
Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2007-06-07

Computationally Efficient Modeling of Transient
Radiation in a Purely Scattering Foam Layer
Rudolph Scott Larson
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Mechanical Engineering Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Larson, Rudolph Scott, "Computationally Efficient Modeling of Transient Radiation in a Purely Scattering Foam Layer" (2007). All
Theses and Dissertations. 921.
https://scholarsarchive.byu.edu/etd/921

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F921&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F921&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F921&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F921&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F921&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarsarchive.byu.edu%2Fetd%2F921&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/921?utm_source=scholarsarchive.byu.edu%2Fetd%2F921&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu


COMPUTATIONALLY EFFICIENT MODELING OF TRANSIENT  

RADIATION IN A PURELY SCATTERING FOAM LAYER 

 

 

 

by 

R. Scott Larson 

 

 

 

A thesis submitted to the faculty of 

Brigham Young University 

in partial fulfillment of the requirements for the degree of 

 

Master of Science 

 

 

 

Department of Mechanical Engineering 

Brigham Young University 

August 2007





 

BRIGHAM YOUNG UNIVERSITY 
 
 
 

GRADUATE COMMITTEE APPROVAL 
 
 
 
 
 

of a thesis submitted by 
 

R. Scott Larson 
 
 
This thesis has been read by each member of the following graduate committee and by 
majority vote has been found to be satisfactory. 
 
 
 
 
Date  Matthew R. Jones, Chair 

Date  Vladimir P. Solovjov 

Date Brent W. Webb 

 





 

BRIGHAM YOUNG UNIVERSITY 
 
 
 
As chair of the candidate’s graduate committee, I have read the thesis of R. Scott 
Larson in its final form and have found that (1) its format, citations, and 
bibliographical style are consistent and acceptable and fulfill university and 
department style requirements; (2) its illustrative materials including figures, tables, 
and charts are in place; and (3) the final manuscript is satisfactory to the graduate 
committee and is ready for submission to the university library. 
 
 
 
 
Date Matthew R. Jones 

Chair, Graduate Committee 

 
Accepted for the Department 

Date Larry L. Howell 
Department Chair 

 
Accepted for the College 

Date Alan R. Parkinson 
Dean, Ira A. Fulton College of Engineering 
and Technology 





 

ABSTRACT 
 
 
 

COMPUTATIONALLY EFFICIENT MODELING OF TRANSIENT 

 RADIATION IN A PURELY SCATTERING FOAM LAYER 

 
 

R. Scott Larson 

Department of Mechanical Engineering 

Master of Science 
 
 
 

An efficient solution method for evaluating radiative transport in a foam layer is a 

valuable tool for predicting the properties of the layer. Two different solution methods 

have been investigated.  

First, a reverse Monte Carlo (RMC) simulation has been developed. In the RMC 

simulation photon bundles are traced backwards from a detector to the source where they 

were emitted. The RMC method takes advantage of time reflection symmetry, allowing 

the photons to be traced backwards in the same manner they are tracked in a standard 

forward Monte Carlo scheme.  

Second, a reduced order model based on the singular value decomposition (ROM) 

has been developed. ROM uses solutions of the reflectance-time profiles found for 

specific values of the governing parameters to form a solution basis that can be used to 

generate the profile for any arbitrary values of the parameter set. 



 



 

The governing parameters that were used in this study include the foam layer 

thickness, the asymmetry parameter, and the scattering coefficient. Layer thicknesses 

between 4 cm and 20 cm were considered. Values of the asymmetry parameter varied 

between 0.2 and .08, while the scattering coefficient ranged from 2800 m-1 to 14000 m-1.  

Ten blind test cases with parameters chosen randomly from these ranges were run 

and compared to an established forward Monte Carlo (FMC) solution to determine the 

accuracy and efficiency of both methods. For both RMC and ROM methods the 

agreement with FMC is good. The average difference in areas under the curves relative to 

the FMC curve for the ten cases of RMC is 7.1% and for ROM is 7.6%. One of the ten 

cases causes ROM to extrapolate outside of its data set. If this case is excluded the 

average error for the remaining nine cases is 5.3%. While the efficiency of RMC for this 

case is not much greater than that of FMC, it is advantageous in that a solution over a 

specified time range can be found, as apposed to the FMC where the entire profile must 

be found. ROM is a very efficient solution method. After a library of solutions is 

developed, a separated solution with different parameters can be found essentially in real-

time. Because of the efficiency of this ROM it is a very promising solution technique for 

property analysis using inverse methods.     
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1 Introduction 

1.1 Motivation 

Foams are formed during a wide variety of industrial processes, and the presence 

of a foam layer significantly impacts the outcome of these processes. Due to the 

widespread existence and importance of foam, techniques for characterizing industrial 

foams are of interest. Knowledge of the structural, radiative and thermophysical 

properties of foams will lead to greater ability to model the formation and stability of 

foams and to model the heat and mass transfer in foams. Clarification of the physical 

mechanisms involved in the production of foam and transport phenomena occurring in 

foam will lead to the ability to mitigate their undesirable effects and enhance their 

desirable characteristics in numerous industrial applications. 

A spectroscopic method of characterizing industrial foams has been developed 

[1]. An essential element of this method is a model of the propagation of a laser pulse 

through a foam layer. The propagation of the laser pulse can be modeled with a high 

degree of accuracy using Monte Carlo (MC) simulations. However, MC simulations are 

computationally expensive. Approximate models based on diffusion theory have also 

been developed. Simulations based on diffusion theory can be performed rapidly, but 

these simulations are accurate for a limited range of properties. The objective of this 
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research has been to develop an accurate and computationally efficient method for 

modeling the propagation of a laser pulse through a foam layer. Ultimately, this model 

will be used as part of an inverse algorithm capable of characterizing the properties of 

foam layers which form during industrial processes.  

A reverse Monte Carlo (RMC) [2] simulation method and a reduced order model 

(ROM) [3] based on the singular value decomposition (SVD) have been developed as 

alternatives to the standard Monte Carlo method. The accuracy and computational 

efficiency of these alternative methods were assessed by comparing results obtained 

using these methods with results obtained from a previously developed forward Monte 

Carlo code [1].  

1.2 Glass Foam 

Liquid foam is part of our everyday life. We see it in soaps, cleaning agents, 

shaving products, and beverages. Its properties are exploited in such applications as 

enhanced oil recovery, fire fighting, insulation products, the production of chemicals, and 

it has even been suggested as a means to control civil disorder [4].  

However, in many applications the formation of foam is a very costly and 

undesirable side-effect. Foam that forms in chemical reactors and food processing 

applications insulates the batch materials, preventing efficient heat transfer. The 

formation of foam is particularly detrimental in the glass manufacturing industry.  

The cost and quality of almost all commercial glass products are determined by 

the performance of the glass melting and delivery systems (furnaces), which, in turn 

depend on the efficiency of the heat transfer from the furnace to the raw materials and the 
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molten glass. In a typical glassmelt about one-third of the surface of the molten glass is 

covered by foam of varying thickness [5]. It is estimated that as much as 60% of the 

radiative heat flux is blocked or scattered by this foam layer [6]. This insulating effect 

results in a significant reduction in energy efficiency of the furnace.  

A foam layer in glassmelts also can reduce the quality of the glass. The loss of 

heat from the furnace reduces the temperature of the melt. A lower temperature means 

lower rates of refinement. Unwanted gas bubbles are left in the melt, decreasing the 

quality of the glass. This decrease in temperature also leads to a decrease in productivity 

because the amount of time required to achieve a satisfactory quality of glass is 

increased.  

In addition to economic impacts on the glass manufacturing industry, glass foam 

leads to harmful environmental effects. To overcome the additional resistance to heat 

transfer created by a foam layer, glass melting furnaces are operated at elevated 

temperatures. In addition to increasing the amount of fuel required, higher temperature 

operation leads to an increase in NOx gas emissions.  

1.3 Spectroscopic Methods 

Much effort has been devoted to mathematically modeling heat and mass transfer 

in glass furnaces in order to increase the efficiency and decrease the negative 

environmental impact associated with glass manufacturing [7]. Methods of characterizing 

industrial foams are an essential element in these modeling efforts. 

Present methods of characterizing foams generally require carefully controlled 

laboratory conditions [4]. Due to the delicate nature of foams, properties of samples 
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extracted from a process and examined in a lab are unlikely to be representative of the 

properties of the foam as it is formed in the furnace. Therefore, further improvements in 

heat and mass transfer modeling depends largely on being able to measure the structural, 

radiative, and thermophysical properties of glass foam in situ [1]. The ultimate goal of 

this research will be to improve a method for characterizing the properties of industrial 

foams. 

A common method of non-invasively determining properties of a substance is 

spectroscopy. Spectroscopy involves probing a material with energy (in the form of x-

rays, visible light, infrared radiation, ultrasound, heat, etc.). A spectroscopic method of 

measuring the properties of foam in a glass furnace has been proposed by previous 

researchers at BYU [1]. In this method a pulsed laser beam is used to illuminate the foam 

layer. The laser radiation is absorbed and scattered as it travels through the foam layer. A 

portion of the radiation passes through the foam and into the glass melt. Some of the 

radiation is reflected out of the foam (see Fig. 1-1). This reflected radiation is measured 

at different radial locations away from the laser. Using the reflectance time profile 

obtained from this measurement technique an inverse method can be used to obtain the 

properties of the foam. Because the inverse method requires multiple solutions of the 

forward model of the radiation process a computationally efficient model is essential. The 

crux of this research is to develop a more efficient model of the radiative transport in the 

foam layer.  
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Figure 1-1: Spectroscopic investigation of a foam layer. 

