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ABSTRACT

VISION-ASSISTED CONTROL OF A HOVERING

AIR VEHICLE IN AN INDOOR SETTING

Neil G. Johnson

Department of Mechanical Engineering

Master of Science

The quadrotor helicopter is a unique �ying vehicle which uses the thrust from

four motors to provide hover �ight capability. The uncoupled nature of the longi-

tudinal and lateral axes and its ability to support large payloads with respect to its

size make it an attractive vehicle for autonomous vehicle research. In this thesis, the

quadrotor is modeled based on �rst principles and a proportional-derivative control

method is applied for attitude stabilization and position control. A unique means of

using an optic �ow sensor for velocity and position estimation in an indoor setting is

presented with �ight results. Reliable hover �ight and hallway following capabilities

are exhibited in GPS-denied indoor �ight using only onboard sensors.

Attitude angles can be reliably estimated in the short run by integrating the

angular rates from MEMS gyros, but noise on the signal leads to drift which renders

the measurement unsuitable to attitude estimation. Typical methods of providing

vector attitude corrections such as accelerometers and magnetometers have inherent

weaknesses on hovering vehicles. Thus, an additional vector measurement is neces-

sary to correct attitude readings for long-term �ights. Two methods of using image





processing to determine vanishing points in a hallway are demonstrated. The more

promising of the two uses a Hough transform to detect lines in the image and forms

a histogram of the intersections to detect likely vanishing point candidates. Once

the vanishing point is detected, it acts as a vector measurement to correct attitude

estimates on the quadrotor vehicle. Results using onboard vision to estimate heading

are demonstrated on a test stand. Together, these capabilities improve the utility

of the quadrotor platform for indoor �ight without the need of any external sensing

capability.
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Chapter 1

Introduction

Hovering unmanned air vehicles (UAVs) that are capable of vertical takeo�

and landing have many advantages over traditional �xed-wing aircraft such as their

ability to maneuver and navigate in con�ned spaces. These capabilities are important

for tasks such as search and rescue missions, surveillance, and disaster aftermath

searches. The quadrotor helicopter is a convenient platform for developing hover �ight

algorithms because it is easy to construct, resilient to vibration, and has decoupled

dynamics.

Estimating full pose (attitude and position) of a six-degree-of-freedom vehicle

is a signi�cant challenge. Two main approaches are typically used to estimate pose:

(1) an array of sensors which independently measure each state variable, and (2)

computer vision techniques which seek to measure one or a series of states. In this

thesis, it is shown that both methods can be used for pose estimation and that in

particular, optical sensors provide position and velocity feedback that can be used as

an aid in the �ight of UAVs. A major goal of this work is to demonstrate methods of

navigating indoor hallways using a combination of sensors and computer vision. This

capability is demonstrated and several approaches are compared.

1.1 Position and Attitude Estimation

Indoor navigation poses several challenges to �ying vehicles which are com-

pounded in hover �ight. Among these are the problems of attitude and position

estimation. Attitude estimation is a solved problem when high-quality instrumen-

tation is utilized. Inertial navigation units typically use Kalman �ltering techniques

1



to fuse data observations from rate gyros, three-axis accelerometers, and three-axis

magnetometers. Integrating the rate gyros provides good estimates of attitude an-

gles over short durations, and errors depend greatly on the quality of the gyros used.

Expensive rate gyros such as laser ring gyroscopes make excellent sensors for large air-

craft, but small vehicles with limited payloads restrict the available sensors to MEMS

gyros which o�er lower quality of estimation. Noise on the signal, when integrated,

produces unbounded error in attitude estimates in a matter of seconds, especially

on vibrating aircraft, which means that an additional sensor reading is necessary to

bound the error. Therefore, it is proposed that visual sensing augment the attitude

estimate. Speci�cally, video processing can be used to determine vanishing points

which provide a set of non-drifting vector measurements. This thesis proposes the

use of a particular algorithm that uses a Hough transform to detect lines and vanishing

points to correct drift in attitude estimation.

Position estimation also introduces challenges that we often take for granted.

