented by a B-spline with only m+n control points.   

B-splines are very similar to Bezier curves in their form and function.  If a B-

spline consists of Bezier curves of degree n, then the B-spline is degree n.  The B-spline 

uses a control polygon like the Bezier curve, but it also has a knot vector.  The knot 

vector is a list of parameter values, or knots, used to determine the parameter values at 

which a Bezier curve begins and ends.  For example, if the knot vector of a cubic B-

spline is [ ]55532000  then there are three Bezier curves in the spline. The 

three Bezier curves would go from 0=t  to 2=t ,  2=t  to 3=t , and 3=t  to 5=t  

respectively.  Note that the knot vector contains n-1 extra knots at each end. These extra 

knots are used to determine the end conditions of the spline. When there are n-fold knots 

at both ends of the B-spline, it is said to have Bezier end conditions.  The knot vector 

above has Bezier end conditions because the first three knots are 0 and the last three 

knots are 5.  A B-spline with Bezier end conditions goes through its endpoints and is 

tangent to the first and last legs of its control polygon, just like a Bezier curve. This paper 

only considers cubic B-splines with Bezier end conditions, so no further end conditions 

will be discussed.  See Dr. Sederberg’s text for more on end conditions.   
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The B-spline equation is very similar to the Bezier curve equation. The main 

differences in the two equations are that the B-spline equation is written in polar form 

and that it uses different blending functions. See Equation (2-15).   
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It is not necessary to understand all of the properties of B-splines to understand 

this thesis, so only the key concepts are covered.  If the reader wishes to learn more about 

polar form and B-spline blending functions, they are discussed in detail in chapter 6 of 

Dr. Sederberg’s text.              

Like Bezier curves, B-splines follow the general shape of their control polygon.  

If the control polygon is shaped like a semicircle, a saw-tooth, or a flat straight line, the 

B-spline will be shaped similarly.  Figure 2-11 shows cubic B-splines with these shapes.  

  

 

Figure 2-11 B-splines (magenta) with control polygons (blue) shaped like a semicircle, a saw-tooth, 
and a flat straight line, respectively. Note that B-spline takes general shape of its control polygon. 
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2.3.3 Convex Hull Property 

Both Bezier curves and B-splines always remain within the convex hull of their 

control points.  The convex hull can be imagined by placing a peg at each control point 

and then wrapping a string between the pegs.  See Figure 2-12.  The polygon formed is 

the convex hull. The center of mass analogy for Bezier curves and B-splines ensures that 

the spline will always remain within the convex hull. All of the control points are either 

inside of or on the boundary of the convex hull so it is impossible for the center of mass 

(the spline) to lie outside of the convex hull.   

 

 

Figure 2-12 Convex hull (shaded light blue) of a B-spline (magenta) 

2.3.4 Distance Between Two Splines 

The distance between points of equal parameter value on two splines can be 

represented as a new spline with a control polygon calculated as the difference between 

the two splines’ control polygons. The two splines must have an equal number of control 

points and parameterization to use this distance formula. Equation (2-16) is the spline that 

represents the distance between the two splines. Note that this equation will work for 

both Bezier curves and B-splines because both have equations with the same basic form.  

Figure 2-13 shows a B-spline that is the difference of two other B-splines. 
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Figure 2-13 Difference B-spline (purple) which represents difference between two other B-splines 
(blue and red). 

 

The convex hull property guarantees that the distance between the two curves is 

bounded by the largest distance from the origin to any of the control points, Di, of the 

difference B-spline.  This also means that if a spline’s control points are moved then the 

spline is guaranteed to not move a distance greater than the largest distance that any 

control point moved.  If a Bezier curve, P(t), is moved to become Q(t) and the control 

point, D3 , is moved the furthest then the spline will not move farther than 3D . 
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2.3.5 Continuity  

A B-spline of degree n is guaranteed to join Bezier curves with Cn-1 continuity.  

Two curves are Ck continuous if 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )111111 ,...,'', tttttt kk QPQPQP ===      ( 2-17) 

 

C0 means the two curves share their endpoints’ position and parameter value.  C1 

means the two curves share the same end point and tangent vector (including magnitude).  

C2 has the same continuity as C1, but additionally has second-order parametric derivative 

continuity, and similarly for up to Ck continuity.   

Parametric continuity Ck depends on the parameterization of the B-spline, but 

geometric continuity (Gk) does not.  If a spline is Ck continuous then it is also Gk 

continuous.  G0 means that the two curves have a common endpoint but not necessarily 

the same parameter value. First order geometric continuity (G1) means that the control 

polygons are colinear where they connect. This is also called tangency continuity. 

Curvature continuity or G2 continuity is when the curvature is equal for both curves 

where they meet.G2 continuity is sufficiently smooth for most tool paths.    

2.3.6 Path Tolerance  

The path tolerance is formed by offsetting the given tool path in both directions 

by the path tolerance radius ρ.  The offset is formed by the set of all points that lay a 

perpendicular distance ρ from the given curve.  See Equation (2-18). Using a -ρ will 
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offset the curve in the opposite direction.  Figure 2-14 shows a B-spline tool path with a 

calculated path tolerance. 

 

( )( ) ( ) ( ) ( )( )
( ) ( )tytx

txtytt
22 ''

',',
+

−
+=Ω ρρ PP        ( 2-18) 

 

 

Figure 2-14 Path tolerance (offset) of B-spline tool path 

 

If the path radius is less than the minimum radius of curvature of the spline then 

cusps will be formed in the offset as shown in Figure 2-15.  If there are cusps in the path 

offset, the designer should choose a smaller path tolerance radius.  It is important to note 

that the algorithm will still work if cusps are formed but the curvature around the cusp 

may not be reduced efficiently. 

 

 

Figure 2-15 Cusps formed in tool path offset. Cusps are formed when path tolerance radius is smaller 
than minimum radius of curvature of tool path. 
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3 Method - Smoothing Algorithm  

3.1 Problems with High Curvature 

In High-curvature sections, a NC machine reduces the feedrate of a machine tool 

to remain within acceleration and jerk limits.  Total acceleration must remain below the 

machine tool’s acceleration limit and is the vector sum of both tangential and centripetal 

acceleration as seen in Equation (3-1) and Figure 3-1.  High curvature increases 

centripetal acceleration as shown in Equation (3-2).  As centripetal acceleration increases 

with high curvature, tangential acceleration decreases as shown in Equation (3-1).  The 

obtainable feedrates decrease as tangential acceleration decreases.  

 

 

Figure 3-1 Acceleration along tool path. Tangential acceleration (red), centripetal acceleration (blue), 
and total acceleration (green) 
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tangentiallcentripitatotal ΑAA +=         ( 3-1) 

       

2
feedratecurvaturelcentripita VkA =         ( 3-2) 

 

At the apex of a high-curvature ripple, the feedrate is a local minimum and the 

tangential acceleration is zero because the curvature is a local maximum.  See Figure 3-2.  

The feedrate at an apex is calculated using Equation (3-3) that is derived from     

Equation (3-1) and Equation (3-2).   In Equation (3-1), Atotal  is Amax and  Atangential is zero. 

Equation (3-1) is substituted into Equation (3-2) and Equation (3-2) is solved for Vfeedrate 

resulting in Equation (3-3).  The feedrate is limited to these minimum feedrates at the 

apex of the high-curvature ripples. It is also limited by the acceleration between             

the apexes.  

 

 

Figure 3-2 Centripal acceleration at apex of high-curvature ripple. 

 

If the minimum velocity calculated in Equation (3-3) is greater than the maximum 

velocity limit then the curvature in the ripple is not severe enough to reduce the feedrate.  
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The maximum allowable curvature that will not reduce the feedrate is calculated by using 

Equation (3-4) that is derived from Equation (3-3).    

 

curvature

max
feedrate k

AV =          ( 3-3) 

 

2
max

max
m V

A
k ax =           ( 3-4) 

         

For example, if the Amax is 4000 mm/s2 and the Vmax is 400 mm/s then the 

maximum curvature is 0.025 1/mm.  If a ripple has a curvature less than 0.025 1/mm then 

it will not affect the feedrate.  
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The smoothing algorithm in this thesis reduces the curvature of all ripples even if 

the curvature is below the value calculated in Equation (3-4) because it takes longer to 

calculate the curvature to distinguish between negligible and significant curvature values 

than it does to smooth everything.  The algorithm efficiently reduces the curvature in tool 

paths without calculating the curvature.  The algorithm smoothes a tool path by using 

general concepts of B-splines. 
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3.2 Algorithm Overview 

A program was written that inputs spline data from a data file, modifies the spline 

to reduce the curvature, and prints out the new spline data.  The algorithm in the program 

utilizes a very simple concept to smooth the curves.  When all of the control points of a 

B-spline form a single straight line, the spline becomes a straight line with zero curvature.  