 

Propagation of the laser beam through a non-absorbing foam layer has been 

modeled using a forward Monte Carlo (FMC) approach [1]. However, use of FMC 

simulations to solve the inverse problem is infeasible due to the computational expense. 

Depending on the properties of the foam layer (thickness, scattering coefficient and 

asymmetry parameter), one MC simulation will require anywhere from 20 to 200 hours 

on a SGI Origin supercomputer with 64 MIPS processors. Computationally efficient 

approximate methods based on the diffusion approximation have also been explored, but 

these methods are not sufficiently accurate in all cases of interest [1]. Therefore, the need 

for a robust, computationally efficient method for predicting the time-dependent 

reflectance profiles exits.  

Currently, the most commonly used methods for the analysis of radiative heat 

transfer are: integral equation models, the discrete ordinates method or finite volume 

method, the diffusion approximation, and Monte Carlo methods [8]. All of these methods 

involve solving the radiative transfer equation for the intensity field throughout the 
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system. In this research a computationally efficient reverse Monte Carlo (RMC) 

algorithm has been developed. RMC takes advantage of the principle of reciprocity in 

radiative transport to calculate the reflected flux at the detector by backward tracing the 

photons that reach the detector, eliminating the need to calculate the entire field. Also, a 

simulation method based on reduced order or spectral methods has been employed. This 

method is based on the singular value decomposition (SVD) of a matrix of reflectance 

profiles that where found using another technique (e.g. FMC or RMC). The combination 

of the RMC model and the reduced order model (ROM) are useful tools that can be used 

to solve the forward problem in near real-time, opening the door to the use of inverse 

methods to solve for the sought after foam properties.  

1.4 Thesis Outline 

This thesis will discuss the development of a reverse Monte Carlo model and the 

reduced order model based on SVD that are used to model the reflected flux exiting a 

purely anisotropic scattering medium that is irradiated by a pulsed laser. The solutions are 

dependent on the following foam properties: foam layer thickness (L), scattering 

coefficient (μs), and the asymmetry parameter (g).     

Chapter 2 contains a summary of previous work done on modeling radiative 

transport in participating medium used to characterize material properties as well as a 

discussion on the significant literature pertaining to RMC and reduced order modeling 

based on SVD. In Chapter 3 the development of the reverse Monte Carlo model is 

discussed in detail. Chapter 4 contains a detailed description of the reduced order model 

and Chapter 5 contains the results of the comparisons of the two models with an 
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established FMC model. Chapter 6 concludes the body of the thesis with a summary of 

the research, conclusions made, and comments on future research. Following Chapter 6 is 

a list of works sited in this thesis. Appendix A and B contain a full catalog of results for 

cases that were run using the two models developed. Appendix C contains the source 

code for RMC written in C++ and Appendix D contains the source code for ROM written 

in Matlab. 
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2 Previous Work 

2.1 Introduction 

The study of radiative transport in participating medium, particularly in glass 

foams has been the subject of research in the past years. Aided by the development of 

computing resources and new and improved solution methods, a number of radiative 

transfer problems that were previously unsolvable have now been solved. This chapter 

will discuss the main methods of solution and summarize the research that has been done.    

2.2 Current Models for Transient Radiative Processes  

Efforts have been made to develop computationally efficient radiation models of 

transient radiation in participating medium. This section describes some of the main 

methods used including: the discrete ordinate method, finite volume method, integral 

equation models, diffusion approximation, and Monte Carlo schemes.  

2.2.1 Discrete Ordinates Method 

The discrete ordinate method is a descendant of the Schuster-Schwarzschild or 

two-flux approximation [9, 10]. In this method the intensity is discretized and assumed to 

be constant over specific solid angles. Although relatively efficient computationally, 
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there is a large memory requirement and communication overhead that are major 

drawbacks for implementing this method [11, 12]. 

2.2.2 Finite Volume Method 

The finite volume method is similar to the discrete ordinates method except it 

uses finite volumes not only for the spatial discretization but for the directional 

discretization as well. This approach was first implemented by Briggs et al. [13]. Raithby 

gives a good review of this method [14]. Lu and Hsu applied finite volumes for the 

solution of light pulse propagation in three-dimensional scattering medium [15]. This 

method suffers from the same shortcomings as the discrete ordinates method because of 

the large memory requirement.  

2.2.3 Integral Equation Models 

Typically integral formulations are used to develop an analytical model of the 

fundamental transport phenomenon. The analytical model is then solved using numerical 

quadrature or similar numerical schemes. Tan and Hsu solved the transient problem using 

an integral formulation [16]. Integral equation models are well suited for implementation 

in parallel computing schemes and are fairly accurate, but are difficult to use in the cases 

with reflective boundaries [17] 

 

2.2.4 Diffusion Approximation 

For optically thick medium a simplifying approximation can be made to the RTE 

so that a closed form solution can be found. Salisbury used a diffusion approximation to 
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solve the problem of a pulsed laser incident on a participating foam layer with a detector 

measuring the reflected radiative flux [1]. This diffusion theory approximation was 

successfully implemented in an inverse algorithm to predict the foam layer thickness and 

reduced scattering coefficient. Although the diffusion approximation is computationally 

efficient, it is only accurate when the detector is located a sufficient distance from the 

source. Since the signal to noise ratio decreases rapidly as the source-detector separation 

increases. Limitations on the proximity of the detector to the source severely restrict the 

use of the diffusion approximation in inverse techniques.  

2.2.5 Monte Carlo Simulations 

Monte Carlo schemes are the widely used as benchmark solutions and have 

countless applications [8]. They can be used to stochastically solve problems that may not 

have a deterministic solution. In radiative transfer problems, often there is no closed form 

solution and there is no known solution technique. Monte Carlo schemes can be used to 

solve complex radiation problems that may include complicated geometries, varying 

radiative properties, scattering, or other complications that may make the solution 

extremely difficult or even impossible to find.  

The main idea behind Monte Carlo solutions to radiative transport problems is to 

follow the random path of photons as they propagate through a medium encountering 

scattering and or absorbing events. Random numbers and probabilities based on the 

properties of the medium are used to determine the location, direction, and length of 

scattering events. Salisbury developed a forward Monte Carlo scheme to solve the 

problem at hand [1].  
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Although reliable, Monte Carlo schemes are not computationally efficient. In 

order to obtain statistically meaningful results hundreds of thousands of photon bundles 

have to be tracked and recorded. To improve the efficiency of traditional Monte Carlo 

schemes, a number of techniques have been introduced including reverse or backward 

Monte Carlo. 

2.3 Reverse Monte Carlo 

Reverse Monte Carlo takes advantage of the principle of reciprocity in radiative 

transport to calculate the reflected flux at the detector by backward tracing the photons 

that reach the detector, eliminating the need to track bundles that never intercept the 

detector. The idea of RMC has been applied in several studies [18-24]. Collins et al. [19] 

reported the earliest work on RMC relevant to radiative heat transfer. All of these studies 

dealt with large light sources, which lead to a straightforward implementation of RMC. A 

method for implementing RMC to cases with a small energy source is described by 

Modest [2]. One of the challenges of this study is to develop a method for applying RMC 

to cases with a small energy source and a small detector. The work presented by Modest 

is for a steady radiative source in a 2-D medium. Lu and Hsu describe a RMC simulation 

for a pulsed source in a 3-D medium [25, 26]. The work of both of these researches has 

been referenced in the development of the RMC simulation used in this research.   

2.4 Reduced Order Modeling 

Often it is advantageous to obtain a low-dimensional approximation of a high-

dimensional process. The main idea of these methods is to obtain an ordered set of basis 
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vectors that represent the dominant features of the data. There are a number of modeling 

techniques that rely on the singular value decomposition to solve for the basis. One such 

technique that is referred to by different names but is essentially equivalent is known as 

Proper Orthogonal Decomposition (POD), Principal Component Analysis (PCA), or as 

the Karhunen-Loeve Decomposition (KLD) [3, 27-30]. For purposes of this thesis we 

will refer to the reduced order model based on the singular value decomposition as the 

reduced order model or ROM although in some references it may be referred to by one of 

above mentioned titles. 

ROM was first developed about a century ago as a tool for processing statistical 

data [27, 28]. It is a powerful method of data analysis that is used to obtain a low-

dimensional approximate description of a high-dimensional process. ROM is used in 

signal processing, pattern recognition, control theory, fluid flow, and dynamics [29, 30]. 

Recently ROM has been demonstrated in heat transfer applications. Ostrowski et al. 

applied a ROM to an inverse method in order to estimate thermal conductivities and 

convection heat transfer coefficients [3]. 

These methods are valuable because they allow one to solve the problem offline 

for a set of specified values of input parameters using any available solution method. 

Once there is a sufficiently large library of solutions gathered, the solution to the problem 

for a separate set of parameters can be found using a basis derived from the library of 

solutions. This enables near real-time solutions of highly complex problems.  
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3 Reverse Monte Carlo  

3.1 Introduction to Reverse Monte Carlo 

Monte Carlo methods solve complicated mathematical problems using statistical 

probabilities and random numbers (hence, the name Monte Carlo). A traditional or 

forward Monte Carlo (FMC) method tracks a “bundle” of photons as it randomly moves 

through a participating medium. A random number generator and predetermined 

probability density functions, which are based on the properties of the medium, are used 

to determine how far the bundle will travel before it encounters either a scattering or an 

absorbing event, the scattering angle, and the amount of energy absorbed. This process is 

followed until the bundle is either absorbed or leaves the system. Repeating this 

procedure for a very large number of photon bundles results in a complete picture of the 

intensity field.  

