
Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2007-12-12

Reducing Curvature in Complex Tool Paths by
Deviating from CAM-Produced Tool Paths Within
a Tolerance Band
George Benjamin Naseath
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Mechanical Engineering Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Naseath, George Benjamin, "Reducing Curvature in Complex Tool Paths by Deviating from CAM-Produced Tool Paths Within a
Tolerance Band" (2007). All Theses and Dissertations. 1271.
https://scholarsarchive.byu.edu/etd/1271

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F1271&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F1271&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F1271&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F1271&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F1271&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarsarchive.byu.edu%2Fetd%2F1271&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/1271?utm_source=scholarsarchive.byu.edu%2Fetd%2F1271&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

REDUCING CURVATURE IN COMPLEX TOOL PATHS

BY DEVIATING FROM CAM-PRODUCED TOOL

PATHS WITHIN A TOLERANCE BAND

by

G. Benjamin Naseath

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Mechanical Engineering

Brigham Young University

December 2007

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

G. Benjamin Naseath

This thesis has been read by each member of the following graduate committee and by
majority vote has been found to be satisfactory.

Date W. Edward Red, Chair

Date Timothy W. McLain

Date C. Gregory Jensen

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the thesis of G. Benjamin
Naseath in its final form and have found that (1) its format, citations, and
bibliographical style are consistent and acceptable and fulfill university and
department style requirements; (2) its illustrative materials including figures, tables,
and charts are in place; and (3) the final manuscript is satisfactory to the graduate
committee and is ready for submission to the university library.

Date W. Edward Red

Chair, Graduate Committee

Accepted for the Department

 Matthew R. Jones
Graduate Coordinator

Accepted for the College

 Alan R. Parkinson
Dean, Ira A. Fulton College of Engineering
and Technology

ABSTRACT

REDUCING CURVATURE IN COMPLEX TOOL PATHS

BY DEVIATING FROM CAM-PRODUCED TOOL

PATHS WITHIN A TOLERANCE BAND

G. Benjamin Naseath

Department of Mechanical Engineering

Master of Science

This thesis develops an algorithm to decrease high-curvature sections in tool paths

for complex parts to achieve shorter machining times resulting in higher production rates.

In the research sample cases, the algorithm decreased machining times by 1% to 9% for

design-induced sections of high curvature and by 16% to 75% for CAM induced ripples

using high path tolerances. High-curvature sections in tool paths are caused by complex

part geometry, noise, and discontinuities in the model. The curvature is decreased by

deviating the tool path within an allowable path tolerance.

The feedrate along the tool path is directly related to the curvature of the tool

path. High-curvature sections cause the NC machine to reduce the feedrate along the tool

path due to acceleration and jerk limits. These lower feedrates increase machining time

and slow production rates. This new algorithm decreases curvature, which increases

feedrates and decreases machining times, thereby increasing production rates for

manufacturing companies.

The tool paths are represented by cubic B-splines. The algorithm is based on the

basic principle that the curvature of a B-spline directly relates to the geometry of its

control polygon. If the control polygon’s geometry has many tight corners then the B-

spline will have high curvature. If the control polygon’s geometry is a straight line then

the B-spline will be a straight line with zero curvature. The algorithm deviates the

control polygon’s points so that they move towards forming a straight line. The control

polygon will rarely form a straight line because the spline is limited by the path tolerance.

However, as the control polygon moves towards forming a straight line, the curvature

decreases, which allows the feedrate to increase.

Six sample cases are explored in which the machining time is decreased. Three of

the cases are tool paths that contain curvature sections with a range of unnecessary

curvature from low to high. One sample is the tool path for the complex geometry in a

snow tire mold. Another sample tool path contains ripples caused by noise in the CAD

model. The last tool path contains ripples caused by tangency discontinuities in the CAD

model. The percent of time saved directly relates to the severity of the curvature in

the part.

This thesis provides a quick and efficient means to reduce curvature in complex

parts, resulting in decreased machining times and increased production rates.

ACKNOWLEDGMENTS

I would like to thank my wife, Maritza Naseath, for all of her support. I would

like to thank my advisor, Dr. Red, for guiding me on this journey. I would like to thank

my father, Brent Naseath, for being my friend and advisor and for his endless hours of

editing. I would like to thank my mother, Vicki Woodfield, for supporting and guiding

me as a youth so that I could make it here today.

 vii

TABLE OF CONTENTS

LIST OF TABLES ... ix

LIST OF FIGURES ... xi

1 Introduction... 1

1.1 Objectives ... 3

1.2 Scope... 3

2 Background ... 5

2.1 Tessellated Tool Paths .. 5

2.2 Spline Tool Paths .. 8

2.3 B-splines Review .. 11

3 Method - Smoothing Algorithm... 23

3.1 Problems with High Curvature ... 23

3.2 Algorithm Overview... 26

3.3 Implementation of Algorithm ... 32

3.4 Parsing .. 33

3.5 Categorization of Each Point .. 33

3.6 Direction Vectors.. 42

3.7 Sensitivity Values ... 52

3.8 Maximum Distance... 54

3.9 Move Distance .. 56

3.10 Smooth Control Polygon .. 59

 viii

3.11 Termination... 59

3.12 Example of Reduction in Curvature ... 59

4 Results .. 63

4.1 Sample Tool Paths .. 63

4.2 Smoothing Parameters .. 67

4.3 Smoothed Tool Path Results... 67

4.4 Curvature Results.. 70

4.5 Machine Time Simulation .. 75

4.6 Tool Path Length Results.. 83

4.7 Simulated Machining Times Results .. 84

4.8 Calculation Times Results .. 85

4.9 Discussion of Results.. 85

5 Conclusion ... 93

5.1 Future Work.. 93

6 References .. 99

 ix

LIST OF TABLES

Table 4-1 The relative curvature measurements..71

Table 4-2 The feedrate measurements ...79

Table 4-3 The lengths of the tool paths ...83

Table 4-4 The simulated machining times..84

Table 4-5 The calculation times...85

Table 4-6 The average percent changes in tool path length, curvature, feedrate, and
machining time...86

Table 4-7 Pearson correlation values...89

 x

 xi

LIST OF FIGURES

Figure 1-1 Tool path before and after smoothing that is limited to path tolerance2

Figure 2-1 Tool path that is represented by line chordal segments6

Figure 2-2 Intersection of two line chordal segments blended with arc6

Figure 2-3 Intersection of two line chordal segments blended together with clothoid..........7

Figure 2-4 Ideal tool path that is represented using cubic B-spline.......................................7

Figure 2-5 High-curvature ripples caused by a tangency discontinuity9

Figure 2-6 Molds for children’s toys that contain very high-curvature.................................10

Figure 2-7 Ideal tool path and splined tool path that interpolates random points..................10

Figure 2-8 Bezier curve and its control polygon and points..12

Figure 2-9 Center of mass of four points ...13

Figure 2-10 Mass functions of a Bezier curve ...14

Figure 2-11 Control polygons shaped like a semicircle, a saw-tooth, and a line17

Figure 2-12 Convex hull of a B-spline ..18

Figure 2-13 Difference B-spline ..19

Figure 2-14 Path tolerance of B-spline tool path ...21

Figure 2-15 Cusps formed in tool path offset ..21

Figure 3-1 Acceleration along tool path ..23

Figure 3-2 Centripal acceleration at apex of high-curvature ripple.24

Figure 3-3 Parameters to calculate curvature of B-spline..27

Figure 3-4 Direction vector for endpoint ...28

Figure 3-5 B-spline with ripple points ...29

 xii

Figure 3-6 B-spline with smooth points...30

Figure 3-7 Spline that has been flattened...31

Figure 3-8 Smoothed tool path ..32

Figure 3-9 B-spline with no ripple points ..34

Figure 3-10 B-spline that has been smoothed..34

Figure 3-11 A line going through points 1 and 2 in a ripple case..36

Figure 3-12 A line going through points 2 and 3 in a ripple case..36

Figure 3-13 A line going through points 1 and 2 in a smooth case37

Figure 3-14 A line going through points 2 and 3 in a smooth case37

Figure 3-15 B-spline with smooth points...41

Figure 3-16 Endpoint 0 has moved to 0’ ...43

Figure 3-17 Direction vector for endpoint. .. 44

Figure 3-18 Direction vector for other endpoint..45

Figure 3-19 Direction vector for ripple point ..46

Figure 3-20 Spline that has been flattened...48

Figure 3-21 A direction vectors for smooth point group ...49

Figure 3-22 Calculating maximum allowable distance ...55

Figure 3-23 Maximum allowable distance on spline...55

Figure 3-24 Point on spline that does not move perpendicular to original spline56

Figure 3-25 Eight tool paths with different severity of curvature ...60

Figure 3-26 Percent reduction in curvature for tool paths ...61

Figure 3-27 Percent reduction in machining time for tool paths ...62

Figure 4-1 Test Case 1: Tool path with many low curvature radii ..63

Figure 4-2 Test Case 2: Tool path with two high-curvature radii..64

Figure 4-3 Test Case 3: Tool path with many high-curvature radii......................................64

 xiii

Figure 4-4 Test Case 4: Tool path generated along complex surface of a snow tire.............65

Figure 4-5 Snow tire with siping and very complex geometry..65

Figure 4-6 Test Case 5: Linear tool path of two noisy points..66

Figure 4-7 Test Case 6: Aool path with 90-degree corners ...66

Figure 4-8 Test Case 1: Smoothed path for tool path in Figure 4-168

Figure 4-9 Test Case 2: Smoothed path for tool path in Figure 4-268

Figure 4-10 Test Case 3: Smoothed path for tool path in Figure 4-369

Figure 4-11 Test Case 4: Smoothed path for tool path in Figure 4-469

Figure 4-12 Test Case 5: Smoothed path for tool path in Figure 4-670

Figure 4-13 Test Case 6: Smoothed path for tool path in Figure 4-770

Figure 4-14 Test Case 1: Curvature for part in Figure 4-1 ..72

Figure 4-15 Test Case 2: Curvature for part in Figure 4-2 ..72

Figure 4-16 Test Case 3: Curvature for part in Figure 4-3 ..73

Figure 4-17 Test Case 4: Curvature for part in Figure 4-4 ..73

Figure 4-18 Test Case 5: Curvature for part in Figure 4-6 ..74

Figure 4-19 Test Case 6: Curvature for part in Figure 4-7 ..74

Figure 4-20 Constant jerk s-curve velocity..76

Figure 4-21 S-curve profile with linear period ..78

Figure 4-22 Test Case 1: Feedrate for tool path in Figure 4-1...80

Figure 4-23 Test Case 2: Feedrate for tool path in Figure 4-2...80

Figure 4-24 Test Case 3: Feedrate for tool path in Figure 4-3...81

Figure 4-25 Test Case 4: Feedrate for tool path in Figure 4-4...81

Figure 4-26 Test Case 5: Feedrate for tool path in Figure 4-6...82

Figure 4-27 Test Case 6: Feedrate for tool path in Figure 4-7...82

Figure 4-28 Percent reduction in curvature compared to increase in feedrate87

 xiv

Figure 4-29 Percent increase in feedrate compared to decrease in machining time..............88

Figure 4-30 Percent decrease in curvature compared to decrease in machining time89

Figure 4-31 Percent decrease in length compared to decrease in machining time.90

 1

1 Introduction

This thesis decreases machining times on numerically controlled (NC) machined

parts, resulting in increased profits for manufacturing companies. This was accomplished

through developing an algorithm that deviates cubic B-spline tool paths produced by

computer-aided manufacturing (CAM) within a path tolerance to reduce tool path

curvature in high-curvature sections.

Manufacturers constantly look for ways to cost-effectively decrease product

manufacturing times to increase profits. One of the best ways to reduce manufacturing

times is to lean a process by eliminating unnecessary steps and improving the efficiency

of required steps.

NC machines are increasingly used to manufacture complex part geometries

because they efficiently and accurately machine parts. High-curvature sections exist in

B-spline tool paths that cause the NC to decrease the tool feedrate to maneuver these

high-curvature sections. High-curvature sections can be created by the designer or result

from anomalies in the computer aided design (CAD) model. Slow feedrates increase

machining times, which decrease profits.

During part design using a CAM system, a surface tolerance is defined according

to the quality specifications. A path tolerance radius is specified that limits the tool path

to a tolerance band that is dependent on the surface tolerance. A larger path tolerance

 2

allows the path to deviate further and produces a smoother path at the expense of surface

accuracy. Deviating the tool path within this tolerance band can smooth the high-

curvature ripples resulting in an overall reduced-curvature tool path. The new path

allows higher feedrates resulting in reduced machining times and improved profits. A

tool path that has been smoothed within a tolerance band is shown in Figure 1-1.

Figure 1-1 Tool path before (blue) and after smoothing (red) that is limited to path tolerance (black)

The sum of the path tolerance and the machine tool’s accuracy must be less than

the part’s surface tolerance to ensure that the part will remain within tolerance. The tool

path is allowed to touch the edge of the tool path tolerance band. Any inaccuracies in the

machine tool will stack on top of the path tolerance. The path tolerance equation is

shown in Equation (1-1).

machinesurfacepath AccuracyToleranceTolerance −≤ (1-1)

 3

1.1 Objectives

The objectives of this thesis are:

 Developed an algorithm that reduces the curvature in CAM-produced cubic B-spline

tool paths to reduce machining time. The algorithm modifies the splines within a

path tolerance. The algorithm quickly and efficiently performs all calculations.

 Wrote a C++ program that parses CAM-produced spline data, modifies the data

according to the above algorithm, and outputs the modified spline data.

 Developed test data and criteria to ensure that the algorithm improved the tool path.