This formation also forms the shortest possible path between the two endpoints of the B-

spline.  The algorithm attempts to move all of the spline’s control points to form a 

straight line.  The control points will rarely form a straight line because the spline is 

constrained to the tolerance tube.   

A direction vector is calculated for each control point according to its geometry 

and category.  The direction vector is the direction that the control point will move to 

form a straight line with its neighboring control points. The fact that curvature is reduced 

by flattening a control polygon into a straight line is proven by Equation (3-6), the 

equation for the curvature of a B-spline.  To use Equation (3-6), the Bezier curve 

containing the point where the curvature value is to be calculated is extracted from the B-

spline.  Then the Bezier is divided at the point of interest.  This creates an endpoint where 

the curvature is to be calculated.  The first three points of the Bezier’s control polygon 

are shown in Figure 3-3.  P0 is the point where the curvature is being calculated and the 

first point in the Bezier’s control polygon.  The distance between P0 and P1 is the value a.  

The value h is the distance from P2 to the line formed by P0 and P1.  If a line is flattened, 

h is decreased and the curvature, k, is decreased. 
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Figure 3-3 Parameters to calculate curvature of B-spline.  

 

The control points are placed in one of three categories depending on how they 

need to move to form a straight line.  The first category contains the endpoints of the 

control polygon.  Each endpoint is smoothed by moving it towards the line formed by the 

next two control points in the control polygon.  The direction vectors for endpoints are 

perpendicular to the initial control polygon and are discussed in detail in Section 3.6.1.  

In Figure 3-4, point 0 moves perpendicular to the control polygon and towards the line 

formed by points 1 and 2.  

P0 P1

P2 

a
h
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Figure 3-4 Direction vector (red) for endpoint 

 

The next category consists of ripple points.  These points are recognized because 

the control polygon forms a saw-tooth pattern, i.e. each point in the control polygon lies 

in the opposite direction.  The direction vector that smoothes the ripple point is the 

normalized bisector of the triangle formed by the ripple point and the two adjacent 

control points in the control polygon.  The equation for the normalized bisector of a 

triangle is discussed in Section 3.6.2.  As the ripple point moves along the bisector, the 

triangle flattens and forms a straight line. This will smooth and shorten the path.      

Figure 3-5 shows a few ripple points circled in green.  Point 2 is moved along the bisector 

towards point 2’ that forms a straight line with points 1 and 3.   Note that the ripple points 

form high-curvature sections in the B-spline due to the saw-tooth pattern.   Control points 

on a straight line are also considered ripple points with a zero magnitude direction vector. 

0 1

2
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Figure 3-5 B-spline with ripple points (green). Point 2 is moved towards point 2’ along           
direction vector 

 

Smooth control points make up the final category.  These are recognized because 

the control polygon continues in the same direction along an arc at these points and the 

spline is smooth.  When a point is recognized as a smooth point, both the points before 

and after it are also categorized as smooth points.  A group of smooth points consists of 

all adjacent smooth points.  Each smooth control point receives an additional label 

according to its location in the group.   

In each group there is a beginning point, middle points, one or two apex points, 

and an ending point.  The beginning and ending points are the first and last points in each 

group.  The apex point(s) are the median point(s) in each group.  If there is an odd 

number of points in a group then there is only one apex point. If there is an even number 

of points then there are two apex points.  The rest of the points in the group are middle 

points.  In Figure 3-6, points 4 and 9 are the beginning and ending points, respectively.  

Points 5 and 8 are middle points and points 6 and 7 are the apex points.   
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Figure 3-6 B-spline with smooth points (blue). 

 

The direction vector for each control point moves the smooth group towards two 

objectives.  The end and middle control points are moved outward from the center of the 

arc while the apex points are moved towards the center of the arc effectively flattening 

the arc.   In addition, all of the points in a smooth group are moved towards the center of 

the group.  This moves the smooth section so that it will touch at the inside corner of the 

tolerance tube in the smooth section.  This not only smoothes the spline; it also shortens 

the spline.  Figure 3-7 shows how the blue spline is spread out and moved down by the 

algorithm to form the red spline.  Notice how the red spline is spread out until it touches 

the black tolerance tube on the outside at the end points and shifted down until it touches 

the black tolerance tube on the inside of the center of the arc.  Also note how this appears 

to be a path that a racecar driver would take around a corner. 

After all of the points are categorized and their direction vectors are calculated, 

the distance that each control point moves along its direction vector is calculated.  To 

guarantee that the spline remains within the path tolerance, the control points are moved 
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at most the minimum distance between the path and the path tolerance tube.  The convex 

hull principle for B-splines guarantees that a spline will not move more than the control 

point that is moved the most in the control polygon.  The spline will remain within the 

tolerance because each control point is moved no more than the minimum distance 

between the spline and the path tolerance.   

 

 

Figure 3-7 Spline that has been flattened. Spline is spread out and moved down by algorithm to form 
red spline.  Notice how red spline is spread out until it touches black tolerance tube on outside and 
shifted down until it touches black tolerance tube on the inside. 

 

Based on the control polygon’s geometry, the spline responds differently to the 

movements of different control points.  The spline will move further with the movement 

of some control points than others.  If all of the control points are moved a distance equal 

to the radius of the tolerance, the endpoints of the spline move completely to the edge of 

the tolerance tube while points on the spline corresponding to ripple points hardly move 

at all.  To ensure that the whole spline is moved and smoothed evenly, the distance that 
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each control point moves is scaled using sensitivity values as explained in Section 3.7.  

The spline will not smooth completely in one step so the process is iterated until the 

spline touches the path tolerance.  During each iteration, 1) the control points are re-

categorized, 2) the control points are moved in new directions, 3) the minimum distance 

between the spline and tolerance is calculated, and 4) all of the control point move 

distances are rescaled.  When the process is complete, the spline will be smooth and 

almost touch the tolerance tube at the inside of every ripple.  See Figure 3-8. 

 

 

Figure 3-8 Smoothed tool path 

3.3 Implementation of Algorithm 

The steps of the algorithm are described in detail in Sections 3.4 through 3.11.  

The algorithm reads in the initial spline data, calculates the initial parameters for the 

iterations, and then iterates until the spline converges to a smooth spline bounded by the 

tolerance tube.  
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3.4 Parsing 

The algorithm parses the control polygon, knot vector, path tolerance, precision, 

and accuracy from the data file input.  The control polygon consists of the control points 

for the CAM-generated spline.  The knot vector consists of the knots for the control 

polygon.  There are always two less knots than control points in an open cubic B-spline.  

The path tolerance is the radius of the path tolerance around the CAM-generated spline.  

The precision is the number of points checked on each knot interval of the B-spline per 

iteration.  The accuracy is the minimum percentage of the tolerance path radius allowed. 

The spline is considered to be touching the tolerance tube when it comes to within        

this accuracy. 

3.5 Categorization of Each Point 

The control points are categorized into end, ripple, and smooth categories during 

each iteration.  Points can change categories as the control polygon moves and changes 

shape.  Figure 3-9 and Figure 3-10 show an example of a smooth point becoming part of 

a straight line, which causes it to be reclassified as a ripple point.  Points 1, 2, 3 and 4 

make up one smooth section while points 5, 6, 7, and 8 make up another.  Note that there 

are no ripples between the two smooth sections in Figure 3-9. But after the smoothing 

algorithm is applied, there is a ripple point.  In Figure 3-10, points 4, 5 and 6 form a 

straight line and point 5 has become a ripple point because control points in the middle of 

a straight line are considered ripple points.    
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Figure 3-9 B-spline with no ripple points 

 

 

Figure 3-10 B-spline that has been smoothed to create a straight line between points 4, 5, and 6.  By 
definition, point 5 is now categorized as a ripple point. 

 

The algorithm categorizes the points using the shape of the control polygon.  The 

first and last points are always categorized as endpoints.  If there are only four control 

points in the control polygon (a single Bezier), the two middle points are categorized as 
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ripples. With more points, ripple points and smooth points are distinguished using lines 

and the control polygon’s relationship to these lines.  Two examples follow that illustrate 

how the algorithm determines if a point (point 2) is categorized as a ripple or smooth 

point.  Figure 3-11 and Figure 3-12 illustrate how point 2 is categorized as a ripple point 

and Figure 3-13 and Figure 3-14 illustrate how it is categorized as a smooth point.   

To distinguish between ripple and smooth points, the algorithm first calculates the 

equation of a line that goes through the point being considered (point 2) and the point just 

before it (point 1).  The implicit equation of this line can be seen in Equation (3-7). 