As an example, consider the implementation of a FMC method to model the 

propagation of the laser beam through a foam layer illustrated in Fig.1-1. One would emit 

photon bundles and trace the path of each bundle, even though a very small fraction of 

them would actually make their way to the detector and provide useful information. The 

vast majority of the photon bundles are absorbed or leave the medium in locations where 

there is no detector, so they do not provide any useful information. This is clearly an 
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inefficient approach that will require an enormous number of bundles to obtain a 

statistically meaningful result [2].  

A more desirable method would be to trace the photons that actually arrive at the 

detector back to their source. This is the fundamental operating principle for RMC 

methods [8].  The RMC method is based on the principle of reciprocity in radiative 

transfer developed by Case [31]. One of the most basic reciprocity principles states that  

 

 )ˆ,;ˆ,()ˆ;ˆ,( 11222,211 srsrsrsr −=− II  (3-1) 

 

That is, the intensity at location 1r  and in direction 1ŝ−  due to the point source at 

2r in the direction 2ŝ equals the intensity at location 2r in the direction 2ŝ−  due to the 

point source at 1r  in the direction 1ŝ . Also implied in reciprocity is time reflection 

symmetry, i.e., the scattering angle of a photon moving one direction in time is the same 

as if the photons where following the same path backwards in time. This means that the 

bundles reaching the detector can just as well be traced backwards in time from the 

detector to the source.  

In the case where the detector is small and located such that it is not subject to 

direct radiation from the source, the number of photons that would reach the detector 

compared to the number of photons actually emitted is extremely small. This explains the 

advantage of using a reverse scheme when the detector is small and the source is large—

far fewer bundles are required to obtain a statistically meaningful result. On the other 

hand, when the source is small and the detector large a forward scheme may be more 

efficient.  
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If both the detector and the source are small both methods become inefficient, or 

even fail [2]. For the case of collimated radiation, RMC can be made more efficient by 

separating the intensity into a two parts, direct (collimated) and scattered.  

 

 ),ˆ,(),ˆ,(),ˆ,( tItItI sd srsrsr +=   (3-2) 

 

Modest demonstrated the efficiency of this method for the case of a steady 

radiative source passing through an absorbing and scattering medium [2]. For the 

problem being studied here a pulsed laser source is used. The added time dimension 

significantly increases the complexity of tracking the photons to the source. Lu and Hsu 

demonstrated a RMC simulation for a light pulse in both a two-dimensional [25] and 

three-dimensional [26] participating medium. The algorithm developed for this thesis 

which is described in detail below is based on the work of Modest and Lu and Hsu. 

3.2 Theoretical Development 

For this research we are interested in computing the reflectance-time profile at a 

detector located at a radial distance rd from the laser source. The reflectance is defined as 

the radiative flux incident on the detector location divided by the output flux of the flat-

beam laser.  
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Following the development of Modest [2] the radiative flux at the detector surface 

that is included by the detector’s acceptance angle can be computed from the intensity at 

the detector.  
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It is assumed that the intensity at the detector is diffuse. This approximation 

introduces certain limitations on this method. In order for the diffuse approximation to be 

valid the detector either should be located sufficiently far enough away from the source 

so that the radiation is diffuse, or a small detector acceptance angle should be modeled. 

The RMC model used in this research uses an acceptance angle of ten degrees. The total 

intensity at the detector can be calculated as the sum the individual intensities In of N 

bundles in the direction of dŝ−  as illustrated in Fig. 3-1.  

Backward tracing 
photon path

dŝ−

Detector

Foam Layer

 

Figure 3-1: Photon trajectory at detector location. 
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Because the detector is in a location where it is not subject to direct irradiation for 

the collimated beam there is no direct intensity incident on the detector. The intensity at 

the detector therefore comes only from scattered radiation and can be found by 

integrating the source over path lengths where the source and the photon bundles 

intersect. 

 

 ( ) ( ) ldtStI
l

ddn ′′−′=− ∫0 1 ,ˆ,,ˆ, srsr  (3-5) 

 

where source due to the first scattering of the beam can be expressed as 
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where ( )ssr ˆ,ˆ, 0Φ  is the scattering phase function and 0ŝ is the direction of the collimated 

beam. The Henyey-Greenstein phase function [32] is used to approximate the scattering 

phase function with the asymmetry parameter g 
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Combining Eqs. (3-5) and (3-6) and noting that θcos/'' dzdl = , the intensity at the 

detector due to a single photon bundle can be expressed as  
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where Uz  and Lz  are the upper and lower z locations where the bundle and pulse cross. 

The subscript j denotes the individual lengths of the path of a photon between scattering 

events. A detailed description of how to calculate the crossing locations is given Section 

3.3.3. The total intensity at the detector is taken as the statistical average of N photon 

bundles. 

These equations are implemented in an algorithm that is described in detail in the 

next section. 

3.3 Detailed Description of RMC Algorithm  

The algorithm developed for this thesis is described in this section. Fig. 3-2 is a 

flow chart outlining the basic steps in the algorithm. Those steps are described in more 

detail in the numbered steps given below. Also each step is detailed in the corresponding 

subsection that follows.  
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Figure 3-2: Simplified flow chart of RMC algorithm. 

 

1. Select a time t1 which is the time that the photons reach the detector.  

2. Assume that N bundles of photons reach the detector at t1. Launch one of the N 

bundles. If all the bundles have been launched for the current time step, go to step one 

and increment time until the upper limit of the time range is reached. 

3. Pick an emission location and direction. The bundles are emitted from some location 

that is randomly selected from a uniform distribution on the detector. The emission 
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direction ( )φθ ,  is also chosen from random distributions. The method of choosing 

emission directions is outlined in Section 3.3.1. 

4. Pick the path length to next scattering event, lσ. The method for choosing scattering 

path length is outlined in Section 3.3.2.  

5. Calculate location and time t2 (= t1 - lσ/c) of the scattering event.  Check to see if t2 ≤ 

0. If t2 is less than zero it means that the photon bundle would not have arrived at the 

detector in the time interval selected.  

6. Check if the bundle encountered the boundary of the domain. If it has, calculate the 

internal reflectance and decrease the intensity of the bundle accordingly. 

7. Check to see if photon has encountered the pulse. If so calculate the upper and lower 

z locations where the bundle and pulse intersected. The procedure for determining zL 

and zU is outlined in Section 3.3.3.  

8. Pick a new scattering direction based on the procedure in Section 3.3.4. Update time 

(t1=t2) and let the end location of the bundle become the starting location for the next 

path length. Go to step 4.  

9. Go to step 2 and complete the tally of all N bundles. 

3.3.1 Selecting Emission Direction 

An emission direction is chosen exactly as it would be in the forward method. As 

described by Modest [2] the random number relation for the polar angle of emission θe is  
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 or )sin(sin max
1 θθ θRe
−=  (3-9) 

 

The azimuthal angle eφ  is chosen uniformly by φπφ Re 2= . θR and φR are random numbers 

chosen between 0 and 1 and maxθ is the detector acceptance angle.  

3.3.2 Scattering Length  

The scattering length is chosen from random number relations based on the 

definition of the scattering coefficient given by Modest [8] and is given as 
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Where sμ is the scattering coefficient and σR is a random number uniformly distributed 

between 0 and 1. It is important to note that travel distance (or path length) and time are 

not independent. Because photons propagate at the speed of light in the medium the 

distance traveled is related to time by the constant speed of light, dl=cdt. Therefore, 

knowing the initial location ( )iii zyx ,, , initial time t1, the direction of photon propagation 

ŝ = ( )zyx sss ,, , and now the path length σl , the location of the scattering event ( )eee zyx ,,  

and the time of the scattering 2t  event can be calculated as 
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and 

 112 / cltt σ−=  (3-11) 

 

Noting that 2t  occurs before 1t  or 21 tt > , 1c  is the speed of light in the medium, and ŝ  is 

a unit direction vector.   

3.3.3 Determining Photon-Bundle Interactions 

Determining if and where the bundle and pulse intersect is complicated by the fact 

that the bundle and pulse are moving in both time and space. In the three-dimensional 

medium the location where the bundle path intersects the cylindrical volume created by 

the path of the beam must be determined first. There are seven possibilities illustrated in 

Fig. 3-3.   
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Figure 3-3: Schematic diagram of x-y plane showing 7 different possibilities for bundle-pulse 
interaction. 
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The path length to the location where the bundle crosses the beam’s cylindrical 

path cl can be found by solving the three equations 
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By squaring and adding the first two equations and substituting the third, the solution can 

be found by solving the quadratic equation. 
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The seven possible scenarios depicted in Fig. 3-3 are described as follows: 

1. The bundle remains inside the beam’s cylindrical path ( Rri <  and Rre < ). 

2. The beginning position in located outside of the beams path, the end position is inside 

( Rri >  and Rre < ) and 2llc = .  

3. The beginning position is located inside of the beam’s path, the end position is 

outside ( Rri <  and Rre > ) and 1llc = .   

4. The direction of the bundle path intersects the beam path, but the bundle is scattered 

before reaching beam path ( Rrr ei >, ). This occurs if σll >2 . 
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5. Both endpoints are outside of the beam path ( Rrr ei >, ), but the bundle intersects the 

beam path. The path length to the first intersection point is 2llc =  and to the point 

where the bundle exits the beam is 1llc = . 

6. The direction of the bundle path intersects the beam path, but the bundle is moving 

away from the beam path ( Rrr ei >, ). This is the case if 01 <l . 

7. The path of the bundle completely misses the beam path. This only happens when 

there are complex roots, i.e. 0<d . 

 

Determining where and when the bundle crosses the beam’s collimated path is not 

all. Because the beam is a pulse with temporal width tp, the interaction location in the z 

direction must also be found. Lu and Hsu describe a method for finding these locations in 

[25, 26]. Their method is adopted and described below.  