A human's ability to ascertain his/her location relative to obstacles and surroundings

is phenomenal. For an autonomous vehicle to determine position, active sensors are

often employed such as laser range �nders and ultrasound ranging devices. In outdoor

environments, global positioning systems (GPS) give reliable passive absolute position

readings by triangulating a receiver's position with respect to orbiting satellites. GPS

signals are not typically usable indoors, and in any case, they give no indication of

relative orientation to surrounding objects unless a map is provided. Despite these

di�culties, great advances have been made in the areas of position and attitude

sensing, and this thesis seeks to take the most promising applications and put them

into e�ect on a hovering vehicle. To overcome the challenge of estimating position,

it is proposed that an optic �ow sensor be used. Methods for using this sensor

to estimate velocity and to dead-reckon position are developed and results showing

much-improved hover �ight are demonstrated.

2



1.2 System Description

The �eld of ground robotics has developed a �rm foundation of research in co-

operative tasking, indoor environment navigation, and vision-aided navigation. Aerial

robotics has now emerged as a prime research �eld, and estimation and control theory

have been extensively applied to both �xed-wing and hovering vehicles. The Multi-

AGent Intelligent Coordination and Control Laboratory (MAGICC Lab) at Brigham

Young University has focused �rst on ground robotics and then aerial robotics, and a

hardware platform based on the Kestrel autopilot has been developed for �ying �xed-

wing vehicles [1]. This same autopilot has been used to apply adaptive quaternion

control in both hover and steady-level �ight for a Tailsitter VTOL (Vertical Take-o�

and Landing) aircraft [2]. These technologies are now being leveraged for use on other

types of �ying vehicles.

Figure 1.1: Quadrotor Helicopter: The quadrotor helicopter is the primary vehicle
used in this research. It is capable of sustained hover �ights and of holding substantial
payloads.

The vehicle chosen for �ight demonstrations in this thesis is the quadrotor

helicopter pictured in Figure 1.1. This four-rotor hovering vehicle is capable of ver-

tical take-o� and landing and sustained hover. The quadrotor is steadily becoming a

3



favorite aircraft among research groups due to its decoupled longitudinal and lateral

dynamics, its payload capacity, and its relative simplicity of design. The goal of this

thesis is to demonstrate methods for combining knowledge from the domains of dy-

namic control and estimation with computer vision techniques for estimating attitude

and position and to demonstrate this capability by �ying down an indoor hallway.

Several existing methods have been tested and tried in simulation and hover �ight us-

ing the Kestrel autopilot and additional sensors. A dynamic model for the quadrotor

aircraft is presented including a force and torque analysis and di�erential equations

describing the six-degree-of-freedom model. A proportional-derivative control system

is chosen for its simplicity and e�ectiveness and �ight results demonstrating attitude

and position control are included.

1.3 Contributions of this Work

This thesis work combines helicopter control with visual perception and makes

several contributions to the body of knowledge regarding quadrotor control and sens-

ing. Building on knowledge from many domains, this work demonstrates how onboard

sensors on a �ying vehicle can be improved and assisted by computer vision. The main

contributions are the following:

• The �rst example to our knowledge of using an optic �ow sensor on a quadrotor

helicopter with reliable position estimation demonstrated in position hold. This

was demonstrated with a seven-minute �ight and several other long �ights with

no pilot corrections.

• The �rst example to our knowledge of computing heading from vanishing points

onboard a helicopter and using that estimate to maintain a desired heading in

real-time.

• Several methods for determining vanishing points are used for attitude esti-

mation. A functional vanishing point detection algorithm was developed and

implemented on the quadrotor with �ight results.
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• A reliable code base has been developed for estimating pose and controlling

quadrotors in hover.

• Methods for modeling the projection of a hallway onto the imaging plane of a

monocular camera have been explored and modeled.

• Flight down a hallway has been demonstrated using velocity commands from a

human pilot.

• Onboard vision has been developed as a usable sensor with real-time visual-

ization on a remote workstation. This greatly aids computer vision algorithm

development and testing.

1.4 Document Organization

In Chapter 2, dynamic models for control and estimation are presented for the

quadrotor helicopter and �ight test results show the improved hover capability due

to optical sensors. Estimation methods using data fusion from multiple sensors are

presented showing improvements in real-world environments in Chapter 3. Computer

vision techniques for detecting lines in indoor environments and estimating orienta-

tion and position are presented and compared in Chapter 4. Chapter 5 shows �ight

results of a hovering vehicle in a hallway using an array of onboard sensors including

vision processing. Problems encountered in combining visual estimation with sensor

estimation are discussed. Finally, conclusions and possible future work are discussed