 Compared the curvature values of the tool paths from before and after the

application of the smoothing algorithm to ensure that the curvature

decreased.

 Used a trajectory generator that incorporates S-curve velocity profiles to

test the tool paths before and after the application of the algorithm to

measure the reduction in machining time.

1.2 Scope

This research focuses on the feasibility of smoothing B-spline tool paths. It

smoothes tool paths with high-curvature sections that are created by the designer or by

anomalies in the CAD model. It does not produce commercial software to smooth tool

paths nor does it upgrade a specific CAM or NC software. The research does not

consider calculations before the creation of the initial spline and all of the required data

for the initial spline’s position is generated using current CAM software. Only cubic B-

splines with Bezier end conditions are used to represent the tool paths. The methods

 4

discussed are extendable to any degree B-spline. Only paths for 3-axis end mills will are

considered, meaning that only the position and not the orientation of the tool is

considered. Only 2D planar paths are created, smoothed, and tested. Extending the

methods in this thesis to 3D tool paths is discussed in theory only and was not tested.

The tool paths are open-ended and not closed. Closed tool paths are discussed

theoretically only. Tool paths are tested for a single pass without repeating similar tool

paths for multiple passes. Nothing beyond the creation of the reduced curvature B-spline

is included. Hence, reparameterizing the curve and calculating the inverse kinematics is

not be done.

 5

2 Background

After a part is fully designed and drawings are created using a Computer-Aided

Drafting (CAD) system, a process plan is created using a Computer-Aided Manufacturing

(CAM) program. The CAM program determines the tool paths that the machine needs to

follow in order to machine the finished part. It creates mathematical representations of

tool paths and sends them to a numerical control (NC) machine that commands the

machine tool to follow the paths.

2.1 Tessellated Tool Paths

The simplest way to represent a complex path is to tessellate the path into small

line chordal segments. Figure 2-1 shows a simple tool path tessellated with line chordal

segments. By using a large number of line segments, the CAM system is able to

represent the tool path with reasonable accuracy. However, a major problem with these

linear paths is that they contain tangency and curvature discontinuities, which cause the

motion planning algorithms of the machine’s controller to slow or even stop the tool

feedrate. Tangency (C1) and curvature (C2) continuity are reviewed in Section 2.3.5. The

machine tool must slow down, as it cannot instantaneously change direction at each

line intersection.

 6

Figure 2-1 Tool path (black) that is represented by line chordal segments (red). To increase accuracy,
spline can be tessellated into more line segments.

Jacobs, Sellen, and Wilfong (1989; 1995; 1989) use blending arcs to eliminate the

tangency discontinuities and smooth the motion in a tessellated tool path. Figure 2-2

illustrates two line segments blended together with a circular arc. Even though these

algorithms are successful in creating short, piecewise, C1 continuous paths, they do not

satisfy the requirements of this thesis. They still contain C2 discontinuities that cause

unnecessary decelerations of the tool. These decelerations are unacceptable because they

unnecessarily increase the part’s machining time.

Figure 2-2 Intersection of two line chordal segments blended with arc. Removes tangency
discontinuities.

By using the higher order functions cubic spirals and clothoids instead of circles

to connect the lines, Kanayama and Scheuer (1997; 1997) eliminate the C2 discontinuities

Part Surface

Tool Path

 7

in the tool paths. See Figure 2-3. The machine tool is able to remain at higher speeds,

due to the C2 continuity in the path.

Figure 2-3 Intersection of two line chordal segments blended together with clothoid. Removes
curvature discontinuities

The amount of data needed for these piecewise functions increases computational

machining time. To produce the smoothest paths using the minimum data, this thesis will

use cubic B-splines, which require relatively few control points. Figure 2-4 shows a

simple tool path that is represented using a cubic B-spline. The spline and the tool path

are practically identical.

Figure 2-4 Ideal tool path (black) that is represented using cubic B-spline (red) and its control
polygon (also red). Control polygon for Spline is all that can be seen. B-spline is almost perfectly
lined up with ideal tool path and is difficult to see.

Control Polygon

Part Surface Tool Path

 8

2.2 Spline Tool Paths

Researchers are exploring spline use for tool paths to reduce the amount of data

necessary and guarantee Cn-1 continuity, where n is the degree of the spline. Several

researchers (Berglund, 2003; Eilers, 1996; Erkorkmaz, 2001; Fleisig, 2001; Geraerts,

2007; Jung, 2005; Langeron, 2004; Wang, 1993) have proposed methods of interpolating

data using various types of splines that are all at least C2 continuous and that allow the

tool to move smoothly along the path. However, they all possess a critical flaw, which

this thesis intends to minimize. Undesirable high-curvature oscillations (ripples) develop

in these curves during the interpolation of the tool path. Even though the mathematical

representation of the tool path is C2 continuous, these ripples cause sections of high

curvature that slow the desired feedrate.

The main cause for these high-curvature ripples is discontinuities in the position,

tangency, and curvature of the model part surface. Discontinuities that cause high-

curvature sections can be created in a model in many ways. International TechneGroup

Incorporated (2003) explains how gaps and overlaps in CAD models caused by accuracy

constraints create inefficiencies in NC programming. An inexperienced designer may

create a model with tangency and curvature discontinuities. Bohez (2002) says that

tangency discontinuities in CAD models cause these high-curvature sections. Figure 2-5

shows a tool path with high-curvature ripples caused by a severe tangency discontinuity.

Even when a B-spline is interpolated to fit a curvature-continuous surface, small

ripples can still form because interpolation points are non-continuous values along a

continuous surface. The position, tangent line, and curvature of the surface change

discretely between interpolation points creating the same affect as a surface with minute

 9

discontinuities. These minute discontinuities create small ripples in the tool path. The

amplitude of the ripples correlates directly to the severity of the discontinuity.

Figure 2-5 High-curvature ripples caused by a tangency discontinuity. Blue line represents surface
and purple line is tool path

Not all high-curvature sections are created by anomalies. Most are created by the

designer to fulfill a design requirement. Complex parts may contain unnecessarily small

radii with high-curvatures. The designer may not realize the affect that these small radii

have on machining times. If there is enough surface tolerance on the part, smoothing can

decrease the curvature in these high-curvature regions. Examples of parts with

unnecessarily high-curvature are the molds for children’s toys shown in Figure 2-6.

Many researchers have tried to decrease the curvature of splines. Bohez, Lee, and

Tang (2002; 1993; 1999) effectively filter noisy models, but none minimizes curvature

and limits the tool path to within the path tolerance band. Eilers (1996) minimizes

curvature by putting a penalty on sections with high curvature. He smoothes out splines

that represent statistical data, but he does not consider NC tool paths constrained to a

path tolerance.

 10

Figure 2-6 Molds for children’s toys that contain very high-curvature. Curvature of molds could be
slightly reduced without affecting their quality.

Langeron (2004) limits his tool paths to within a tolerance tube. He interpolates

random points along the desired part surface without regard to curvature. As long as the

spline remains within the tolerance band, he uses the spline parameters. However,

Langeron’s splines can produce even more high-curvature sections as the path wiggles

back and forth within the tolerance band. Figure 2-7 shows an ideal tool path (turquoise),

a path tolerance around that path (blue), and a splined tool path (purple) that interpolates

random points.

Figure 2-7 Ideal tool path (turquoise), path tolerance around that surface (blue), and splined tool
path (purple) that interpolates random points. Splined tool path has excessive curvature.

 11

The techniques used to smooth the paths along high-curvature sections in racecar

tracks can be applied to high-curvature radii in tool paths. Velenis (2005) calculates the

optimal path around a single corner given the physical limits of a racecar. The work of

Beckman, Blinkhorn, Line (racing), Racing Line, the Racing Line, and Velenis

(2007; 2006; 2007; 2007; 2007; 2005) can be used to better understand the optimal path

around a curve.

In summary, although much work has been done to generate optimal tool paths, to

date none creates smooth paths without unnecessary high-curvature sections nor does any

deviate the tool path within a path tolerance band.

2.3 B-splines Review

This section is a review of B-spline concepts. Most of this section is based on

work available from Sederberg (2007). B-splines are created by connecting Bezier

curves end to end with Cn-1 continuity where n is the degree of the B-spline.

2.3.1 Bezier Curves

Bezier curves were created by Dr. Pierre Bezier in the early 1960’s as a tool for

designers and artists who wanted to intuitively create splines. Bezier curves are created

using a control polygon that is made up of control points as can be seen in Figure 2-8.

Dr. Pierre Bezier designed the Bezier curve so that it would mimic the shape of its

control polygon, go through the first and last point in its control polygon, and be tangent

to the control polygon at the endpoints. The equation for the Bezier Curve is similar to

the equation for the center of mass of point masses. The center of mass is calculated

using Equation (2-1).

 12

Figure 2-8 Bezier curve (red) and its control polygon and points (blue)

∑
=

=
n

i i

ii

m
m

0

P
P (2-1)

If there are four equal masses distributed as shown in Figure 2-9 then their center

of mass is

3210

33221100

mmmm
mmmm

+++
+++

=
PPPP

P (2-2)

Bezier curves are created by using parametric equations to vary the masses of

each point instead of using equal constant values. The equations for the masses in

Figure 2-8 become

() ()3
0 1 ttm −= (2-3)

Control Polygon

Control Point P0

Control Point P1

Control Point P2

Control Point P3

Bezier Curve

 13

() ()2
1 13 tttm −= (2-4)

() ()tttm −= 13 2
2 (2-5)

() 3
3 ttm = (2-6)

As t changes from zero to one, the center of mass also changes. The Bezier curve

is the path that the center of mass follows as t changes from zero to one. The curve

formed in Figure 2-8 is a cubic Bezier curve (cubic is degree three). Note in

Equation (2-7) that the mass equations sum to one and the equation for the Bezier curve

can be written as Equation (2-8).

Figure 2-9 Center of mass of four points

() () () ()[] 1113131 33223 ≡+−=+−+−+− tttttttt (2-7)

() () () () () 33221100 PPPPP tmtmtmtmt +++= (2-8)

P0

P1

P2

P3

P

 14

Figure 2-10 is the graph of the mass equations. Note that when 0=t , the curve

passes through 0P because 10 =m and 0321 === mmm . Also, when 1=t , the curve

passes through 3P because 13 =m and 0210 === mmm .

The locations, iP , are the control points of the control polygon while the variable

masses,)(tmi , are normally called blending functions. In the case of Bezier curves, they

are also called Bernstein polynomials. Bezier curves come in any degree and an n degree

Bezier curve has n+1 control points. The Bezier blending functions are defined in

Equation (2-9).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

m
as

s

m0
m1
m2
m3

Figure 2-10 Mass functions of a Bezier curve. They are also known as blending functions. Bezier
curve is weighted sum of these functions.

 15

() () iinn
i tt

i
n

tB −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= 1 (2-9)

 where:

()!!
!

ini
n

i
n

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

For a cubic Bezier curve, 3=n and ()tB n
i in Equations (2-10), (2-11), (2-12), and

(2-13) represent the Bernstein polynomials.

() ()33
0 1 ttB −= (2-10)

() ()23
1 13 tttB −= (2-11)

() ()tttB −= 13 23
2 (2-12)

() 33
3 ttB = (2-13)

Equation (2-14) is the general equation for a Bezier curve. See Dr. Sederberg’s

text for more on Bezier curves including how to calculate position or curvature at any

parameter value.

 () () ()∑∑
=

−

=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

n

i
i

iin
n

i
i

n
i tt

i
n

tBt
00

1 PPP (2-14)

 16

2.3.2 B-splines

To create long complex curves in a simple yet robust way, a B-spline is formed by

splining multiple Bezier curves together. B-splines connect Bezier curves with Cn-1

continuity. This means that a cubic B-spline will be C2 continuous where the Bezier

curves meet. Not only does the B-spline guarantee Cn-1 continuity, it also uses less

control points than would be used by representing the same spline with multiple separate

Bezier curves. An open string of m Bezier curves will contain nm+1 control points while

the same spline can be represented by a B-spline with only m+n control points.

B-splines are very similar to Bezier curves in their form and function. If a B-

spline consists of Bezier curves of degree n, then the B-spline is degree n. The B-spline

uses a control polygon like the Bezier curve, but it also has a knot vector. The knot

vector is a list of parameter values, or knots, used to determine the parameter values at

which a Bezier curve begins and ends. For example, if the knot vector of a cubic B-

spline is []55532000 then there are three Bezier curves in the spline. The

three Bezier curves would go from 0=t to 2=t , 2=t to 3=t , and 3=t to 5=t

respectively. Note that the knot vector contains n-1 extra knots at each end. These extra

knots are used to determine the end conditions of the spline. When there are n-fold knots

at both ends of the B-spline, it is said to have Bezier end conditions. The knot vector

above has Bezier end conditions because the first three knots are 0 and the last three

knots are 5. A B-spline with Bezier end conditions goes through its endpoints and is

tangent to the first and last legs of its control polygon, just like a Bezier curve. This paper

only considers cubic B-splines with Bezier end conditions, so no further end conditions

will be discussed. See Dr. Sederberg’s text for more on end conditions.

 17

The B-spline equation is very similar to the Bezier curve equation. The main

differences in the two equations are that the B-spline equation is written in polar form

and that it uses different blending functions. See Equation (2-15).

() ()∑
+

=
−+−+=

in

ij
jnj

n
ij ttBt ,,11 KPP (2-15)

It is not necessary to understand all of the properties of B-splines to understand

this thesis, so only the key concepts are covered. If the reader wishes to learn more about

polar form and B-spline blending functions, they are discussed in detail in chapter 6 of

Dr. Sederberg’s text.

Like Bezier curves, B-splines follow the general shape of their control polygon.

