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ABSTRACT

VISION-ASSISTED CONTROL OF A HOVERING

AIR VEHICLE IN AN INDOOR SETTING

Neil G. Johnson
Department of Mechanical Engineering

Master of Science

The quadrotor helicopter is a unique flying vehicle which uses the thrust from
four motors to provide hover flight capability. The uncoupled nature of the longi-
tudinal and lateral axes and its ability to support large payloads with respect to its
size make it an attractive vehicle for autonomous vehicle research. In this thesis, the
quadrotor is modeled based on first principles and a proportional-derivative control
method is applied for attitude stabilization and position control. A unique means of
using an optic flow sensor for velocity and position estimation in an indoor setting is
presented with flight results. Reliable hover flight and hallway following capabilities
are exhibited in GPS-denied indoor flight using only onboard sensors.

Attitude angles can be reliably estimated in the short run by integrating the
angular rates from MEMS gyros, but noise on the signal leads to drift which renders
the measurement unsuitable to attitude estimation. Typical methods of providing
vector attitude corrections such as accelerometers and magnetometers have inherent
weaknesses on hovering vehicles. Thus, an additional vector measurement is neces-

sary to correct attitude readings for long-term flights. Two methods of using image






processing to determine vanishing points in a hallway are demonstrated. The more
promising of the two uses a Hough transform to detect lines in the image and forms
a histogram of the intersections to detect likely vanishing point candidates. Once
the vanishing point is detected, it acts as a vector measurement to correct attitude
estimates on the quadrotor vehicle. Results using onboard vision to estimate heading
are demonstrated on a test stand. Together, these capabilities improve the utility
of the quadrotor platform for indoor flight without the need of any external sensing

capability.
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Chapter 1

Introduction

Hovering unmanned air vehicles (UAVs) that are capable of vertical takeoff
and landing have many advantages over traditional fixed-wing aircraft such as their
ability to maneuver and navigate in confined spaces. These capabilities are important
for tasks such as search and rescue missions, surveillance, and disaster aftermath
searches. The quadrotor helicopter is a convenient platform for developing hover flight
algorithms because it is easy to construct, resilient to vibration, and has decoupled
dynamics.

Estimating full pose (attitude and position) of a six-degree-of-freedom vehicle
is a significant challenge. Two main approaches are typically used to estimate pose:
(1) an array of sensors which independently measure each state variable, and (2)
computer vision techniques which seek to measure one or a series of states. In this
thesis, it is shown that both methods can be used for pose estimation and that in
particular, optical sensors provide position and velocity feedback that can be used as
an aid in the flight of UAVs. A major goal of this work is to demonstrate methods of
navigating indoor hallways using a combination of sensors and computer vision. This

capability is demonstrated and several approaches are compared.

1.1 Position and Attitude Estimation

Indoor navigation poses several challenges to flying vehicles which are com-
pounded in hover flight. Among these are the problems of attitude and position
estimation. Attitude estimation is a solved problem when high-quality instrumen-

tation is utilized. Inertial navigation units typically use Kalman filtering techniques



to fuse data observations from rate gyros, three-axis accelerometers, and three-axis
magnetometers. Integrating the rate gyros provides good estimates of attitude an-
gles over short durations, and errors depend greatly on the quality of the gyros used.
Expensive rate gyros such as laser ring gyroscopes make excellent sensors for large air-
craft, but small vehicles with limited payloads restrict the available sensors to MEMS
gyros which offer lower quality of estimation. Noise on the signal, when integrated,
produces unbounded error in attitude estimates in a matter of seconds, especially
on vibrating aircraft, which means that an additional sensor reading is necessary to
bound the error. Therefore, it is proposed that visual sensing augment the attitude
estimate. Specifically, video processing can be used to determine vanishing points
which provide a set of non-drifting vector measurements. This thesis proposes the
use of a particular algorithm that uses a Hough transform to detect lines and vanishing
points to correct drift in attitude estimation.

Position estimation also introduces challenges that we often take for granted.
A human’s ability to ascertain his/her location relative to obstacles and surroundings
is phenomenal. For an autonomous vehicle to determine position, active sensors are
often employed such as laser range finders and ultrasound ranging devices. In outdoor
environments, global positioning systems (GPS) give reliable passive absolute position
readings by triangulating a receiver’s position with respect to orbiting satellites. GPS
signals are not typically usable indoors, and in any case, they give no indication of
relative orientation to surrounding objects unless a map is provided. Despite these
difficulties, great advances have been made in the areas of position and attitude
sensing, and this thesis seeks to take the most promising applications and put them
into effect on a hovering vehicle. To overcome the challenge of estimating position,
it is proposed that an optic flow sensor be used. Methods for using this sensor
to estimate velocity and to dead-reckon position are developed and results showing

much-improved hover flight are demonstrated.



1.2 System Description

The field of ground robotics has developed a firm foundation of research in co-
operative tasking, indoor environment navigation, and vision-aided navigation. Aerial
robotics has now emerged as a prime research field, and estimation and control theory
have been extensively applied to both fixed-wing and hovering vehicles. The Multi-
AGent Intelligent Coordination and Control Laboratory (MAGICC Lab) at Brigham
Young University has focused first on ground robotics and then aerial robotics, and a
hardware platform based on the Kestrel autopilot has been developed for flying fixed-
wing vehicles [1]. This same autopilot has been used to apply adaptive quaternion
control in both hover and steady-level flight for a Tailsitter VTOL (Vertical Take-off
and Landing) aircraft [2]. These technologies are now being leveraged for use on other

types of flying vehicles.

Figure 1.1: Quadrotor Helicopter: The quadrotor helicopter is the primary vehicle
used in this research. It is capable of sustained hover flights and of holding substantial
payloads.

The vehicle chosen for flight demonstrations in this thesis is the quadrotor
helicopter pictured in Figure 1.1. This four-rotor hovering vehicle is capable of ver-

tical take-off and landing and sustained hover. The quadrotor is steadily becoming a



favorite aircraft among research groups due to its decoupled longitudinal and lateral
dynamics, its payload capacity, and its relative simplicity of design. The goal of this
thesis is to demonstrate methods for combining knowledge from the domains of dy-
namic control and estimation with computer vision techniques for estimating attitude
and position and to demonstrate this capability by flying down an indoor hallway.
Several existing methods have been tested and tried in simulation and hover flight us-
ing the Kestrel autopilot and additional sensors. A dynamic model for the quadrotor
aircraft is presented including a force and torque analysis and differential equations
describing the six-degree-of-freedom model. A proportional-derivative control system
is chosen for its simplicity and effectiveness and flight results demonstrating attitude

and position control are included.

1.3 Contributions of this Work

This thesis work combines helicopter control with visual perception and makes
several contributions to the body of knowledge regarding quadrotor control and sens-
ing. Building on knowledge from many domains, this work demonstrates how onboard
sensors on a flying vehicle can be improved and assisted by computer vision. The main

contributions are the following:

e The first example to our knowledge of using an optic flow sensor on a quadrotor
helicopter with reliable position estimation demonstrated in position hold. This
was demonstrated with a seven-minute flight and several other long flights with

no pilot corrections.

e The first example to our knowledge of computing heading from vanishing points
onboard a helicopter and using that estimate to maintain a desired heading in

real-time.

e Several methods for determining vanishing points are used for attitude esti-
mation. A functional vanishing point detection algorithm was developed and

implemented on the quadrotor with flight results.



A reliable code base has been developed for estimating pose and controlling

quadrotors in hover.

e Methods for modeling the projection of a hallway onto the imaging plane of a

monocular camera have been explored and modeled.

e Flight down a hallway has been demonstrated using velocity commands from a

human pilot.

e Onboard vision has been developed as a usable sensor with real-time visual-
ization on a remote workstation. This greatly aids computer vision algorithm

development and testing.

1.4 Document Organization

In Chapter 2, dynamic models for control and estimation are presented for the
quadrotor helicopter and flight test results show the improved hover capability due
to optical sensors. Estimation methods using data fusion from multiple sensors are
presented showing improvements in real-world environments in Chapter 3. Computer
vision techniques for detecting lines in indoor environments and estimating orienta-
tion and position are presented and compared in Chapter 4. Chapter 5 shows flight
results of a hovering vehicle in a hallway using an array of onboard sensors including
vision processing. Problems encountered in combining visual estimation with sensor
estimation are discussed. Finally, conclusions and possible future work are discussed
in Chapter 6. Some previous work on modeling coaxial helicopters is included in
Appendix A and some background material on perspective geometry is included in

Appendix B.






Chapter 2

Hover Flight Dynamics and Control

Helicopters come in a variety of forms, but in general they have the ability to
take off and land vertically and to maneuver in a holonomic fashion, i.e. they can
move in any direction with equal ease. The quadrotor helicopter consists of four sim-
ple propellers arranged at equal distance from the vehicle’s center. These helicopters
are capable of lifting large amounts of weight and have relatively simple dynamic
characteristics when compared with single-rotor and coaxial helicopters. Little to
no coupling exists between longitudinal and lateral axes, and force and torque cal-
culations are simple. This chapter presents a six-degree-of-freedom model for the
quadrotor helicopter and demonstrates linear control techniques for controlling the
aircraft in the hover flight regime using successive loop closure. Flight results are
presented to show stable hover flight and low-velocity tracking near hover.

The coaxial helicopter was initially used for both simulation and flight-testing.
However, all the results presented in this thesis were collected on a quadrotor heli-
copter platform due to constraints on weight and instrumentation. A complete model
of the forces and torques generated by the twin rotors of the coaxial helicopter is
included in Appendix A along with a discussion of rotor and flybar dynamics. This
chapter will discuss the quadrotor model and the control systems selected for hover

flight.

2.1 Related Work in Hover Flight

A great deal of research has been conducted on hovering vehicles. The related

work which directly applies to this research is split into two main categories: general



helicopters and quadrotor helicopters. Initial research for this thesis focused on single-
rotor and coaxial helcopters, but towards the end the emphasis was shifted to the
quadrotor helicopter. Because these types of vehicles are similar in nature, work

related to both is included here.

2.1.1 General Helicopter Research

Large and small-scale autonomous helicopters have been developed at many
schools and research institutions. Carnegie Mellon University [3], Stanford [4], MIT
[5], USC [6] and several other schools have flown single-rotor helicopters autonomously
with high levels of control. In association with the BYU MAGICC Lab, helicopter
research involving stereo vision has been completed with NASA and the U.S. Army
[7]. Commonly, GPS is used to estimate position outdoors, and inertial navigation
units are used to estimate attitude. The work by Saripalli et al. [8] describes the
estimation and control design of two helicopters. One, the USC helicopter, uses
expensive inertial measurement sensors which cost an order of magnitude more than
their helicopter platform. The other, developed by the CSIRO group at the University
of Queensland, uses low-cost inertial sensors coupled with vision sensors to provide
a position estimate. While avionics systems have been developed for helicopters in
many research institutions, expensive hardware is typically required to demonstrate
reliable flight.

Researchers at Carnegie Mellon University have demonstrated autonomous
flight and navigation of helicopters using inertial sensors and visual odometry [9)].
First, detailed state-space models of the helicopter dynamics were estimated using
system identification techniques in the frequency domain. This model provides a
base for designing effective controllers despite stabilizer bar dynamics and active yaw
rate damping on commercial grade helicopters [3]. The simplified model developed
by Mettler was very influential in deriving the coaxial helicopter model included in
Appendix A.