 

0=++ cbYaX            ( 3-7) 

where: 

ii YYa −= −1                                    

1−−= ii XXb                                   

11 −− −= iiii YXYXc                                  

 

Figure 3-11 and Figure 3-13 show how this line splits the 2D plane into two parts: 

positive and negative. A point on the positive side of the line will have a positive distance 

value while a point on the negative side will have a negative distance value. 

Next, the points immediately before and after this line (points 0 and 3) are 

checked to determine on which side of the line they fall.  This is accomplished by finding 

the perpendicular distance to the line using the distance formula for an implicit line. The 

perpendicular distance to the line is D in Equation (3-8), where a, b, and c are calculated 
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using Equation (3-7).  Equation (3-9) is for the point before the line (point 0) and 

Equation (3-10) is for the point after the line (point 3).  

 

 

Figure 3-11 A line going through points 1 and 2 and the positive and negative sides of this line 

 

  

Figure 3-12 A line going through points 2 and 3 and the positive and negative sides of this line 
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Figure 3-13 A line going through points 1 and 2 and the positive and negative sides of this line 

 

 

Figure 3-14 A line going through points 2 and 3 and the positive and negative sides of this line 
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The sign of the distance to the line determines which side of the line the points 

lay. Positive distance values are on one side of the line and negative values are on the 

other.  The distance values for both points (0 and 3) are compared to see if the points lie 

on the same side of the line (same sign) or not (opposite sign).  If the points are on 

opposite sides then the point is categorized as a ripple point. This is illustrated in Figure 

3-11 where points 0 and 3 are on opposite sides of the line.   

If the points lay on the same side of the line then the process is repeated using a 

line going from the point being considered (point 2) to the point after it (point 3).  The 

implicit equation of this line can be seen in Equation (3-11).  

 

0=++ cbYaX          ( 3-11) 

where:  

1+−= ii YYa                                               

ii XXb −= +1                                                

iiii YXYXc 11 ++ −=                                                                                                
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Figure 3-12 shows this new line splitting the 2D plane into positive and negative 

sides.  Again, the points immediately before and after this line (points 1 and 4) are 

checked to determine on which side of the line they fall.  Equation (3-8) is used with the 

new points to calculate the distances using Equations (3-12) and (3-13).  Equation (3-12) 

is for the point before the line (point 1) and Equation (3-13) is for the point after the line 

(point 4).  
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Positive distance values are on one side of the line and negative values are on the 

other.  The distance values for both points are compared to see if the points lay on the 

same side of the line (same sign) or not (opposite sign).  If the points are on opposite 

sides then the point is categorized as a ripple point. This is illustrated in Figure 3-12 

where points 1 and 4 are on opposite sides of the line.   

If both points fall on the same side of the line in both of the previous tests, the 

point (point 2) is categorized as a primary smooth point. When a point is categorized as a 

primary smooth point, the two points adjacent to it in the control polygon are categorized 

as secondary smooth points.  

Only primary smooth points, not secondary smooth points, will cause their 

adjacent points to become smooth.  Note that the categorization of secondary smooth 
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points will cause these points to be categorized twice. The categorization as a smooth 

point overrides the categorization as a ripple point. In Figure 3-13, both points 1 and 3 are 

considered secondary smooth points because they are adjacent to the primary smooth 

point 2.  

A smooth group is formed by all contiguous smooth points. A smooth group 

consists of a beginning point, middle points, apex point(s), and an ending point. 

The re-categorization of points helps determine whether a point in a smooth group 

is a beginning or ending point.  If a point is initially categorized as a ripple and then as a 

secondary smooth, it is the beginning point of a smooth group.  If a point is initially 

categorized as a secondary smooth and then would qualify as a ripple, it is the ending 

point of a smooth group.  In Figure 3-13, points 1 and 3 are the beginning and ending 

points, respectively.     

The second and second-to-last control points in a control polygon do not have 

enough points surrounding them to categorize them because the algorithm needs two 

points before and two points after each point to determine the category.  To resolve this, 

the second and second-to-last points are always set as ripples unless they are adjacent to a 

primary smooth point, which would cause them to become secondary smooth points.  

The next step is to determine the apex point(s) in a smooth group.  The apex point 

is the median point(s) in a group of smooth points.  If there is an odd number of points in 

a smooth group then there is only one apex point.  If there is an even number of points 

then there are two apex points.  Equation (3-14) calculates the index of a single apex 

point and Equation (3-15) and Equation (3-16) calculate the indices of each point of a 

double apex. 
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For an odd number of points: 

( ) 21−+= sbeginningapex nii         ( 3-14) 

            

For an even number of points: 
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 In Figure 3-15, points 4 and 9 are the beginning and ending points, respectively, 

of a smooth group.  Points 5 and 8 are middle points and points 6 and 7 are the apex 

points.  When the categorization of all points is complete, direction vectors can be 

calculated for each control point. 

 

 

Figure 3-15 B-spline with smooth points (blue). Points 4 and 9 are beginning and ending points, 
respectively, of smooth group.  Points 5 and 8 are middle points and points 6 and 7 are apex points. 
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3.6 Direction Vectors 

Each control point is assigned a normalized direction vector that tells the control 

point which direction to move to smooth the spline.  This direction vector is iteratively 

updated as the control polygon’s shape changes.  

3.6.1 Endpoints 

Each endpoint has a direction vector that is perpendicular to both its control 

polygon line segment and the tolerance tube.  The control polygon is initially parallel to 

the tolerance tube at both ends.  As the control polygon moves during each iteration, it 

will no longer be parallel to the tolerance tube at the ends.  However, the endpoint 

direction vector must remain perpendicular to the tolerance tube so that the endpoint 

remains at the end of the tolerance tube to prevent a gap in the tool path. 

The objective is to position the endpoint to form a line with the next two (or 

previous two) control points in the control polygon.  In each iteration, the direction vector 

incrementally moves the endpoint towards that line.  It is possible to overshoot the target 

line in a given iteration.  This creates the necessity of reversing the direction vector to 

again point towards the line.  In Figure 3-16, if point 0 moves to 0’ then its direction 

vector is reversed to again point at the target line formed by points 1 and 2.  The initial 

direction vector is calculated using Equation (3-17) and can be seen in Figure 3-17.  

At each iteration, it is determined whether the endpoint direction vector must be 

reversed.  In addition to overshooting the target line, Equation (3-17) has the limitation 

that it does not guarantee that the direction vector points in the right direction.  To 

determine if the direction vector points in the wrong direction, the minimum distance 
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from the first point to a line going through the second and third points is calculated using 

Equation (3-18).  Equation (3-17) assumes that the first point is on the positive side of the 

line.  If the distance to the line is negative, the direction vector is reversed using  

Equation (3-19).   

 

 

Figure 3-16 Endpoint 0 has moved to 0’, which is past target line formed by points 1 and 2, requiring 
that direction vector (blue) be reversed.  
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where: 

01 XXX −=Δ  

01 YYY −=Δ            

 

A special case occurs if the distance to the line is zero. The point is at the target 

line so there is no need to move the point.  The direction vector is set to null. 
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Figure 3-17 Direction vector for endpoint. It is perpendicular to original control polygon 

 

The direction vector for the last control point is calculated in a similar manner to 

the first point. Equations (3-20), (3-21), and (3-22) are the modified forms of Equations 

(3-17), (3-18), and (3-19) for the last point.  Figure 3-18 illustrates the direction vector 

for the last point.  
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where: 

12 −− −=Δ mm XXX  

12 −− −=Δ mm YYY  

 

 

Figure 3-18 Direction vector for endpoint. It is perpendicular to original control polygon 
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3.6.2 Ripple Points 

The direction vector for a ripple control point directs the control point towards a 

straight line formed by its two adjacent control points.  The procedure to find the 

direction vector (shown in red) for ripple control points is illustrated in Figure 3-19.   

 

 

Figure 3-19 Direction vector (red) for ripple point defined as normalized sum of vectors vectors        
A and B 

 

First, the normalized vectors A and B (green) are created using Equation (3-23) 

and Equation (3-24).  Vector A goes from the point being considered (point 2) to the 

point before it (point 1) and vector B goes from the point being considered to the point 

after it (point 3).  The normalized sum of vectors A and B calculated in Equation (3-25) is 

the direction vector and bisects the angle between A and B.  If the points (1, 2, and 3) 
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form a straight line, vectors A and B will point in opposite directions and Equation (3-25) 

will be ⎥
⎦

⎤
⎢
⎣

⎡
0.0
0.0

. 
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where: 
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3.6.3 Smooth Points 

Direction vectors for smooth points flatten the curve and reduce the curvature as 

shown in Figure 3-20, resulting in a shorter curve. 