There are numerous possibilities depending on whether the photon is initially 

inside or outside of the beam path, is inside or outside at the time of the scattering event, 

is initially within the pulse width, is within the pulse width at the time of the scattering 

event, leaves or enters the cylinder before, after or during the pulse width, or passes 

through the entire cylinder. A diagram is helpful to picture some of the possible 

scenarios.  
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Figure 3-4: Three possible scenarios for photon bundles interacting with pulsed beam. In total there 
are sixteen different ways the photon bundle and beam can interact. 

 

Depending on where, when, and if the bundle crosses in or out of the beam path, 

the upper and lower intersection locations can take on any of the following forms. 
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Here cz and 2cz  are the z locations where the photon bundle crosses into and out of the 

cylinder. The z locations of the crossing can be found from the knowledge of the distance 

to the crossing found from Eq. (3-13) and zic slzz 2,1+= . If the photon is moving from 

outside of the beam path to a location inside the beam path 2llc = , if it is moving from in 

to out 1llc = , and if it moves completely across the beam 2llc = and 12 llc = .  

Substituting these z locations found in Eq. (3-14) for all the beam-photon 

interactions into Eq. (3-8) the intensity at the detector location can be found as the 

statistical average over all the bundles emitted. 
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Because it is a statistically random process, there is variation inherent in the 

solution. Tracking more photons will decrease the amount of statistical noise in the 

solution. The algorithm used for this research allows the user to specify the maximum 

standard deviation desired. The program will track a specified set of N photons and 

calculate the standard deviation using that set. If the standard deviation is greater than the 

maximum specified, N is doubled until the standard deviation is lower than the required 

level. 

Results using this RMC algorithm are presented in Chapter 5. The actual 

algorithm coded in C++ is included in appendix B.  
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4 Reduced Order Modeling Based on SVD 

4.1 Introduction to ROM Based on SVD 

Most radiative transport problems do not have closed form analytical solutions 

and the numerical techniques used to solve them are often not efficient enough to allow 

for real-time solution needed in inverse analysis. Using reduced order modeling (ROM) 

based on singular value decomposition (SVD) one can solve a complex problem 

efficiently and accurately. Using information that is obtained off-line using a standard 

modeling technique (such as MC, RMC, diffusion approximation, etc.), with all the 

solutions based on a different combination of parameters, a basis can be found for the 

solution of the problem based on an arbitrary parameter set. 

The implementation of reduced order modeling is relatively simple once the 

parameters governing the phenomenon of interest are identified. Data sets describing the 

phenomenon at specified values of the governing parameters are obtained by experiment 

or by analysis [3]. The data sets are arranged in a matrix and an orthonormal basis for the 

column space of this matrix is obtained from its SVD. The basis vectors are ordered 

according to the magnitude of their associated characteristic values, and the first few 

basis vectors contain the majority of the information required to describe the 

phenomenon. Therefore, a truncated set of the basis vectors can be used to estimate the 
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phenomenon of interest for an arbitrary set of the governing parameters. The expansion 

coefficients, which are functions of the set of governing parameters, are determined by 

curve fitting the original data set.     

The following paragraphs describe this method in more detail while focusing on 

the application of interest in this thesis which is predicting the time-dependent reflectance 

profile produced when a pulsed laser beam is normally incident on a non-absorbing, 

scattering plane layer. The properties of the layer which form the set of governing 

parameters are the scattering coefficient μs, the asymmetry parameter g, and the layer 

thickness L. The values of these parameters are stored in vector k. 

 

 [ ], , T
s g Lμ=k  (4-1)  

 

The fundamental concept underlying the reduced order model is that the reflectance 

profile for an arbitrary parameter set can be approximated by a linear combination of a 

set of orthogonal basis vectors. 

 

 ≈kR Φb(k)  (4-2)  

 

In this equation Rk is a vector containing a reflectance profile based on the parameters in 

the vector k, Φ is a matrix of basis vectors, and the vector b represents the expansion 

coefficients, which are functions of the set of governing parameters. The major tasks 

required in the development of the reduced order model are the identification of the basis 
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vectors and the functional relationship between the expansion coefficients and the set of 

governing parameters. 

4.2 Calculation of the Truncated Set of Basis Vectors 

In the present study, MC simulations were used to generate reflectance profiles 

for each possible combination of the following values of the governing parameters: sμ  = 

(2800, 5600, 8400, 11200, 14000) m-1
, g = (0.2, 0.4, 0.6, 0.8) and L = (0.04, 0.08, 0.12, 

0.16, 0.2) m. The detector was located a distance of rd = 5 mm from the center line of the 

laser beam, and the reflected flux was measured as a function of time for 16 ns with a 

time resolution of 20 ps. Therefore, this process resulted in m = 100 reflectance profiles, 

each of which consists of n = 800 time-dependent reflectance measurements. Each 

reflectance profile forms a column in an n x m matrix A. 

Using the SVD, A can be factored into an n by n orthogonal matrix U, a n by m 

diagonal matrix Σ and a m by m orthogonal matrix V as shown in Eq. (4-3) [33]. 

 

 A A A= TA U Σ V  (4-3)  

 

The elements of ΣΑ are termed the singular values. The number of nonzero singular 

values is equal to the rank of A and is given the symbol rA. The singular values are 

represented by σΑi, i = 1, .., rA [33].  

The first rA columns of UA form an orthogonal basis for the column space of A. 

However, it is unnecessary to use the entire basis to accurately represent the reflectance 

profiles, so only the first M columns of UA are used to produce the truncated set of basis 
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vectors, Φ, required by Eq. (4-2). As shown in Fig. 4-1, the singular values of A decrease 

rapidly, and based on Fig. 4-1 M is set equal to 6 in this study. 
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Figure 4-1: Singular values of A. 

 

The ith column of A, ai, represents the time-dependent reflectance profile obtained when 

the layer has properties corresponding to the ith set of governing parameters. This 

reflectance profile can now be approximated using the truncated set of basis vectors as 

shown in Eq. (4-4). 

 

 ( )i
i ≈a Φb k  (4-4)  
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4.3 Calculation of the Expansion Coefficients 

 Equation (4-4) can be rewritten in matrix form as 

 

 =A ΦB  (4-5) 

 

where B is an M by m matrix whose ith column contains the expansion coefficients 

required to reconstruct the reflectance profile corresponding to the ith parameter set. 

Because of the orthogonality ofΦ , B is readily calculated as shown in Eq. (4-6). 

 

 T=B Φ A  (4-6) 

 

Equation (4-5) gives the expansion coefficients for each of the specified parameter sets 

used to create A. The ability to calculate the expansion coefficients for an arbitrary 

parameter set, b(k), is required. Estimates of expansion coefficients may be obtained by 

interpolation of the results given in Eq. (4-6). This is done by defining a coefficient 

matrix C such that 

 

 CFB ≡  (4-7) 

 

where F is an m by m matrix of interpolating functions. While any interpolating functions 

may be used, previous studies have found that inverse multiquadric functions are useful 

when interpolating data in more than one dimension [34, 35]. The ith column of F is 
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calculated by evaluating the multiquadric interpolation function defined in Eq. (4-8) for 

each of the parameter sets used to generate A. 
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Since F may be a singular matrix, Eq. (4-7) must be solved for the coefficient matrix C in 

a least squares sense using the Moore-Penrose pseudoinverse, F+ [33, 36]. Calculation of 

the pseudoinverse is also based on the SVD of the interpolation matrix. 

 

 T
F F F=F U Σ V  (4-9)  

 

UF and VF are orthonormal matrices and ΣF is a diagonal matrix containing the singular 

values of F, (σFi, i = 1, .., rF) the pseudoinverse is found as illustrated in Eq. (4-10). 

 

 =  = T T T
F F F F F F F F FΣFV S U U V V S U I  (4-10) 
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where SF is a diagonal matrix that is defined as 

 

 { }, = diag 1F F iσS  (4-11) 

 

for , 0F iσ > . In practice, it is necessary to specify a minimum allowable value for 

,F iσ and to set the elements of SF equal to zero if ,F iσ  is less than this specified minimum 

value. The singular values of the interpolation matrix used in this study are shown in Fig. 

4-2. The results presented in the following section were obtained with a minimum 

allowable singular value of 10-4.  
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Figure 4-2: Singular values of F. 
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From Eq. (4-10), it is clear that the pseduoinverse of F is given by  

 

 +  = T
F F FF V S U  (4-12) 

 

Once the pseudoinverse of F is known, the coefficient matrix is obtained by post 

multiplying Eq. (4-7) by F+. 

 = +C BF  (4-13) 

 

It is assumed that this coefficient matrix is valid for any arbitrary parameter set. 

Therefore, expansion coefficients for any arbitrary parameter set may be obtained by 

evaluating the interpolation function at k, and post multiplying C with the resulting 

vector. 

 ( ) ( )=b k Cf k  (4-14) 

 

where 
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The expansion coefficients given by Eq. (4-14) are then used in Eq. (4-2) to calculate the 

reflectance profile for any arbitrary parameter set, k.  

ROM has been applied to the problem at hand. The results for ten test cases with 

random parameter sets are presented in chapter 5. 
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5 Results 

5.1 Results of Reverse Monte Carlo Simulations 

Ten test cases were investigated in order to compare the accuracy and efficiency 

of the reverse Monte Carlo algorithm with the forward Monte Carlo predictions. The 

parameters for the cases were generated randomly with the asymmetry parameter g 

ranging from 0.2 to 0.8, the scattering coefficient sμ ranging from 2800 to 14000 m-1, and 

the layer thickness L ranging from 0.04 to 0.2 m. Table 5-1 shows the parameters used in 

each case. 

 

Table 5-1: Parameters used for ten test cases. 