In [10], a helicopter equipped with stereo vision cameras and inertial sensors

is used to collect data which is then post-processed to demonstrate a combined visual



and inertial navigation system. The capability of using visual recognition as feedback
has been established on helicopters in GPS-denied environments where known features
such as building windows can be identified in the image frame [11], [12]. Flight
results are presented in structured environments under conditions of GPS dropout
using visual odometry and visual servoing techniques. Rather than simply handling
GPS dropouts, the work in this thesis is targeted at completely replacing the GPS
sensor with onboard sensors for estimating position and velocity. In addition, different
approaches are required for handling visual pose estimation in indoor and outdoor
environments. Point feature tracking employed in the systems mentioned do not
typically work well in indoor environments which are not rich with well-defined point
features. Indoor environments are generally rich with edges and lines which provide

more reliable estimates, as corroborated by Kemp in [13].

2.1.2 Quadrotor Helicopter Research

The quadrotor helicopter has become a popular vehicle for conducting hover
flight research. Universities around the world have built quadrotors, and thus a great
deal of related work on quadrotors is taking place. In [14], Tayebi proposes a feedback
control scheme with one proportional and two derivative terms which he calls PD?
control. The proportional term is related to the vector quaternion and the derivative
terms are related to the vehicle angular velocity and the vector quaternion veloc-
ity. His results show exponential attitude stabilization and an accompanying video
demonstrates the controller implemented on a test stand quadrotor. While useful,
quaternions are not necessary to describe small attitude angles (< 45°). Dynamics of
a tethered vehicle also vary substantially from real-flight behavior which Tayebi does
not address.

McKerrow [15] provides a useful model of the Draganflyer helicopter, a com-
mercially available quadrotor aircraft with rate damping to aid in piloted flight. He
describes many of the dynamic characteristics of the quadrotor which make it difficult
to control. In particular, he mentions that it is an underactuated system because it

uses four actuators to produce motion in six degrees of freedom; that only very small



forces oppose the motion giving it a very dynamic behavior; and that high coupling
exists between attitude angles and directional accelerations. These dynamic charac-
teristics provide challenges to successful flight. Included in McKerrow’s model are
gyroscopic torques and Coriolis accelerations which provide a more detailed model
than is presented in this work. However, it will be shown that adequate control was
provided by the sensor suite of our quadrotor to hover in a tight radius without human
intervention. This is in contrast to McKerrow’s 2004 results in which stable hover
was very difficult to achieve.

In [16], Altug et al. uses an offboard camera to determine the pose of a
quadrotor helicopter in simulation and restricted flight. Simulations show results
for a feedback-linearization control approach as well as a backstepping-like method.
All pose estimation is computed offboard using an overhead camera, and a tethering
system restrains motion in the z- and y-directions. Thus while this is a good demon-
stration of control methodologies, it was not proven to be an effective position control
scheme on a truly autonomous system. In a later effort [17], a dual camera approach
is employed to provide a more reliable pose estimate and results are collected on a
tethered system.

Bouabdallah et al.[18] present several design considerations for designing micro
quadrotors as part of the OS4 project at the Swiss Federal Institute of Technology,
but the results are limited to simulation and test-bench data collection. In [19] results
using PID and LQ controllers are collected by the same authors, and an autonomous
flight is attempted, though the vehicle is still tethered for power and apparently
does not perform stable position hold. In later work on the same test stand [20],
sliding mode and backstepping controllers are tested with the conclusion that the
backstepping controller is more suitable. While these results are useful comparisons
of various control methodologies, they do not present comprehensive control strategies
for position hold nor do they present convincing results that maintainable hover was
obtained.

Promising flight results are obtained by Roberts et al. [21] in which a quadrotor

is outfitted with infrared triangulation sensors that allow the vehicle to navigate
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hands-off for extended periods of time within an enclosed environment. The infrared
sensors maximize their distance from nearby walls allowing the vehicle to hover in a
fairly tight radius. However, the implementation of the special infrared sensors only
appears to work in fully-enclosed areas. Thus, this particular application has not
been shown to have widespread applicability to real-world situations.

Several schools have developed testbeds involving autonomous flying vehicles.
Stanford, for example, has a set of quadrotor vehicles called STARMAC [4] which
demonstrates reliable outdoor flight using carrier phase differential GPS positioning.
The STARMAC testbed is now on its second design phase and has presented useful
results regarding quadrotor performance at large deviations from the hover flight
regime [22|. The STARMAC group appears to rely on established absolute positioning
systems such as GPS (outdoor) and overhead cameras (indoor) to provide position
feedback.

A unique indoor testbed involving quadrotor vehicles as well as ground vehicles
has been developed at MIT with the primary purpose of developing algorithms for
fault detection, isolation, and recovery [23|. Using a very precise VICON camera
system, they demonstrate the ability to control several off-the-shelf quadrotor vehicles
simultaneously. The VICON system is capable of sub-millimeter position accuracy
and sub-degree attitude estimation. Using LQR controllers based on linear dynamics,
very stable flights of quadrotors are demonstrated. This allows their research to focus
on higher level tasks such as multi-agent tasking and health monitoring for persistent
surveillance and mission planning. Sophisticated camera systems like VICON are
expensive and require offboard cameras, thus they do not represent real-world position
sensing capabilities. The work in this thesis targets reasonable position accuracy using
only onboard sensors which cost much less than the VICON system.

In summary, the quadrotor is growing very popular as a test vehicle for au-
tonomous flight and navigation. Much work has been done to develop effective
attitude-stabilizing controllers, but nearly all institutions that work on such systems

admit to many challenges with controlling the vehicle in real flight. Flight results in
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this thesis of a stable hands-off hover flight rank among the better results documented

in the literature.

2.2 Quadrotor Dynamic Model

The quadrotor is actuated by modulating the throttle command of each of the
four motors. Changing the throttle of all motors together produces vertical motion.
Pitching moments are produced by increasing the thrust of the front motor while
decreasing that of the rear motor or vice versa. Roll moments are produced in a
similar fashion by adjusting the thrust of the right motor with respect to the left.
Yawing moments are slightly more subtle: if the front and rear motors (which spin
clockwise) spin faster than the left and right motors (spinning counterclockwise),
yawing results due to the difference in rotor drag moments on the respective motors.

To develop control laws and estimation schemes, it is useful to model the
dynamics of the quadrotor and understand how forces and torques are generated on
the vehicle. This section will develop such a model by first introducing the coordinate
frames and state variable notation that will be used throughout this thesis. Then,
dynamic and kinematic differential equations will be shown based on the quadrotor
model found in [24]. A simple force and torque model is derived and used in control

laws developed later in the chapter.

2.2.1 Coordinate Frames

The attitude and position of the quadrotor aircraft can be described by a series
of state variables. It is desired to express the position of the aircraft in the world
frame which is oriented with its x-axis pointing north, y-axis facing east, and z-axis
directed toward the center of the Earth. The vehicle frame is translated from the
world frame by a position vector P,, which is composed of the three position states
DPns Pe, and pg. The height above the world origin is denoted A and is simply —pg.
The vehicle frame is therefore a coordinate frame which translates with the vehicle

but remains oriented parallel to the world frame.
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Three additional frames shown in Figure 2.1 are necessary to describe the
vehicle’s orientation using the Euler 3-2-1 coordinate system. Three angles, ¢, 8, and
¢ describe the vehicle’s rotations relative to these three successive frames. First, the
vehicle-1 frame is found by rotating the vehicle in a right-handed rotation about the
vehicle z-axis by the angle 1. The vehicle-2 frame is then found by rotating about the
vehicle-1 y-axis by the angle 6. Finally, the body-frame is found by rotating about the
vehicle-2 x-axis by the angle ¢. The vehicle’s pose can then be described by the three
position states p,, p., and pg, and the three Euler angles ¢, 8, and . Other systems
can be used for describing the attitude angles, but Euler angles are chosen for their
intuitive meanings and because attitude angles near Euler angle singularities do not

occur in regular quadrotor flight.

2.2.2 Vehicle State Variables

The state variables which describe the rigid-body dynamics and kinematics of

a general hovering aircraft are the following:

e p, - the position of the helicopter in the inertial z-direction (north position)

Pe - the position of the helicopter in the inertial y-direction (east position)

h - the height of the helicopter above the ground (altitude, negative inertial

z-direction)

u - the velocity in the body-frame z-direction (from the center of mass towards

the nose of the aircraft)

v - the velocity in the body-frame y-direction (from the center of mass towards

the right “wing”)

w - the velocity in the body-frame z-direction (from the center of mass towards

the bottom of the aircraft)

¢ - the roll angle defined with respect to the vehicle-2 frame
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Figure 2.1: Vehicle Coordinate Frames: Transformations from the world frame
to the body frame through all intermediate coordinate frames are demonstrated. (a)
The world frame is a global inertial frame with the z,-direction facing north, y,
facing east, and z, down. The vehicle frame is simply translated with respect to the
world frame with the origin at the vehicle’s center of mass. The vehicle-1 frame shares
its origin with the vehicle frame, but its axes are rotated about the vehicle frame’s
z-axis by the angle . (b) The vehicle-2 frame is constructed by rotating about the
vehicle-1 y-axis by the angle 6. (¢) Finally, the body frame is found by rotating about
the vehicle-2 z-axis by the angle ¢.

6 - the pitch angle defined with respect to the vehicle-1 frame

1 - the yaw angle defined with respect to the vehicle frame

p - the roll rate measured around the z-axis in the body frame

q - the pitch rate measured around the y-axis in the body frame

r - the yaw rate measured around the z-axis in the body frame

The twelve equations describing the rigid-body dynamics and kinematics can be de-
rived using first principles. In the following equations, the changes in the states are

related to the current values of the states and the inputs. The total thrust force from
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all four motors is denoted F7, and the quantities 7,, 79, and 7, represent torques
about the z, y, and z axes. Derivations of how these forces and torques relate to the
individual motor commands are given in the next section. Throughout the paper, cf
and s¢ are defined to represent cos ¢ and sin ¢ respectively. The twelve differential

equations describing the quadrotor’s dynamics and kinematics are:

Dn clcp  spsbcyy — cosy  copsOcy) + sOsip u
Pe | = | 8Os spsOs + cocp  cpshsh — spcy) v (2.1)
h st —soch —cocl w
w rv — qu —gsinf 0
1
v | = | pw—ru |+ | gcosfsing +E 0 (2.2)
w qu — pv g cosf cos ¢ —Fr
) 1 singtanf cos¢tanf P
6 =10 cos ¢ —sin ¢ q (2.3)
¥ 0 ) r
D I'ipg — Dagr Ds7y + Dy7y
g | =1 Dspr —Tu(p?>—12) | + JLUTQ (2.4)
7 Tepg — I'igr Lyry + Ty
where
Joo (e — Ty + J.
r, = Pl =yt ) 2.5)
r
J.(J, — J, J?
r
J.
JZEZ
r,= T (2.8)
J, — Js
- = 2.9
=25 (2.9
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(Jo = Jy) e+ T2,

I = = (2.10)
Ju

L=+ (2.11)

= J.J,—J2. (2.12)

Derivations of these equations using a similar notation are taken from lecture notes
from Dr. Randal Beard [24]. This model provides a straightforward manner of relating
the forces and torques to the states at a given point in time provided initial conditions.