The procedure to calculate the direction vectors for smooth sections combines 

multiple vectors and can be seen in the smooth group (points 4-9) in Figure 3-21.  The 

apex points’ direction vectors (the A vectors on points 6 and 7) are calculated first. Then 

preliminary direction vectors (the B vectors, blue, on points 4, 5, 8, and 9) are calculated 

for the middle and ending points. Each preliminary vector is then combined with a scaled 

version of the apexes’ direction vectors (C vectors, black, on points 4, 5, 8, and 9) to 

create the non-apex final direction vector (A vectors, red, on points 4, 5, 8, and 9).   

 

 

Figure 3-20 Spline that has been flattened. Spline is spread out and moved down by  algorithm to 
form red spline 
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Figure 3-21 A (red) direction vectors for smooth point group (blue points). Preliminary vectors are   
B (blue) and C (black) vectors. 

 

The apexes’ direction vectors are calculated in one of two ways.  If the apex is a 

single point then the direction vector is calculated using the same method as is used for a 

ripple point’s direction vector using Equations (3-23), (3-24), and (3-25).   

If it is a double apex then each of the points is assigned the same direction vector. 

A preliminary direction vector is calculated using Equation (3-26) that is perpendicular to 

the line that goes through both apex points (points 6 and 7) as illustrated by line D in 

Figure 3-21.   
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Equation (3-26) does not guarantee that the direction of the apex vectors is 

correct.  The correct direction is shown in Figure 3-21.  To determine if the apex 

direction vectors must be reversed, the minimum distance from the control point 

immediately following the second apex point to the line through the two apex points is 

calculated using Equation (3-27).  Equation (3-26) assumes that this point is on the 

positive side of the line.  If the distance to the line is negative, the preliminary direction 

vector is reversed using Equation (3-28).   
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Preliminary direction vectors (B vectors, blue, in Figure 3-21) are calculated for 

all non-apex points using Equation (3-29).  This method is the same as for direction 

vectors for the ripple case, except that the direction vectors are reversed.  Equation (3-29) 

uses the values from Equation (3-23) and Equation (3-24). The preliminary direction 

vector moves the control points out, widens the tool path. This effectively lowers          

the curvature.  
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( ) iiiii DD '1 DVDVDV == +         ( 3-28) 

 

iii BADV +−=1          ( 3-29) 

 

A scaled vector is created at each non-apex point by scaling the apex direction 

vector by 9.0 using Equation (3-30).  If the preliminary vector is too large then it can 

cause high-curvature sections where the smooth group endpoints connect with adjacent 

control points.  Therefore, the scaled vector is scaled to outweigh the preliminary vector 

when they are summed.  The value of 9.0 was chosen through trial and error.  It produces 

the best overall results.  The scaled vector aligns the movement of the non-apex points 

with the apex points, so that the curve stays intact as it flattens.  The normalized sum of 

the preliminary vector and scaled vector in Equation (3-31) is the direction vector for 

each of the smooth points.   

 

apex
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21
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By summing the two vectors together and normalizing the result, the final 

direction vector obtains attributes from both of the vectors.  The curve is flattened and 

lengthened by the preliminary vector but shortened by the scaled vector.  The final 

direction vectors for the control points in a smooth section cause the curve to move to the 
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inside of the tolerance tube at the apex and to the outside of the tolerance tube at the 

beginning and ending points as shown in Figure 3-20.   

The null vector case mentioned in the end and ripple point sections does not apply 

to smooth points. If any of the control points in a smooth group becomes part of a straight 

line then those control points are re-categorized as ripple points in the next iteration. 

3.7 Sensitivity Values 

Several iterations of control point movement are required to smooth the curve 

without crossing the tolerance limits.  The algorithm uses two key variables to calculate 

the move distance for each control point in each iteration: the sensitivity value and the 

maximum allowable move distance.  The sensitivity value for each control point is the 

ratio of the spline move distance to the control point’s move distance from the previous 

iteration.  The maximum allowable move distance is the minimum distance between the 

spline and the tolerance tube remaining after the last iteration.   

Sensitivity values are initialized before starting the first iteration by performing a 

mock iteration using the original control polygon and the radius of the tolerance tube as 

the maximum allowable distance to calculate the starting sensitivity values. After the 

sensitivity values are calculated, the control polygon is returned to its original state and 

the first iteration is executed.  

To determine how far the spline deviates as a result of moving the control points 

during a smoothing iteration, a difference spline is created by subtracting the previous 

iteration’s control points from the current iteration’s control points. See Equation (3-32).  
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The difference spline is a cubic B-spline that has the same knot vector and number of 

control points as the original spline.   

 

original
i

smoothed
ii PPD −=          ( 3-32) 

 

A parameter value is assigned to each control point in the spline. The first control 

point is assigned the parameter value equal to the first knot value.  In other words, the 

first control point is assigned the beginning of the spline.  The second point is assigned 

the parameter value halfway between the first and second knot values.  If the first knot is 

1 and the second knot is 2, then the second control point’s parameter value is 1.5.  The 

third control point is assigned the second knot value.  The subsequent control points are 

assigned the same way, except the last and second-to-last control points.  The second-to-

last control point is assigned the parameter value halfway between the last and the 

second-to-last knot values.  The last control point is assigned the last knot value. 

Equations (3-33) through (3-37) calculate the parameter value for each control point. The 

parameter value is t.  The knot value is k.  The number of control points is m and the 

number of knots is n. 

 

00 kt =            ( 3-33) 

           

2
10

1
kk

t
+

=           ( 3-34) 

          



 54

1−= ii kt            ( 3-35) 

          

2
12

2
−−

−

+
= nn

m
kk

t          ( 3-36) 

        

11 −− = nm kt           ( 3-37) 

         

The sensitivity value is calculated in Equation (3-38) by dividing the difference 

spline’s value at each control point’s corresponding parameter value by the control 

point’s move distance.  

 

iii MDDS =           ( 3-38) 

3.8 Maximum Distance 

The maximum allowable distance in each iteration is the minimum distance 

between the spline and the path tolerance. For the first iteration, the maximum allowable 

distance is initialized to be the radius of the path tolerance tube. 

The maximum allowable distance is calculated as the difference between the 

radius of the tolerance tube and the maximum distance between the original spline and 

the current iteration spline. See Figure 3-22.  To calculate the maximum distance, a 

difference spline that is similar to the sensitivity difference spline is created by 

subtracting the original polygon from the current iteration polygon.  This difference 

spline represents the distance that the spline has moved from the original position.  See 
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Equation (3-39).  Figure 3-23 shows a spline with the maximum distance               

location indicated.   

 

 

Figure 3-22 Calculating maximum allowable distance 
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Figure 3-23 Maximum allowable distance on spline 

 

Note that Equation (3-39) will error on the safe side.  The radius of the tolerance 

tube is the minimum distance between the original spline and the tolerance tube.  If a 

point on the spline moves in any direction other than perpendicular to the original spline 

then it will actually be further from the tolerance tube than Equation (3-39) calculates. 

Figure 3-24 shows a line at an angle that does not reach the tolerance tube. Lines A and B 

have the same length but B does not reach the tolerance tube. 

Difference between splines 
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Figure 3-24 Point on spline that does not move perpendicular to original spline will not reach 
tolerance tube. Most points move very close to perpendicular, so this inaccuracy is minimal. 

 

To find the minimum distance, each knot interval is split into a number of steps as 

determined by the precision and the distance is evaluated at each of these divisions.  This 

is equivalent to splitting the B-spline into its Bezier curves and splitting up each of the 

Bezier curves.   

3.9 Move Distance 

A move distance is the distance that a control point moves during each iteration.  

To calculate the move distance, each sensitivity value is inverted and then scaled from    

zero to one by dividing the inverted sensitivity value by the maximum inverted sensitivity 

value.   See Equation (3-40).  

The smallest sensitivity value before inversion becomes a 1.0 through inversion 

and scaling.  The largest sensitivity value before inversion becomes the smallest value but 

never becomes 0.0.  Equation (3-40) ensures that each move distance is non-zero.  If the 

largest sensitivity value were scaled to a 0.0 move distance, the control point with the 

largest sensitivity value would never move.  The scaled inverted sensitivity value is 
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multiplied by the maximum allowable distance to produce the move distance value for 

each control point.  Equation (3-41) scales all of the move distances so that all of the 

control points will move the spline values the same distance. 
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The example below uses a control polygon with five control points to demonstrate 

how move distances are calculated.  The initial sensitivities were calculated in the 

previous iteration.  
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The sensitivities are inverted and the smallest sensitivity is the largest value. 
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The inverted sensitivities are scaled by dividing them by the maximum inverted 

sensitivity (5). The new scale is  ( ]0.1,0.0  

 

Scaled Inverted Sensitivities:  
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The maximum allowable distance was set to 10.  The scaled values are multiplied 

by the maximum allowable distance to become the move distances. 
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The actual distances moved are simulated in this example by multiplying the 

move distances by the sensitivity values.  This is close to what would happen during the 

smoothing section that is discussed in Section 3.10.  The sensitivity values do not match 

the actual movements of the spline because the sensitivities are linear and the spline is 

cubic, but they are a close approximation.  It is important to note that all of the points 

moved the same distance due to the scaling, which causes the spline to smooth evenly. 