in Chapter 6. Some previous work on modeling coaxial helicopters is included in

Appendix A and some background material on perspective geometry is included in

Appendix B.
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Chapter 2

Hover Flight Dynamics and Control

Helicopters come in a variety of forms, but in general they have the ability to

take o� and land vertically and to maneuver in a holonomic fashion, i.e. they can

move in any direction with equal ease. The quadrotor helicopter consists of four sim-

ple propellers arranged at equal distance from the vehicle's center. These helicopters

are capable of lifting large amounts of weight and have relatively simple dynamic

characteristics when compared with single-rotor and coaxial helicopters. Little to

no coupling exists between longitudinal and lateral axes, and force and torque cal-

culations are simple. This chapter presents a six-degree-of-freedom model for the

quadrotor helicopter and demonstrates linear control techniques for controlling the

aircraft in the hover �ight regime using successive loop closure. Flight results are

presented to show stable hover �ight and low-velocity tracking near hover.

The coaxial helicopter was initially used for both simulation and �ight-testing.

However, all the results presented in this thesis were collected on a quadrotor heli-

copter platform due to constraints on weight and instrumentation. A complete model

of the forces and torques generated by the twin rotors of the coaxial helicopter is

included in Appendix A along with a discussion of rotor and �ybar dynamics. This

chapter will discuss the quadrotor model and the control systems selected for hover

�ight.

2.1 Related Work in Hover Flight

A great deal of research has been conducted on hovering vehicles. The related

work which directly applies to this research is split into two main categories: general
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helicopters and quadrotor helicopters. Initial research for this thesis focused on single-

rotor and coaxial helcopters, but towards the end the emphasis was shifted to the

quadrotor helicopter. Because these types of vehicles are similar in nature, work

related to both is included here.

2.1.1 General Helicopter Research

Large and small-scale autonomous helicopters have been developed at many

schools and research institutions. Carnegie Mellon University [3], Stanford [4], MIT

[5], USC [6] and several other schools have �own single-rotor helicopters autonomously

with high levels of control. In association with the BYU MAGICC Lab, helicopter

research involving stereo vision has been completed with NASA and the U.S. Army

[7]. Commonly, GPS is used to estimate position outdoors, and inertial navigation

units are used to estimate attitude. The work by Saripalli et al. [8] describes the

estimation and control design of two helicopters. One, the USC helicopter, uses

expensive inertial measurement sensors which cost an order of magnitude more than

their helicopter platform. The other, developed by the CSIRO group at the University

of Queensland, uses low-cost inertial sensors coupled with vision sensors to provide

a position estimate. While avionics systems have been developed for helicopters in

many research institutions, expensive hardware is typically required to demonstrate

reliable �ight.

Researchers at Carnegie Mellon University have demonstrated autonomous

�ight and navigation of helicopters using inertial sensors and visual odometry [9].

First, detailed state-space models of the helicopter dynamics were estimated using

system identi�cation techniques in the frequency domain. This model provides a

base for designing e�ective controllers despite stabilizer bar dynamics and active yaw

rate damping on commercial grade helicopters [3]. The simpli�ed model developed

by Mettler was very in�uential in deriving the coaxial helicopter model included in

Appendix A.

In [10], a helicopter equipped with stereo vision cameras and inertial sensors

is used to collect data which is then post-processed to demonstrate a combined visual
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and inertial navigation system. The capability of using visual recognition as feedback

has been established on helicopters in GPS-denied environments where known features

such as building windows can be identi�ed in the image frame [11], [12]. Flight

results are presented in structured environments under conditions of GPS dropout

using visual odometry and visual servoing techniques. Rather than simply handling

GPS dropouts, the work in this thesis is targeted at completely replacing the GPS

sensor with onboard sensors for estimating position and velocity. In addition, di�erent

approaches are required for handling visual pose estimation in indoor and outdoor

environments. Point feature tracking employed in the systems mentioned do not

typically work well in indoor environments which are not rich with well-de�ned point

features. Indoor environments are generally rich with edges and lines which provide

more reliable estimates, as corroborated by Kemp in [13].

2.1.2 Quadrotor Helicopter Research

The quadrotor helicopter has become a popular vehicle for conducting hover

�ight research. Universities around the world have built quadrotors, and thus a great

deal of related work on quadrotors is taking place. In [14], Tayebi proposes a feedback

control scheme with one proportional and two derivative terms which he calls PD2

control. The proportional term is related to the vector quaternion and the derivative

terms are related to the vehicle angular velocity and the vector quaternion veloc-

ity. His results show exponential attitude stabilization and an accompanying video

demonstrates the controller implemented on a test stand quadrotor. While useful,

quaternions are not necessary to describe small attitude angles (< 45◦). Dynamics of

a tethered vehicle also vary substantially from real-�ight behavior which Tayebi does

not address.