From these general equations, a simplified model for control can be easily developed.

2.3 Quadrotor Force and Torque Model

Describing the relations for the forces and torques due to the propellers of
a quadrotor is simple when compared to the rotor dynamic equations of the coaxial
helicopter. It is typically assumed that the effects of flapping blade motion contribute
little to the behavior of quadrotors, and therefore we will use a simple model for the
forces and torques generated by the four propellers. These forces and torques can
then be used in the above dynamic equations (2.1-2.4) to provide a full simulation
of the quadrotor. We also make the simplifying assumption that aerodynamic forces
and moments due to the body of the aircraft are negligible near hover. Therefore, our
model consists of forces and moments due to gravity and the thrust generated by the
four propellers. The moment arm of each motor is assumed to be the same, denoted
L, as shown in Figure 2.2.

The total force Fr due to the motors is then

Fr=F+F,+F+F. (2.13)

The rolling and pitching torques are caused by differential thrust in the lateral and

longitudinal directions respectively:

T¢> = L(Fl - Fr)a (214)
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)

Figure 2.2: Quadrotor Top View: Each motor produces an upward force, F, and
a torque, 7, on the vehicle. As indicated, the front and back motors spin clockwise
and the right and left motors spin counter-clockwise.

Back (3)
B,

9 = L(Fy — Fy). (2.15)

To generate yawing motion, the front and back (clockwise) motors spin faster
or slower relative to the left and right (counter-clockwise) motors causing a difference
in rotor drag forces and an effective yawing moment. The direction of the torque is

opposite the direction of the propeller motion, thus

Tq/,:TT—i‘Tl—Tf—Tb. (216)

Force tests conducted on the motors showed a mostly linear correlation be-
tween the PWM (pulse width modulation) output of speed controllers and the the
force and torque generated by the motor. Therefore, we will model the force and

torque of each motor according to

F, = k0, (2.17)
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T = /{325*, (2.18)

where k; and ks, are constants that must be determined experimentally, d,is the motor
command signal, and * represents f, r, b, and [. In matrix form, we can express the

forces and torques on the quadrotor as

Fr ke ok ko ke 5
| _| 0 <k 0 Ik ||| 2.19)
T Lk, 0 Lk 0 5

| |k ko ke k|| 0]

Control strategies will be derived in terms of these forces and torques. Motor

commands are then found by inverting the above matrix.

2.4 Imertial Model for Control

A simplified model of the quadrotor dynamics suitable for control can be de-

rived from the equations described above. First, assuming small angles, Equation 2.3

becomes
¢ p
6 1=14q]|- (2.20)
W r

To simplify the angular rate equations (2.4), two assumptions are made. First,
the coriolis terms pq, gr, and pr are assumed to be negligible. In addition, due to the
symmetry of the quadrotor, the off-axis moments of inertia are neglected. The new

angular rate equations are then

p 7.7
i|=11n (2.21)
T %27'1#
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and, combining Equations 2.20 and 2.21, the attitude dynamics can be simplified to

¢ =75
b= +m |- (2.22)
o T

This simplified model makes it clear that the attitude dynamics are due primarily to
the torques induced by differential thrust on the motors.
To develop a simplified model for the position dynamics, Equation 2.1 is dif-

ferentiated yielding

Dn clcp  spsbcy — cosyy  copsbey) + sOsip U
Pe | = | sO0sY spsOs) + cocp  cpsOsy — spcy v |- (2.23)
h s6 —soch —coch w

Neglecting the coriolis terms and assuming small angles, Equation 2.2 becomes

U 0
0| = 0 : (2.24)
w g — %

Combining Equations 2.23 and 2.24 results in a simple model for the position

dynamics:
Dn 0 —cpsfc) — spsy
Pe | = | 0 | | —cosls+ spcyp % (2.25)
h —g coct

where g is the gravitational constant and Fp is the total thrust produced by the
four motors. According to this simple model, the lateral and longitudinal dynamics
are uncoupled and directional accelerations are directly tied to attitude angles. This
suggests that nested linear controllers can effectively control the system. Therefore,
successive loops are closed around attitude and then position as discussed in the next

section.
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2.5 Control Loops

Attitude tracking is essential to position tracking and thus acts as the inner
loop. Velocity and position controllers are built as outer loops whose output is a set
of desired attitude angles. Yawing torques are easily cancelled using equal force on
each motor and yawing dynamics are treated separately from all the other loops with
good results. Thus, four systems of loops were designed: 8 — p,, ¢ — p., h, and
1. Each of the control systems will be described below. The PD gains used in hover

flight are presented in Table 2.1.

Table 2.1: PD Gains for Quadrotor Control

‘ Control Loop ‘ K, ‘ Ky ‘ Units of output
Heading Hold 150 | 50 PWM
Roll (¢) 75 | 15 PWM
Pitch (0) 7 | 20 PWM
Lateral Velocity (v) 0.6 | 0.3 | radians of desired roll

Longitudinal Velocity (u) | 0.6 | 0.3 | radians of desired pitch

Lateral Position (p,) 0.4 | 0.1 | m/s of desired velocity

Longitudinal Position (p,) | 0.4 | 0.1 | m/s of desired velocity
Altitude () 80 | 60 PWM

2.5.1 Heading Control

Two methods of controlling heading were attempted. First, a simple yaw-
damping scheme was implemented. This effectively slowed yawing, but the vehicle
slowly drifted around the yaw axis. This drift is attributed to imperfections in the mo-
tor correlation to PWM output and imperfect motor mounting. The second method
used PD control and was very effective in holding heading. Provided an accurate
heading estimate, the vehicle was able to hold heading consistently. Gains were
tuned using a yaw plate which constrained vehicular motion to the yawing direction.

These gains required no additional tuning in real flight.
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2.5.2 Attitude Control

It is essential to control attitude angles well to achieve autonomous flight.
Since the quadrotor has decoupled lateral and longitudinal dynamics, control can be
applied independently on each axis. PD controllers were applied to control pitch and
roll. A block diagram representing the roll controller is shown in Figure 2.3. This
inner loop contains two successive loops. Rather than numerically differentiating roll
error to compute the derivative of the error, a desired roll rate of zero was used and

roll rate error was computed according to

d, . N
S =)0 (2.26)

where ¢¢ is the commanded roll angle. Control effort was saturated to use higher
control gains without causing divergence. This inner loop was tuned empirically
by setting desired angle commands from an RC transmitter. The pitch inner loop
is identical and therefore not pictured. All of the control gains for the system are

described in Table 2.1.

G(o) S

Ky

Figure 2.3: Roll Block Diagram: PD Control is sufficient to control attitude angles.
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As the block diagram suggests, the roll control effort 7, is calculated according

to

Ty = K, (¢° — ¢) — Ka,p. (2.27)

Holding nonzero attitude angles on a quadrotor vehicle is problematic in an
indoor setting because the vehicle quickly accelerates in the horizontal direction.
Therefore, by constraining the quadrotor’s motion in the lab, results were collected for
pitch and roll angles before testing in real flight. First, the quadrotor was constrained
to rotate about the y-axis and pitch angles were tracked as shown in Figure 2.4 (a).
Then, the quadrotor was constrained to rotate about the x-axis and roll angle tracking
was shown in Figure 2.4 (b). These results show the ability to track within a few

degrees of the desired angle.

Pitch Control
T T

tTN ™ Sesired
= i :‘ﬂw‘ ‘ ‘\1 o ‘hu\‘\“\‘wr‘ 5
o \ [
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. . .
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(a) (b)

Figure 2.4: Pitch and Roll Angle Tracking: While restraining the quadrotor to
move about each axis independently, attitude angles were successfully tracked using
PD control. Subfigure (a) demonstrates pitch control and the associated PWM effort
while (b) shows roll control and effort.

After gaining confidence in attitude angle tracking, outer loops were added to
control the quadrotor’s position.The flight results in Figure 2.5 demonstrate adequate
attitude tracking to maintain hover on the quadrotor vehicle using the previously

mentioned PD loop structure.
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Figure 2.5: Attitude Angle Tracking: Pitch and roll tracking is demonstrated
while in a hover condition. Desired pitch and roll angles are generated by position
control in an outer loop as discussed in Section 2.5.3. Attitude tracking is uncoupled
and adequate to maintain position.

2.5.3 Position and Velocity Control

Position and velocity control were implemented as successive loops around the
inner attitude loops. It is assumed that the velocity dynamics are significantly slower
than the attitude dynamics, so the inner attitude loops are treated as a block with
unity gain and desired attitude angles are computed as the output from the velocity
loop. Similarly, the desired velocity commands are generated by calculating control
effort from position error. This creates a three tiered successive loop system where
desired positions are the input, as shown in Figure 2.6.

The velocity and position estimates returned from the optic flow sensor are
surprisingly robust and drift very little. Control based on these position and velocity
estimates produces a stable hover. This was demonstrated in several hovering ex-
periments. Sustained hover in a tight circle was maintained over a period of seven

minutes without any repositioning by a human pilot. Figure 2.7 shows optic flow
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Position Controller Velocity Controller

Attitude Controller

G(p)

Figure 2.6: Position and Velocity Control Loops: Successive loops allow control
gains to be tuned independently in a cascade fashion. This block diagram illustrates
the successive loops used to control position with velocity damping.

position readings over a flight of approximately 75 seconds in duration. Though the
figure indicates less than 0.5 meters of position drift over the entire flight, video of
the flight indicates some accumulated error in the position estimate returned by the
optic flow sensor. However, the true position drift is estimated to be less than one

meter of the course of the flight.

2.5.4 Altitude Control

Altitude was the most challenging of the controllers to implement successfully
due to coupling with attitude angles, unmodeled behavior due to battery depletion,
and ground effect. First, pitch and roll motions away from level resulted in substantial
loss of lift that contributed to oscillations in altitude. Limits had to be imposed on the
altitude controller to prevent serious oscillations. Second, as batteries were depleted,
the motor response changed which called for changes in the altitude limits. Finally,
ground effect, an aerodynamic effect where the wash from the propellers causes extra
buoyancy, made altitude a nonlinear function of thrust near ground level. The optic
flow sensor performs best close to the ground, and therefore, when it was in use,
the vehicle was close to or in ground effect. In addition, height readings close to
the ground were inaccurate when using the ultrasound sensor which cannot range

less than 0.15 meters. All of these effects contributed to difficulties in altitude control

24



X Position during hover flight

0.4 T T T T T
0.2f b
E o 1
<
_02 - .
_0.4 | | | | | | | | |
0 10 20 30 40 50 60 70 80 90 100
time (sec)
Y Position during hover flight
0.6 T T T T T
041 b
E o2} -
>
0 4
_0.2 | | | | | | | | |
0 10 20 30 40 50 60 70 80 90 100
time (sec)
1
05f
E
&
= 0
[%]
]
o
X
-0.5
_1 L L L
-1 -0.5 0 0.5 1

Y Position (m)

Figure 2.7: Position Hold: A sustained flight of over 70 seconds in duration was
completed without manual piloting. This demonstrates the ability of the helicopter
to hover well provided a good position/velocity measurement. The desired position
is always zero meters and has not been pictured.

exhibited by a steady-state offset of 0.125 meters as shown in Figure 2.8. Good results

were obtained by limiting control effort, adding integral control, and fine-tuning the

altitude controller.
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Figure 2.8: Altitude Tracking: A steady-state offset exists on altitude making
the actual value slightly below the desired value. This is not ideal, but flight was
maintained at a desired altitude by specifying a height slightly greater than the actual
desired height.