If the control polygon is shaped like a semicircle, a saw-tooth, or a flat straight line, the

B-spline will be shaped similarly. Figure 2-11 shows cubic B-splines with these shapes.

Figure 2-11 B-splines (magenta) with control polygons (blue) shaped like a semicircle, a saw-tooth,
and a flat straight line, respectively. Note that B-spline takes general shape of its control polygon.

 18

2.3.3 Convex Hull Property

Both Bezier curves and B-splines always remain within the convex hull of their

control points. The convex hull can be imagined by placing a peg at each control point

and then wrapping a string between the pegs. See Figure 2-12. The polygon formed is

the convex hull. The center of mass analogy for Bezier curves and B-splines ensures that

the spline will always remain within the convex hull. All of the control points are either

inside of or on the boundary of the convex hull so it is impossible for the center of mass

(the spline) to lie outside of the convex hull.

Figure 2-12 Convex hull (shaded light blue) of a B-spline (magenta)

2.3.4 Distance Between Two Splines

The distance between points of equal parameter value on two splines can be

represented as a new spline with a control polygon calculated as the difference between

the two splines’ control polygons. The two splines must have an equal number of control

points and parameterization to use this distance formula. Equation (2-16) is the spline that

represents the distance between the two splines. Note that this equation will work for

both Bezier curves and B-splines because both have equations with the same basic form.

Figure 2-13 shows a B-spline that is the difference of two other B-splines.

 19

() () () () () ()tBtBttt n
i

n

i
i

n
i

n

i
ii ∑∑

==

=−=−=
00

DQPQPD (2-16)

 where:

() ()tBt n
i

n

i
i∑

=

=
0

PP

() ()tBt n
i

n

i
i∑

=

=
0

QQ

Figure 2-13 Difference B-spline (purple) which represents difference between two other B-splines
(blue and red).

The convex hull property guarantees that the distance between the two curves is

bounded by the largest distance from the origin to any of the control points, Di, of the

difference B-spline. This also means that if a spline’s control points are moved then the

spline is guaranteed to not move a distance greater than the largest distance that any

control point moved. If a Bezier curve, P(t), is moved to become Q(t) and the control

point, D3 , is moved the furthest then the spline will not move farther than 3D .

 20

2.3.5 Continuity

A B-spline of degree n is guaranteed to join Bezier curves with Cn-1 continuity.

Two curves are Ck continuous if

() () () () () () () ()111111 ,...,'', tttttt kk QPQPQP === (2-17)

C0 means the two curves share their endpoints’ position and parameter value. C1

means the two curves share the same end point and tangent vector (including magnitude).

C2 has the same continuity as C1, but additionally has second-order parametric derivative

continuity, and similarly for up to Ck continuity.

Parametric continuity Ck depends on the parameterization of the B-spline, but

geometric continuity (Gk) does not. If a spline is Ck continuous then it is also Gk

continuous. G0 means that the two curves have a common endpoint but not necessarily

the same parameter value. First order geometric continuity (G1) means that the control

polygons are colinear where they connect. This is also called tangency continuity.

Curvature continuity or G2 continuity is when the curvature is equal for both curves

where they meet.G2 continuity is sufficiently smooth for most tool paths.

2.3.6 Path Tolerance

The path tolerance is formed by offsetting the given tool path in both directions

by the path tolerance radius ρ. The offset is formed by the set of all points that lay a

perpendicular distance ρ from the given curve. See Equation (2-18). Using a -ρ will

 21

offset the curve in the opposite direction. Figure 2-14 shows a B-spline tool path with a

calculated path tolerance.

()() () () ()()
() ()tytx

txtytt
22 ''

',',
+

−
+=Ω ρρ PP (2-18)

Figure 2-14 Path tolerance (offset) of B-spline tool path

If the path radius is less than the minimum radius of curvature of the spline then

cusps will be formed in the offset as shown in Figure 2-15. If there are cusps in the path

offset, the designer should choose a smaller path tolerance radius. It is important to note

that the algorithm will still work if cusps are formed but the curvature around the cusp

may not be reduced efficiently.

Figure 2-15 Cusps formed in tool path offset. Cusps are formed when path tolerance radius is smaller
than minimum radius of curvature of tool path.

y’

x’

ρ

 22

 23

3 Method - Smoothing Algorithm

3.1 Problems with High Curvature

In High-curvature sections, a NC machine reduces the feedrate of a machine tool

to remain within acceleration and jerk limits. Total acceleration must remain below the

machine tool’s acceleration limit and is the vector sum of both tangential and centripetal

acceleration as seen in Equation (3-1) and Figure 3-1. High curvature increases

centripetal acceleration as shown in Equation (3-2). As centripetal acceleration increases

with high curvature, tangential acceleration decreases as shown in Equation (3-1). The

obtainable feedrates decrease as tangential acceleration decreases.

Figure 3-1 Acceleration along tool path. Tangential acceleration (red), centripetal acceleration (blue),
and total acceleration (green)

 24

tangentiallcentripitatotal ΑAA += (3-1)

2
feedratecurvaturelcentripita VkA = (3-2)

At the apex of a high-curvature ripple, the feedrate is a local minimum and the

tangential acceleration is zero because the curvature is a local maximum. See Figure 3-2.

The feedrate at an apex is calculated using Equation (3-3) that is derived from

Equation (3-1) and Equation (3-2). In Equation (3-1), Atotal is Amax and Atangential is zero.

Equation (3-1) is substituted into Equation (3-2) and Equation (3-2) is solved for Vfeedrate

resulting in Equation (3-3). The feedrate is limited to these minimum feedrates at the

apex of the high-curvature ripples. It is also limited by the acceleration between

the apexes.

Figure 3-2 Centripal acceleration at apex of high-curvature ripple.

If the minimum velocity calculated in Equation (3-3) is greater than the maximum

velocity limit then the curvature in the ripple is not severe enough to reduce the feedrate.

 25

The maximum allowable curvature that will not reduce the feedrate is calculated by using

Equation (3-4) that is derived from Equation (3-3).

curvature

max
feedrate k

AV = (3-3)

2
max

max
m V

A
k ax = (3-4)

For example, if the Amax is 4000 mm/s2 and the Vmax is 400 mm/s then the

maximum curvature is 0.025 1/mm. If a ripple has a curvature less than 0.025 1/mm then

it will not affect the feedrate.

2

2

m

400

40001025.0

⎟
⎠
⎞

⎜
⎝
⎛

==

s
mm

s
mm

mm
k ax (3-5)

The smoothing algorithm in this thesis reduces the curvature of all ripples even if

the curvature is below the value calculated in Equation (3-4) because it takes longer to

calculate the curvature to distinguish between negligible and significant curvature values

than it does to smooth everything. The algorithm efficiently reduces the curvature in tool

paths without calculating the curvature. The algorithm smoothes a tool path by using

general concepts of B-splines.

 26

3.2 Algorithm Overview

A program was written that inputs spline data from a data file, modifies the spline

to reduce the curvature, and prints out the new spline data. The algorithm in the program

utilizes a very simple concept to smooth the curves. When all of the control points of a

B-spline form a single straight line, the spline becomes a straight line with zero curvature.

This formation also forms the shortest possible path between the two endpoints of the B-

spline. The algorithm attempts to move all of the spline’s control points to form a

straight line. The control points will rarely form a straight line because the spline is

constrained to the tolerance tube.

A direction vector is calculated for each control point according to its geometry

and category. The direction vector is the direction that the control point will move to

form a straight line with its neighboring control points. The fact that curvature is reduced

by flattening a control polygon into a straight line is proven by Equation (3-6), the

equation for the curvature of a B-spline. To use Equation (3-6), the Bezier curve

containing the point where the curvature value is to be calculated is extracted from the B-

spline. Then the Bezier is divided at the point of interest. This creates an endpoint where

the curvature is to be calculated. The first three points of the Bezier’s control polygon

are shown in Figure 3-3. P0 is the point where the curvature is being calculated and the

first point in the Bezier’s control polygon. The distance between P0 and P1 is the value a.

The value h is the distance from P2 to the line formed by P0 and P1. If a line is flattened,

h is decreased and the curvature, k, is decreased.

 27

2

1
a
h

n
nk −

= (3-6)

where:

n = degree

 01 PP −=a

() () ()

() ()22
0110

0110201210

PPPP

PPPPPPPPPP

XXYY

XXYXYXXXYY
h

−+−

−+−+−
=

Figure 3-3 Parameters to calculate curvature of B-spline.

The control points are placed in one of three categories depending on how they

need to move to form a straight line. The first category contains the endpoints of the

control polygon. Each endpoint is smoothed by moving it towards the line formed by the

next two control points in the control polygon. The direction vectors for endpoints are

perpendicular to the initial control polygon and are discussed in detail in Section 3.6.1.

In Figure 3-4, point 0 moves perpendicular to the control polygon and towards the line

formed by points 1 and 2.

P0 P1

P2

a
h

 28

Figure 3-4 Direction vector (red) for endpoint

The next category consists of ripple points. These points are recognized because

the control polygon forms a saw-tooth pattern, i.e. each point in the control polygon lies

in the opposite direction. The direction vector that smoothes the ripple point is the

normalized bisector of the triangle formed by the ripple point and the two adjacent

control points in the control polygon. The equation for the normalized bisector of a

triangle is discussed in Section 3.6.2. As the ripple point moves along the bisector, the

triangle flattens and forms a straight line. This will smooth and shorten the path.

Figure 3-5 shows a few ripple points circled in green. Point 2 is moved along the bisector

towards point 2’ that forms a straight line with points 1 and 3. Note that the ripple points

form high-curvature sections in the B-spline due to the saw-tooth pattern. Control points

on a straight line are also considered ripple points with a zero magnitude direction vector.

0 1

2

 29

Figure 3-5 B-spline with ripple points (green). Point 2 is moved towards point 2’ along
direction vector

Smooth control points make up the final category. These are recognized because

the control polygon continues in the same direction along an arc at these points and the

spline is smooth. When a point is recognized as a smooth point, both the points before

and after it are also categorized as smooth points. A group of smooth points consists of

all adjacent smooth points. Each smooth control point receives an additional label

according to its location in the group.

In each group there is a beginning point, middle points, one or two apex points,

and an ending point. The beginning and ending points are the first and last points in each

group. The apex point(s) are the median point(s) in each group. If there is an odd

number of points in a group then there is only one apex point. If there is an even number

of points then there are two apex points. The rest of the points in the group are middle

points. In Figure 3-6, points 4 and 9 are the beginning and ending points, respectively.

Points 5 and 8 are middle points and points 6 and 7 are the apex points.

0

1

2

C

4

2’

 30

Figure 3-6 B-spline with smooth points (blue).

The direction vector for each control point moves the smooth group towards two

objectives. The end and middle control points are moved outward from the center of the

arc while the apex points are moved towards the center of the arc effectively flattening

the arc. In addition, all of the points in a smooth group are moved towards the center of

the group. This moves the smooth section so that it will touch at the inside corner of the

tolerance tube in the smooth section. This not only smoothes the spline; it also shortens

the spline. Figure 3-7 shows how the blue spline is spread out and moved down by the

algorithm to form the red spline. Notice how the red spline is spread out until it touches

the black tolerance tube on the outside at the end points and shifted down until it touches

the black tolerance tube on the inside of the center of the arc. Also note how this appears

to be a path that a racecar driver would take around a corner.

After all of the points are categorized and their direction vectors are calculated,

the distance that each control point moves along its direction vector is calculated. To

guarantee that the spline remains within the path tolerance, the control points are moved

0

1 3

4

6
5

2

7
8

9

10

 31

at most the minimum distance between the path and the path tolerance tube. The convex

hull principle for B-splines guarantees that a spline will not move more than the control

point that is moved the most in the control polygon. The spline will remain within the

tolerance because each control point is moved no more than the minimum distance

between the spline and the path tolerance.

Figure 3-7 Spline that has been flattened. Spline is spread out and moved down by algorithm to form
red spline. Notice how red spline is spread out until it touches black tolerance tube on outside and
shifted down until it touches black tolerance tube on the inside.

Based on the control polygon’s geometry, the spline responds differently to the

movements of different control points. The spline will move further with the movement

of some control points than others. If all of the control points are moved a distance equal

to the radius of the tolerance, the endpoints of the spline move completely to the edge of

the tolerance tube while points on the spline corresponding to ripple points hardly move

at all. To ensure that the whole spline is moved and smoothed evenly, the distance that

 32

each control point moves is scaled using sensitivity values as explained in Section 3.7.

The spline will not smooth completely in one step so the process is iterated until the

spline touches the path tolerance. During each iteration, 1) the control points are re-

categorized, 2) the control points are moved in new directions, 3) the minimum distance

between the spline and tolerance is calculated, and 4) all of the control point move

distances are rescaled. When the process is complete, the spline will be smooth and

almost touch the tolerance tube at the inside of every ripple. See Figure 3-8.

Figure 3-8 Smoothed tool path

3.3 Implementation of Algorithm

The steps of the algorithm are described in detail in Sections 3.4 through 3.11.

The algorithm reads in the initial spline data, calculates the initial parameters for the

iterations, and then iterates until the spline converges to a smooth spline bounded by the

tolerance tube.

 33

3.4 Parsing

The algorithm parses the control polygon, knot vector, path tolerance, precision,

and accuracy from the data file input. The control polygon consists of the control points

for the CAM-generated spline. The knot vector consists of the knots for the control

polygon. There are always two less knots than control points in an open cubic B-spline.

The path tolerance is the radius of the path tolerance around the CAM-generated spline.

The precision is the number of points checked on each knot interval of the B-spline per

iteration. The accuracy is the minimum percentage of the tolerance path radius allowed.