When control points form part of a straight line with two or more adjacent control 

points, they are initially assigned a 0.0 sensitivity value, because the spline is already in 

its ideal position.  These 0.0 sensitivity values are special cases that are eliminated by 

setting the sensitivity value to 1.0 so that it does not cause a division error during scaling. 
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Actual Distances Moved:  
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3.10 Smooth Control Polygon  

After all of the direction vectors and distances are determined, the polygon is 

smoothed.  Smoothing is accomplished by moving each control point its move distance in 

the direction of its direction vector.  This movement is calculated by multiplying the 

move distance by the direction vector and adding this result to the control point’s current 

position as shown in Equation (3-47).  The resulting control polygon is used to calculate 

the distances and sensitivities for the next iteration.   
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3.11 Termination 

The iterations terminate when the spline comes within the predefined precision of 

the tolerance tube.  At this point, the spline is close enough to the path tolerance to 

consider it as touching the tolerance band.  Upon termination, the previous iteration 

control polygon is used as the solution.  The current iteration control polygon is not used 

because the spline has passed the tolerance band.  

3.12 Example of Reduction in Curvature 

To illustrate the effects of reducing curvature in high-curvature tool paths, eight 

similar tool paths were created that all have a single ripple.  The peak curvature value for 
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each tool path has a higher value than the previous one.  The curvature values range from 

1/15 mm-1 to 8/3 mm-1.   The tool paths were smoothed with the algorithm using multiple 

path tolerance radii. The original (blue) and smoothed (red) tool paths are shown inside 

of a path tolerance (black) in Figure 3-25. 

 

 

Figure 3-25 Eight tool paths with different severity of curvature 

 

Figure 3-26 shows the reduction in curvature for each tool path at different path 

tolerance radii.  At a given path tolerance, the percent reduction in curvature is greater for 

tool paths with more severe curvature.  As can be seen, the effectiveness of the algorithm 

increases with the severity of the curvature. For example, with a path tolerance of 0.125 

mm, the tool path with an initial curvature of 8/3 mm-1 shows a much higher percent 

improvement in curvature than the tool path with an initial curvature of 1/15 mm-1.  
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When the curvature improvement reaches 100%, the spline becomes a straight line with 

zero curvature. 
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Figure 3-26 Percent reduction in curvature for tool paths with single high-curvature ripple.  

 

Figure 3-27 shows the reduction in machining time for each tool path at different 

path tolerance radii.  At a given path tolerance, the percent reduction in machining time is 

greater for tool paths with more severe curvature.  As can be seen, the effectiveness of the 

algorithm increases with the severity of the curvature.  For example, with a path tolerance 

of 0.125 mm, the tool path with an initial curvature of 8/3 mm-1 shows a much higher 

percent improvement in machining time than the tool path with an initial              

curvature of 1/15 mm-1. 
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Figure 3-27 Percent reduction in machining time for tool paths with single high-curvature ripple. 
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4 Results 

4.1 Sample Tool Paths 

Six sample tool paths were created to test the smoothing algorithm.  The tool 

paths represent a single pass across a surface because this will sufficiently test the 

algorithm and keep the amount of data to a minimum.  It is not necessary to zigzag across 

the part multiple times because all of the passes will be similar and not produce 

additional unique test cases. Each tool path is composed of a single B-spline and contains 

a different degree of high-curvature ripples.  

The first tool path is shown in Figure 4-1 and represents a tool path with low 

curvature radii.  This tool path is simple and smooth.  It measures 766 mm in length and 

the maximum curvature is 0.175 mm-1.  The tool feedrate should be close to the 

commanded value.  

 

 

Figure 4-1 Test Case 1: Tool path with many low curvature radii.  Tool path is fairly smooth and 
long.  NC controller will decrease the feedrate through these low curvature sections, but not 
significantly. 
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The second tool path is shown in Figure 4-2 and mainly has low curvature radii 

with just two high-curvature radii. The part is 376 mm long and has a maximum 

curvature of 9.0 mm-1. This tool path will slow down the feedrate significantly due to the 

two small radii.  

 

 

Figure 4-2 Test Case 2: Tool path with many low curvature radii and two high-curvature radii.  
Ttool path is fairly smooth and of medium length, except for two high-curvature radii. NC controller 
will decrease feedrate through these curvature sections, especially at high-curvature ripples. 

 

The tool path for test case 3 is complex with multiple high-curvature ripples and 

is shown Figure 4-3. The path is 210 mm long and has a maximum curvature of 28 mm-1.  

This tool path represents an extreme case in which the feedrate will be very slow.  

 

 

Figure 4-3 Test Case 3:  Tool path with many high-curvature radii.  Tool path is very complex and 
short.  NC controller will decrease feedrate drastically. 
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The tool path shown in Figure 4-4 is generated for factory siping on a snow tire 

mold with complex geometry.  Siping creates the little slits in the tread of the tire.  A 

snow tire with factory siping can be seen in Figure 4-5.  

 

 

Figure 4-4 Test Case 4: Tool path generated along offset of the complex surface of a snow tire. It 
contains multiple sections of high-curvature which will drastically decrease feedrate. 

 

 

Figure 4-5 Snow tire with siping and very complex geometry 

 

The next test case in Figure 4-6 was designed as a straight line with zero 

curvature but two of the data points used to interpolate the tool path were noisy.  These 

position discontinuous points create ripples in the tool path that significantly increase the 
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curvature and cause the spline to deviate from the desired tool path by up to 0.4 mm.  

This increased curvature significantly lowers the feedrate.    

 

 

Figure 4-6 Test Case 5: Linear tool path of ideally zero curvature with two noisy points.  Points are 
both 0.2 mm away from straight line and form ripples that almost reach 0.4 mm from straight line.  
These noisy points create sections of high-curvature ripples.  The NC tool will decrease feedrate from 
ideal to maneuver high-curvature ripples. 

 

The final test case tool path illustrates how tangency discontinuities form high-

curvature ripples in the tool paths and can be seen in Figure 4-7.  The tool path tries to 

follow a series of 90-degree corners, but is unable to do so without creating high-

curvature ripples. The ripples form because a cubic B-spline is unable to represent a 

tangency discontinuity.  

 

 

Figure 4-7 Test Case 6: Aool path with 90-degree corners.  Corners are tangency discontinuous and 
they cause severe ripples in tool path. NC tool will decrease feedrate from ideal value to maneuver 
high-curvature ripples. 
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It is important to note that a CAM program may recognize intentional design 

discontinuities and split the tool path into multiple sections connected with tangency 

discontinuities. However, this test case represents tangency discontinuities that are caused 

by anomalies and not the designer.  The CAM package will not recognize anomalies and 

will create ripples in the tool path instead of splitting it into multiple sections.  

4.2 Smoothing Parameters 

 The smoothing algorithm required the following user-defined parameters. The 

accuracy of all tool paths was set to 1%.  Therefore, the iterations terminated when the 

tool path closed to within 1% of the path tolerance.  The precision was set to 5 causing 

each Bezier in the B-spline to be split into 5 sections in the maximum distance function.  

Each of the tool paths was smoothed three separate times using different path tolerances: 

0.025 mm, 0.125 mm, and 0.25 mm.   