2.6 Summary

In this chapter, much of the related work regarding helicopter control was
discussed and compared to the results shown herein. Dynamic vehicle models de-
scribing how state variables relate to inputs, forces, and torques were developed for
use in simulation and control. Finally, the implemented control system composed of
PD control for heading, attitude, position, and altitude control were described, and

real-world results on a hovering quadrotor were exhibited.
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Chapter 3

Sensors and Estimation

The control loops mentioned in Chapter 2 rely on fast, reliable estimates of
the pose (attitude and position) and velocity states of the vehicle. A six-degree-of-
freedom system presents several estimation issues which deserve discussion. Attitude
estimation and rotation representation are areas of discussion and research on their
own. Position estimation then adds additional complexity. To tackle these problems,
a sensor array has been selected and estimation schemes developed. This chapter first
describes the physical hardware including the onboard computing capabilities and the
full sensor suite on the vehicle. Models are derived for each sensor and estimation
schemes are shown. Kalman filtering provides a framework for fusing attitude and
position estimates from various sensors. Time and measurement update equations

used in onboard Kalman filters are presented with results from the hovering aircraft.

3.1 Onboard Computing

Two onboard computers are used to interface the sensors together and provide
low-level control. The Kestrel autopilot acts as a small inertial measurement unit
(IMU) housing the three-axis accelerometers and gyros. It also contains interfaces
for analog input and SPI communication which are used for the ultrasound and optic
flow sensor respectively. To handle vision processing, a great deal of additional com-
putation power is needed. Two solutions have been proposed for this: the Gumstix

Verdex Processor [25], and the VIA EPIA PX Pico-ITX small computer [26].
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3.1.1 Kestrel Autopilot

The Kestrel autopilot, pictured in Figure 3.1, contains an array of sensors in-
tended for autonomous flight of fixed-wing UAVs which include three-axis accelerom-
eters, three-axis rate gyros, barometric altitude sensor, and differential airspeed sen-
sor. The barometric and differential pressure sensors are considerably less accurate
at small changes of altitude and low airspeeds (less than five meters per second) and
therefore are not used on the quadrotor. This autopilot is marketed by Procerus
Technologies [27] and provides the basis for hover flight on the coaxial and quadrotor
helicopter platforms discussed in this thesis. In summary, the autopilot functions as
the heart of the estimation and control algorithms implemented on the quadrotor.
The attitude estimation, servo output, and ground communication are all interfaced
through the autopilot. The groundstation runs a program called Virtual Cockpit that
communicates to the autopilot using a spread spectrum serial modem. This ground-
station application has been adapted to fit the needs of the quadrotor system. The
UAV autopilot and communication and simulation software used in this thesis are

based on previous systems discussed further in [28].

Figure 3.1: Kestrel Autopilot: The autopilot interfaces with all sensors, computes
estimates of attitude and position, and send PWM control signals to the four motors.
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3.1.2 Onboard Vision Processing

While the Kestrel autopilot interfaces with sensors and provides low-level esti-
mation and control, additional processor power is desirable to process video onboard.
Two onboard computers were used at different stages in this research which enabled
onboard video processing for the helicopter: the Gumstix Verdex Processor and the

VIA EPIA PX Pico-ITX small form factor computer.

Gumstiz Processor The Gumstix line of processors are famous for their small
size, approximately the size of a stick of gum, weighing just 2.5 oz. (see Figure 3.2),
and their impressive processor speeds. The Verdex processor, for example, runs at
600 MHz and is based on Intel XScale technology. The processor boards come with
up to 128 MB RAM and 128 MB of flash memory which acts as a solid-state hard
drive. Many daughter boards can be attached to either of the two interface ports on
the processor board giving such capabilities as serial communication, PWM output,

wired and wireless ethernet, microSD card storage, and USB On-The-Go support.

== verdex XL6P

Figure 3.2: Gumstix Processor: The Gumstix processor is a very small Linux
computer. Weighing just 2.5 oz., it provides enough processing power to perform
moderate computer vision calculations.

Gumstix processors natively run a custom build of the Linux operating sys-

tem, making them rather simple to navigate and use. Software is easily cross-compiled
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using an ARM-Linux cross-compiler making software development fairly rapid. Im-
age processing is possible on the Gumstix using libraries such as OpenCV [29]| and
EmbedCV [30], and images are easily captured using a standard web camera. Com-

munication with other devices is accomplished through serial and ethernet interfaces.

Pico-ITX Small Computer Though the Gumstix wins hands-down when it comes
to size, the Pico-ITX provides faster computational speeds for image processing and is
still a very small computer. Incorporating a 1.0 GHz VIA C7 Processor and contain-
ing all the standard peripherals of a laptop computer (including wired ethernet, VGA
monitor support, USB, and PS2 mouse and keyboard), the Pico-ITX provides a fa-
miliar working environment. Therefore, the Pico-ITX was selected as the processor of
choice for developing onboard computer vision applications. In this research, a solid-
state hard-drive was attached to the SATA connector on the main board providing
4 GB of storage space and Ubuntu Linux was installed to provide a stable operating
system. In order to provide wireless connectivity while in flight, a VNT6656G6A40
54 Mbps wireless USB module [31] was installed.

Two methods of remotely viewing applications are possible. SSH tunneling
with X-Windows forwarding provides a simple method of running remote applica-
tions, but the connection is rather slow. NoMachine [32|, a desktop virtualization
company, provides much faster remote desktop access to the Pico-ITX computer
than X-Windows forwarding. Their server, NxServer was therefore installed on the
quadrotor and a client application runs on the ground station. Thus, there are two
wireless ground links: the autopilot modem connection (rather slow at a baud rate of
115200) and the digital video link implemented through the Pico-ITX. The Pico-ITX
is configured to start an ad-hoc network upon boot-up to which the ground station
can connect.

The major convenience of working with the Pico-ITX is the ability to remotely
compile and run programs and get real-time visual feedback from the remote system.
Figure 3.4 shows a screenshot of a ground station computer connected wirelessly to the

Pico-ITX onboard the quadrotor. Using this remote interface greatly simplifies and
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Figure 3.3: Pico-ITX Processor Board: The Pico-ITX form factor computer
provides a substantial amount of processing power in a very small size. Running
Ubuntu Linux, it is capable of running computer vision algorithms in real-time and
of interfacing to remote computers over wireless remote desktop connections.

improves the software development system for the quadrotor. Programs are written
using standard C and C+-+ and compiled onboard. Then, streams of processed video
are viewed in real-time on the groundstation. Such a system has been invaluable in

moving forward with computer vision research on the quadrotor platform.

3.2 Sensors

The quadrotor helicopter used in this research is outfitted with several sensors
to estimate the essential states necessary to control and maneuver the aircraft. The

full sensor suite includes:

1. A triad of MEMS rate gyros oriented along each axis to measure body-frame

angular rates p, ¢, and r,

2. A triad of MEMS accelerometers which measure specific forces along the axes

of the vehicle body frame,

3. An ultrasound sensor positioned downward facing to measure height above

ground (HAG),
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Figure 3.4: Remote Desktop Over Wireless: A PC running Windows XP views a
computer vision application run on a Ubuntu Linux PC on the quadrotor in real-time.

4. An optic flow sensor that measures pixel flow across an optical sensor much like

an optical computer mouse, and

5. A standard web camera (Logitech QuickCam Pro 4000) providing video frames

at a maximum rate of 30 frames per second.

Operating in a GPS-denied environment requires specialized sensors to measure po-
sition and height above ground (HAG). The ultrasound range sensor measures HAG
while the OFS, previously used for such applications as height-above-ground sensing
and wind estimation, is used to determine displacements and velocities in the hori-
zontal plane. Using the downward-facing ultrasound and optic flow sensor together,
accurate position measurements are obtained with very little drift due to integra-
tion. Thus, hover flight and position tracking can be accomplished without external

position sensing.
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Specifications for each of the computing systems will be mentioned in the
following sections. Sensor models will then be presented for each sensor or set of
sensors except for the video camera which will be discussed in Chapter 4. Finally,

estimation techniques based on these sensor models will be presented.

3.2.1 Ultrasound

Ultrasonic transducers provide absolute measures of position for feedback con-
trol purposes. A single downward facing sonar sensor is used to provide a measure-
ment of height above ground. The sensors on the helicopter are made by Maxbotix

(pictured in Figure 3.5) and have noise characteristics which are important to model.

E

=

Figure 3.5: Maxbotix Ultrasound Sensor: Ultrasound sensing provides fairly
reliable height estimates and can additionally be used as a range sensor for obstacle
or wall detection.

The sensors have a range of approximately seven meters. Readings are also
constrained to be above 0.15 meters (6 inches). This results in a deadband at the
base of the sensor measurement which can lead to problems with maintaining heights
close to the ground. Ultrasound sensor readings occur at approximately 20 Hz. Using
an analog-to-digital converter on the autopilot, it is easy to collect the readings from
the sensor. Readings from the ultrasound sensor are fairly reliable, but noise does

occur. Two filtering techniques were used to improve the signal and reject outliers.
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First, a slew filter prevents the sensor from trusting spurious readings by preventing

large jumps. Then an alpha filter is applied to smooth adjacent measurements.

3.2.2 Optic Flow Sensor

The optic flow sensor is based on a small integrated circuit common to optical
mice used for computer input. The sensor used in this research is based on the Avago
ADNS 3080 optic chip [33] shown in Figure 3.6. It contains a 30 x 30 CMOS pixel
array which is sampled at 6400 frames per second. The output of the sensor is a

number of pixels that flows across the imaging array in the x- and y-direction which

will be called v, and ~,.

Avaco

TECHNDLOG]ES

Figure 3.6: Optic Flow Sensor: A custom-made optic flow sensor, pictured at left,
has been developed in the MAGICC Lab. It is based on the Avago ADNS 3080 optical
mouse chip pictured at right.

Optic flow readings operate best at a light intensity of at least 80 mW /m? and
at a wavelength between 600 and 700 nm (which is in the red portion of the light
spectrum). This leads to difficulties with using such sensors in fluorescent light, which
contains very little of this portion of the spectrum. For this reason, early tests of the
system were performed in the presence of bright flood lights which contained adequate
red light. The sensor also responds best at a nominal height corresponding to the
nominal focal length of the sensor. A variety of lenses can be fitted to the sensor to

allow for different situations and imaging needs. A lens with a narrow field of view is
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often advantageous because it allows frequent measurements to be taken and allows
the sensor to detect motion over surfaces with fine textures such as carpeting or tile.

Optic flow sensors have found applications in several different UAV-related
projects. Griffiths [34] utilized an optic flow sensor based on an optical mouse chip
on a small UAV to avoid obstacles. In this application, the optic flow sensor was used
to measure distance rather than velocities. The velocity readings from an airspeed
sensor and a GPS were combined with the pixel count reading to measure height-
above-ground or distance to a canyon wall. A downward-facing sensor was combined
with two laterally-oriented sensors (one out each side) to estimate flow on opposing
walls and guide the vehicle safely through a canyon by maintaining equal optical flow
on each side.