Case g L [m] μs [m-1] 
1 0.5154 0.1415 11620 
2 0.5066 0.1963 13760 
3 0.4330 0.0500 7840 
4 0.7888 0.0989 12760 
5 0.8964 0.0403 3173 
6 0.6710 0.1690 3768 
7 0.6590 0.1800 13410 
8 0.2970 0.0530 4950 
9 0.6920 0.1260 9865 
10 0.5390 0.1540 9737 
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The geometry modeled here is that shown in Fig. 1-1. A flat-beam pulsed laser 

with a radius of 1mm and with a pulse width of 20 ps is normally incident on a foam 

layer with specified thickness L. A detector with an acceptance angle o10max =θ  is 

located at a radius of 5 mm from the center of the beam. The ten cases where all run on 

an SGI Origin supplied with 64 MIPS processors.  

5.1.1 Accuracy of RMC 

Results of all ten cases can be found in Appendix A. For the sake of brevity a few 

of the cases are presented here. Figure 5-1 (a-d) are reflectance-time profiles of purely 

anisotropically scattering foam layers that is irradiated by a flat-beam pulsed laser. A 

detector with a ten degree acceptance angle is used for this comparison. The profiles are 

calculated using both FMC and RMC. 
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 (b)
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(d)
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Figure 5-1: Comparison of reflectance profiles obtained using a reverse Monte Carlo (RMC) with the 
corresponding FMC simulation for (a) case 1 with parameters μs = 11,620 m-1, g = 0.5154, L = 0.1415 
m, (b) case 2 with parameters μs = 13,760 m-1, g = 0.5066, L = 0.1963 m, (c) case 4 with parameters μs 
= 12,760 m-1, g = 0.7888, L = 0.0989 m and (d) case 6 with  parameters μs = 3,768 m-1, g = 0.6710, L = 
0.1690 m. A flat-beam pulsed laser and a detector with a ten degree acceptance angle are used.  

 

The agreement between the FMC and RMC is good. Listed below in Table 5-2 is 

the quantification of the difference between the two profiles. The difference is quantified 

as the difference in the areas under the respective curves normalized by the area under the 

FMC curve as calculated by Eq. (5-1).  

 

 
FMC

RMCFMC
A A

AA −
=δ     (5-1) 

 

Also an R-squared value for the relationship is calculated using standard statistical 

methods. 
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Table 5-2: Quantification of the difference between FMC and RMC using the relative difference in 
the area under the curves and an R-squared value. 

Case g L [m] μs [m-1] δA R-squared 
1 0.5154 0.1415 11620 0.0806 0.9577 
2 0.5066 0.1963 13760 0.0780 0.9491 
3 0.4330 0.0500 7840 0.0767 0.9618 
4 0.7888 0.0989 12760 0.0556 0.9887 
5 0.8964 0.0403 3173 0.0659 0.9947 
6 0.6710 0.1690 3768 0.0645 0.9935 
7 0.6590 0.1800 13410 0.0771 0.9702 
8 0.2970 0.0530 4950 0.0686 0.9755 
9 0.6920 0.1260 9865 0.0690 0.9776 
10 0.5390 0.1540 9737 0.0708 0.9737 

 

5.1.2 Efficiency of RMC 

The efficiency of the RMC algorithm can be measured by the number of photon 

bundles needed in order to obtain a statistically accurate prediction. Since it takes 

essentially the same amount of CPU time to track a photon backward as it does to track it 

forward, we can compare the efficiency of both methods by looking at the number of 

bundles required to achieve the same level of accuracy. In the FMC cases there were 10 

sets of 106 bundles for a total of 107 bundles. To match this level of variance obtained by 

the FMC with 107 bundles the RMC averaged anywhere from 106 up to 2 x 107 depending 

on the properties simulated as well as the time step of interest. The actual run time for the 

two methods would confirm this as both methods required approximately the same 

amount of computation time.  
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5.2 Results of Reduced Order Modeling  

The results of the ROM are presented in this section. The same ten random test 

cases from Table 5-1 are used to establish a comparison between the ROM and FMC. For 

these cases a Gaussian beam laser is modeled and the detector has a ninety degree 

acceptance angle. It should be noted that this is a different setup than that used in the 

RMC simulations and therefore the results for the ROM are not comparable to those 

given for RMC. Recall that the RMC results are for a flat-beam laser with a ten degree 

acceptance angle. A Gaussian beam laser with a large acceptance angle is used to 

generate the library for the ROM solution in order to increase the speed at which the 

solutions were obtained.  

5.2.1 Accuracy of ROM 

In order to generate the ROM basis vectors a library of reflectance profiles was 

generated using FMC simulations. Profiles where obtained for each possible combination 

of the following values of the governing parameters: sμ  = (2800, 5600, 8400, 11200, 

14000) m-1
, g = (0.2, 0.4, 0.6, 0.8) and L = (0.04, 0.08, 0.12, 0.16, 0.2) m. For the 

purposes of the ROM basis vector library 107 photons where used in the FMC simulations 

in order to obtain clean profiles. The matrix A contains m = 100 column vectors of 

profiles for each combination of parameters, each of which consists of n = 800 time-

dependent reflectance measurements. Using this library, ROM was run for the ten test 

cases listed in Table 5-1. A few of the profiles obtained from the ROM are compared to 

FMC simulations below in Fig. 5-2 (a-d). 
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(c)
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Figure 5-2: Comparison of reflectance profiles obtained using a reduced order model (ROM) with 
the corresponding FMC simulation for (a) case 1 with parameters μs = 11,620 m-1, g = 0.5154, L = 
0.1415 m, (b) case 2 with parameters μs = 13,760 m-1, g = 0.5066, L = 0.1963 m, (c) case 4 with 
parameters μs = 12,760 m-1, g = 0.7888, L = 0.0989 m and (d) case 6 with  parameters μs = 3,768 m-1, g 
= 0.6710, L = 0.1690 m. A Gaussian beam laser and a detector with a ninety degree acceptance angle 
are used.   
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Similar to Table 5-2, Table 5-3 contains the results for the comparison of ROM with 

FMC.  

 

Table 5-3: Quantification of the difference between FMC and ROM using the relative difference in 
the area under the curves and an R-squared value. 

Case g L [m] μs [m-1] δA R-squared 
1 0.5154 0.1415 11620 0.0497 0.9834 
2 0.5066 0.1963 13760 0.0754 0.9500 
3 0.4330 0.0500 7840 0.0620 0.9685 
4 0.7888 0.0989 12760 0.0250 0.9976 
5 0.8964 0.0403 3173 0.2860 0.9246 
6 0.6710 0.1690 3768 0.0319 0.9976 
7 0.6590 0.1800 13410 0.0698 0.9651 
8 0.2970 0.0530 4950 0.0523 0.9844 
9 0.6920 0.1260 9865 0.0587 0.9763 
10 0.5390 0.1540 9737 0.0520 0.9775 

 

5.2.2 Efficiency of ROM 

 Once the library of solutions is generated the reduced order model based on SVD 

is computationally extremely fast. Also, the basis vectors and constant coefficients need 

by ROM can be computed offline leaving a few simple matrix multiplications as the only 

calculation left in order to obtain a solution. ROM can be used to find a solution in what 

is essentially real-time.   
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6 Discussion of Results 

6.1 Discussion of RMC Results 

It can be seen from the results of the RMC simulation that the agreement with the 

FMC simulation is within statistical error. With this formulation good results can only be 

obtained if the detector acceptance angle is small enough that the approximation 

introduced in Eq. (3-4) (that the intensity at the detector is diffuse) is valid or if the 

detector is far enough away for the source that the radiation can be modeled as diffuse. 

This puts some limitations on this formulation of the RMC.     

The reverse Monte Carlo scheme is most efficient for cases where there is a small 

detector and a large source. The situation modeled here is a small detector and a small 

source. The transient nature of the source makes it even less efficient. In order for the 

photon paths to obtain energy they must encounter the moving pulse. Because the pulse 

width is relatively small, many photons must be used in order to obtain a meaningful 

result.    

 For the results presented here the allowable standard deviation for the RMC was 

8%. The average standard deviation was about 6%. To achieve that level of accuracy 107 

photons where required by the FMC simulations on average for all ten cases. Case ten 
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was the fastest case, requiring 50 hours to complete 30 data points. Case four was the 

slowest, requiring about 90 hours on the supercomputer.  

 The points that are around the peak of the profile all took less photons and were 

calculated faster than the other points. These times are when the signal-to-noise ratio is 

the highest, therefore fewer photons are needed to obtain a statistically meaningful result. 

Conversely, the points farther away from the peak take more time to calculate. This is 

because the signal-to-noise ratio gets lower as time passes. Also the photons are allowed 

to travel longer, requiring more computations.  

 The RMC scheme presented here has some benefits compared to the FMC. 

Although it may not be much faster computationally, it has the advantage of being able to 

calculate discrete time intervals. That is, if one is interested in information at one specific 

time, or over a specific time interval, the RMC scheme allows one to calculate just that 

information. In FMC the entire profile must be calculated. If information around the peak 

or information from early time steps is needed, RMC can calculate that relatively quickly.  

It is noted that the simulation is faster for smaller scattering coefficients and 

larger asymmetry parameters. If the medium is highly scattering, as characterized by the 

scattering coefficient, the photon bundles must be traced through many scattering 

events—requiring many more calculations than would be required in the case of lower a 

scattering coefficient. Also, the solution is not very sensitive to the layer thickness for the 

range that is used in this study. The glass-foam interface is rarely encountered by the 

photons that are traveling at the times investigated.    
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6.2 Discussion of ROM Results 

The results of the study of ROM show that it can be used as a powerful tool for 

accurately and efficiently modeling a parameterized process. It has been show that ROM 

can be used for any parameterized solution of equations if a solution method is available 

to build the library. Once the library is in place, a solution based on different values of 

the governing parameters can be found in real-time. The error reported in Table 5-2 can 

be misleading. The FMC data that the ROM is being compared to has significant 

statistical variation due to the random nature of the solution technique. For the error to be 

below 10% is sufficient to say that the solution is accurate. The figures with the error bars 

show that the ROM model predicts the solution within statistical uncertainties.  