McKerrow [15] provides a useful model of the Dragan�yer helicopter, a com-

mercially available quadrotor aircraft with rate damping to aid in piloted �ight. He

describes many of the dynamic characteristics of the quadrotor which make it di�cult

to control. In particular, he mentions that it is an underactuated system because it

uses four actuators to produce motion in six degrees of freedom; that only very small
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forces oppose the motion giving it a very dynamic behavior; and that high coupling

exists between attitude angles and directional accelerations. These dynamic charac-

teristics provide challenges to successful �ight. Included in McKerrow's model are

gyroscopic torques and Coriolis accelerations which provide a more detailed model

than is presented in this work. However, it will be shown that adequate control was

provided by the sensor suite of our quadrotor to hover in a tight radius without human

intervention. This is in contrast to McKerrow's 2004 results in which stable hover

was very di�cult to achieve.

In [16], Altug et al. uses an o�board camera to determine the pose of a

quadrotor helicopter in simulation and restricted �ight. Simulations show results

for a feedback-linearization control approach as well as a backstepping-like method.

All pose estimation is computed o�board using an overhead camera, and a tethering

system restrains motion in the x- and y-directions. Thus while this is a good demon-

stration of control methodologies, it was not proven to be an e�ective position control

scheme on a truly autonomous system. In a later e�ort [17], a dual camera approach

is employed to provide a more reliable pose estimate and results are collected on a

tethered system.

Bouabdallah et al.[18] present several design considerations for designing micro

quadrotors as part of the OS4 project at the Swiss Federal Institute of Technology,

but the results are limited to simulation and test-bench data collection. In [19] results

using PID and LQ controllers are collected by the same authors, and an autonomous

�ight is attempted, though the vehicle is still tethered for power and apparently

does not perform stable position hold. In later work on the same test stand [20],

sliding mode and backstepping controllers are tested with the conclusion that the

backstepping controller is more suitable. While these results are useful comparisons

of various control methodologies, they do not present comprehensive control strategies

for position hold nor do they present convincing results that maintainable hover was

obtained.

Promising �ight results are obtained by Roberts et al. [21] in which a quadrotor

is out�tted with infrared triangulation sensors that allow the vehicle to navigate
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hands-o� for extended periods of time within an enclosed environment. The infrared

sensors maximize their distance from nearby walls allowing the vehicle to hover in a

fairly tight radius. However, the implementation of the special infrared sensors only

appears to work in fully-enclosed areas. Thus, this particular application has not

been shown to have widespread applicability to real-world situations.

Several schools have developed testbeds involving autonomous �ying vehicles.

Stanford, for example, has a set of quadrotor vehicles called STARMAC [4] which

demonstrates reliable outdoor �ight using carrier phase di�erential GPS positioning.

The STARMAC testbed is now on its second design phase and has presented useful

results regarding quadrotor performance at large deviations from the hover �ight

regime [22]. The STARMAC group appears to rely on established absolute positioning

systems such as GPS (outdoor) and overhead cameras (indoor) to provide position

feedback.

A unique indoor testbed involving quadrotor vehicles as well as ground vehicles

has been developed at MIT with the primary purpose of developing algorithms for

fault detection, isolation, and recovery [23]. Using a very precise VICON camera

system, they demonstrate the ability to control several o�-the-shelf quadrotor vehicles

simultaneously. The VICON system is capable of sub-millimeter position accuracy

and sub-degree attitude estimation. Using LQR controllers based on linear dynamics,

very stable �ights of quadrotors are demonstrated. This allows their research to focus

on higher level tasks such as multi-agent tasking and health monitoring for persistent

surveillance and mission planning. Sophisticated camera systems like VICON are

expensive and require o�board cameras, thus they do not represent real-world position

sensing capabilities. The work in this thesis targets reasonable position accuracy using

only onboard sensors which cost much less than the VICON system.

In summary, the quadrotor is growing very popular as a test vehicle for au-

tonomous �ight and navigation. Much work has been done to develop e�ective

attitude-stabilizing controllers, but nearly all institutions that work on such systems

admit to many challenges with controlling the vehicle in real �ight. Flight results in
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this thesis of a stable hands-o� hover �ight rank among the better results documented

in the literature.