In Barrows and Neely [35], compact, lightweight optic flow sensors were built
to provide visual sensing for micro air vehicles. These mixed-signal VLSI sensors
demonstrated the ability to use the optic flow sensor to avoid collisions with walls.

At low altitudes, the optic flow sensor works well as a HAG sensor and has
been used as an aid in precision landing [36]. The optic flow sensor was used as a
ranging sensor by comparing the flow of features detected by the imaging array to the
known ground-speed reported by a GPS receiver. The optic flow sensor can thus be
utilized to compensate for drift in barometric sensors or to allow for varying take-off
and landing ground heights without providing a complete terrain map.

Rodriguez, et al. [37] have used the ratio of longitudinal to lateral optical flow
to estimate the crab angle of a flying vehicle. From this measurement, combined with
ground track from the GPS and the airspeed, they have shown a method to compute
windspeed without loitering in place or relying on magnetometers.

Evidence has demonstrated that flying insects such as flies and bees use optical
flow in their visual perception to control their speed and height. In [38], the authors
simulate the behavior of bees using an optic flow reading. Similarly, in [39], efforts are
made to mimic the flight behavior of flies to control very small indoor flying vehicles.

The optic flow sensor has been established as an effective sensor for estimating

velocity, and can be used as a range sensor when velocity measurements are already
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provided. Differential readings can be used to maintain distance between walls or
other surfaces. In this work, the optic flow sensor is used as a velocity and position
indicator and under the right conditions, it provides very reliable readings which

greatly improve the hover flight behavior of helicopters.

Optic Flow Sensor Model Figure 3.7 shows a diagram of the geometry underlying
the optic flow sensor. The upper triangle is the imaging frustrum of the optical lens.
The quantity FOV is the lens field of view expressed in radians. The quantity A,
also in radians, represents an angular change through which the vehicle has rotated.
On the focal plane, the quantity p, represents the total pixel count of the sensor in
each dimension. The sensor in use is symmetric with p, = 30. The quantity Az,
represents the distance swept out on the ground in meters, and h denotes the height

above ground.

Optic Flow Focal Plane

Axp
Xview

Figure 3.7: Optic Flow Sensor Geometry: The upper triangle is an enlarged
version of the viewing frustrum of the optic flow lens. The quantities ¢ and FOV are
angles; the quantities v and p,are in pixels; and the quantities h, X, and Ax,, are
in meters.
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The optic flow sensor reads the combination of two quantites: the pixel change
due to actual translation and the pixel change due to a small change in angle, A¢.
Using assumptions proposed in [37] and using similar triangles an equation relating

the total pixel reading v and Ax,, can be written as

Az, v
= — 1
Xview Pn (3 )
where
F
Xoiew = 2h tan (%) ~ h-FOV. (3.2)

A similar equation can be computed for the correlation between v and A¢ which

results in a model for the total pixel reading, v, due to translation and rotation:

Pn (A:vm

=07 |5 +A¢>. (3.3)

An optic flow pixel reading v thus comes from both angular and linear motion.
If an estimate of rigid-body rotation is available, the translational motion of the sensor

can be detecte as discussed in the next section.

Velocity Estimation and Position Dead Reckoning from Optic Flow Sensor
Inverting the optical flow sensor model given in Equation 3.3, we obtain equations
for determining change in position as a function of the ~, and -, pixel readings from

the sensor:

FOov

n

Az, = h ( Yo — Ae) (3.4)

Fov

n

Ay = h ( vy + Agb) (3.5)

where the signs in front of the last term are selected according to angular sign con-
ventions. Af and A¢ are termed the pitch- and roll-effect and are easily subtracted

out of the pixel measurements to provide estimates of position and velocity.
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A simple lab test demonstrates the effectiveness of the optic flow sensor velocity
readings in Figure 3.8. The helicopter, outfitted with a downward facing ultrasound
sensor and an optic flow sensor, was subjected to perturbations in attitude angles
and position. Plot (a) shows the height reading from the ultrasound sensor. The
first half of the test was performed at a low height of approximately 0.5 meters
(shown in segments 1-4). Then, the helicopter was raised to 0.75 meters and the test
was repeated (shown in segments 5-8). The surface quality, shown in (b), changes
depending on the height above the imaged surface. Though this can be adjusted
by focusing the optic flow lens, no focusing was performed during the experiment.
Surface quality (denoted squal) readings above 40 are typically reliable. The optic
flow sensor performs best at low heights (less than approximately 1.5 meters in the
current lens configuration).

The test was divided into four main time segments: pitching, z-translation,
rolling, and y-translation. These sections are delimited by number in the lower six
plots of 3.8. The test was performed by first swinging the helicopter around the
the body-frame y-axis in a pitching motion (Segment 1 and 5), then moving the
vehicle forward and backward quickly in the body-frame z-direction (Segments 2 and
6). Then, the vehicle was rolled about the body-frame x-axis (Segments 3 and 7)
and subsequently translated in the body-frame y-direction (Segments 4 and 8). The
pitching motion results in pixel movement across the optic flow sensor which must
be subtracted out to return a good position or velocity reading. The angular motion
and translation both register pixel movement as shown in plots (e) and (f), but the
angular motion is effectively removed in plots (g) and (h). Thus, the optic flow sensor
is effective at detecting changes in position when angular motion is correctly removed.

Though absolute position cannot be determined from the optic flow sensor,
by adding up the incremental changes in z- and y- position, translation relative to
a starting location can be estimated through dead reckoning. In testing, position
feedback from the optic flow sensor allowed for very effective hovering flights in which
the autopilot was able to hover autonomously in a one-meter radius circle for nearly

the entire life of the battery. A portion of these results is shown in Figure 2.6. In
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Figure 3.8: Optic Flow Sensor Lab Test Results: A lab test demonstrates the
effectiveness of velocity readings from an optic flow sensor. Pixel readings due to the
pitch and roll in plots (c¢) and (d) are effectively removed from the optic flow reading
resulting in the reliable differential position measurements in (g) and (h).
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effect, the optic flow sensor provides reliable position estimates which are in some
ways superior to GPS readings. For example, GPS readings provide absolute position
estimates relying on the precise timing of orbiting satellites. Typical GPS receivers
can receive position estimates at rates of 1-4 Hz (though more expensive units provide
slightly higher rates). At these relatively slow rates, instantaneous velocity estimates
can have significant error. In addition, GPS receivers typically yield unreliable ve-
locity estimates at vehicle speeds less than five meters per second. In general, hover
flight takes place at low velocities, so the optic flow sensor’s ability to return fast,
accurate velocity updates at rates between 20 and 50 Hz makes it superior for velocity
estimation.

Despite their high accuracy and capability, optic flow sensors have several
drawbacks that must be recongized. First, the imaged surface must be of a certain
quality for the sensor to properly detect pixel movement. An ideal surface is similar
to a mousepad: plenty of surface texture near the resolution of the lens. Strongly
textured carpets work best while shiny surfaces do not. Lighting conditions are also
very important. As mentioned earlier, the sensor responds best in the range of 600-
700 nm which means that they work poorly in fluorescent light and poorly-lit rooms.
In initial flight experiments in this work, flood lights were used to light the hallway.
Then, to improve the system, a bright flashlight bulb was added to the underside of
the quadrotor to provide adequate lighting for the sensor. This spotlight gave surface
quality readings equivalent to those provided by the flood lights. In addition, the optic
flow sensor operates best near a certain height which depends on the focal length or
field-of-view of the lens. In these experiments, the optimal range was between 0.1
and 2 meters. Possible improvements to the sensor will be discussed in the future
work at the end of this thesis. It is clear that under the right conditions, the optic

flow sensor performs very well.

3.2.3 Accelerometers and Rate Gyros

The rate gyros are key components in attitude estimation because attitude

estimates can be found by simply integrating the Euler angle differential equation
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given in Equation 2.3. The signal from MEMS rate gyros contains noise which leads
to significant drift when integrated for attitude measurements.

To bound the drift due to integration, vector measurements of attitude are
needed. Typical sensors which provide vector measurements are three-axis accelerom-
eters and three-axis magnetometers. However, both of these types of sensors, in the
size suited to small indoor aircraft, also suffer from accuracy issues. Though these
sensors do not drift as does the integrated signal from rate gyros, they exhibit behav-
iors which make them less suitable to provide adequate attitude estimates on hovering

aircraft.

Accelerometer Problems Near Hover Accelerometers consist of a proof-mass
suspended in a capsule. They can be used to estimate the orientation of the gravity
vector, but this measurement is mixed with a reading of body-frame accelerations
making the estimate ill-posed in some conditions. Studying a free-body diagram of
an accelerometer on a hovering aircraft demonstrates one of the primary difficulties

with accelerometers in a hovering condition.

Figure 3.9: Quadrotor Free Body Diagram: Free body diagram of a hovering
vehicle at an angle # with respect to horizontal.

It is assumed that the vehicle provides a thrust which is enough to compensate

for the force of gravity and for the angle 6. Thus,

Mg =T cos¥, (3.6)
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where M is the mass of the vehicle, T is the thrust force, oriented perpendicular to the
vehicle, and ¢ is the gravitational constant. The pitch angle 6 causes the vehicle to

accelerate in the inertial z-direction in response to a force T'sin 6 with an acceleration

T sinf
Ay — M

Now, we examine the forces on a proof mass representing an accelerometer
oriented along the body-frame z-axis of the vehicle, illustrating that the z- and y-
axis accelerometers will read close to zero on a hovering vehicle. The measurement of
the accelerometer is the sum of accelerations induced by forces acting a proof mass
as illustrated in Figure 3.10. Assuming that aerodynamic forces from the propellers
and body are negligible near hover and summing forces in the body-frame z-direction

we see that
mT sin 6 cos 0

YNF? = —mgsin6
I mgsing + i

(3.7)

Using Equation 3.6, we see that the sum of forces in the body frame z-direction
would be identically zero, meaning that any attempt to use the accelerometers as a

vector measurement of gravity would give erroneous values near hover.

SF2= -mgsinB + mTsinBcos6/M

-m
1y

D

mTsin6/M

‘\V mg

Figure 3.10: Accelerometer as a Proof Mass: The summation of forces acting
on a proof mass in the body frame of a hovering vehicle illustrates the difficulty of
measuring the gravity vector using a three-axis set of accelerometers.

Magnetometer Problems Magnetometers measure the magnetic field strength in
a particular direction. When three such sensors are mounted in orthogonal directions

on a vehicle, the magnetic field vector can be estimated. Since this magnetic field
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vector is a function of geographic location, look-up tables provide the known decli-
nation and inclination values for the true vector orientation. A significant problem
with magnetometers is the fact that they measure magnetic variations, which in an
indoor setting can vary greatly due to disturbances from metal beams in ceilings and
walls. In addition, nearby system components such as motors and electrical wiring
can cause significant electromagnetic interference. If such disturbances are constant,
they can be accounted for through calibration, but buildings often make magnetome-
ters behave erratically, corrupting measurements. Better sensors, then, are needed to

provide an unbounded correction to rate gyros in an indoor setting.

3.3 Attitude Estimation and Data Fusion

Kalman filtering provides the primary framework for fusing measurements on
the hovering aircraft. Attitude is estimated using a Kalman filter which fuses rate gyro
data and accelerometer measurements when the vehicle is stationary. Unfortunately,
when hovering, accelerometer measurements are typically unreliable, and a separate,
error-bounded measurement is sought from computer vision. This section discusses
methods for estimating the attitude of the vehicle and proposes a fusion method for
incorporating vision for bounding attitude error.