The only downside to ROM is the expensive upfront cost of creating the library of 

solution. For the results presented in this research a library of 100 solutions is used, based 

on the combinations of the three parameters—two with five values and one with four 

values. The values used are evenly distributed over the range of parameters. If the 

number of significant parameters is increased the number of library solutions would 

increase with the number of required solutions. For example, if just one more parameter 

is added (e.g., absorption coefficient) with five values, then the number of required 

solutions would go from 100 up to five times 100, or 500 required solutions. Often the 

original solutions can be very expensive to obtain. The solutions used here come from the 

FMC simulation, the results of which require 20 to 200 hours on the supercomputers.      

We can see that it is important to understand the range of values that solutions 

will be needed for so that the library can be built to include those values. Extrapolation 

outside of the library range is ill advised as can be seen in case 5. The asymmetry 
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parameter used in that case was 0.8964. The upper limit used to create the library is 

0.800. It is obvious from the high level of error in this case that extrapolation outside of 

the range of parameters gives poor results. Also, as can be seen in case 2, the error is 

increased as the value of the parameters reach the bound. Case 2 has a scattering 

coefficient of 13,760 m-1 which is near the bound of 14,000 m-1. 

 

6.3 Conclusions and Recommendations  

 It has been shown that a RMC simulation can be formulated for transient 

radiative transport in a purely scattering foam layer with good agreement to the FMC 

simulation. Although the RMC did not prove to give marked improvement in 

computational efficiency over the FMC for the situation studied in this work, it does have 

advantages if results over a specific time interval are needed. If information at early times 

is needed or over only a small range of times, the RMC algorithm is more efficient. If the 

entire time domain is required the FMC may be more efficient.  

 With the development of parallel computing resources, it is anticipated that a 

RMC scheme could be coded to trace photons simultaneously on multiple processors. 

Such a parallel processing scheme could prove to dramatically increase the speed of a 

RMC solution. A skilled programmer could optimize the algorithm to increase the 

efficiency.     

 The results of the ROM are very promising. It has been shown that the ROM 

developed here is a powerful tool for real-time solutions of complex problems. It is both 

accurate and efficient. The ROM could be implemented in an inverse scheme to evaluate 

material properties. 
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Appendix A. Comparison of RMC with FMC 

 The contents of this appendix include comparisons between reverse Monte Carlo 

and forward Monte Carlo simulations for all ten test cases that were run.  
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Figure A-1: Comparison between RMC and FMC for values of case 1 (μs = 11,620 m-1, g = 0.5154, L = 
0.1415 m). 
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Figure A-2: Comparison between RMC and FMC for values of case 2 (μs = 13,760 m-1, g = 0.5066, L = 
0.1963 m). 
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Figure A-3: Comparison between RMC and FMC for values of case 3 (μs = 7,840 m-1, g = 0.4330, L = 
0.0500 m). 
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Figure A-4: Comparison between RMC and FMC for values of case 4 (μs = 12,760 m-1, g = 0.7888, L = 
0.0989 m). 
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Figure A-5: Comparison between RMC and FMC for values of case 5 (μs = 3,173 m-1, g = 0.8964, L = 
0.0403 m). 



60 

50 100 150 200 250 300 350 400 450 500 550
-1

0

1

2

3

4

5
x 10-5

time (ps)

R
ef

le
ct

an
ce

FMC
RMC

 

Figure A-6: Comparison between RMC and FMC for values of case 6 (μs = 3,768 m-1, g = 0.6710, L = 
0.1690 m). 
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Figure A-7: Comparison between RMC and FMC for values of case 7 (μs = 13,410 m-1, g = 0.6590, L = 
0.1800 m). 
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Figure A-8: Comparison between RMC and FMC for values of case 8 (μs = 4,950 m-1, g = 0.2970, L = 
0.0530 m). 
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Figure A-9: Comparison between RMC and FMC for values of case 9 (μs = 9,865 m-1, g = 0.6920, L = 
0.1260 m). 
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Figure A-10: Comparison between RMC and FMC for values of case 10 (μs = 9,737 m-1, g = 0.5390, L 
= 0.1540 m). 
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Appendix B. Comparison of ROM with FMC 

 The contents of this appendix include comparisons between reduced order 

modeling based on singular value decomposition and forward Monte Carlo simulations 

for all ten test cases that were run.  
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Figure B-1: Comparison between ROM and FMC for values of case 1 (μs = 11,620 m-1, g = 0.5154, L = 
0.1415 m). 
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Figure B-2: Comparison between ROM and FMC for values of case 2 (μs = 13,760 m-1, g = 0.5066, L = 
0.1963 m). 
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Figure B-3: Comparison between ROM and FMC for values of case 3 (μs = 7,840 m-1, g = 0.4330, L = 
0.0500 m). 
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Figure B-4: Comparison between ROM and FMC for values of case 4 (μs = 12,760 m-1, g = 0.7888, L = 
0.0989 m). 
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Figure B-5: Comparison between ROM and FMC for values of case 5 (μs = 3,173 m-1, g = 0.8964, L = 
0.0403 m). 
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Figure B-6: Comparison between ROM and FMC for values of case 6 (μs = 3,768 m-1, g = 0.6710, L = 
0.1690 m). 
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Figure B-7: Comparison between ROM and FMC for values of case 7 (μs = 13,410 m-1, g = 0.6590, L = 
0.1800 m). 
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Figure B-8: Comparison between ROM and FMC for values of case 8 (μs = 4,950 m-1, g = 0.2970, L = 
0.0530 m). 
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Figure B-9: Comparison between ROM and FMC for values of case 9 (μs = 9,865 m-1, g = 0.6920, L = 
0.1260 m). 
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Figure B-10: Comparison between ROM and FMC for values of case 10 (μs = 9,737 m-1, g = 0.5390, L 
= 0.1540 m).
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Appendix C. RMC Source Code 

Source code file:  rmc.cpp 
 
Compile instructions: use the following command in a UNIX command window 

in the directory where rmc.cpp is located 
  g++ rmc.cpp –o nameofexecutable –lm –O 
 
Run instruction: run the executable by typing  
     ./namefoexecutable 
    and then press “Enter.” 
 
User inputs:   values defining the layer properties  
 
Program output files: revmccs.txt – output columns of time, non-dimensional 

reflectance data, and standard deviation of means. 
 
Source code: 
/*This is a reverse Monte Carlo simulation code modeling  
reflectance-time profiles of a pulsed laser source traveling through a 
glass-foam layer.*/ 
 
#include <iostream> 
#include <iomanip> 
#include <math.h> 
#include <fstream> 
#include <stdio.h> 
#include <stdlib.h> 
 
using namespace std; 
 
#define pi 3.1415926536 
#define nf 1.3       
#define na 1.0      
#define ng 1.5       
#define c0 3.0e8     
#define c (c0/nf)      
#define tmax 16e-9     
#define dt 20.1416015625e-12  
#define tp dt       
#define delztp (c*tp)     
#define nt int(tmax/dt)  
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#define psrw 0.10 
#define irmin 0.001 
 
#define IM1 2147483563 
#define IM2 2147483399     
#define AM (1.0/IM1)     
#define IMM1 (IM1 - 1)     
#define IA1 40014     
#define IA2 40692  
#define IQ1 53668 
#define IQ2 52774 
#define IR1 12211 
#define IR2 3791 
#define NTAB 32 
#define NDIV (1+IMM1/NTAB) 
#define EPS 1.2e-7 
#define RNMX (1.0-EPS) 
 
double ran2(long *idum); 
 
int main () 
{ 
//define internal variables 
long *idum,seed; 
int i,N,Np,in,numsmpl,numsmplhf,ns1,it,toggle1,toggle2; 
double L,sig,g,QT,DQ,r0,rd,dr,rin,R,qd[50],thd,psi,theta,xi,yi,zi; 
double sx,sy,sz,sxnew,synew,sznew,lim,lme,ir,alphai,alphat; 
double qdav,stddev,xe,ye,ze,xt,yt,zt,sinth,ri,re,alphac; 
double szdet,Ibndl,zU,zL,zc,zo,l1,l2,a,b,c1,d,random; 
double Qadj,var,stddevmax,Ref[nt];  
double t1,t2,lscat,zp1,zp2; 
 
//Relate variables to their pointers  
idum=&seed; 
srand((unsigned)time(NULL)); 
seed=-int(1e6*rand()/RAND_MAX)*2-1; 
 
//user inputs-parameters 
g=.5390;   // assymetry parameter 
L=.1540;   // layer thicknes [m]   
sig=9737;   // scattering coefficient [1/m]  (mus) 
 
QT=1000.;   // laser power [W] 
R=0.001;    // radius of laser [m] 
rd=0.005;   // radial location of detector on centers [m] 
r0=0.0005;   // detector radius [m] 
thd=10;   // detector acceptance angle [deg] 
Np=1000;   // number of photon bundles 
numsmpl=10;   // number of samples-must be even 
stddevmax=0.04;  // maximum standard deviation 
dr=2*r0;   // radial resolution 
 
//output file streams 
ofstream data ("revmccs10.txt"); 
data<<"L="<<L<<endl<<"g="<<g<<endl<<"mus="<<sig<<endl; 
data<<"time_(s)"<<setw(25)<<"Refl."<<setw(25)<<"Sx_bar"<<endl; 
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numsmplhf=numsmpl/2; 
szdet=cos(thd*pi/180); 
Qadj=QT/(4.*pi*R*R)*dr*dr*(1.-szdet*szdet); 
 