4.3 Smoothed Tool Path Results 

The smoothed tool paths and the tolerance band are shown for a path tolerance of 

0.25 mm in Figure 4-8 through Figure 4-13.  The figures are close-ups of sections with 

high curvature that show the tolerance band and the smooth path.  The figures show that 

the smooth paths flatten around all of the corners. The tool paths are red and the path 

tolerance tube is black. 
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Figure 4-8 Test Case 1: Smoothed path for tool path in Figure 4-1 

 

 

Figure 4-9 Test Case 2: Smoothed path for tool path in Figure 4-2 
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Figure 4-10 Test Case 3: Smoothed path for tool path in Figure 4-3 

 

 

Figure 4-11 Test Case 4: Smoothed path for tool path  in Figure 4-4 
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Figure 4-12 Test Case 5: Smoothed path for tool path in Figure 4-6 

 

 

Figure 4-13 Test Case 6: Smoothed path for tool path in Figure 4-7 

4.4 Curvature Results 

The curvature along each of the tool paths is recorded in Figure 4-14 through 

Figure 4-19 and in Table 4-1.  The curvature graphs and table show that the high-

curvature ripples decrease with the smoothing algorithm and the tool path becomes 

increasingly smoother with a larger path tolerance radius.   
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Table 4-1 Relative curvature measurements from before and after smoothing algorithm 

Part Path Tolerance (mm) 
Curvature 
Average 
(1/mm) 

Curvature 
Difference 

(1/mm) 

Curvature 
Improvement 

(%) 

Original 0.040314 0 0.00% 
R = 0.025 0.040154 0.0001592 0.39% 
R = 0.125 0.039588 0.0007257 1.80% 

Test Case 1: 
Simple 

R = 0.250 0.038976 0.001338 3.32% 

Original 0.14091 0 0.00% 
R = 0.025 0.140219 0.0006906 0.49% 
R = 0.125 0.137186 0.0037242 2.64% 

Test Case 2: 
Medium 

R = 0.250 0.133279 0.0076309 5.42% 

Original 0.564505 0 0.00% 
R = 0.025 0.557309 0.0071956 1.27% 
R = 0.125 0.53213 0.0323753 5.74% 

Test Case 3: 
Complex 

R = 0.250 0.510896 0.0536084 9.50% 

Original 0.296756 0 0.00% 
R = 0.025 0.295998 0.0007578 0.26% 
R = 0.125 0.292879 0.0038774 1.31% 

Test Case 4: 
Snow Tire  

R = 0.250 0.288374 0.0083822 2.82% 
Original 0.093916 0 0.00% 

R = 0.025 0.08424 0.0096766 10.30% 
R = 0.125 0.04706 0.0468563 49.89% 

Test Case 5: 
Line 

R = 0.250 0.005922 0.087994 93.69% 
Original 0.175172 0 0.00% 

R = 0.025 0.168204 0.0069681 3.98% 
R = 0.125 0.143115 0.0320576 18.30% 

Test Case 6: 
Square 

R = 0.250 0.131753 0.0434191 24.79% 

 



 72

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0 10 20 30 40 50 60

Parameter

C
ur

va
tu

re
 (1

/m
m

)
Original
R = 0.025 mm
R = 0.125 mm
R = 0.25 mm

 

Figure 4-14 Test Case 1: Curvature for part in Figure 4-1 
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Figure 4-15 Test Case 2: Curvature for part in Figure 4-2 
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Figure 4-16 Test Case 3: Curvature for part in Figure 4-3 
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Figure 4-17 Test Case 4: Curvature for part in Figure 4-4 
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Figure 4-18 Test Case 5: Curvature for part in Figure 4-6 
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Figure 4-19 Test Case 6: Curvature for part in Figure 4-7 
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4.5 Machine Time Simulation 

The time to machine each of the tool paths was simulated using a trajectory 

generator.  The trajectory generator uses S-curve velocity profiles that are limited by the 

curvature of the tool path.  The maximum values for the trajectory generator were set to 

the values below for all tool paths. 

 

Feedrate: smmV f 400=   

 

Acceleration: 24000 smmAm =  

 

Jerk: 3000,20 smmJ m =     

 

An initial velocity profile was determined by assuming that the velocity was only 

limited by the curvature.  This profile contained the maximum allowable velocities since 

it assumed that the velocities could change instantly between positions along the tool path 

and were not limited by tangential acceleration.  The velocities at multiple distances 

along the tool path were calculated using Equation (4-1).  The maximum and minimum 

velocities correspond to specific positions along the tool path. 

 

curvature

max
feedrate k

AV =          ( 4-1 ) 
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All of the velocities that were not local maximum or minimum values were 

removed. S-curves were created to accelerate between the maximum and minimum 

velocities. The s-curves were required to traverse the distances between the positions on 

the tool path that correspond to the maximum and minimum velocities.  Local maximum 

velocity values were decreased until the robot was capable of accelerating between the 

minimum and maximum velocities and traversing the required distance.  Below are the 

equations for the s-curve profiles. 

The S-curve velocity profile uses constant jerk to derive equations of motion.  

Figure 4-20 shows an ideal s-curve velocity profile and the jerk profile that goes with it. 

  

 

Figure 4-20 Constant jerk s-curve velocity 

 

If the required change in velocity is small, the maximum acceleration will not be 

reached. and as is decreased. For more information on using S-curve velocity, see chapter 

5 of Dr. Red’s (2007) on-line course notes.   
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The equations of motion for the concave portion of the s-curve are: 

 

6)( 3
0 tjtvts +=          ( 4-2) 

 

2)( 2
0 tjvtv +=          ( 4-3) 

 

jtta =)(           ( 4-4) 

 

The equations of motion for the convex portion of the s-curve are: 

 

62)( 32
2/1 tjtatvts s −+=         ( 4-5) 

 

2)( 2
2/1 tjtavtv s −+=         ( 4-6) 

 

jtata s −=)(           ( 4-7) 

 

2
0

2/1
svv

v
+

=           ( 4-8) 

 

If the required change in velocity is large, the maximum acceleration will be 

reached and a section of constant acceleration is placed between the concave and convex 

portions of the profile as seen in Figure 4-21.  The velocity continues to increase without 

going above the acceleration limit in this linear portion. 
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Figure 4-21 S-curve profile with linear period 

  

The equations of motion for the linear portion of the s-curve are: 

 

2)( 2
1 tatvts s+=          ( 4-9 ) 

 

tavtv s+= 1)(           ( 4-10 ) 

 

j
a

vv s

2

2

01 +=           ( 4-11 ) 

   

The trajectory generator assumed that the feedrate was capable of maximum 

velocity at the beginning and end of the tool paths because the sample tool paths tested 

did not include non-cutting engagement moves.   
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Due to the high-curvature, the NC controller decreased the feedrate along all of 

the tool paths.   Feedrates for each of the tool paths can be seen in Figure 4-22 through 

Figure 4-27 and Table 4-2.  The graphs are all on a scale of 0 to 400 mm/s.  Note that the 

graphs shift to the left as the path tolerance radii increase because the machine tool is 

traversing the tool path faster.  

 

Table 4-2 Feedrate measurements from before and after smoothing algorithm 

Part Path Tolerance 
(mm) 

Feedrate 
Average 
(mm/s) 

Feedrate 
Difference 

(mm/s) 

Feedrate 
Improvement 

(%) 

Original 195.0 0.0 0.00% 
R = 0.025 195.1 0.1 0.07% 
R = 0.125 195.4 0.4 0.22% 

Test Case 1: 
Simple 

R = 0.250 195.4 0.4 0.21% 

Original 180.8 0.0 0.00% 
R = 0.025 180.9 0.1 0.03% 
R = 0.125 181.1 0.3 0.14% 

Test Case 2: 
Medium 

R = 0.250 186.2 5.4 3.00% 

Original 52.3 0.0 0.00% 
R = 0.025 52.4 0.1 0.26% 
R = 0.125 53.8 1.5 2.93% 

Test Case 3: 
Complex 

R = 0.250 54.8 2.5 4.84% 

Original 71.4 0.0 0.00% 
R = 0.025 72.6 1.2 1.63% 
R = 0.125 72.9 1.4 2.01% 

Test Case 4: 
Snow Tire  

R = 0.250 73.0 1.5 2.17% 
Original 73.1 0.0 0.00% 

R = 0.025 74.9 1.8 2.45% 
R = 0.125 91.9 18.8 25.74% 

Test Case 5: 
Line 

R = 0.250 299.5 226.4 309.58% 
Original 58.2 0.0 0.00% 

R = 0.025 59.5 1.3 2.29% 
R = 0.125 65.6 7.4 12.79% 

Test Case 6: 
Square 

R = 0.250 71.6 13.4 23.01% 
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Figure 4-22 Test Case 1: Feedrate for tool path in Figure 4-1 
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Figure 4-23 Test Case 2: Feedrate for tool path in Figure 4-2 
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Figure 4-24 Test Case 3: Feedrate for tool path in Figure 4-3 
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Figure 4-25 Test Case 4: Feedrate for tool path in Figure 4-4 
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Figure 4-26 Test Case 5: Feedrate for tool path in Figure 4-6 
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Figure 4-27 Test Case 6: Feedrate for tool path in Figure 4-7 
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4.6 Tool Path Length Results 

The tool path lengths are recorded in Table 4-3.  The tool paths decrease in length 

during the smoothing algorithm.   