The filter follows the continuous-discrete implementation of the extended Kalman
filter (see Lewis, pg. 263 [40]) and is split into a time update, computed at a specified
rate, and a measurement update, computed whenever sensor readings are taken. The
continuous portion needs to be computed at a fast sampling rate to accurately inte-
grate the continuous differential equations for all states. The discrete portion allows
each sensor measurement (observation) to be computed independently and then to

influence the estimates of all other interrelated states.

3.3.1 Kalman Filtering Basics

The Kalman Filter estimates the mean and covariance of a set of states, x,

of size n x 1 where the mean estimate is notated x and the covariance is an n X n
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matrix P. The Extended Kalman Filter relies on integrating a model of the system
of the form

x = a(x,u) + 17, (3.8)
y = c(x,u) + &, (3.9)

where x indicates the time derivative of x, u is an array of inputs, y is an obser-
vation, and the noise terms n and & represent process noise and measurement noise,
respectively. Thus, we have some knowledge of how the states change with time and
can express them as a function of the states and inputs. We also have a function
c(x,u) which relates our observations (sensor readings) with the states and we have

some idea of the amount of noise on our model and our sensors.

Time Update In its original form, the Kalman filter (KF) relies on % being a
linear function of the states and inputs in the form x = Ax+ Bu, where A and B are
linear operators (matrices). The Kalman Filter is proven to be the optimal filter for
minimizing the squared error if noise on both the model and observation is Gaussian

with zero mean. We express this as

n~(0,Q) (3.10)
£~ (0,R) (3.11)

where ~ (0,S) means that a variable is normally distributed with zero mean and
covariance S.

The extended Kalman filter (EKF) “extends” the regular KF by allowing the
state equations to be nonlinear in form. An approximation is made when propagating
the filter by replacing the state transition matrix A with the Jacobian of a(x,u). The
time update portion of the filter integrates the equations of motion from Equation 3.8

and estimates the covariance matrix P according to

Pt =P +At- (AP +PAT +Q), (3.12)
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where P~ and Ptindicate the covariance before and after the update, respectively,
and At represents a small change in time. Q, the model covariance, represents how

much uncertainty is introduced on the estimate at each time step.

Measurement Update When a discrete measurement is taken from a sensor, we
seek to fuse this measurement with the estimate from our model computed in the
time update. The observation is expressed as a linear combination of the states in

the matrix C, and we compute the Kalman gain K according to
K =PC’(CPCT +R)™". (3.13)

The Kalman gain represents a stochastic ratio of how much we trust a given a mea-
surement compared to how much we trust the model. In practice, we estimate the
measurement covariance, R, by guessing the rate of error growth due to measure-
ments and then tune the model covariance, Q, to give a relative “trust factor.” Once

the Kalman gain is computed, we update the state mean and covariance according to
xt=x" +K(y - Cx) (3.14)

Pt = (I-KC)P . (3.15)

The Kalman filter allows a model to be propagated and corrected or fused with
measurements asusming that the noise on the model and measurement is Gaussian
with zero mean. Kalman filters are employed on the quadrotor to fuse rate gyro
measurements with accelerometer measurements and vision measurements in order

to estimate attitude and heading angles.

3.3.2 Attitude Kalman Filter

On a fixed-wing airplane, the attitude can be effectively estimated using a
fusion of data from the rate gyros and accelerometers. However, due to problems

already discussed, this method is less effective on a hovering vehicle because body-
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frame forces effectively cancel gravity force readings on the accelerometers rendering
them unsuitable for determining angular positions (see Section 3.2.3). However, a
Kalman filter which fuses accelerometer and gyro readings is still useful for ground
tests, and it has been found that the quadrotor can fly reliably without any additional
attitude filtering if an outer loop involving velocity and position is provided. Thus,
an attitude Kalman filter using accelerometers to bound attitude errors is still useful
on the quadrotor and provides the basis for more complex filtering which incorporates
visual measurements of attitude.

To develop an equation for the time update of the attitude Kalman filter, it
is useful to think of the rate gyros as the model. Thus, the time update consists of
integrating the reading from the rate gyros to develop an estimate of attitude. Using
the measurements pgyro, Ggyro, and 74, and Equation 2.3, the time update of the

Kalman filter is given in Algorithm 1.

Algorithm 1 Kalman Filter Time Update: The time update essentially inte-
grates the rate gyro readings to provide an estimate of pitch and roll angles.

ot qf [ + Ap | Pavro T dgyro sin ¢ tan 0 + Tgyro COS ¢ tan 0
ot Qgyro COS @ — Tgyro SIN @

7

A — da (x,u) _ [ Qgyro COS ptand — ry,,,sin ¢ tan 6 ﬁ (qum Sin 0 + 74y COS qﬁ) ]

Ox —Qgyro SN @ — T gyro COS @ 0

P* =P+ At (AP +PA” + Q)

The measurement update of the filter consists of comparing the estimate pre-
dicted by the rate gyros in the time update with the reading produced by the ac-
celerometers. The accelerometers measure the specific force in the body frame of the

vehicle. The accelerometer measurement y,..; has three components corresponding
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to the body frame coordinate axes and is expressed according to

ay
1
Yaccel = Ay = E (F - Fgravity) . (316)
a;
Explicitly, we have

Qg U quw — TV gsin@

ay | =] 0 |t | ru—pw |+ | —gcosfsind |. (3.17)

a, w PV — qu —gcostcos o

We do not have a method for directly measuring u, ©, or w. In addition,
attempts to measure v and v from the optic flow sensor could be detrimental since
these measurements are coupled with rotational motion. Therefore, we assume that
w=v0=w=u=0v =w = 0. In addition, the accelerometer readings can be
calibrated to be in units of [g], so Equation 3.17 is normalized by g resulting in a
simplified expression of accelerometer measurements in terms of the attitude angles
¢ and @ as follows:

—sin 6
Yaccel = | —cosfsing | - (3.18)

—cosfcos ¢

This equation acts as c(x,u) for the Kalman filter. One final change to the
filter was added for computational reasons. The computation of the Kalman gain
given by Equation 3.14 would require a 3x3 inverse to be computed at every mea-
surement update. To reduce this computational load on the embedded processor,
the measurement update is rearranged to require two 2x2 inverses instead'. The
resulting measurement update is summarized in Algorithm 2.

Lab tests were completed that exhibited the effectiveness of this attitude

Kalman filter. Figure 3.11 shows attitude estimates onboard a helicopter with mo-

!The matrix inversion lemma can be used to demonstrate the equivalence of these two methods.
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Algorithm 2 Attitude Kalman Filter Measurement Update: The measure-
ment update consists of comparing the rate gyro estimate with the accelerometer
attitude estimate using the Kalman gain K.

de 0 cosf
=% = —cos¢cosf sinfsin ¢
X singcosf  sinfcoso

C
P=(P'+C'RIC)
K =PC'R!

Xt =%+ K (Yaccet — € (X, 1))

tors running (to simulate the vibrations occurring in flight) using rate gyros and
accelerometers independently. The test performed consisted of simply rotating the
hand-held helicopter first about the z-axis and then the y-axis while running the
motors. The red dashed line shows that the rate gyro reading drifts over a matter
of seconds and quickly deviates from the true attitude which is zero-centered. The
accelerometer attitude reading (in blue) does not drift, but is very noisy resulting in
an unusable attitude estimate on its own.

However, combining the good high-frequency rate gyro signal with the non-
drifting low-frequency signal provided by the accelerometers, we have an effective
attitude estimate with bounded error and very little lag. The fused filter is shown
in Figure 3.12. Accelerometer readings effectively bound the gyro estimate removing
biases. This filter forms the base of a larger Kalman filter involving attitude estimates
from computer vision. The filter is tuned to trust the accelerometers approximately
100 times less than the rate gyros. This is primarily due to noise induced by vibra-
tions. In addition, the rate gyros are periodically calibrated to remove biases which

slowly change with time.

3.3.3 Adding Vision Estimates to the Filter

As mentioned, this gyro/accelerometer filter provides the basis for a more

complex Kalman filter. When computer vision estimates of attitude are computed,
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Figure 3.11: Naive Attitude Estimation: Naive Attitude Measurement using rate
gyros or accelerometers independently.

they are passed over to the autopilot over a serial interface. When measurements
arrive, measurement updates are performed to further correct the attitude readings
using the visual estimate. Pitch and roll are estimated from separate computer vision
algorithms making it necessary to perform two separate measurement updates. To
update the estimate of ¢, the Kalman gain is computed using the variance computed

in the gyro/accelerometer filter, p, according to

Py

= ——"— 3.19
Py + Ry (3.19)

Ky

The measurement of the roll angle from computer vision is termed ¢,, and the

state and covariance are updated according to

O =67+ Ky(du = ¢7), (3.20)
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Figure 3.12: Attitude Estimation using Data Fusion: Kalman filtered attitude
estimate using a fusion of accelerometer and rate gyro readings. The black line show
the Kalman filtered estimate.

p;f = (1 - Ky)p,- (3.21)

The Kalman filter allows the system to deal with unsteady rates of visual
updates. Rate gyros provide adequate estimation in general, but visual updates
provide corrections and bound errors. In addition, the attitude estimate from rate
gyros provides a method for rejecting false visual readings, which is discussed further

in Section 5.2.

3.4 Summary

The onboard computing abilities and sensors of the quadrotor were explained
including details regarding sensor models and estimation. In particular, the optic flow
sensor was explored as a means of providing reliable position and velocity estimates

on a hovering vehicle. A simple method for removing the pitch and roll biases from
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the optic flow reading has been demonstrated in a lab test. In addition, a Kalman
filtering framework for attitude estimation has been developed and demonstrated with

results from the quadrotor.
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Chapter 4

Vision-aided Hallway Following

Computer vision is a well researched field with very promising applications
in all areas of robotics. The amount of information available to humans through
vision suggests that visual information be used more heavily in robotic applications.
Attempting to match the pattern-recognition and visual perception capabilities of
human eyesight is beyond the scope of this paper, but incorporating vision as a
sensor on an instrumented aircraft is both logical and in some cases essential.

Details regarding homogeneous coordinates and Euclidean and camera projec-
tion matrices are included in Appendix B. Also included in the appendix is a demon-
stration of an application of perspective projection mathematics showing a model of
a hallway being projected onto the imaging plane of the quadrotor’s forward-looking
camera.