The spline is considered to be touching the tolerance tube when it comes to within

this accuracy.

3.5 Categorization of Each Point

The control points are categorized into end, ripple, and smooth categories during

each iteration. Points can change categories as the control polygon moves and changes

shape. Figure 3-9 and Figure 3-10 show an example of a smooth point becoming part of

a straight line, which causes it to be reclassified as a ripple point. Points 1, 2, 3 and 4

make up one smooth section while points 5, 6, 7, and 8 make up another. Note that there

are no ripples between the two smooth sections in Figure 3-9. But after the smoothing

algorithm is applied, there is a ripple point. In Figure 3-10, points 4, 5 and 6 form a

straight line and point 5 has become a ripple point because control points in the middle of

a straight line are considered ripple points.

 34

Figure 3-9 B-spline with no ripple points

Figure 3-10 B-spline that has been smoothed to create a straight line between points 4, 5, and 6. By
definition, point 5 is now categorized as a ripple point.

The algorithm categorizes the points using the shape of the control polygon. The

first and last points are always categorized as endpoints. If there are only four control

points in the control polygon (a single Bezier), the two middle points are categorized as

0

1

2
3

4

5

6
7

8

9

0

1

2
4

5

6
7

8

9

3

 35

ripples. With more points, ripple points and smooth points are distinguished using lines

and the control polygon’s relationship to these lines. Two examples follow that illustrate

how the algorithm determines if a point (point 2) is categorized as a ripple or smooth

point. Figure 3-11 and Figure 3-12 illustrate how point 2 is categorized as a ripple point

and Figure 3-13 and Figure 3-14 illustrate how it is categorized as a smooth point.

To distinguish between ripple and smooth points, the algorithm first calculates the

equation of a line that goes through the point being considered (point 2) and the point just

before it (point 1). The implicit equation of this line can be seen in Equation (3-7).

0=++ cbYaX (3-7)

where:

ii YYa −= −1

1−−= ii XXb

11 −− −= iiii YXYXc

Figure 3-11 and Figure 3-13 show how this line splits the 2D plane into two parts:

positive and negative. A point on the positive side of the line will have a positive distance

value while a point on the negative side will have a negative distance value.

Next, the points immediately before and after this line (points 0 and 3) are

checked to determine on which side of the line they fall. This is accomplished by finding

the perpendicular distance to the line using the distance formula for an implicit line. The

perpendicular distance to the line is D in Equation (3-8), where a, b, and c are calculated

 36

using Equation (3-7). Equation (3-9) is for the point before the line (point 0) and

Equation (3-10) is for the point after the line (point 3).

Figure 3-11 A line going through points 1 and 2 and the positive and negative sides of this line

Figure 3-12 A line going through points 2 and 3 and the positive and negative sides of this line

0

1

2

3

4

+

+

+

+

+

-

-

-

-

-

0

1 2

3

4

+
+

+

+

+

-

-

-

-

D0

D3

D1

D4

 37

Figure 3-13 A line going through points 1 and 2 and the positive and negative sides of this line

Figure 3-14 A line going through points 2 and 3 and the positive and negative sides of this line

0

1

2

3

4

+

+ +
+

+

-
-

-

-
-

0

1

2

3

4

+

+
+

+
-

-

-
-

-

D0

D3

D1

D4

 38

222222 ba
cY

ba
bX

ba
aD

+
+

+
+

+
= (3-8)

222222222
ba

cY
ba

bX
ba

aD iii
+

+
+

+
+

= −−− (3-9)

221221221
ba

cY
ba

bX
ba

aD iii
+

+
+

+
+

= +++ (3-10)

The sign of the distance to the line determines which side of the line the points

lay. Positive distance values are on one side of the line and negative values are on the

other. The distance values for both points (0 and 3) are compared to see if the points lie

on the same side of the line (same sign) or not (opposite sign). If the points are on

opposite sides then the point is categorized as a ripple point. This is illustrated in Figure

3-11 where points 0 and 3 are on opposite sides of the line.

If the points lay on the same side of the line then the process is repeated using a

line going from the point being considered (point 2) to the point after it (point 3). The

implicit equation of this line can be seen in Equation (3-11).

0=++ cbYaX (3-11)

where:

1+−= ii YYa

ii XXb −= +1

iiii YXYXc 11 ++ −=

 39

Figure 3-12 shows this new line splitting the 2D plane into positive and negative

sides. Again, the points immediately before and after this line (points 1 and 4) are

checked to determine on which side of the line they fall. Equation (3-8) is used with the

new points to calculate the distances using Equations (3-12) and (3-13). Equation (3-12)

is for the point before the line (point 1) and Equation (3-13) is for the point after the line

(point 4).

221221221
ba

cY
ba

bX
ba

aD iii
+

+
+

+
+

= −−− (3-12)

222222222
ba

cY
ba

bX
ba

aD iii
+

+
+

+
+

= +++ (3-13)

Positive distance values are on one side of the line and negative values are on the

other. The distance values for both points are compared to see if the points lay on the

same side of the line (same sign) or not (opposite sign). If the points are on opposite

sides then the point is categorized as a ripple point. This is illustrated in Figure 3-12

where points 1 and 4 are on opposite sides of the line.

If both points fall on the same side of the line in both of the previous tests, the

point (point 2) is categorized as a primary smooth point. When a point is categorized as a

primary smooth point, the two points adjacent to it in the control polygon are categorized

as secondary smooth points.

Only primary smooth points, not secondary smooth points, will cause their

adjacent points to become smooth. Note that the categorization of secondary smooth

 40

points will cause these points to be categorized twice. The categorization as a smooth

point overrides the categorization as a ripple point. In Figure 3-13, both points 1 and 3 are

considered secondary smooth points because they are adjacent to the primary smooth

point 2.

A smooth group is formed by all contiguous smooth points. A smooth group

consists of a beginning point, middle points, apex point(s), and an ending point.

The re-categorization of points helps determine whether a point in a smooth group

is a beginning or ending point. If a point is initially categorized as a ripple and then as a

secondary smooth, it is the beginning point of a smooth group. If a point is initially

categorized as a secondary smooth and then would qualify as a ripple, it is the ending

point of a smooth group. In Figure 3-13, points 1 and 3 are the beginning and ending

points, respectively.

The second and second-to-last control points in a control polygon do not have

enough points surrounding them to categorize them because the algorithm needs two

points before and two points after each point to determine the category. To resolve this,

the second and second-to-last points are always set as ripples unless they are adjacent to a

primary smooth point, which would cause them to become secondary smooth points.

The next step is to determine the apex point(s) in a smooth group. The apex point

is the median point(s) in a group of smooth points. If there is an odd number of points in

a smooth group then there is only one apex point. If there is an even number of points

then there are two apex points. Equation (3-14) calculates the index of a single apex

point and Equation (3-15) and Equation (3-16) calculate the indices of each point of a

double apex.

 41

For an odd number of points:

() 21−+= sbeginningapex nii (3-14)

For an even number of points:

1
2

1 −+= s
beginningapex

n
ii (3-15)

2
2 s

beginningapex
n

ii += (3-16)

 In Figure 3-15, points 4 and 9 are the beginning and ending points, respectively,

of a smooth group. Points 5 and 8 are middle points and points 6 and 7 are the apex

points. When the categorization of all points is complete, direction vectors can be

calculated for each control point.

Figure 3-15 B-spline with smooth points (blue). Points 4 and 9 are beginning and ending points,
respectively, of smooth group. Points 5 and 8 are middle points and points 6 and 7 are apex points.

0

1 3

4

6
5

2

7
8

9

10

 42

3.6 Direction Vectors

Each control point is assigned a normalized direction vector that tells the control

point which direction to move to smooth the spline. This direction vector is iteratively

updated as the control polygon’s shape changes.

3.6.1 Endpoints

Each endpoint has a direction vector that is perpendicular to both its control

polygon line segment and the tolerance tube. The control polygon is initially parallel to

the tolerance tube at both ends. As the control polygon moves during each iteration, it

will no longer be parallel to the tolerance tube at the ends. However, the endpoint

direction vector must remain perpendicular to the tolerance tube so that the endpoint

remains at the end of the tolerance tube to prevent a gap in the tool path.

The objective is to position the endpoint to form a line with the next two (or

previous two) control points in the control polygon. In each iteration, the direction vector

incrementally moves the endpoint towards that line. It is possible to overshoot the target

line in a given iteration. This creates the necessity of reversing the direction vector to

again point towards the line. In Figure 3-16, if point 0 moves to 0’ then its direction

vector is reversed to again point at the target line formed by points 1 and 2. The initial

direction vector is calculated using Equation (3-17) and can be seen in Figure 3-17.

At each iteration, it is determined whether the endpoint direction vector must be

reversed. In addition to overshooting the target line, Equation (3-17) has the limitation

that it does not guarantee that the direction vector points in the right direction. To

determine if the direction vector points in the wrong direction, the minimum distance

 43

from the first point to a line going through the second and third points is calculated using

Equation (3-18). Equation (3-17) assumes that the first point is on the positive side of the

line. If the distance to the line is negative, the direction vector is reversed using

Equation (3-19).

Figure 3-16 Endpoint 0 has moved to 0’, which is past target line formed by points 1 and 2, requiring
that direction vector (blue) be reversed.

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

Δ+Δ

Δ−

Δ+Δ

Δ

=⎥
⎦

⎤
⎢
⎣

⎡
=

22

22

0
0'

YX
X

YX
Y

Y
X

DV (3-17)

where:

01 XXX −=Δ

01 YYY −=Δ

A special case occurs if the distance to the line is zero. The point is at the target

line so there is no need to move the point. The direction vector is set to null.

0

1 2

3

0’

 44

Figure 3-17 Direction vector for endpoint. It is perpendicular to original control polygon

The direction vector for the last control point is calculated in a similar manner to

the first point. Equations (3-20), (3-21), and (3-22) are the modified forms of Equations

(3-17), (3-18), and (3-19) for the last point. Figure 3-18 illustrates the direction vector

for the last point.

220220220
ba

cY
ba

bX
ba

aD
+

+
+

+
+

= (3-18)

where:

21 YYa −=

12 XXb −=

1221 YXYXc −=

0
0

0
0 'DVDV ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

D
D

 (3-19)

0
1 2

3

Direction Vector

 45

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

Δ+Δ

Δ−

Δ+Δ

Δ

=⎥
⎦

⎤
⎢
⎣

⎡
=

−
−

22

22

1
1'

YX
X

YX
Y

Y
X

m
mDV (3-20)

where:

12 −− −=Δ mm XXX

12 −− −=Δ mm YYY

Figure 3-18 Direction vector for endpoint. It is perpendicular to original control polygon

221221221
ba

cY
ba

bX
ba

aD mmm
+

+
+

+
+

= −−− (3-21)

where:

32 −− −= mm YYa

23 −− −= mm XXb

2332 −−−− −= mmmm YXYXc

1
1

1
1 ' −

−

−
− ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
= m

m

m
m D

D DVDV (3-22)

m-4
m-3 m-2

m-1

Direction Vector

 46

3.6.2 Ripple Points

The direction vector for a ripple control point directs the control point towards a

straight line formed by its two adjacent control points. The procedure to find the

direction vector (shown in red) for ripple control points is illustrated in Figure 3-19.

Figure 3-19 Direction vector (red) for ripple point defined as normalized sum of vectors vectors
A and B

First, the normalized vectors A and B (green) are created using Equation (3-23)

and Equation (3-24). Vector A goes from the point being considered (point 2) to the

point before it (point 1) and vector B goes from the point being considered to the point

after it (point 3). The normalized sum of vectors A and B calculated in Equation (3-25) is

the direction vector and bisects the angle between A and B. If the points (1, 2, and 3)

0

1

2

3

4

2’

A
B

 47

form a straight line, vectors A and B will point in opposite directions and Equation (3-25)

will be ⎥
⎦

⎤
⎢
⎣

⎡
0.0
0.0

.

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

Δ+Δ

Δ

Δ+Δ

Δ

=⎥
⎦

⎤
⎢
⎣

⎡
=

22

22

YX
Y

YX
X

Y
X

i
iA (3-23)

where:

ii XXX −=Δ −1

ii YYY −=Δ −1

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

Δ+Δ

Δ

Δ+Δ

Δ

=⎥
⎦

⎤
⎢
⎣

⎡
=

22

22

YX
Y

YX
X

Y
X

i
iB (3-24)

where:

ii XXX −=Δ +1

ii YYY −=Δ +1

iii BADV += (3-25)

 48

3.6.3 Smooth Points

Direction vectors for smooth points flatten the curve and reduce the curvature as

shown in Figure 3-20, resulting in a shorter curve.

The procedure to calculate the direction vectors for smooth sections combines

multiple vectors and can be seen in the smooth group (points 4-9) in Figure 3-21. The

apex points’ direction vectors (the A vectors on points 6 and 7) are calculated first. Then

preliminary direction vectors (the B vectors, blue, on points 4, 5, 8, and 9) are calculated

for the middle and ending points. Each preliminary vector is then combined with a scaled

version of the apexes’ direction vectors (C vectors, black, on points 4, 5, 8, and 9) to

create the non-apex final direction vector (A vectors, red, on points 4, 5, 8, and 9).

Figure 3-20 Spline that has been flattened. Spline is spread out and moved down by algorithm to
form red spline

 49

Figure 3-21 A (red) direction vectors for smooth point group (blue points). Preliminary vectors are
B (blue) and C (black) vectors.

The apexes’ direction vectors are calculated in one of two ways. If the apex is a

single point then the direction vector is calculated using the same method as is used for a

ripple point’s direction vector using Equations (3-23), (3-24), and (3-25).

If it is a double apex then each of the points is assigned the same direction vector.