    

Table 4-3 Lengths of tool paths from before and after smoothing algorithm 

Part Path Tolerance 
 (mm) 

Length 
(mm) 

Difference 
(mm) 

Improvement 
% 

Original 766.089 0.000 0.00% 
R = 0.025 765.773 0.316 0.04% 
R = 0.125 764.601 1.488 0.19% 

Test Case 1: 
Simple 

R = 0.250 763.681 2.408 0.31% 

Original 376.394 0.000 0.00% 
R = 0.025 376.158 0.236 0.06% 
R = 0.125 375.179 1.215 0.32% 

Test Case 2: 
Medium 

R = 0.250 373.853 2.541 0.68% 

Original 209.649 0.000 0.00% 
R = 0.025 208.522 1.127 0.54% 
R = 0.125 203.649 6.000 2.86% 

Test Case 3: 
Complex 

R = 0.250 198.750 10.899 5.20% 

Original 66.292 0.000 0.00% 
R = 0.025 66.051 0.242 0.36% 
R = 0.125 65.092 1.200 1.81% 

Test Case 4: 
Snow Tire  

R = 0.250 63.817 2.475 3.73% 
Original 100.444 0.000 0.00% 

R = 0.025 100.383 0.061 0.06% 
R = 0.125 100.157 0.287 0.29% 

Test Case 5: 
Line 

R = 0.250 100.017 0.427 0.43% 

Original 123.277 0.000 0.00% 
R = 0.025 123.200 0.077 0.06% 
R = 0.125 122.914 0.363 0.29% 

Test Case 6: 
Square 

R = 0.250 122.263 1.014 0.82% 
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4.7 Simulated Machining Times Results 

The machining times for each of the tool paths are displayed in Table 4-4. These 

demonstrate how much time was saved with the smoothing algorithm.  

 

Table 4-4 Machining times for all of tool paths and percent of time saved 

Part 
Path 

Tolerance 
(mm) 

Time (s) Difference 
(mm) 

Improvement  
(%) 

Original 3.810 0.000 0.00% 
R = 0.025 3.806 0.004 0.11% 
R = 0.125 3.790 0.020 0.54% 

Test Case 1: 
Simple 

R = 0.250 3.769 0.042 1.09% 

Original 2.199 0.000 0.00% 
R = 0.025 2.197 0.003 0.11% 
R = 0.125 2.186 0.013 0.59% 

Test Case 2: 
Medium 

R = 0.250 2.147 0.053 2.39% 

Original 4.042 0.000 0.00% 
R = 0.025 4.009 0.033 0.83% 
R = 0.125 3.849 0.193 4.78% 

Test Case 3: 
Complex 

R = 0.250 3.695 0.348 8.60% 

Original 0.943 0.000 0.00% 
R = 0.025 0.940 0.003 0.36% 
R = 0.125 0.921 0.022 2.37% 

Test Case 4: 
Snow Tire  

R = 0.250 0.895 0.048 5.14% 

Original 1.341 0.000 0.00% 
R = 0.025 1.304 0.037 2.76% 
R = 0.125 1.065 0.276 20.58% 

Test Case 5: 
Line 

R = 0.250 0.334 1.007 75.09% 

Original 1.970 0.000 0.00% 
R = 0.025 1.922 0.048 2.45% 
R = 0.125 1.757 0.213 10.83% 

Test Case 6: 
Square 

R = 0.250 1.647 0.324 16.43% 
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4.8 Calculation Times Results  

The calculation times required by the algorithm to smooth the paths are shown in 

Table 4-5.  These were calculated using a Pentium Core 2 Duo with two 2.13 GHz 

processors and 1.98 GB of RAM.  Note that these calculation times are for one tool path 

pass and not for an entire part.  The calculation times increase with the number of   

control points.  

 

Table 4-5 Calculation times for all tool paths  

Part 
Number of 

Control 
Points 

Tolerance 
Radius  
(mm) 

Times 
(s) 

R = 0.025 1.636 
R = 0.125 1.661 Test Case 1: 

Simple 62 
R = 0.250 1.514 
R = 0.025 0.076 
R = 0.125 0.085 

Test Case 2: 
Medium 14 

R = 0.250 0.090 
R = 0.025 0.800 
R = 0.125 0.969 Test Case 3: 

Complex 43 
R = 0.250 0.779 
R = 0.025 0.101 
R = 0.125 0.101 Test Case 4: 

Snow Tire  11 
R = 0.250 0.113 
R = 0.025 0.231 
R = 0.125 0.339 Test Case 5: 

Line 32 
R = 0.250 0.851 
R = 0.025 0.237 
R = 0.125 0.160 

Test Case 6: 
Square 28 

R = 0.250 0.741 
 

4.9 Discussion of Results 

As the curvature in a tool path is reduced by the new algorithm, the machining time 

decreases as shown in Table 4-4.  The algorithm decreased machining times by 1% to 9% 
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for design-induced sections of high curvature and by 16% to 75% for CAM-induced 

ripples using high path tolerances. 

4.9.1 Tool Path Length 

The algorithm decreased the tool path length for all of the tool paths.  Table 4-3 

shows the improvement in tool path length for all test cases and Table 4-6 shows the 

average decrease in tool path length for each tool path tolerance radius.   

 

Table 4-6 Average percent changes in tool path length, curvature, feedrate, and machining time. 

Tolerance 
Radius 
(mm) 

Tool Path 
Length 

Average 
Percent 

Reduction 

Curvature 
Average 
Percent 

Reduction 

Feedrate 
Average 
Percent 
Increase 

Machining 
Time Average 

Percent 
Reduction 

Overall 1.05% 13.11% 21.85% 8.61% 
0.025 0.20% 2.78% 1.12% 1.10% 
0.125 1.02% 13.28% 7.31% 6.61% 
0.25 1.93% 23.26% 57.13% 18.12% 

 

4.9.2 Curvature 

The algorithm decreased the curvature for all of the tool paths.  The curvature 

graphs and Table 4-1 in Section 4.4 show the improvement in curvature for all test cases 

and Table 4-6 shows the average decrease in curvature for each tool path             

tolerance radius.   

4.9.3 Feedrate 

The algorithm increased the feedrate for all of the tool paths.  The feedrate graphs 

and Table 4-2 in Section 4.5 show the improvement in curvature for all test cases and 
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Table 4-6 shows the average increase in feedrate.  The feedrates were increased because 

the curvature was decreased.  The curvature graphs in Section 4.4 and the corresponding 

feedrate graphs in Section 4.5 demonstrate an inverse relationship between the amount of 

curvature and the feedrate.  Figure 4-28 shows that the percent decrease in curvature 

correlates to the percent increase in feedrate.  The P-value for the Pearson correlation 

coefficient in Table 4-7 confirms the correlation.  A P-value less than 0.05 corresponds to 

a significant correlation. 
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Figure 4-28 Percent reduction in curvature compared to percent increase in feedrate showing that 
decrease in curvature directly correlates to increase in feedrate.   
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4.9.4 Simulated Machining Times 

The algorithm decreased the machining times for all of the tool paths.  Table 4-3 

shows the improvement in machining time for all test cases and Table 4-6 shows the 

average decrease in machining time compared to the percent improvement in curvature, 

tool path length, and feedrate.  Machining times were decreased because the feedrates 

were increased, as machining times are inversely proportional to feedrates.  Figure 4-29 

shows that the percent increase in feedrate correlates to the percent decrease in maching 

time.  The P-value for the Pearson correlation coefficient in Table 4-7 confirms the 

correlation.  It can also be shown that as the curvature decreases the machining time 

decreases. This correlation is shown in Figure 4-30 and Table 4-7.  
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Figure 4-29 Percent increase in feedrate compared to percent decrease in machining time showing 
that increase in feedrate directly correlates to decrease in machining time.   
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Figure 4-30 Percent decrease in curvature compared to percent decrease in machining time showing 
that decrease in curvature directly correlates to decrease in machining time.    

 

Table 4-7 Pearson correlation values used to determine correlation between different parameters.  
Values in yellow represent a significant correlation.  

    

Machine Time 
Improvement % 

Curvature 
Improvement 

% 

Length 
Improvement %

Pearson 
correlation 0.9680 Curvature 

Improvement 
% P-Value 0.0000 

    

Pearson 
correlation -0.0280 -0.1110 Length 

Improvement 
%  P-Value 0.9110 0.6620 

  

Pearson 
correlation 0.9720 0.9010 -0.1050 Feedrate 

Improvement 
% P-Value 0.0000 0.0000 0.6770 
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The machining times were also affected by the reduction in tool path length. 

However, the decrease in machining time and the decrease in tool path length are not 

correlated. This is shown in Table 4-7 and Figure 4-31.  This initially seems to be 

counterintuitive, but it can be understood by analyzing the nature of high-curvature     

tool paths.   
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Figure 4-31 Percent decrease in tool path length compared to percent decrease in machining time 
showing that decrease in tool path length does not correlate to decrease in machining time.    

 

The feedrate is coupled to the acceleration and jerk limits of the machine tool.  It 

can be seen in the feedrate plots in Section 4.5. that the feedrate does not immediately 

return to its set value of 400 mm/s after reducing the feedrate in a high-curvature section. 