//loop over time domain 
for (it=0;it<30;it++){ 
N=Np; 
ns1=1; 
Ref[it]=0; 
start:  
//loop to generate numsmpl 'samples' 
DQ=Qadj/N;    
for (i=ns1; i<=numsmpl; i++) { 
 qd[i]=0.;    
 for (in=1; in<=N; in++) { 
  Ibndl=0.; 
  t1=(it+0.5)*dt+(ran2(idum))*dt; 
  ir=1;   
 
  //point of emmission (square) 
  xi=rd+(1.999*ran2(idum)-1)*r0; 
  yi=(2*ran2(idum)-1)*r0; 
  zi=0; 
  
  //direction of emmision 
  sz=sqrt(1-(1-szdet*szdet)*ran2(idum)); 
      sinth=sqrt(1-sz*sz); 
      psi=2*pi*ran2(idum); 
      sx=sinth*cos(psi); 
      sy=sinth*sin(psi); 
scatter:    
  //distance to scattering event 
  lscat=-log(ran2(idum))/sig; 
  toggle1=0; 
  toggle2=0;      
 
  //location of scattering event 
   xe=xi+lscat*sx; 
      ye=yi+lscat*sy; 
     ze=zi+lscat*sz; 
  t2=t1-lscat/c;   
  zp1=c*t1;        //z location of pulse at t1   
  zp2=c*t2;  //z location of pulse at t2 
 
    //check if time is up  
  if (t2<0) { 
   lscat=c*t1;   
   xe=xi+lscat*sx; 
       ye=yi+lscat*sy; 
      ze=zi+lscat*sz; 
   t2=t1-lscat/c; 
   zp1=c*t1;       
   zp2=c*t2;   
  }   
   

//check whether bundle leaves domain at top and calculate 
internal reflection 



72 

  if (ze<0.) { 
   xt=xe; 
   yt=ye; 
   zt=ze;  //location on transmitted side 
   alphai=pi-acos(sz);  //incident angle 
   alphac=asin(na/nf); //critical angle 
   if (toggle1==0) {  //first half of reflection 
    lim=-zi/sz; 
    lme=lscat-lim; 
    lscat=lim; 
     xe=xi+lim*sx; 
       ye=yi+lim*sy; 
       ze=zi+lim*sz; 
    t2=t1-lim/c; 
    zp2=c*t2; 
    toggle1=1; 
   } 
   else {   //second half of reflection 
toggle1: 
    xi=xe; 
    yi=ye; 
    zi=ze; 
    xe=xt; 
    ye=yt; 
    ze=-zt; 
    sz=-sz; 
    lscat=lme; 
    t1=t2; 
    t2=t1-lme/c; 
    zp1=c*t1; 
    zp2=c*t2; 
    if (alphai>0.05 && alphai<alphac) { 
     alphat=asin(nf*sin(alphai)/na); 
     ir=ir*((pow(sin(alphai-
alphat),2)/pow(sin(alphai+alphat),2)+pow(tan(alphai-
alphat),2)/pow(tan(alphai+alphat),2))/2); 
    } 
    else if (alphai<=0.05) 
     ir=ir*pow((nf-na),2)/pow((nf+na),2); 
    else  
     ir=ir; 
    toggle1=0; 
   } 
  } 

//check whether bundle leaves domain at bottom and 
calculate internal reflection 

  if (ze>L) { 
   xt=xe; 
   yt=ye; 
   zt=ze;  //location on transmitted side 
   alphai=acos(sz); //incident angle 
   if (toggle2==0) { //first half of reflection 
    lim=(L-zi)/sz; 
    lme=lscat-lim; 
    lscat=lim; 
     xe=xi+lim*sx; 
        ye=yi+lim*sy; 
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       ze=zi+lim*sz; 
    t2=t1-lim/c; 
    zp2=c*t2; 
    toggle2=1; 
   } 
   else {   //second half of reflection 
toggle2: 
    xi=xe; 
    yi=ye; 
    zi=ze; 
    xe=xt; 
    ye=yt; 
    ze=2*L-zt; 
    sz=-sz; 
    lscat=lme; 
    t1=t2; 
    t2=t1-lme/c; 
    zp1=c*t1; 
    zp2=c*t2; 
    if ((nf*sin(alphai)/ng)>1) 
     ir=ir; 
    else if (alphai<=0.05) 
     ir=ir*pow((nf-ng),2)/pow((nf+ng),2); 
    else { 
     alphat=asin(nf*sin(alphai)/ng); 
     ir=ir*((pow(sin(alphai-
alphat),2)/pow(sin(alphai+alphat),2)+pow(tan(alphai-
alphat),2)/pow(tan(alphai+alphat),2))/2); 
    } 
    toggle2=0; 
   } 
  } 
  //check what part of lscat is inside collimated beam 
      ri=sqrt(xi*xi+yi*yi); 
      re=sqrt(xe*xe+ye*ye); 
      a=ri*ri-R*R; 
      b=sx*xi+sy*yi; 
      c1=sx*sx+sy*sy+1.e-10; 
      d=b*b-a*c1; 
 
  if (d<0.) goto check; 
 
  if (zi>zp1) { 
   qd[i]=qd[i]+DQ*Ibndl; 
   continue; 
  } 
 
  if (ri<R) {          
  //initial point is inside 
   if(re<R) {       
    if ((zp1-delztp)<=zi && zi<=zp1) {  
     if ((zp2-delztp)<=ze && ze<=zp2){  
      zL=zi; 
      zU=ze; 
     } 
     else if (ze>zp2) {  
      zL=zi; 
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      zU=(zi+sz*zp1)/(sz+1.); 
     } 
    } 
    else if (zi<(zp1-delztp)) {  
     if (ze<(zp2-delztp)) goto check; 
     else if ((zp2-delztp)<=ze && ze<=zp2) { 
       
      zL=(sz*(zp1-delztp)+zi)/(sz+1); 
      zU=ze; 
     } 
     else if (ze>zp2) { 
      zL=(sz*(zp1-delztp)+zi)/(sz+1); 
      zU=(zi+sz*zp1)/(sz+1.); 
     } 
    } 
   } 
   else {      
    l1=(-b+sqrt(d))/c1; 
    zc=zi+l1*sz; 
    if ((zp1-delztp)<=zi && zi<=zp1){ 

if ((zp1-delztp-l1)<=zc && zc<=(zp1-l1)) 
{ 

      zL=zi; 
      zU=zc; 
     } 
     else if (zc>(zp1-l1)) { 
      zL=zi; 
      zU=(zi+sz*zp1)/(sz+1.); 
     } 
    } 
    else if (zi<(zp1-delztp)) { 

if ((zp1-delztp-l1)<=zc && zc<=(zp1-l1)) 
{ 

      zL=(sz*(zp1-delztp)+zi)/(sz+1); 
      zU=zc; 
     } 
     else if (zc>(zp1-l1)){ 
      zL=(sz*(zp1-delztp)+zi)/(sz+1); 
      zU=(zi+sz*zp1)/(sz+1.); 
     } 
     else if (zc<(zp1-delztp-l1)) goto check;  
    } 
   } 
  } 
     else {        
  //initial point is outside 
            if (re<R) {        
             l2=(-b-sqrt(d))/c1; 
    zc=zi+l2*sz;  
    if ((zp2-delztp)<=ze && ze<=zp2) { 

if ((zp1-delztp-l2)<=zc && zc<=(zp1-l2))  
{ 

      zL=zc; 
      zU=ze; 
     } 
     else if (zc<(zp1-delztp-l2)) { 
      zL=(sz*(zp1-delztp)+zi)/(sz+1); 
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      zU=ze; 
     } 
    }      
    else if (zp2<ze) { 

if ((zp1-delztp-l2)<=zc && zc<=(zp1-l2)) 
{ 

      zL=zc; 
      zU=(zi+sz*zp1)/(sz+1.); 
     } 
     else if (zc<(zp1-delztp-l2)) { 
      zL=(sz*(zp1-delztp)+zi)/(sz+1); 
      zU=(zi+sz*zp1)/(sz+1.); 
     } 
     else goto check;     
          } 
    else if (ze<(zp2-delztp)) goto check; 
   } 
   else {     
             l1=(-b+sqrt(d))/c1; 
    l2=(-b-sqrt(d))/c1; 
    if((l2>lscat) || (l1<0.)) goto check; 
             if (l1>lscat) l1=lscat; 
    zc=zi+l2*sz; 
    zo=zi+l1*sz; 
    if ((zp1-delztp-l2)<=zc && zc<=(zp1-l2)) { 

if ((zp1-delztp-l1)<=zo && zo <=(zp1-l1)) 
{ 

      zL=zc; 
      zU=zo; 
     } 
     else if ((zp1-l1)<zo) { 
      zL=zc; 
      zU=(zi+sz*zp1)/(sz+1.); 
     } 
    } 
    else if (zc<(zp1-delztp-l2)) { 

if (((zp1-delztp)-l1)<=zo && zo <=(zp1-  
l1)) { 

      zL=(sz*(zp1-delztp)+zi)/(sz+1); 
      zU=zo; 
     } 
     else if (zo<(zp1-delztp-l1)) goto check; 
     else if ((zp1-l1)<zo) { 
      zL=(sz*(zp1-delztp)+zi)/(sz+1); 
      zU=(zi+sz*zp1)/(sz+1.);  
     } 
    } 
    else if (zc>(zp1-l2)) goto check; 
   } 
  } 
  Ibndl=Ibndl+ir*((1-g*g)/(2*pow((1+g*g+2*g*sz),1.5)))*(exp(-
sig*zL)-exp(-sig*zU))/sz; 
 
check:     
  if (toggle1==1) goto toggle1; 
  if (toggle2==1) goto toggle2; 
  if (ze>zp2) { 
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   qd[i]=qd[i]+DQ*Ibndl; 
   continue; 
  }       
  //check to see if time is up 
  if (t2<=0) {   
   qd[i]=qd[i]+DQ*Ibndl; 
   continue; 
  } 
  //decide wether or not to continue bundle 
  random=double(rand())/RAND_MAX; 
  if (ir<irmin && random>psrw) { 
   qd[i]=qd[i]+DQ*Ibndl; 
   continue; 
  } 
   