This chapter begins with an overview of many of the key related works in
vanishing point detection and its prerequisites. The approach in this thesis starts with
edge detection and line detection, both of which can be performed in various ways.
Sections 4.2.1 and 4.2.2 compare the methods attempted for edge and line detection in
this research and defend the final approach that uses the Canny edge detector and the
Hough transform. Using the output of these preprocessing stages, two main methods
of finding vanishing points are discussed and compared in Section 4.2.4. Methods for
determining attitude and position from discovered vanishing points are explained in
Section 4.3. Finally, results of each method are compared using onboard processing

in Section 4.4.
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4.1 Related Computer Vision Research

The goal of this chapter is to explain a method of detecting vanishing points
in indoor hallways that is useful for attitude and position estimation on small air
vehicles. Humans navigate using an array of sensors including tilt sensing (much like
rate gyros), sound, touch, and most importantly vision. Visual cues give humans
a vast amount of information which allows them to safely navigate buildings, drive
cars, and fly planes and helicopters. Robotic vehicles currently tend to use specialized
sensors such as accelerometers, rate gyros, sonar, laser range finders, and GPS before
visual techniques are employed. This is due to the ease with which these types of
sensors can be incorporated into a system. Historically, computer vision has been
a difficult sensor to utilize in practice. This is due to several challenges inherent in
determining patterns from digital images such as digital storage and computational
needs, the difficulty of expressing perspective geometry in mathematical terms, and a
sheer lack of understanding of how human visual perception works. The availability
of onboard processing power for small UAVs has led to an increasing use of visual
techniques in micro air vehicle (MAV) applications.

There are three basic ways to use vision for navigation: visual servoing, visual
odometry, and simultaneous localization and mapping (SLAM). Visual servoing can
be described as creating control laws based upon visual measurements. This technique
is common in structured settings such as assembly line vision robots. The field of
computer vision has been explored in excellent tutorials described in [41] and [42].
Visual odometry is a technique that uses optical flow or pose estimation to estimate
position and velocity based on visual readings. Some key works in this include [43] and
[44]. SLAM is a broad area of research which uses tracking of landmarks to localize
one’s position within a map while simultaneously building the map (see [45] and [46]).
All of these methods provide means of navigating based on visual information.

In this work, a visual servoing approach is selected. Using edge detection
methods to find the vanishing points of lines, MAV pose is estimated from vanishing
point locations. Before introducing the proposed algorithms for vanishing point detec-

tion, related work in several subareas is discussed. This related work area is divided
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into preprocessing methods, vanishing point estimation methods, three dimensional

tracking methods, and mobile robot visually-aided navigation.

4.1.1 Image Preprocessing

Methods for edge detection and line detection are prerequisites for detecting
vanishing points. Edge detection algorithms are well understood and implementa-
tions of many methods are included in open-source software packages (such as Intel’s
OpenCV [29]). Of primary importance to this work, the Sobel convolution operator
and Canny edge detector are used in many of the algorithms in this paper as pre-
processor steps. Descriptions of these algorithms are mentioned in section 4.2.1, and
more detailed descriptions are available in computer vision texts such as [47].

Two main line-finding techniques were explored in this thesis work. The Hough
transform is a well-known method of finding patterns in an image based on a patent by
Paul Hough in 1962 [48|. An accumulator is built up representing a parameterization
of edge points. Peaks in the accumulator space represent lines in the image space.
Other methods, like the Burns Line Detector [49], utilize the gradient direction in
addition to the gradient magnitude to trace lines in a method involving connected
components. Both methods were implemented and tested as part of this work.

Computer vision textbooks such as [50], [51], and [47] describe fundamentals of
computer vision, special Fuclidean transformations, image preprocessing, and multi-
ple view geometry. The approaches proposed in this thesis are built on these methods.
The Canny edge detector typically gives the best results for detecting hallway edges
as long as proper thresholds are selected. A custom implementation of the Hough
transform was developed which allows a user to observe how lines in image space show
up in Hough space. These algorithms form a base for the vanishing point detection

algorithm utilized in this thesis.
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4.1.2 Vanishing Point Estimation Methods

Among the literature on vanishing point detection, two key articles are com-
monly cited in all new approaches: those of Barnard [52] and Magee and Aggarwal
[53]. Barnard presents general methods for interpreting perspective projections of
three dimensional data onto an imaging plane. He suggests projecting lines in the
image plane onto the Gaussian sphere. The Gaussian sphere is an imaginary sphere
centered at the camera’s focal point and lying tangent to the imaging plane. Lines
projected from the image plane onto the Gaussian sphere become circles (called great
circles) which intersect at vanishing points. This changes image points at infinity
into finite points on the unit sphere. Bins in a histogram are then populated accord-
ing to how many lines pass through them and the maximum points indicate a high
likelihood of being vanishing points. Criticisms of Barnard’s method include that
his parameterization of the Gaussian sphere is “ad hoc” (Magee and Aggarwal claim)
meaning that a histogram over the unit sphere produces unevenly spaced grid points.

Magee and Aggarwal propose a different approach which determines lines and
vanishing points from successive cross products of homogeneous coordinates, a conse-
quence of the duality of points and lines. This duality is a well-known phenomenon in
the computer vision literature and is further discussed in Appendix B.1. Magee and
Aggarwal use a similar parameterization of the unit sphere but use a distance metric
on the geodetic surface rather than Barnard’s uneven histogram over the unit sphere
. They add a constraint that the intersection of two line segments cannot lie on either
of the segments in order to decrease the computational load. The Magee-Aggarwal
algorithm requires computations on the order of n(n — 1)/2 where n is the number
of intersections. Tracing great circles, as required by Barnard’s method, requires
computations on the order of nm where m is the number of divisions in each great
circle. Therefore, where high precision is required, Barnard’s method may be more
computationally intensive.

Some work has been done to extend these vanishing point detection algorithms
by adding additional constraints and attempting to make them more robust to real-

world scenarios. Schuster et al. [54] use a method based on Magee and Aggarwal’s
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algorithm which extends line segments by a given factor and excludes points in those
extended regions. They use a simple clustering algorithm on the accumulator elements
to group regions close to one another and then compute a weighted average (centroid)
on these regions to estimate the vanishing points. They use this algorithm with a
camera pointed towards the ceiling and rely on the structure of the ceiling tiles to
indicate orientation of a ground robot.

Many extensions of these algorithms, as well as innovative methods quite differ-
ent from either, have been proposed. These include a cascaded Hough transform [55],
a voting scheme [56], a likelihood function [57|, and line clustering techniques [58].
This is by no means a comprehensive list, nor is it an attempt to give a complete sur-
vey of vanishing point detection techniques. The work in this thesis is based primarily
on Barnard’s and Magee and Aggarwal’s approaches. Thus, though these additional
methods have merit, they will not be discussed further.

On the quadrotor aircraft, algorithms have been developed that follow the
methods of both Barnard and Magee and Aggarwal. Both have their benefits and
their limitations, and both will be shown to provide decent estimates of vanishing
points which give needed attitude estimates for the vehicle. These methods combined
with an understanding of perspective geometry will be shown to also provide an

estimate of position relative to the walls, ceiling, and floor of the hallway.

4.1.3 Pose Estimation and Three-dimensional Tracking Methods

Many pose estimation methods seek to find feature points in an image and
track these features over time. Corners track particularly well, and thus a Harris
corner detector often serves as a pre-processing step. Strong corners or feature points
are then tracked over consecutive frames of a video stream, and given these corre-
spondences, iterative pose estimation schemes are employed to estimate the pose of
the camera with respect to viewed world points. Several such schemes exist in which
an error function is derived and minimized to find the correct pose. One of these
methods, proposed by Lu et al. [59], seeks to minimize a cost function in world space

iteratively and is proven to be globally convergent. This convergence does not guar-
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antee that the algorithm will escape local minima or that it will find the true pose.
Many such algorithms are sensitive to false correspondences, so much work seeks to
improve robustness of these types of algorithms. One example is the work of Wun-
sch and Hirzinger|60| in which occlusions are handled robustly in a Kalman-filtering
framework which models the dynamic movement of the tracked object.

Drummond and Cipolla [61] propose an effective method for tracking rigid-
body objects using a Lie Group representing the space of rigid-body rotations and
translations. They use a method of iteratively re-weighted least squares to robustly
track objects in real-time. Kemp [13] then implemented a method based upon the
rigid-body tracking method to estimate pose on a quadrotor helicopter. The primary
insights used in this approach are the use of a multiple hypothesis tracking algorithm
which matches line segments in an a prior: map to line segments observed in a noisy
video feed. The video is processed offboard in real-time using parallel processing on
a multi-core workstation to maintain a framerate of 50 Hz. The results from Kemp’s
work suggests that line tracking provides a much more robust tracking system in
indoor environments than point tracking. In an indoor setting, point correspondences
are frequently unreliable due to poor textures on walls and the aperture problem (only
the motion perpendicular to a line is observable). The approach discussed herein of
matching hallway lines in image space to lines in 3-D space follows this logic and

presents a robust method for determining pose in a hallway.

4.1.4 Visually-Aided Mobile Robot Navigation

A large base of vision-aided navigation and control techniques exist in ground
robotics literature. In [62], Desouza and Kak present a survey of techniques for using
vision for mobile robot navigation. They explain techniques used for both indoor
and outdoor environments in both structured and unstructured environments. One
primary citation to note from their survey is the FINALE system of Kosaka and
Kak [63]. In summary, the FINALE system projects a known map onto the imaging
plane of a mobile ground robot. The system estimates pose by comparing the viewed

image with the map and tracking uncertainty in a Kalman-filtering framework. This
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allows a ground robot to navigate buildings at substantial speeds (approximately 8-
10 meters/min) without being impaired by stationary or slow moving objects. Some
features of the FINALE system are similar to approaches attempted here, particularly
attempting to track features in a corridor.

The work of Kemp [13| mentioned above falls into this category as well since
it applies the 3-D tracking methods conceived by Drummond and Cipolla [61] on a
real-world flying quadrotor. His work demonstrates the ability to use vision guidance
as the primary sensor for real-time flight navigation. Concepts used in his work
apply well here and suggest methods for future work. Kemp also makes it clear
that accurate estimates of vehicle velocities are entirely essential to effectively control
the position of the quadrotor. This has proved entirely true in attempting to track
position commands on the vehicle reliably.

In addition to the map-based navigation methods, Moravec’s now famous Stan-
ford Cart experiments [64] made more practical the field of exploring robots. The
Stanford Cart was able to explore unknown indoor scenes using stereoscopic imagery
in the year 1980, when the field of vision robotics was much less mature. At the time,
the cart was able to traverse a 20 meter corridor in approximately five hours. This
is mentioned primarily to show that mobile robotics has a long history of innovation
and that great things are possible. Moravec’s work has been greatly expanded upon.
This thesis work is only a small step toward full vision-reliance, but it demonstrates
that computer vision is a capable sensor. For much more detailed summaries of both
the Stanford Cart and the FINALE tracking system, the reader is referred to the
survey paper by DeSouza and Kak [62].

Call [65] presents two methods for detecting and avoiding obstacles on a small
unmanned aerial vehicle. his results are primarily demonstrated in simulation and
consist of using a known map to plan a waypoint course through an area. Unmapped
obstacles are detected using a Harris corner detector and tracked through multiple
video frames transmitted to a ground station from a monocular camera. This work by
a labmate was a partial motivation to introduce additional computer vision techniques

for flight navigation of UAVs.
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Though pose estimation and visual servoing approaches abound, the work dis-
cussed in this thesis is relevant because it seeks to bring together work from many
fields and describe possible solutions to a complex problem. The pose estimation
scheme presented here is based upon first establishing rotation by finding the vanish-
ing point representing the point of convergence of the lines that delineate a hallway.
Then, to extract position information, a homography is applied to correct for the dis-
covered rotation. Finally, an estimate of position is provided by correlating the ratios
of the angles between these lines in the image space. In addition to this method,
some early work has been started in 3-D motion tracking, but due to its immaturity,

it will be included in Appendix B for the interested reader.