A preliminary direction vector is calculated using Equation (3-26) that is perpendicular to

the line that goes through both apex points (points 6 and 7) as illustrated by line D in

Figure 3-21.

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

Δ+Δ

Δ

Δ+Δ

Δ−

=⎥
⎦

⎤
⎢
⎣

⎡
=

−

22

22

1

'

YX
X

YX
Y

Y
X

m
iDV (3-26)

where:

ii XXX −=Δ +1

ii YYY −=Δ +1

0

1

2

3

4 5
6 7

8
9

10

A A

D

A
A

A
A

B
B B

B

C
C C

C

 50

Equation (3-26) does not guarantee that the direction of the apex vectors is

correct. The correct direction is shown in Figure 3-21. To determine if the apex

direction vectors must be reversed, the minimum distance from the control point

immediately following the second apex point to the line through the two apex points is

calculated using Equation (3-27). Equation (3-26) assumes that this point is on the

positive side of the line. If the distance to the line is negative, the preliminary direction

vector is reversed using Equation (3-28).

222222 ba

cY
ba

bX
ba

aD iii
+

+
+

+
+

= (3-27)

where:

1+−= ii YYa

ii XXb −= +1

iiii YXYXc 11 ++ −=

Preliminary direction vectors (B vectors, blue, in Figure 3-21) are calculated for

all non-apex points using Equation (3-29). This method is the same as for direction

vectors for the ripple case, except that the direction vectors are reversed. Equation (3-29)

uses the values from Equation (3-23) and Equation (3-24). The preliminary direction

vector moves the control points out, widens the tool path. This effectively lowers

the curvature.

 51

() iiiii DD '1 DVDVDV == + (3-28)

iii BADV +−=1 (3-29)

A scaled vector is created at each non-apex point by scaling the apex direction

vector by 9.0 using Equation (3-30). If the preliminary vector is too large then it can

cause high-curvature sections where the smooth group endpoints connect with adjacent

control points. Therefore, the scaled vector is scaled to outweigh the preliminary vector

when they are summed. The value of 9.0 was chosen through trial and error. It produces

the best overall results. The scaled vector aligns the movement of the non-apex points

with the apex points, so that the curve stays intact as it flattens. The normalized sum of

the preliminary vector and scaled vector in Equation (3-31) is the direction vector for

each of the smooth points.

apex
ii DVDV 0.92 = (3-30)

21
iii DVDVDV += (3-31)

By summing the two vectors together and normalizing the result, the final

direction vector obtains attributes from both of the vectors. The curve is flattened and

lengthened by the preliminary vector but shortened by the scaled vector. The final

direction vectors for the control points in a smooth section cause the curve to move to the

 52

inside of the tolerance tube at the apex and to the outside of the tolerance tube at the

beginning and ending points as shown in Figure 3-20.

The null vector case mentioned in the end and ripple point sections does not apply

to smooth points. If any of the control points in a smooth group becomes part of a straight

line then those control points are re-categorized as ripple points in the next iteration.

3.7 Sensitivity Values

Several iterations of control point movement are required to smooth the curve

without crossing the tolerance limits. The algorithm uses two key variables to calculate

the move distance for each control point in each iteration: the sensitivity value and the

maximum allowable move distance. The sensitivity value for each control point is the

ratio of the spline move distance to the control point’s move distance from the previous

iteration. The maximum allowable move distance is the minimum distance between the

spline and the tolerance tube remaining after the last iteration.

Sensitivity values are initialized before starting the first iteration by performing a

mock iteration using the original control polygon and the radius of the tolerance tube as

the maximum allowable distance to calculate the starting sensitivity values. After the

sensitivity values are calculated, the control polygon is returned to its original state and

the first iteration is executed.

To determine how far the spline deviates as a result of moving the control points

during a smoothing iteration, a difference spline is created by subtracting the previous

iteration’s control points from the current iteration’s control points. See Equation (3-32).

 53

The difference spline is a cubic B-spline that has the same knot vector and number of

control points as the original spline.

original
i

smoothed
ii PPD −= (3-32)

A parameter value is assigned to each control point in the spline. The first control

point is assigned the parameter value equal to the first knot value. In other words, the

first control point is assigned the beginning of the spline. The second point is assigned

the parameter value halfway between the first and second knot values. If the first knot is

1 and the second knot is 2, then the second control point’s parameter value is 1.5. The

third control point is assigned the second knot value. The subsequent control points are

assigned the same way, except the last and second-to-last control points. The second-to-

last control point is assigned the parameter value halfway between the last and the

second-to-last knot values. The last control point is assigned the last knot value.

Equations (3-33) through (3-37) calculate the parameter value for each control point. The

parameter value is t. The knot value is k. The number of control points is m and the

number of knots is n.

00 kt = (3-33)

2
10

1
kk

t
+

= (3-34)

 54

1−= ii kt (3-35)

2
12

2
−−

−

+
= nn

m
kk

t (3-36)

11 −− = nm kt (3-37)

The sensitivity value is calculated in Equation (3-38) by dividing the difference

spline’s value at each control point’s corresponding parameter value by the control

point’s move distance.

iii MDDS = (3-38)

3.8 Maximum Distance

The maximum allowable distance in each iteration is the minimum distance

between the spline and the path tolerance. For the first iteration, the maximum allowable

distance is initialized to be the radius of the path tolerance tube.

The maximum allowable distance is calculated as the difference between the

radius of the tolerance tube and the maximum distance between the original spline and

the current iteration spline. See Figure 3-22. To calculate the maximum distance, a

difference spline that is similar to the sensitivity difference spline is created by

subtracting the original polygon from the current iteration polygon. This difference

spline represents the distance that the spline has moved from the original position. See

 55

Equation (3-39). Figure 3-23 shows a spline with the maximum distance

location indicated.

Figure 3-22 Calculating maximum allowable distance

()
min

current
i

original
i

allowable
i RD PP −−= (3-39)

Figure 3-23 Maximum allowable distance on spline

Note that Equation (3-39) will error on the safe side. The radius of the tolerance

tube is the minimum distance between the original spline and the tolerance tube. If a

point on the spline moves in any direction other than perpendicular to the original spline

then it will actually be further from the tolerance tube than Equation (3-39) calculates.

Figure 3-24 shows a line at an angle that does not reach the tolerance tube. Lines A and B

have the same length but B does not reach the tolerance tube.

Difference between splines

Maximum allowable distance

 56

Figure 3-24 Point on spline that does not move perpendicular to original spline will not reach
tolerance tube. Most points move very close to perpendicular, so this inaccuracy is minimal.

To find the minimum distance, each knot interval is split into a number of steps as

determined by the precision and the distance is evaluated at each of these divisions. This

is equivalent to splitting the B-spline into its Bezier curves and splitting up each of the

Bezier curves.

3.9 Move Distance

A move distance is the distance that a control point moves during each iteration.

To calculate the move distance, each sensitivity value is inverted and then scaled from

zero to one by dividing the inverted sensitivity value by the maximum inverted sensitivity

value. See Equation (3-40).

The smallest sensitivity value before inversion becomes a 1.0 through inversion

and scaling. The largest sensitivity value before inversion becomes the smallest value but

never becomes 0.0. Equation (3-40) ensures that each move distance is non-zero. If the

largest sensitivity value were scaled to a 0.0 move distance, the control point with the

largest sensitivity value would never move. The scaled inverted sensitivity value is

A
B

Original Position

New Position

Path Tolerance

Path Tolerance

Tool Path

 57

multiplied by the maximum allowable distance to produce the move distance value for

each control point. Equation (3-41) scales all of the move distances so that all of the

control points will move the spline values the same distance.

max

1

1

⎟
⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛

=

i

iinv
i

S

S
S range (]0.1,0.0 (3-40)

inv
ii SDMD *max= (3-41)

The example below uses a control polygon with five control points to demonstrate

how move distances are calculated. The initial sensitivities were calculated in the

previous iteration.

Initial Sensitivities:

[]%100%80%50%40%201
5
4

2
1

5
2

5
1

=⎥⎦
⎤

⎢⎣
⎡

 (3-42)

The sensitivities are inverted and the smallest sensitivity is the largest value.

Sensitivity Values:

⎥⎦
⎤

⎢⎣
⎡=

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
1

4
52

2
55

1
1

5
4
1

2
1
1

5
2
1

5
1
1

 (3-43)

 58

The inverted sensitivities are scaled by dividing them by the maximum inverted

sensitivity (5). The new scale is (]0.1,0.0

Scaled Inverted Sensitivities:

⎥⎦
⎤

⎢⎣
⎡=⎥⎦

⎤
⎢⎣
⎡

5
1

4
1

5
2

2
1151

4
52

2
55 (3-44)

The maximum allowable distance was set to 10. The scaled values are multiplied

by the maximum allowable distance to become the move distances.

 Move Distances:

⎥⎦
⎤

⎢⎣
⎡=⎥⎦

⎤
⎢⎣
⎡ 2

2
54510

5
1

4
1

5
2

2
11*10 (3-45)

The actual distances moved are simulated in this example by multiplying the

move distances by the sensitivity values. This is close to what would happen during the

smoothing section that is discussed in Section 3.10. The sensitivity values do not match

the actual movements of the spline because the sensitivities are linear and the spline is

cubic, but they are a close approximation. It is important to note that all of the points

moved the same distance due to the scaling, which causes the spline to smooth evenly.

When control points form part of a straight line with two or more adjacent control

points, they are initially assigned a 0.0 sensitivity value, because the spline is already in

its ideal position. These 0.0 sensitivity values are special cases that are eliminated by

setting the sensitivity value to 1.0 so that it does not cause a division error during scaling.

 59

Actual Distances Moved:

[]222221*2
5
4*

2
5

2
1*4

5
2*5

5
1*10 =⎥⎦

⎤
⎢⎣
⎡

 (3-46)

3.10 Smooth Control Polygon

After all of the direction vectors and distances are determined, the polygon is

smoothed. Smoothing is accomplished by moving each control point its move distance in

the direction of its direction vector. This movement is calculated by multiplying the

move distance by the direction vector and adding this result to the control point’s current

position as shown in Equation (3-47). The resulting control polygon is used to calculate

the distances and sensitivities for the next iteration.

ii
old
i

new
i MD DVPP *+= (3-47)

3.11 Termination

The iterations terminate when the spline comes within the predefined precision of

the tolerance tube. At this point, the spline is close enough to the path tolerance to

consider it as touching the tolerance band. Upon termination, the previous iteration

control polygon is used as the solution. The current iteration control polygon is not used

because the spline has passed the tolerance band.

3.12 Example of Reduction in Curvature

To illustrate the effects of reducing curvature in high-curvature tool paths, eight

similar tool paths were created that all have a single ripple. The peak curvature value for

 60

each tool path has a higher value than the previous one. The curvature values range from

1/15 mm-1 to 8/3 mm-1. The tool paths were smoothed with the algorithm using multiple

path tolerance radii. The original (blue) and smoothed (red) tool paths are shown inside

of a path tolerance (black) in Figure 3-25.

Figure 3-25 Eight tool paths with different severity of curvature

Figure 3-26 shows the reduction in curvature for each tool path at different path

tolerance radii. At a given path tolerance, the percent reduction in curvature is greater for

tool paths with more severe curvature. As can be seen, the effectiveness of the algorithm

increases with the severity of the curvature. For example, with a path tolerance of 0.125

mm, the tool path with an initial curvature of 8/3 mm-1 shows a much higher percent

improvement in curvature than the tool path with an initial curvature of 1/15 mm-1.

Peak Curvature: 1/15 mm-1

Peak Curvature: 1/12 mm-1

Peak Curvature: 1/9 mm-1

Peak Curvature: 1/6 mm-1

Peak Curvature: 1/3 mm-1

Peak Curvature: 2/3 mm-1

Peak Curvature: 4/3 mm-1

Peak Curvature: 8/3 mm-1

 61

When the curvature improvement reaches 100%, the spline becomes a straight line with

zero curvature.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0.0025 0.0125 0.025 0.125 0.25

Path Tolerance Radius (mm)

Im
pr

ov
em

en
t i

n
C

ur
va

tu
re

Initial Curvature = 1/15
Initial Curvature = 1/12
Initial Curvature = 1/9
Initial Curvature = 1/6
Initial Curvature = 1/3
Initial Curvature = 2/3
Initial Curvature = 4/3
Initial Curvature = 8/3

Figure 3-26 Percent reduction in curvature for tool paths with single high-curvature ripple.

Figure 3-27 shows the reduction in machining time for each tool path at different

path tolerance radii. At a given path tolerance, the percent reduction in machining time is

greater for tool paths with more severe curvature. As can be seen, the effectiveness of the

algorithm increases with the severity of the curvature. For example, with a path tolerance

of 0.125 mm, the tool path with an initial curvature of 8/3 mm-1 shows a much higher

percent improvement in machining time than the tool path with an initial

curvature of 1/15 mm-1.

 62

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

0.0025 0.0125 0.025 0.125 0.25
Path Tolerance Radius (mm)

Im
pr

ov
em

en
t i

n
M

ac
hi

ni
ng

 T
im

e
Initial Curvature = 1/15
Initial Curvature = 1/12
Initial Curvature = 1/9
Initial Curvature = 1/6
Initial Curvature = 1/3
Initial Curvature = 2/3
Initial Curvature = 4/3
Initial Curvature = 8/3

Figure 3-27 Percent reduction in machining time for tool paths with single high-curvature ripple.

 63

4 Results

4.1 Sample Tool Paths

Six sample tool paths were created to test the smoothing algorithm. The tool

paths represent a single pass across a surface because this will sufficiently test the

algorithm and keep the amount of data to a minimum. It is not necessary to zigzag across

the part multiple times because all of the passes will be similar and not produce

additional unique test cases. Each tool path is composed of a single B-spline and contains

a different degree of high-curvature ripples.