2.2 Quadrotor Dynamic Model

The quadrotor is actuated by modulating the throttle command of each of the

four motors. Changing the throttle of all motors together produces vertical motion.

Pitching moments are produced by increasing the thrust of the front motor while

decreasing that of the rear motor or vice versa. Roll moments are produced in a

similar fashion by adjusting the thrust of the right motor with respect to the left.

Yawing moments are slightly more subtle: if the front and rear motors (which spin

clockwise) spin faster than the left and right motors (spinning counterclockwise),

yawing results due to the di�erence in rotor drag moments on the respective motors.

To develop control laws and estimation schemes, it is useful to model the

dynamics of the quadrotor and understand how forces and torques are generated on

the vehicle. This section will develop such a model by �rst introducing the coordinate

frames and state variable notation that will be used throughout this thesis. Then,

dynamic and kinematic di�erential equations will be shown based on the quadrotor

model found in [24]. A simple force and torque model is derived and used in control

laws developed later in the chapter.

2.2.1 Coordinate Frames

The attitude and position of the quadrotor aircraft can be described by a series

of state variables. It is desired to express the position of the aircraft in the world

frame which is oriented with its x-axis pointing north, y-axis facing east, and z-axis

directed toward the center of the Earth. The vehicle frame is translated from the

world frame by a position vector Pv, which is composed of the three position states

pn, pe, and pd. The height above the world origin is denoted h and is simply −pd.

The vehicle frame is therefore a coordinate frame which translates with the vehicle

but remains oriented parallel to the world frame.
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Three additional frames shown in Figure 2.1 are necessary to describe the

vehicle's orientation using the Euler 3-2-1 coordinate system. Three angles, ψ, θ, and

φ describe the vehicle's rotations relative to these three successive frames. First, the

vehicle-1 frame is found by rotating the vehicle in a right-handed rotation about the

vehicle z-axis by the angle ψ. The vehicle-2 frame is then found by rotating about the

vehicle-1 y-axis by the angle θ. Finally, the body-frame is found by rotating about the

vehicle-2 x-axis by the angle φ. The vehicle's pose can then be described by the three

position states pn, pe, and pd, and the three Euler angles φ, θ, and ψ. Other systems

can be used for describing the attitude angles, but Euler angles are chosen for their

intuitive meanings and because attitude angles near Euler angle singularities do not

occur in regular quadrotor �ight.

2.2.2 Vehicle State Variables

The state variables which describe the rigid-body dynamics and kinematics of

a general hovering aircraft are the following:

• pn - the position of the helicopter in the inertial x-direction (north position)

• pe - the position of the helicopter in the inertial y-direction (east position)

• h - the height of the helicopter above the ground (altitude, negative inertial

z-direction)

• u - the velocity in the body-frame x-direction (from the center of mass towards

the nose of the aircraft)

• v - the velocity in the body-frame y-direction (from the center of mass towards

the right �wing�)

• w - the velocity in the body-frame z-direction (from the center of mass towards

the bottom of the aircraft)

• φ - the roll angle de�ned with respect to the vehicle-2 frame
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Figure 2.1: Vehicle Coordinate Frames: Transformations from the world frame
to the body frame through all intermediate coordinate frames are demonstrated. (a)
The world frame is a global inertial frame with the xw-direction facing north, yw
facing east, and zw down. The vehicle frame is simply translated with respect to the
world frame with the origin at the vehicle's center of mass. The vehicle-1 frame shares
its origin with the vehicle frame, but its axes are rotated about the vehicle frame's
z-axis by the angle ψ. (b) The vehicle-2 frame is constructed by rotating about the
vehicle-1 y-axis by the angle θ. (c) Finally, the body frame is found by rotating about
the vehicle-2 x-axis by the angle φ.