  //endpoint becomes starting point 
  xi=xe; 
      yi=ye; 
      zi=ze; 
  t1=t2;     
 
  // new direction after anisotropic scattering 
  if (g<0.01) {   
   theta=acos(2*ran2(idum)-1); 
  } 
  else {  

theta=acos((1+g*g-pow(((1-g*g)/(1-
g+2*g*ran2(idum))),2))/(2*g)); 

  } 
   
      psi=2*pi*ran2(idum); 
 
  if(fabs(sz)>=0.99999) { 
   sxnew=sin(theta)*cos(psi); 
   synew=sin(theta)*sin(psi); 
   sznew=sz*cos(theta)/fabs(sz); 
  } 
  else { 
   sxnew=sin(theta)*(sx*sz*cos(psi)-sy*sin(psi))/sqrt(1-
sz*sz)+sx*cos(theta); 
   synew=sin(theta)*(sy*sz*cos(psi)+sx*sin(psi))/sqrt(1-
sz*sz)+sy*cos(theta); 
   sznew=-sin(theta)*cos(psi)*sqrt(1-
sz*sz)+sz*cos(theta); 
  } 
   
  sx=sxnew; 
  sy=synew; 
  sz=sznew; 
   
     goto scatter; 
 
 }    
}     
 
//find average value and std dev 
qdav=0.; 
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for (i=1; i<=numsmpl;i++) { 
 qdav=qdav+qd[i]; 
} 
qdav=qdav/numsmpl; 
stddev=0.; 
for (i=1; i<=numsmpl; i++) { 
 stddev=stddev+pow((qd[i]-qdav),2); 
} 
var=sqrt(stddev/(numsmpl*(numsmpl-1))); 
if (qdav==0) stddev=0; 
else stddev=var/qdav; 
 
cout<<setw(14)<<N*numsmpl<<"  
"<<setw(15)<<qdav*pi*R*R/(QT*dr*dr)<<setw(15)<<stddev*100<<endl; 
 
if (stddev>stddevmax && N<2048000) { 
 //combine pairs of samples and double number of bundles 
 for (i=1; i<=numsmplhf; i++) { 
  qd[i]=0.5*(qd[i]+qd[i+numsmplhf]); 
 } 
 N=2*N; 
     ns1=numsmplhf+1; 
     goto start; 
} 
  
 //print out reflection data 
 Ref[it]=qdav*pi*R*R/(QT*dr*dr); 
 cout<<it<<"\t"<<Ref[it]<<endl; 
 data<<(it+0.5)*dt<<setw(25)<<Ref[it]<<setw(25)<<var*pi*R*R/(QT*dr
*dr)<<endl; 
}  
return (0); 
      
} 
 
//Random number generator 
double ran2(long *idum) 
{ 
int j; 
long k; 
static long idum2=123456789; 
static long iy=0; 
static long iv[NTAB]; 
double temp; 
 
if(*idum<=0) 
{ 
 if(-(*idum)<1) *idum=1; 
 else *idum=-(*idum); 
 idum2=(*idum); 
 for (j=NTAB+7; j>=0; j--) 
 { 
  k=(*idum)/IQ1; 
  *idum=IA1*(*idum-k*IQ1)-k*IR1; 
  if (idum<0) *idum+=IM1; 
 if (j<NTAB) iv[j]=*idum; 
 } 



78 

 iy=iv[0]; 
} 
k=(*idum)/IQ1; 
*idum=IA1*(*idum-k*IQ1)-k*IR1; 
if (*idum<0) *idum+=IM1; 
k=idum2/IQ2; 
idum2=IA2*(idum2-k*IQ2)-k*IR2; 
if(idum2 < 0) idum2+=IM2; 
j=iy/NDIV; 
iy=iv[j]-idum2; 
iv[j]=*idum; 
if(iy < 1) iy+=IMM1; 
temp=AM * iy; 
if(temp > RNMX) return RNMX; 
else return temp; 
} 
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Appendix D. ROM Source Code 

Source code file:   ROM.m 
 
Compile instruction: In MATLAB enable cells. Once the file is loaded into the 

editor window, simply click ‘run’. Or each cell may be 
evaluated individually. Once the first cells have been 
executed the cell titled “Arbitrary Profile” can be evaluated 
independently.  

 
User inputs: Radiative parameters for an arbitrary profile 
 
Program input files: PodData_5mm_Raw.xls – contains demensional 

reflectance profiles generated using a forward Monte Carlo 
simulation 

 
 
Source code: 
%This is a reduced order modeling simulation based on singular value 
%decomposition. It calculates reflectance-time profiles for a set of 
%parameters at arbitrary values using previously calculated profiles at 
%predetermined values. 
 
clear all; clc; 
t1=cputime; 
  
N_photons=10^7;    %number of photons used to create snapshots 
r_laser=.001;      %radius of laster 
r_location=0.005;  %radial location snapshots are taken at 
delta_r=.001;      %radial resolusion 
  
dt=20.1416015625e-12; 
t=[dt/2:dt:dt*800]'; 
%input snapshot matrix A 
A =xlsread('PodData_5mm_Raw','a1:cv40'); 
  
%nondimensionalize A 
A=A*r_laser^2/(N_photons*2*r_location*delta_r); 
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[N,M]=size(A); 
  
%parameters used to create A 
g = [.2:.2:.8]; 
L = [.04:.04:.2]; 
mus=[2800:2800:14000]; 
  
gmax=max(g); 
Lmax=max(L); 
musmax=max(mus); 
  
ng =length(g); 
nL =length(L); 
nmus =length(mus); 
  
tol=1e-4;   %for singular values 
  
%matrix of parameter sets 
is=1; 
for i=1:ng 
    for j=1:nL 
        for k=1:nmus 
            K(is,:) = [g(i) L(j) mus(k)]; 
            is=is+1; 
        end 
    end 
end 
  
%matrix of interpolation functions 
for i=1:M 
    for j=1:M 

F(i,j)=1/sqrt(((K(i,1)-K(j,1))/gmax)^2+((K(i,2)-
K(j,2))/Lmax)^2+((K(i,3)-K(j,3))/musmax)^2+1); 

    end 
end 
 
%number of significant eigenvalues 
n_fe=6; 
  
[U_A SIG_A V_A]=svd(A); 
  
Fe=U_A(:,1:n_fe); 
%calculate coefficient matrix 
B=Fe'*A; 
  
%perform Singular Value Decomposition on F to get Moore-Penrose inverse 
[U_F,Sig_F,V_F]=svd(F); 
Sa=Sig_F;  
  
%zero small singular values 
for i=1:M 
    if Sig_F(i,i) > tol 
        Sig_F(i,i)=1/Sig_F(i,i); 
    else 
        Sig_F(i,i)=0; 
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    end 
end 
  
%get C matrix using singular value decomposition 
C=B*V_F*Sig_F*U_F'; 
  
%% Arbitrary Profile  
%===================================================================== 
t2=cputime; 
N_photons_2=10^5;   %number of photons for test cases 
 
ga = 0.5154; 
La = 0.1415; 
musa = 11621;  
Ka = [ga La musa];  
  
%interpolation function 
for i=1:M 

Fa(i)=1/sqrt(((Ka(1)-K(i,1))/gmax)^2+((Ka(2)-
K(i,2))/Lmax)^2+((Ka(3)-K(i,3))/musmax)^2+1); 

end 
  
Ba=C*Fa'; 
  
%arbitrary field 
Aa=Fe*Ba; 
  
%input A1 exact for comparison 
A1=xlsread(['test' test_num '_ave'],'L4:L104');  
E=xlsread(['test' test_num '_ave'], 'O4:O104'); 
%nondimensionalize A1 
A1=A1*r_laser^2/(N_photons_2*2*r_location*delta_r); 
E=E*r_laser^2/(N_photons_2*2*r_location*delta_r); 
       
%graph data 
figure(2) 
hold on 
plot(t(1:40),Aa(1:40),'-') 
errorbar(t(1:40),A1(1:40),E(1:40),'o') 
legend('ROM','MC') 
axis ([t(1) t(40) -1 1]); axis 'auto y';grid on;box on 
ylabel('Reflectance'); xlabel('time (ps)') 
hold off 
  
%calculate relative error 
for i=1:40 
    error(i)=abs((Aa(i)-A1(i))/A1(i))*100; 
end 
  
%display error information 
err_sum=sum(error(5:40)); 
err_max=max(error(5:40)); 
err_ave=mean(error(2:40)); 
disp(['average error = ' num2str(err_ave)]); 
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Nu=40;     %number of points to calc R-squared 
Aa_ave=mean(Aa(1:Nu)); 
% fitness 
sum1=0; 
sum2=0; 
  
for i=1:Nu 
    sum1=sum1 + (Aa(i)-A1(i))^2; 
    sum2=sum2 + (Aa(i)-Aa_ave)^2; 
end 
  
m=3; 
Syx=sqrt(sum1/(Nu-(m+1))); 
Sy=sqrt(sum2/(Nu-1)); 
R=sqrt(1-Syx^2/Sy^2); 
  
display(['R-squared = ' num2str(R^2)]); 
         
%% 
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