The first tool path is shown in Figure 4-1 and represents a tool path with low

curvature radii. This tool path is simple and smooth. It measures 766 mm in length and

the maximum curvature is 0.175 mm-1. The tool feedrate should be close to the

commanded value.

Figure 4-1 Test Case 1: Tool path with many low curvature radii. Tool path is fairly smooth and
long. NC controller will decrease the feedrate through these low curvature sections, but not
significantly.

 64

The second tool path is shown in Figure 4-2 and mainly has low curvature radii

with just two high-curvature radii. The part is 376 mm long and has a maximum

curvature of 9.0 mm-1. This tool path will slow down the feedrate significantly due to the

two small radii.

Figure 4-2 Test Case 2: Tool path with many low curvature radii and two high-curvature radii.
Ttool path is fairly smooth and of medium length, except for two high-curvature radii. NC controller
will decrease feedrate through these curvature sections, especially at high-curvature ripples.

The tool path for test case 3 is complex with multiple high-curvature ripples and

is shown Figure 4-3. The path is 210 mm long and has a maximum curvature of 28 mm-1.

This tool path represents an extreme case in which the feedrate will be very slow.

Figure 4-3 Test Case 3: Tool path with many high-curvature radii. Tool path is very complex and
short. NC controller will decrease feedrate drastically.

 65

The tool path shown in Figure 4-4 is generated for factory siping on a snow tire

mold with complex geometry. Siping creates the little slits in the tread of the tire. A

snow tire with factory siping can be seen in Figure 4-5.

Figure 4-4 Test Case 4: Tool path generated along offset of the complex surface of a snow tire. It
contains multiple sections of high-curvature which will drastically decrease feedrate.

Figure 4-5 Snow tire with siping and very complex geometry

The next test case in Figure 4-6 was designed as a straight line with zero

curvature but two of the data points used to interpolate the tool path were noisy. These

position discontinuous points create ripples in the tool path that significantly increase the

 66

curvature and cause the spline to deviate from the desired tool path by up to 0.4 mm.

This increased curvature significantly lowers the feedrate.

Figure 4-6 Test Case 5: Linear tool path of ideally zero curvature with two noisy points. Points are
both 0.2 mm away from straight line and form ripples that almost reach 0.4 mm from straight line.
These noisy points create sections of high-curvature ripples. The NC tool will decrease feedrate from
ideal to maneuver high-curvature ripples.

The final test case tool path illustrates how tangency discontinuities form high-

curvature ripples in the tool paths and can be seen in Figure 4-7. The tool path tries to

follow a series of 90-degree corners, but is unable to do so without creating high-

curvature ripples. The ripples form because a cubic B-spline is unable to represent a

tangency discontinuity.

Figure 4-7 Test Case 6: Aool path with 90-degree corners. Corners are tangency discontinuous and
they cause severe ripples in tool path. NC tool will decrease feedrate from ideal value to maneuver
high-curvature ripples.

 67

It is important to note that a CAM program may recognize intentional design

discontinuities and split the tool path into multiple sections connected with tangency

discontinuities. However, this test case represents tangency discontinuities that are caused

by anomalies and not the designer. The CAM package will not recognize anomalies and

will create ripples in the tool path instead of splitting it into multiple sections.

4.2 Smoothing Parameters

 The smoothing algorithm required the following user-defined parameters. The

accuracy of all tool paths was set to 1%. Therefore, the iterations terminated when the

tool path closed to within 1% of the path tolerance. The precision was set to 5 causing

each Bezier in the B-spline to be split into 5 sections in the maximum distance function.

Each of the tool paths was smoothed three separate times using different path tolerances:

0.025 mm, 0.125 mm, and 0.25 mm.

4.3 Smoothed Tool Path Results

The smoothed tool paths and the tolerance band are shown for a path tolerance of

0.25 mm in Figure 4-8 through Figure 4-13. The figures are close-ups of sections with

high curvature that show the tolerance band and the smooth path. The figures show that

the smooth paths flatten around all of the corners. The tool paths are red and the path

tolerance tube is black.

 68

Figure 4-8 Test Case 1: Smoothed path for tool path in Figure 4-1

Figure 4-9 Test Case 2: Smoothed path for tool path in Figure 4-2

 69

Figure 4-10 Test Case 3: Smoothed path for tool path in Figure 4-3

Figure 4-11 Test Case 4: Smoothed path for tool path in Figure 4-4

 70

Figure 4-12 Test Case 5: Smoothed path for tool path in Figure 4-6

Figure 4-13 Test Case 6: Smoothed path for tool path in Figure 4-7

4.4 Curvature Results

The curvature along each of the tool paths is recorded in Figure 4-14 through

Figure 4-19 and in Table 4-1. The curvature graphs and table show that the high-

curvature ripples decrease with the smoothing algorithm and the tool path becomes

increasingly smoother with a larger path tolerance radius.

 71

Table 4-1 Relative curvature measurements from before and after smoothing algorithm

Part Path Tolerance (mm)
Curvature
Average
(1/mm)

Curvature
Difference

(1/mm)

Curvature
Improvement

(%)

Original 0.040314 0 0.00%
R = 0.025 0.040154 0.0001592 0.39%
R = 0.125 0.039588 0.0007257 1.80%

Test Case 1:
Simple

R = 0.250 0.038976 0.001338 3.32%

Original 0.14091 0 0.00%
R = 0.025 0.140219 0.0006906 0.49%
R = 0.125 0.137186 0.0037242 2.64%

Test Case 2:
Medium

R = 0.250 0.133279 0.0076309 5.42%

Original 0.564505 0 0.00%
R = 0.025 0.557309 0.0071956 1.27%
R = 0.125 0.53213 0.0323753 5.74%

Test Case 3:
Complex

R = 0.250 0.510896 0.0536084 9.50%

Original 0.296756 0 0.00%
R = 0.025 0.295998 0.0007578 0.26%
R = 0.125 0.292879 0.0038774 1.31%

Test Case 4:
Snow Tire

R = 0.250 0.288374 0.0083822 2.82%
Original 0.093916 0 0.00%

R = 0.025 0.08424 0.0096766 10.30%
R = 0.125 0.04706 0.0468563 49.89%

Test Case 5:
Line

R = 0.250 0.005922 0.087994 93.69%
Original 0.175172 0 0.00%

R = 0.025 0.168204 0.0069681 3.98%
R = 0.125 0.143115 0.0320576 18.30%

Test Case 6:
Square

R = 0.250 0.131753 0.0434191 24.79%

 72

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0 10 20 30 40 50 60

Parameter

C
ur

va
tu

re
 (1

/m
m

)
Original
R = 0.025 mm
R = 0.125 mm
R = 0.25 mm

Figure 4-14 Test Case 1: Curvature for part in Figure 4-1

-2

0

2

4

6

8

0 2 4 6 8 10 12

Parameter

C
ur

va
tu

re
 (1

/m
m

)

Original
R = 0.025 mm
R = 0.125 mm
R = 0.25 mm

Figure 4-15 Test Case 2: Curvature for part in Figure 4-2

 73

-30

-25

-20

-15

-10

-5

0

5

0 5 10 15 20 25 30 35 40

Parameter

C
ur

va
tu

re
 (1

/m
m

)

Original
R = 0.025 mm
R = 0.125 mm
R = 0.25 mm

Figure 4-16 Test Case 3: Curvature for part in Figure 4-3

-1.5

-1

-0.5

0

0.5

1

1.5

0 1 2 3 4 5 6 7 8 9

Parameter

C
ur

va
tu

re
 (1

/m
m

)

Original
R = 0.025 mm
R = 0.125 mm
R = 0.25 mm

Figure 4-17 Test Case 4: Curvature for part in Figure 4-4

 74

-1.5

-1

-0.5

0

0.5

1

1.5

0 5 10 15 20 25 30

Parameter

C
ur

va
tu

re
 (1

/m
m

)
Original
R = 0.025 mm
R = 0.125 mm
R = 0.25 mm

Figure 4-18 Test Case 5: Curvature for part in Figure 4-6

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25

Parameter

C
ur

va
tu

re
 (1

/m
m

)

Original
R = 0.025 mm
R = 0.125 mm
R = 0.25 mm

Figure 4-19 Test Case 6: Curvature for part in Figure 4-7

 75

4.5 Machine Time Simulation

The time to machine each of the tool paths was simulated using a trajectory

generator. The trajectory generator uses S-curve velocity profiles that are limited by the

curvature of the tool path. The maximum values for the trajectory generator were set to

the values below for all tool paths.

Feedrate: smmV f 400=

Acceleration: 24000 smmAm =

Jerk: 3000,20 smmJ m =

An initial velocity profile was determined by assuming that the velocity was only

limited by the curvature. This profile contained the maximum allowable velocities since

it assumed that the velocities could change instantly between positions along the tool path

and were not limited by tangential acceleration. The velocities at multiple distances

along the tool path were calculated using Equation (4-1). The maximum and minimum

velocities correspond to specific positions along the tool path.

curvature

max
feedrate k

AV = (4-1)

 76

All of the velocities that were not local maximum or minimum values were

removed. S-curves were created to accelerate between the maximum and minimum

velocities. The s-curves were required to traverse the distances between the positions on

the tool path that correspond to the maximum and minimum velocities. Local maximum

velocity values were decreased until the robot was capable of accelerating between the

minimum and maximum velocities and traversing the required distance. Below are the

equations for the s-curve profiles.

The S-curve velocity profile uses constant jerk to derive equations of motion.

Figure 4-20 shows an ideal s-curve velocity profile and the jerk profile that goes with it.

Figure 4-20 Constant jerk s-curve velocity

If the required change in velocity is small, the maximum acceleration will not be

reached. and as is decreased. For more information on using S-curve velocity, see chapter

5 of Dr. Red’s (2007) on-line course notes.

 77

The equations of motion for the concave portion of the s-curve are:

6)(3
0 tjtvts += (4-2)

2)(2
0 tjvtv += (4-3)

jtta =)((4-4)

The equations of motion for the convex portion of the s-curve are:

62)(32
2/1 tjtatvts s −+= (4-5)

2)(2
2/1 tjtavtv s −+= (4-6)

jtata s −=)((4-7)

2
0

2/1
svv

v
+

= (4-8)

If the required change in velocity is large, the maximum acceleration will be

reached and a section of constant acceleration is placed between the concave and convex

portions of the profile as seen in Figure 4-21. The velocity continues to increase without

going above the acceleration limit in this linear portion.

 78

Figure 4-21 S-curve profile with linear period

The equations of motion for the linear portion of the s-curve are:

2)(2
1 tatvts s+= (4-9)

tavtv s+= 1)((4-10)

j
a

vv s

2

2

01 += (4-11)

The trajectory generator assumed that the feedrate was capable of maximum

velocity at the beginning and end of the tool paths because the sample tool paths tested

did not include non-cutting engagement moves.

 79

Due to the high-curvature, the NC controller decreased the feedrate along all of

the tool paths. Feedrates for each of the tool paths can be seen in Figure 4-22 through

Figure 4-27 and Table 4-2. The graphs are all on a scale of 0 to 400 mm/s. Note that the

graphs shift to the left as the path tolerance radii increase because the machine tool is

traversing the tool path faster.

Table 4-2 Feedrate measurements from before and after smoothing algorithm

Part Path Tolerance
(mm)

Feedrate
Average
(mm/s)

Feedrate
Difference

(mm/s)

Feedrate
Improvement

(%)

Original 195.0 0.0 0.00%
R = 0.025 195.1 0.1 0.07%
R = 0.125 195.4 0.4 0.22%

Test Case 1:
Simple

R = 0.250 195.4 0.4 0.21%

Original 180.8 0.0 0.00%
R = 0.025 180.9 0.1 0.03%
R = 0.125 181.1 0.3 0.14%

Test Case 2:
Medium

R = 0.250 186.2 5.4 3.00%

Original 52.3 0.0 0.00%
R = 0.025 52.4 0.1 0.26%
R = 0.125 53.8 1.5 2.93%

Test Case 3:
Complex

R = 0.250 54.8 2.5 4.84%

Original 71.4 0.0 0.00%
R = 0.025 72.6 1.2 1.63%
R = 0.125 72.9 1.4 2.01%

Test Case 4:
Snow Tire

R = 0.250 73.0 1.5 2.17%
Original 73.1 0.0 0.00%

R = 0.025 74.9 1.8 2.45%
R = 0.125 91.9 18.8 25.74%

Test Case 5:
Line

R = 0.250 299.5 226.4 309.58%
Original 58.2 0.0 0.00%

R = 0.025 59.5 1.3 2.29%
R = 0.125 65.6 7.4 12.79%

Test Case 6:
Square

R = 0.250 71.6 13.4 23.01%

 80

0

50

100

150

200

250

300

350

400

0 0.5 1 1.5 2 2.5 3 3.5 4

Time (s)

Ve
lo

ci
ty

 (m
m

/s
)

Original
R = 0.025 mm
R = 0.125 mm
R = 0.25 mm

Figure 4-22 Test Case 1: Feedrate for tool path in Figure 4-1

0

50

100

150

200

250

300

350

400

0 0.5 1 1.5 2

Time (s)

Ve
lo

ci
ty

 (m
m

/s
)

Original
R = 0.025 mm
R = 0.125 mm
R = 0.25 mm

Figure 4-23 Test Case 2: Feedrate for tool path in Figure 4-2

 81

0

50

100

150

200

250

300

350

400

0 0.5 1 1.5 2 2.5 3 3.5 4

Time (s)

Ve
lo

ci
ty

 (1
/m

m
)

Original
R = 0.025 mm
R = 0.125 mm
R = 0.25 mm

Figure 4-24 Test Case 3: Feedrate for tool path in Figure 4-3

0

50

100

150

200

250

300

350

400

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (s)

Ve
lo

ci
ty

 (m
m

/s
)

Original
R = 0.025 mm
R = 0.125 mm
R = 0.25 mm

Figure 4-25 Test Case 4: Feedrate for tool path in Figure 4-4

 82

0

50

100

150

200

250

300

350

400

0 0.2 0.4 0.6 0.8 1 1.2 1.4

time (s)

Ve
lo

ci
ty

 (m
m

/s
)

Original
R = 0.025 mm
R = 0.125 mm
R = 0.25 mm

Figure 4-26 Test Case 5: Feedrate for tool path in Figure 4-6

0

50

100

150

200

250

300

350

400

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time (s)

Ve
lo

ci
ty

 (m
m

/s
)

Original
R = 0.025 mm
R = 0.125 mm
R = 0.25 mm

Figure 4-27 Test Case 6: Feedrate for tool path in Figure 4-7

 83

4.6 Tool Path Length Results

The tool path lengths are recorded in Table 4-3. The tool paths decrease in length

during the smoothing algorithm.