4.2 TImage Processing Description

The procedure for detecting vanishing points proceeds in four key steps. First,
preprocessing is done on the image resulting in an edge image. Using one of several
techniques, lines are discovered from the edges. These lines are filtered to find desired
sets of lines. Finally, using these resultant lines, vanishing points are estimated.
Figure 4.1 shows each of the image processing steps including several alternative

methods for each that will be discussed.

4.2.1 Edge Detection

A discrete image, such as that from a digital camera, is simply a two-dimensional
set of color values which represent the color at each pixel. Many representations of
pixel values exist including RGB!, HSV?, and YUV3. Conversions between color rep-

resentations are straightforward and left to the literature (see [47]). The input to the

'In the RGB representation of pixels, each pixel is represented by its components of red, green,
and blue intensity.

2HSV stands for hue, saturation, value. The hue component corresponds to a location on the
color wheel. The saturation is a rough approximation of how pure the color is. The value is a
measure of how light the color is.

3In the YUV space, pixels are represented by one luma (Y) value and two chrominance (UV)
values. The luma image is thus a monochrome image and all of the color information is specified by
the chrominance channels.
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Figure 4.1: Computer Vision Algorithm Flow Chart: This flow chart shows the
flow of the vanishing point finding algorithm used to determine pose of the aircraft.
The image processing steps are shown along with several alternative methods that
will be discussed in this section.

edge detection algorithms are intensity values which are created by converting a color
image to grayscale (or simply using the Y channel of the YUV color space).

An edge in an image is defined as a region where intensity changes significantly.
The principle used in detecting image edges is to compute the gradient of all pixels
resulting in a gradient image which represents how much the pixel intensity changes
at each given pixel location.

Edge detection is a standard image pre-processing method used to locate
changes in the intensity function of an image and is described at length in image
processing texts such as Sonka et al.[47]. Edges are detected where the intensity
(brightness) changes abruptly (the image gradient is high). Sonka et al. define an
edge as a vector variable attached to a pixel with both a magnitude and a direction.
The edge direction, ¢, , is located at a right angle to the gradient direction, 1. (ro-

tated by —90°). The gradient magnitude and direction of an image are computed

|grad g(z,y)| = \/(%) 2+ (%) 2,
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Figure 4.2: Gradient Magnitude Image From the Sobel Edge Detector: The
image gradient magnitude brings out strong edges. This image is the result of using
the Sobel kernel to estimate the pixel gradient.

—1 (99 dg
— 1129 ZJ

Since digital images are discrete in nature, gradients are often computed based
on differences between a given pixel and its neighbors. Image processing operators are
therefore developed which are simply convolution kernels that are passed over an im-
age. Edge detection is very important as a low-level task contributing to many higher
level image processing objectives, and therefore remains an active area of research.
The sheer number of detection methods makes picking the right edge detector a bit
of a challenge. Therefore, methods which have shown promise in other applications
have been chosen.

Some of the common operators used for edge detection are the Laplace opera-
tor, the Prewitt operator, and the Sobel operator, all shown in Table 4.1. The Laplace
operator approximates the second derivative and gives only the gradient magnitude.
A 3x3 mask representing a convolution sum is often used, which is shown in the
table. The Prewitt and Sobel operators both approximate the first derivative. They
can be created in several different directions as required.

The gradient direction provides a great deal of interesting data. The principal

benefit of it is that lines stand out as connected regions with a similar gradient
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Table 4.1: Common Image Operators for Edge Detection

’ Operator H Kernel
0 1 0 1 1 1 2 -1 2
Laplace 1 4 1,1 -8 1], -1 —4 —1

1 0 1 1 1 2 -1 2

1 1 1 0 11 -1 0 1

Prewitt o 0 o0 {,l101],{-101

-1 -1 -1 110 -1 0 1
1 2 1 0o 1 2 -1 0 1
Sobel o o o0 |, -1 0 1],]-220 2
-1 -2 -1 -2 -1 0 -1 0 1

direction. This lends itself to line detection methods through line tracing as discussed

in Section 4.2.2.

A

[

Figure 4.3: Gradient Direction Image: The left image is a simple hallway imaged
in a video camera. The gradient direction image on the right preserves lines by
representing them as regions with similar direction vectors. Lines stand out as being
contiguous pixel regions which are easily traced to yield lines.

To speed up the preprocessing stage, the Sobel edge detector can be run
very quickly on embedded processors using only add and bitshift operations. Also,
CORDIC rotations speed up the calculation of gradient magnitude and direction by
using bitshift operations to convert from Euclidean to Polar coordinates.

An optimal edge detector that has gained respect in the computer vision com-
munity was designed by Canny in 1983 [66]. The Canny edge detector starts by

computing the gradient magnitude of the image. Then, instead of applying a static
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threshold to select edge pixels (edgels), thresholding with hysteresis is used. This
means that two thresholds are selected. Any pixels with gradient magnitude above
the upper threshold are selected as edgels. Then, other pixels adjacent to discov-
ered edgels are also classified as edgels if their gradient magnitude is above the lower
threshold. After applying this threshold, non-maximal suppression is used to turn
off edgels that are not the maximum magnitude in directions normal to discovered
edges.

The Canny edge detector, along with many common operators discussed above,
have been incorporated in an open computer vision library created by Intel Corpo-
ration entitled OpenCV [29]. Algorithms for edge detection, line detection, morpho-
logical operations, and a great variety of other functions have been included making
computer vision much more accessible in the programming community. The majority
of the programs implemented in this work use OpenCV to some degree, but custom
implementations of the algorithms often had to be developed to increase speed or
accessibility of variables.

In summary, edges in an image can be detected using a convolution operator
which computes changes in intensity around each pixel. The gradient magnitude and
direction can then be computed. Methods such as thresholding with hysteresis and
non-maxima suppression can also be used as aids for determining true edges. These

preprocessing steps are a critical part of the vanishing point detection system.

4.2.2 Line Detection

The next step in the overall image processing algorithm is to group edge pixels
into lines. Two main methods from the literature were tested based on the Burns
line detector and the Hough transform. In addition to these, a third algorithm was
developed which sped up operations from the Burns line detector by tracing adjacent

gradient direction edges.

Method 1: Burns Line Detection The Burns line detector [49] is a multi-phase

line detection algorithm which groups adjacent regions which share a similar gradient
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orientation into line-support regions. The full algorithm consists of the following

steps:

1. Group pixels into line support regions based on similarity of gradient direction

2. Fit a planar surface to the intensity surface and intersect this with a vertical

plane to determine the position of lines

3. Extract attributes from the lines such as length, contrast, width, location,

straightness, etc.

4. Filter lines according to their attributes for various purposes (according to ori-

entation, position, contrast, etc).

The first two steps are critical steps for line detection. To complete the first step,
the gradient direction image is thresholded in several overlapping orientation regions,
i.,e. from 0° to 45°, from 22.5° to 67.5°, etc. Regions sharing pixel orientation are
then grouped using connected components and a voting procedure determines which
pixels belong to which lines.

The second step conceptually views the intensity image as a surface where
high intensity values are peaks and low intensity values are valleys. The algorithm
fits a plane to each connected component and intersects this plane with a vertical
plane yielding a line location estimate.

The full Burns line detector algorithm requires substantial computing power
if performed over the entire image due to the connected component stage of the
algorithm. However, it was found that performing an image “AND” operation to
the thresholded gradient image and the Canny edge image yielded good lines. This
reduced the size of connected components in the image and significantly increased
the speed of the algorithm. Results based on this method are demonstrated in Sec-

tion 4.4.1.

Method 2: Hough Transform The Hough transform is a very useful method

derived from the duality of points and lines. In summary, the Hough transform takes
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a binary input image and searches for patterns by sorting all points in an image
according to some metric. Two parameters are needed to describe a line, for example
the slope and intercept. However, this parameterization has a singularity at a vertical
slope (which occurs commonly in images). So, instead, a parameterization using polar
coordinates is recommended, replacing the slope-intercept form with a p,0 form as
shown in Equation 4.3. For each edgel in the image, values of p are calculated as a
function of # and plotted in an accumulator where they show up as a sinusoid. This
type of plot is called the Hough accumulator. Peaks in the accumulator correspond
to lines in image space.

The following formula is used to represent a line in polar coordinates:

p=xcosf+ysind (4.3)

A custom implementation of the Hough transform was developed which used
non-maxima suppression to detect peaks and eliminate multiple line discoveries near
each peak. Figure 4.4 demonstrates the results of performing the Hough transform on
a hallway image. The hallway has very well-defined black walls and a white ceiling.
The Hough accumulator is shown in subfigure (b) where peaks are circled in colors
corresponding to the discovered lines in (a). Vertical lines are drawn in blue and
horizontal lines in green. The vanishing point, discovered using a method discussed

in Section 4.2.4 is shown as a blue dot.

Method 3: Line Tracing A second, faster, method was developed for use on
an embedded processor without floating point hardware. This method starts off in
a similar fashion to the Burns line detection method by thresholding the gradient
direction image in regions of interest. Only pixels above a certain gradient magnitude
are searched. Starting at the outside of the image and working inward, lines are
traced, looking for contiguous regions. Lines found using this method appear in

green in Figure 4.5.
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(b)

Figure 4.4: Hough Transform Image: Lines in image space map to peaks in Hough
space. (a) Discovered lines are shown sorted by orientation. Horizontal lines are green,
vertical are blue, and diagonal are colored to match the corresponding peak in Hough
space. The blue point in the center represents the estimated vanishing point. (b) The
Hough accumulator image shows individual peaks in Hough space circled in a color
corresponding to the line in the image.

Figure 4.5: Line Tracing Algorithm Results: The Line tracing algorithm find the
prominent lines rather effectively by following patches of pixels with similar gradient
orientations. Once again, the blue dot represents the vanishing point.
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4.2.3 Line Grouping/Filtering

Having found many lines in the image, it then becomes necessary to decide
which lines support different vanishing point locations. In a typical scene, there are
several vanishing points, so all lines do not necessarily converge to the same point.
We wish to estimate the vanishing point at the end of the hallway, but other van-
ishing points are also of interest. For example, vertical lines converge to a vanishing
point near infinity in the positive z-direction. If this vanishing point is found, it will
give information useful for determining the roll angle of the vehicle. We attempt to
partition the lines into groups that converge at different vanishing points.

The vanishing point of the horizontal lines between the floor, walls, and ceiling
is the primary vanishing point of interest because it will give us a measurement of
our heading and pitch angle. Therefore, we initialize the vehicle with an orientation
towards this vanishing point.

As discussed in the related work section, Barnard suggested grouping lines
together using a histogram over the projection of the image plane onto the Gaussian
sphere centered at the camera focal point. Lines in the image then form great circles
which intersect at the vanishing points. This reduces the line sorting problem into
a histogram and peak detection problem. However, the accuracy of the estimate
depends on the spacing of the histogram. It is desired to find a region near the
last vanishing point where several lines pass. Thus a good approach is to create
a histogram over the image plane near the last vanishing point. Using a coarse
histogram, lines converging to a similar point are grouped. The area with the largest
support of lines is chosen as the best estimate of the vanishing point and the set of
lines through this area is selected and passed into the final portion of the algorithm

where the vanishing point estimate is further refined.

4.2.4 Vanishing Point Detection

Imaging of three-dimens