This is because the feedrate is limited by the acceleration and jerk limits.  These limits 

impede the feedrate from returning to its desired value for a significant distance along the 
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tool path.  For example, in Figure 4-26 the feedrate drops to a minimum at the first 

section of high-curvature ripples.  It does not have enough distance before the next high-

curvature section to accelerate to 400 mm/s because of the acceleration and jerk limits. 

About half way between the high-curvature sections, the feedrate must again decelerate 

to a minimum value.  

Due to the acceleration and jerk limits, decreasing the tool path length can have a 

minor adverse affect on feedrate peak values.  If the tool path length is significantly 

shortened in a high-curvature section of the tool path, the machine tool will not have as 

much distance to accelerate before slowing for the next curve.  The increase in machining 

time due to the reduced feedrate peaks may be offset by the reduction in machining time 

due to traversing the shortened path.  These affects were not investigated.  The reduction 

in feedrate at the beginning and ending of test case 4 in Figure 4-25 may be a result of 

this affect.   

4.9.5 Tool Path Tolerance Radius 

Increasing the path tolerance radius improves the results for curvature, tool path 

length, feedrate and machining time as shown in Table 4-6.  A larger path tolerance 

allows the tool path to straighten further, which decreases the curvature as shown in the 

curvature graphs in Section 4.4.  As the curvature decreases, the feedrate increases and 

the machining time decreases. The curvature does not decrease by large amounts because 

the path is only allowed to deviate within a small tolerance.   
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4.9.6 Percent Savings Versus Curvature 

As expected, the test cases demonstrate that the algorithm yields better results for 

tool paths with higher curvature.  The machining time for the tool path in Figure 4-2 was 

improved by a greater percent than the time in Figure 4-1 because the tool path in    

Figure 4-2 has a higher curvature distribution.  The machining time for the tool path in 

Figure 4-3 was decreased by an even larger percent because the tool path has complex 

geometry with even higher curvature.  This trend can be seen by comparing the curvature 

plots and machining times for each of the test cases.   

4.9.7 Percent Savings Versus Discontinuities 

High-curvature ripples caused by noise in the interpolation data provide 

considerable opportunity to decrease machining time.  For example, if there were no 

noise in the tool path, the feedrate for the tool path in Figure 4-6 would remain at 

400mm/s along the straight line and the tool path would be machined in 0.25 seconds. 

However, the high-curvature ripples cause the section to be machined in 1.34 seconds 

which is 536% of the ideal machining time.  The smoothing algorithm decreases this time 

to 0.334 seconds, which is only 136% of the ideal time. The machining time does not 

reach the ideal time of 0.25 seconds, but it does improve the time by 75%, a significant 

improvement.  

Anomalies in the CAD model, such as gaps and other discontinuities, also provide 

opportunities for improvement.  For example, the machining times for the tool path in 

Figure 4-7 were improved by up to 16%.  The curvature decreases significantly as the 

algorithm resolves the tangency discontinuities.  
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5 Conclusion 

Tool paths that are designed with high levels of curvature can be smoothed with 

the smoothing algorithm presented in this thesis.  In test cases 1 through 4, the machining 

times were decreased by 1% to 9% based on the degree of curvature.  Resulting savings 

can be significant on complex parts.  Tool paths with high-curvature ripples caused by 

discontinuities can also be smoothed using the algorithm. In test cases 5 and 6, the 

machining times were decreased by 16% to 75%.  Anomalies should be removed before 

creating tool paths. But if they are not, the smoothing algorithm can diminish their 

negative affects on machining times.   

High-curvature ripples in CAD models caused by the designer, bad data, or 

discontinuities can cause unnecessary increases in machining times. If these high-

curvature ripples are smoothed with the algorithm proposed in this thesis, machining 

times can be decreased and manufacturing companies can save money.   

5.1 Future Work 

Opportunities to extend the work in this thesis include algorithms for smoothing 

closed tool paths and 3D tool paths.  Brief explanations of closed tool paths and 3D tool 

paths are included in sections 5.1.1 and 5.1.2, respectively.   
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Investigations into using the smoothing algorithm as a filter for noisy data in 

reverse engineering of 3D surfaces could be performed.  Smoothing the high-curvature 

ripples caused by noisy points would effectively filter out those points. This was 

illustrated in the tool path from Figure 4-6.  

The algorithm’s performance may be improved.  The algorithm always decreases 

the overall machining time but sometimes it will increase the curvature of localized 

sections of the tool path. This is a rare case that sometimes occurs when the path 

tolerance is set too large.  If the tolerance radius is too large, the tool path will form 

straight lines with small radius corners.  For example, if the tool path had the shape of the 

letter “U” and the path tolerance was very large, the smoothed path could take the shape 

of the letter “V”.   

Even though the algorithm is fast, it has not been optimized to perform in a real- 

time environment. Work should be done to improve the calculation time of the smoothing 

algorithm.  

The algorithm was developed to show generally that high-curvature sections in 

tool paths can be smoothed. The algorithm can now be adapted to a specific CAD, CAM, 

or NC system. 

5.1.1 Closed Tool Paths 

Although the smoothing algorithm works only with open-ended B-spline tool 

paths, closed tool paths are commonly used and should also be considered.  An  

algorithm to smooth closed tool paths would be very similar to the open-ended algorithm.  

In fact, a closed tool path algorithm would be simpler than the open-ended one because 

the closed tool path has no true end.  Therefore, there would be no endpoints to consider. 
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If a point was at the beginning of the array of control points, the algorithm would simply 

look at the other end of the array for the points preceding it in the polygon.  This section 

will describe the modifications to the open-ended algorithm to convert it for use with 

closed tool paths.  

Some of the math used for closed splines is slightly different than for open 

splines. See Dr. Sederberg’s text for details on closed splines.  The parsing would be 

almost exactly the same except that the knot vector would contain knot intervals instead 

of knot values. Knot intervals are the interval difference between the knot values. For 

example, if one knot is 5 and the next knot is 6, then the knot interval is 1.  In a closed 

cubic B-spline, there is the same number of control points as knots.    

The functions for categorizing points and determining direction vectors would not 

need to consider endpoints, as endpoints do not exist in closed splines.  Control points 

would be categorized and direction vectors would be calculated using the same functions 

as for the open-ended smoothing algorithm. The functions to calculate sensitivity values, 

maximum allowable distance, move distances, and the smooth control polygon and 

termination would be essentially the same as for the open-ended spline algorithm.   

5.1.2 3D Tool paths 

In addition to 2D tool paths, 3D tool paths are commonly used. The algorithm in 

this thesis could be extended to 3D tool paths. 3D B-splines are essentially the same as 

2D B-splines. Even though the B-splines math is similar between 2D and 3D, the 

algorithm needed to smooth the 3D tool path would be more complex. This section 

describes suggestions on how the 2D algorithm could be extended to use 3D splines.  The 

techniques in this section have not been tested.  
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The 3D algorithm would incorporate the same basic principles and steps as the 2D 

version.  The 3D algorithm would also move the control points towards forming a 

straight line so that the spline would have zero curvature.  A line in 3D space has zero 

curvature just like a line in 2D space.   The path tolerance would form a cylindrical offset 

tube around the path instead of a two-dimensional band. This would allow the spline to 

deviate in one more dimension than the 2D case.   

The 3D algorithm would parse all of the same data. The control points would be 

in 3D instead of 2D.  The rest of the parameters would be the same as for 2D.    

Sorting the control points into end, ripple and smooth points would be the most 

complex part of a 3D conversion.  The control points would no longer be in a single 

plane, which means that lines and distances to lines would no longer be sufficient to 

distinguish between smooth and ripple points.  The first and last points would continue to 

be categorized as endpoints.    

The 3D algorithm would still categorize the points using the shape of the control 

polygon. In the 3D case, lines would not be sufficient to categorize points. Two planes 

would be used in place of each of the two lines that are used to categorize each point in 

the 2D algorithm. This would produce four planes total per control point.  

To distinguish between ripple and smooth points, the algorithm would first 

calculate the equations of two orthogonal planes that would go through the point being 

considered and the point just before it.  The intersection of the two orthogonal planes 

would be the same line that is used in the 2D algorithm to categorize points.  The two 

planes would split the space into quadrants.  The rotation of the planes would need to be 
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determined.  Next, the points immediately before and after the points used to make the 

planes would be checked to determine their quadrant.   

The 3D tool path would have direction vectors that are essentially the same as the 

2D path.  The direction vectors would be calculated using the same algorithms as the 2D, 

except the 3D tool path would use 3D vectors.  Direction vectors would be calculated 

using three points that would lay in a plane, so the math would be the same as in the 2D 

algorithm.  The sensitivities, maximum distance, move distances, smooth control 

polygon, and termination would be essentially the same for 3D as for 2D. 
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