Table 4-3 Lengths of tool paths from before and after smoothing algorithm

Part Path Tolerance
 (mm)

Length
(mm)

Difference
(mm)

Improvement
%

Original 766.089 0.000 0.00%
R = 0.025 765.773 0.316 0.04%
R = 0.125 764.601 1.488 0.19%

Test Case 1:
Simple

R = 0.250 763.681 2.408 0.31%

Original 376.394 0.000 0.00%
R = 0.025 376.158 0.236 0.06%
R = 0.125 375.179 1.215 0.32%

Test Case 2:
Medium

R = 0.250 373.853 2.541 0.68%

Original 209.649 0.000 0.00%
R = 0.025 208.522 1.127 0.54%
R = 0.125 203.649 6.000 2.86%

Test Case 3:
Complex

R = 0.250 198.750 10.899 5.20%

Original 66.292 0.000 0.00%
R = 0.025 66.051 0.242 0.36%
R = 0.125 65.092 1.200 1.81%

Test Case 4:
Snow Tire

R = 0.250 63.817 2.475 3.73%
Original 100.444 0.000 0.00%

R = 0.025 100.383 0.061 0.06%
R = 0.125 100.157 0.287 0.29%

Test Case 5:
Line

R = 0.250 100.017 0.427 0.43%

Original 123.277 0.000 0.00%
R = 0.025 123.200 0.077 0.06%
R = 0.125 122.914 0.363 0.29%

Test Case 6:
Square

R = 0.250 122.263 1.014 0.82%

 84

4.7 Simulated Machining Times Results

The machining times for each of the tool paths are displayed in Table 4-4. These

demonstrate how much time was saved with the smoothing algorithm.

Table 4-4 Machining times for all of tool paths and percent of time saved

Part
Path

Tolerance
(mm)

Time (s) Difference
(mm)

Improvement
(%)

Original 3.810 0.000 0.00%
R = 0.025 3.806 0.004 0.11%
R = 0.125 3.790 0.020 0.54%

Test Case 1:
Simple

R = 0.250 3.769 0.042 1.09%

Original 2.199 0.000 0.00%
R = 0.025 2.197 0.003 0.11%
R = 0.125 2.186 0.013 0.59%

Test Case 2:
Medium

R = 0.250 2.147 0.053 2.39%

Original 4.042 0.000 0.00%
R = 0.025 4.009 0.033 0.83%
R = 0.125 3.849 0.193 4.78%

Test Case 3:
Complex

R = 0.250 3.695 0.348 8.60%

Original 0.943 0.000 0.00%
R = 0.025 0.940 0.003 0.36%
R = 0.125 0.921 0.022 2.37%

Test Case 4:
Snow Tire

R = 0.250 0.895 0.048 5.14%

Original 1.341 0.000 0.00%
R = 0.025 1.304 0.037 2.76%
R = 0.125 1.065 0.276 20.58%

Test Case 5:
Line

R = 0.250 0.334 1.007 75.09%

Original 1.970 0.000 0.00%
R = 0.025 1.922 0.048 2.45%
R = 0.125 1.757 0.213 10.83%

Test Case 6:
Square

R = 0.250 1.647 0.324 16.43%

 85

4.8 Calculation Times Results

The calculation times required by the algorithm to smooth the paths are shown in

Table 4-5. These were calculated using a Pentium Core 2 Duo with two 2.13 GHz

processors and 1.98 GB of RAM. Note that these calculation times are for one tool path

pass and not for an entire part. The calculation times increase with the number of

control points.

Table 4-5 Calculation times for all tool paths

Part
Number of

Control
Points

Tolerance
Radius
(mm)

Times
(s)

R = 0.025 1.636
R = 0.125 1.661 Test Case 1:

Simple 62
R = 0.250 1.514
R = 0.025 0.076
R = 0.125 0.085

Test Case 2:
Medium 14

R = 0.250 0.090
R = 0.025 0.800
R = 0.125 0.969 Test Case 3:

Complex 43
R = 0.250 0.779
R = 0.025 0.101
R = 0.125 0.101 Test Case 4:

Snow Tire 11
R = 0.250 0.113
R = 0.025 0.231
R = 0.125 0.339 Test Case 5:

Line 32
R = 0.250 0.851
R = 0.025 0.237
R = 0.125 0.160

Test Case 6:
Square 28

R = 0.250 0.741

4.9 Discussion of Results

As the curvature in a tool path is reduced by the new algorithm, the machining time

decreases as shown in Table 4-4. The algorithm decreased machining times by 1% to 9%

 86

for design-induced sections of high curvature and by 16% to 75% for CAM-induced

ripples using high path tolerances.

4.9.1 Tool Path Length

The algorithm decreased the tool path length for all of the tool paths. Table 4-3

shows the improvement in tool path length for all test cases and Table 4-6 shows the

average decrease in tool path length for each tool path tolerance radius.

Table 4-6 Average percent changes in tool path length, curvature, feedrate, and machining time.

Tolerance
Radius
(mm)

Tool Path
Length

Average
Percent

Reduction

Curvature
Average
Percent

Reduction

Feedrate
Average
Percent
Increase

Machining
Time Average

Percent
Reduction

Overall 1.05% 13.11% 21.85% 8.61%
0.025 0.20% 2.78% 1.12% 1.10%
0.125 1.02% 13.28% 7.31% 6.61%
0.25 1.93% 23.26% 57.13% 18.12%

4.9.2 Curvature

The algorithm decreased the curvature for all of the tool paths. The curvature

graphs and Table 4-1 in Section 4.4 show the improvement in curvature for all test cases

and Table 4-6 shows the average decrease in curvature for each tool path

tolerance radius.

4.9.3 Feedrate

The algorithm increased the feedrate for all of the tool paths. The feedrate graphs

and Table 4-2 in Section 4.5 show the improvement in curvature for all test cases and

 87

Table 4-6 shows the average increase in feedrate. The feedrates were increased because

the curvature was decreased. The curvature graphs in Section 4.4 and the corresponding

feedrate graphs in Section 4.5 demonstrate an inverse relationship between the amount of

curvature and the feedrate. Figure 4-28 shows that the percent decrease in curvature

correlates to the percent increase in feedrate. The P-value for the Pearson correlation

coefficient in Table 4-7 confirms the correlation. A P-value less than 0.05 corresponds to

a significant correlation.

0.00%

50.00%

100.00%

150.00%

200.00%

250.00%

300.00%

350.00%

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00% 80.00% 90.00% 100.00%

Curvature Improvement

Fe
ed

ra
te

 Im
pr

ov
em

en
t

Figure 4-28 Percent reduction in curvature compared to percent increase in feedrate showing that
decrease in curvature directly correlates to increase in feedrate.

 88

4.9.4 Simulated Machining Times

The algorithm decreased the machining times for all of the tool paths. Table 4-3

shows the improvement in machining time for all test cases and Table 4-6 shows the

average decrease in machining time compared to the percent improvement in curvature,

tool path length, and feedrate. Machining times were decreased because the feedrates

were increased, as machining times are inversely proportional to feedrates. Figure 4-29

shows that the percent increase in feedrate correlates to the percent decrease in maching

time. The P-value for the Pearson correlation coefficient in Table 4-7 confirms the

correlation. It can also be shown that as the curvature decreases the machining time

decreases. This correlation is shown in Figure 4-30 and Table 4-7.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

0.00% 50.00% 100.00% 150.00% 200.00% 250.00% 300.00% 350.00%

Feedrate Improvemnet

M
A

ch
in

in
g

Ti
m

e
Im

pr
ov

em
en

t

Figure 4-29 Percent increase in feedrate compared to percent decrease in machining time showing
that increase in feedrate directly correlates to decrease in machining time.

 89

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00% 80.00% 90.00% 100.00%

Curvature Improvement

M
ac

hi
ni

ng
 T

im
e

Im
pr

ov
em

en
t

Figure 4-30 Percent decrease in curvature compared to percent decrease in machining time showing
that decrease in curvature directly correlates to decrease in machining time.

Table 4-7 Pearson correlation values used to determine correlation between different parameters.
Values in yellow represent a significant correlation.

Machine Time
Improvement %

Curvature
Improvement

%

Length
Improvement %

Pearson
correlation 0.9680 Curvature

Improvement
% P-Value 0.0000

Pearson
correlation -0.0280 -0.1110 Length

Improvement
% P-Value 0.9110 0.6620

Pearson
correlation 0.9720 0.9010 -0.1050 Feedrate

Improvement
% P-Value 0.0000 0.0000 0.6770

 90

The machining times were also affected by the reduction in tool path length.

However, the decrease in machining time and the decrease in tool path length are not

correlated. This is shown in Table 4-7 and Figure 4-31. This initially seems to be

counterintuitive, but it can be understood by analyzing the nature of high-curvature

tool paths.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

0.00% 1.00% 2.00% 3.00% 4.00% 5.00% 6.00%

Tool Path Length Improvement

M
ac

hi
ni

ng
 T

im
e

Im
pr

ov
em

en
t

Figure 4-31 Percent decrease in tool path length compared to percent decrease in machining time
showing that decrease in tool path length does not correlate to decrease in machining time.

The feedrate is coupled to the acceleration and jerk limits of the machine tool. It

can be seen in the feedrate plots in Section 4.5. that the feedrate does not immediately

return to its set value of 400 mm/s after reducing the feedrate in a high-curvature section.

This is because the feedrate is limited by the acceleration and jerk limits. These limits

impede the feedrate from returning to its desired value for a significant distance along the

 91

tool path. For example, in Figure 4-26 the feedrate drops to a minimum at the first

section of high-curvature ripples. It does not have enough distance before the next high-

curvature section to accelerate to 400 mm/s because of the acceleration and jerk limits.

About half way between the high-curvature sections, the feedrate must again decelerate

to a minimum value.

Due to the acceleration and jerk limits, decreasing the tool path length can have a

minor adverse affect on feedrate peak values. If the tool path length is significantly

shortened in a high-curvature section of the tool path, the machine tool will not have as

much distance to accelerate before slowing for the next curve. The increase in machining

time due to the reduced feedrate peaks may be offset by the reduction in machining time

due to traversing the shortened path. These affects were not investigated. The reduction

in feedrate at the beginning and ending of test case 4 in Figure 4-25 may be a result of

this affect.

4.9.5 Tool Path Tolerance Radius

Increasing the path tolerance radius improves the results for curvature, tool path

length, feedrate and machining time as shown in Table 4-6. A larger path tolerance

allows the tool path to straighten further, which decreases the curvature as shown in the

curvature graphs in Section 4.4. As the curvature decreases, the feedrate increases and

the machining time decreases. The curvature does not decrease by large amounts because

the path is only allowed to deviate within a small tolerance.

 92

4.9.6 Percent Savings Versus Curvature

As expected, the test cases demonstrate that the algorithm yields better results for

tool paths with higher curvature. The machining time for the tool path in Figure 4-2 was

improved by a greater percent than the time in Figure 4-1 because the tool path in

Figure 4-2 has a higher curvature distribution. The machining time for the tool path in

Figure 4-3 was decreased by an even larger percent because the tool path has complex

geometry with even higher curvature. This trend can be seen by comparing the curvature

plots and machining times for each of the test cases.

4.9.7 Percent Savings Versus Discontinuities

High-curvature ripples caused by noise in the interpolation data provide

considerable opportunity to decrease machining time. For example, if there were no

noise in the tool path, the feedrate for the tool path in Figure 4-6 would remain at

400mm/s along the straight line and the tool path would be machined in 0.25 seconds.

However, the high-curvature ripples cause the section to be machined in 1.34 seconds

which is 536% of the ideal machining time. The smoothing algorithm decreases this time

to 0.334 seconds, which is only 136% of the ideal time. The machining time does not

reach the ideal time of 0.25 seconds, but it does improve the time by 75%, a significant

improvement.

Anomalies in the CAD model, such as gaps and other discontinuities, also provide

opportunities for improvement. For example, the machining times for the tool path in

Figure 4-7 were improved by up to 16%. The curvature decreases significantly as the

algorithm resolves the tangency discontinuities.

 93

5 Conclusion

Tool paths that are designed with high levels of curvature can be smoothed with

the smoothing algorithm presented in this thesis. In test cases 1 through 4, the machining

times were decreased by 1% to 9% based on the degree of curvature. Resulting savings

can be significant on complex parts. Tool paths with high-curvature ripples caused by

discontinuities can also be smoothed using the algorithm. In test cases 5 and 6, the

machining times were decreased by 16% to 75%. Anomalies should be removed before

creating tool paths. But if they are not, the smoothing algorithm can diminish their

negative affects on machining times.

High-curvature ripples in CAD models caused by the designer, bad data, or

discontinuities can cause unnecessary increases in machining times. If these high-

curvature ripples are smoothed with the algorithm proposed in this thesis, machining

times can be decreased and manufacturing companies can save money.

5.1 Future Work

Opportunities to extend the work in this thesis include algorithms for smoothing

closed tool paths and 3D tool paths. Brief explanations of closed tool paths and 3D tool

paths are included in sections 5.1.1 and 5.1.2, respectively.

 94

Investigations into using the smoothing algorithm as a filter for noisy data in

reverse engineering of 3D surfaces could be performed. Smoothing the high-curvature

ripples caused by noisy points would effectively filter out those points. This was

illustrated in the tool path from Figure 4-6.

The algorithm’s performance may be improved. The algorithm always decreases

the overall machining time but sometimes it will increase the curvature of localized

sections of the tool path. This is a rare case that sometimes occurs when the path

tolerance is set too large. If the tolerance radius is too large, the tool path will form

straight lines with small radius corners. For example, if the tool path had the shape of the

letter “U” and the path tolerance was very large, the smoothed path could take the shape

of the letter “V”.

Even though the algorithm is fast, it has not been optimized to perform in a real-

time environment. Work should be done to improve the calculation time of the smoothing

algorithm.

The algorithm was developed to show generally that high-curvature sections in

tool paths can be smoothed. The algorithm can now be adapted to a specific CAD, CAM,

or NC system.

5.1.1 Closed Tool Paths

Although the smoothing algorithm works only with open-ended B-spline tool

paths, closed tool paths are commonly used and should also be considered. An

algorithm to smooth closed tool paths would be very similar to the open-ended algorithm.

In fact, a closed tool path algorithm would be simpler than the open-ended one because

the closed tool path has no true end. Therefore, there would be no endpoints to consider.

 95

If a point was at the beginning of the array of control points, the algorithm would simply

look at the other end of the array for the points preceding it in the polygon. This section

will describe the modifications to the open-ended algorithm to convert it for use with

closed tool paths.

Some of the math used for closed splines is slightly different than for open

splines. See Dr. Sederberg’s text for details on closed splines. The parsing would be

almost exactly the same except that the knot vector would contain knot intervals instead

of knot values. Knot intervals are the interval difference between the knot values. For

example, if one knot is 5 and the next knot is 6, then the knot interval is 1. In a closed

cubic B-spline, there is the same number of control points as knots.

The functions for categorizing points and determining direction vectors would not

need to consider endpoints, as endpoints do not exist in closed splines. Control points

would be categorized and direction vectors would be calculated using the same functions

as for the open-ended smoothing algorithm. The functions to calculate sensitivity values,

maximum allowable distance, move distances, and the smooth control polygon and

termination would be essentially the same as for the open-ended spline algorithm.

5.1.2 3D Tool paths

In addition to 2D tool paths, 3D tool paths are commonly used. The algorithm in

this thesis could be extended to 3D tool paths. 3D B-splines are essentially the same as

2D B-splines. Even though the B-splines math is similar between 2D and 3D, the

algorithm needed to smooth the 3D tool path would be more complex. This section

describes suggestions on how the 2D algorithm could be extended to use 3D splines. The

techniques in this section have not been tested.

 96

The 3D algorithm would incorporate the same basic principles and steps as the 2D

version. The 3D algorithm would also move the control points towards forming a

straight line so that the spline would have zero curvature. A line in 3D space has zero

curvature just like a line in 2D space. The path tolerance would form a cylindrical offset

tube around the path instead of a two-dimensional band. This would allow the spline to

deviate in one more dimension than the 2D case.

The 3D algorithm would parse all of the same data. The control points would be

in 3D instead of 2D. The rest of the parameters would be the same as for 2D.

Sorting the control points into end, ripple and smooth points would be the most

complex part of a 3D conversion. The control points would no longer be in a single

plane, which means that lines and distances to lines would no longer be sufficient to

distinguish between smooth and ripple points. The first and last points would continue to

be categorized as endpoints.

The 3D algorithm would still categorize the points using the shape of the control

polygon. In the 3D case, lines would not be sufficient to categorize points. Two planes

would be used in place of each of the two lines that are used to categorize each point in

the 2D algorithm. This would produce four planes total per control point.

To distinguish between ripple and smooth points, the algorithm would first

calculate the equations of two orthogonal planes that would go through the point being

considered and the point just before it. The intersection of the two orthogonal planes

would be the same line that is used in the 2D algorithm to categorize points. The two

planes would split the space into quadrants. The rotation of the planes would need to be

 97

determined. Next, the points immediately before and after the points used to make the

planes would be checked to determine their quadrant.

The 3D tool path would have direction vectors that are essentially the same as the

2D path. The direction vectors would be calculated using the same algorithms as the 2D,

except the 3D tool path would use 3D vectors. Direction vectors would be calculated

using three points that would lay in a plane, so the math would be the same as in the 2D

algorithm. The sensitivities, maximum distance, move distances, smooth control

polygon, and termination would be essentially the same for 3D as for 2D.

 98

 99

6 References

[1] Beckman, B. “Physics of Racing Series.” n.d.
 http://www.miata.net/sport/Physics/index.html (accessed July 30, 2007).

[2] Berg, J. “Anytime Path Planning and Replanning in Dynamic Environments.”
IEEE International Conference on Robotics and Automation (May 2006):
2366-2371.

[3] Berglund, T. “Path-Planning with Obstacle-Avoiding Minimum Curvature

Variation.” B-splines, Licentiate Thesis, Department of Computer Science and
Electrical Engineering, Luleå University of Technology, Sweden (2003).

[4] Blinkhorn, R. “Driving Techniques.” 2006,

http://www.gpracing.net192.com/drivers/techniques.cfm (accessed July 30, 2007).

[5] Bohez, E. “Compensating for Systematic Errors in 5-Axis NC Machining.”

 Computer-Aided Design 34 (2002): 391-403.

[6] Choi, B.; Jun, C. “Ball-End Cutter Interference Avoidance in NC Machining of

Sculptured surfaces.” Computer-Aided Design 21 (1989): 371-378.

[7] Eilers, P.; Marx, B. “Flexible Smoothing with B-Splines and Penalties.”

Statistical Science 11, no. 2 (May 1996): 89-121.

[8] Erkorkmaz, K.; Altintas, Y. “High Speed CNC System Design. Part I: Jerk

Limited Trajectory Generation and Quintic Spline Interpolation.” International
Journal of Machine Tools & Manufacture 41 (2001): 1323-1345.

[9] Fleisig, R.; Spence, A. “A Constant Feed and Reduced Angular Acceleration

Interpolation Algorithm for Multi-Axis Machining.” Computer-Aided Design 33
(2001): 1-15.

[10] Geraerts, R.; Overmars, M. “The Corridor Map Method: Real-Time High-Quality

Path Planning.” IEEE International Conference on Robotics and Automation
(April 2007): 1023-1028.

http://www.miata.net/sport/Physics/index.html
http://www.gpracing.net192.com/drivers/techniques.cfm

 100

[11] Higashi, M.; Aoki, N.; Kaneko, T. “Application of Haptic Navigation to Modify
Free-Form Surfaces Through Specified Points and Curves.” Journal of Computing
and Information Science in Engineering 2 (December 2002): 265-276.

[12] International TecheGroup Incorporated, “CAD Model Quality" (September 2003)

[13] Jacobs, P.; Canny, J. “Planning Smooth Paths for Mobile Robots.” IEEE

Conference on Robotics and Automation (1989): 2-7.

[14] Jung, S.; Jang, E. “Collision Avoidance of a Mobile Robot Using Intelligent

Hybrid Force Control Technique.” IEEE International Conference on Robotics
and Automation (April 2005): 4418-4423.

[15] Kanayama, Y.; Hartman, B. “Smooth Local Path Planning for Autonomous

Vehicles.” International Journal of Robotics Research 16 (1997): 263-284.

[16] Langeron, J.; Duc, E.; Lartigue, C.; Bourdet, P. “A New Format for 5-Axis Tool

Path Computation, Using Bspline Curves.” Computer-Aided Design 36 (2004):
1219-1229.

[17] Lee, C.; Haralick, R.; Deguchi, K. “Estimation of Curvature from Sampled Noisy

Data.” IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (June 1993): 536-541.

[18] “Line (racing).” n.d. http://en.wikipedia.org/wiki/Line_(racing)

(accessed July 30, 2007).

[19] Papadopoulos, E.; Tortopidis, I.; Nanos, K. “Smooth Planning for Free-Floating

Space Robots Using Polynomials.” IEEE International Conference on Robotics
and Automation (April 2005): 4272-4277.

[20] “Racing line.” n.d. http://en.wikipedia.org/wiki/Racing line

(accessed July 30, 2007).

[21] Red, W. “Constant Jerk Equations for a Trajectory Generator”

http://www.et.byu.edu/~ered/ME537/Notes/Ch5.pdf (accessed Oct 10, 2007).

[22] Sadoyan, H.; Zakarian, A.; Avagyan, V.; Mohanty, P. 2006. “Robust Uniform

Triangulation Algorithm for Computer Aided Design.” Computer-Aided Design
38 (2006): 1134-1144.

[23] Sahin, T.; Zergeroglu, E. “A Computationally Efficient Path Planner for a

Collection of Wheeled Mobile Robots with Limited Sensing Zones.” IEEE
International Conference on Robotics and Automation (April 2007): 1074-1079.

http://en.wikipedia.org/wiki/Line_(racing)
http://www.et.byu.edu/~ered/ME537/Notes/Ch5.pdf

 101

[24] Scherer, S.; Singh, S.; Chamberlain, L.; Saripalli, S. “Flying Fast and Low
Among Obstacles.” IEEE International Conference on Robotics and Automation
(April 2007): 2023-2029.

[25] Scheuer, A.; Fraichard, T. “Continuous-Curvature Path Planning for Car Like

Vehicles.” IEEE Int. Conf. on Intelligent Robots and Systems 2 (September 1997):
997-1003.

[26] Sederberg, T. “Computer Aided Geometric Design.” April 5, 2007

 http://tom.cs.byu.edu/~557/ (accessed July 30, 2007).

[27] Sellen, J. “Planning Paths of Minimal Curvature.” IEEE International Conference

on Robotics and Automation (1995): 1976-1982.

[28] Tang, C.; Medioni, G. “Robust Estimation of Curvature Information from Noisy

3-D Data for Shape Description.” IEEE International Conference on Computer
Vision (September 1999).

[29] “The Racing Line.” n.d.

http://www.driversdomainuk.com/motorsport/racingline.php
(accessed July 30, 2007).

[30] Velenis, E.; Tsiotras, P. “Minimum Time vs Maximum Exit Velocity Path

Optimization During Cornering.” IEEE International Symposium on Industrial
Electronics (June 2005).

[31] Velenis, E.; Tsiotras, P. “Optimal Velocity Profile Generation for Given

Acceleration Limits: Receding Horizon Implementation.” American Control
Conference Portland, OR, USA (June 2005): 2147-2152.

[32] Wang, F.; Yang D. “Nearly Arc-Length Parameterized Quintic Spline

Interpolation for Precision Machining.” Computer-Aided Design 25 (1993):
281-288.

[33] Wilfong, G. “Shortest Paths for Autonomous Vehicles.” Proceedings of the IEEE

International Conference on Robotics and Automation (1989): 15-20.

[34] Zarrabi-Zadeh, H. “Path Planning Above Polyhedral Terrain.” IEEE International
Conference on Robotics and Automation (May 2006): 873-876.

 102

	Brigham Young University
	BYU ScholarsArchive
	2007-12-12

	Reducing Curvature in Complex Tool Paths by Deviating from CAM-Produced Tool Paths Within a Tolerance Band
	George Benjamin Naseath
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Objectives
	1.2 Scope

	2 Background
	2.1 Tessellated Tool Paths
	2.2 Spline Tool Paths
	2.3 B-splines Review
	2.3.1 Bezier Curves
	2.3.2 B-splines
	2.3.3 Convex Hull Property
	2.3.4 Distance Between Two Splines
	2.3.5 Continuity
	2.3.6 Path Tolerance

	3 Method - Smoothing Algorithm
	3.1 Problems with High Curvature
	3.2 Algorithm Overview
	3.3 Implementation of Algorithm
	3.4 Parsing
	3.5 Categorization of Each Point
	3.6 Direction Vectors
	3.6.1 Endpoints
	3.6.2 Ripple Points
	3.6.3 Smooth Points

	3.7 Sensitivity Values
	3.8 Maximum Distance
	3.9 Move Distance
	3.10 Smooth Control Polygon
	3.11 Termination
	3.12 Example of Reduction in Curvature

	4 Results
	4.1 Sample Tool Paths
	4.2 Smoothing Parameters
	4.3 Smoothed Tool Path Results
	4.4 Curvature Results
	4.5 Machine Time Simulation
	4.6 Tool Path Length Results
	4.7 Simulated Machining Times Results
	4.8 Calculation Times Results
	4.9 Discussion of Results
	4.9.1 Tool Path Length
	4.9.2 Curvature
	4.9.3 Feedrate
	4.9.4 Simulated Machining Times
	4.9.5 Tool Path Tolerance Radius
	4.9.6 Percent Savings Versus Curvature
	4.9.7 Percent Savings Versus Discontinuities

	5 Conclusion
	5.1 Future Work
	5.1.1 Closed Tool Paths
	5.1.2 3D Tool paths

	6 References