• θ - the pitch angle de�ned with respect to the vehicle-1 frame

• ψ - the yaw angle de�ned with respect to the vehicle frame

• p - the roll rate measured around the x-axis in the body frame

• q - the pitch rate measured around the y-axis in the body frame

• r - the yaw rate measured around the z-axis in the body frame

The twelve equations describing the rigid-body dynamics and kinematics can be de-

rived using �rst principles. In the following equations, the changes in the states are

related to the current values of the states and the inputs. The total thrust force from
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all four motors is denoted FT , and the quantities τφ, τθ, and τψ, represent torques

about the x, y, and z axes. Derivations of how these forces and torques relate to the

individual motor commands are given in the next section. Throughout the paper, cθ

and sφ are de�ned to represent cosφ and sinφ respectively. The twelve di�erential

equations describing the quadrotor's dynamics and kinematics are:
ṗn

ṗe

ḣ

 =


cθcψ sφsθcψ − cφsψ cφsθcψ + sθsψ

sθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ

sθ −sφcθ −cφcθ



u

v

w

 (2.1)


u̇

v̇

ẇ

 =


rv − qw

pw − ru

qu− pv

+


−g sin θ

g cos θ sinφ

g cos θ cosφ

+
1

m


0

0

−FT

 (2.2)


φ̇

θ̇

ψ̇

 =


1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ
cos θ

cosφ
cos θ



p

q

r

 (2.3)


ṗ

q̇

ṙ

 =


Γ1pq − Γ2qr

Γ5pr − Γ4(p
2 − r2)

Γ6pq − Γ1qr

+


Γ3τφ + Γ4τψ

1
Jy
τθ

Γ4τφ + Γ7τψ

 (2.4)

where

Γ1 =
Jxz(Jx − Jy + Jz)

Γ
(2.5)

Γ2 =
Jz(Jz − Jy) + J2

xz

Γ
(2.6)

Γ3 =
Jz
Γ

(2.7)

Γ4 =
Jxz
Γ

(2.8)

Γ5 =
Jz − Jx
Jy

(2.9)
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Γ6 =
(Jx − Jy)Jx + J2

xz

Γ
(2.10)

Γ7 =
Jx
Γ

(2.11)

Γ = JxJz − J2
xz. (2.12)

Derivations of these equations using a similar notation are taken from lecture notes

from Dr. Randal Beard [24]. This model provides a straightforward manner of relating

the forces and torques to the states at a given point in time provided initial conditions.

From these general equations, a simpli�ed model for control can be easily developed.

2.3 Quadrotor Force and Torque Model

Describing the relations for the forces and torques due to the propellers of

a quadrotor is simple when compared to the rotor dynamic equations of the coaxial

helicopter. It is typically assumed that the e�ects of �apping blade motion contribute

little to the behavior of quadrotors, and therefore we will use a simple model for the

forces and torques generated by the four propellers. These forces and torques can

then be used in the above dynamic equations (2.1-2.4) to provide a full simulation

of the quadrotor. We also make the simplifying assumption that aerodynamic forces

and moments due to the body of the aircraft are negligible near hover. Therefore, our

model consists of forces and moments due to gravity and the thrust generated by the

four propellers. The moment arm of each motor is assumed to be the same, denoted

L, as shown in Figure 2.2.

The total force FT due to the motors is then

FT = Ff + Fr + Fb + Fl. (2.13)

The rolling and pitching torques are caused by di�erential thrust in the lateral and

longitudinal directions respectively:

τφ = L(Fl − Fr), (2.14)
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Figure 2.2: Quadrotor Top View: Each motor produces an upward force, F, and
a torque, τ, on the vehicle. As indicated, the front and back motors spin clockwise
and the right and left motors spin counter-clockwise.

τθ = L(Ff − Fb). (2.15)

To generate yawing motion, the front and back (clockwise) motors spin faster

or slower relative to the left and right (counter-clockwise) motors causing a di�erence

in rotor drag forces and an e�ective yawing moment. The direction of the torque is

opposite the direction of the propeller motion, thus

τψ = τr + τl − τf − τb. (2.16)

Force tests conducted on the motors showed a mostly linear correlation be-

tween the PWM (pulse width modulation) output of speed controllers and the the

force and torque generated by the motor. Therefore, we will model the force and

torque of each motor according to

F∗ = k1δ∗ (2.17)

17



τ∗ = k2δ∗, (2.18)

where k1 and k2 are constants that must be determined experimentally, δ∗is the motor

command signal, and ∗ represents f, r, b, and l. In matrix form, we can express the

forces and torques on the quadrotor as
FT

τφ

τθ

τψ

 =


k1 k1 k1 k1

0 −Lk1 0 Lk1

Lk1 0 Lk1 0

−k2 k2 −k2 k2




δf

δr

δb

δl

 . (2.19)

Control strategies will be derived in terms of these forces and torques. Motor

commands are then found by inverting the above matrix.

2.4 Inertial Model for Control

A simpli�ed model of the quadrotor dynamics suitable for control can be de-

rived from the equations described above. First, assuming small angles, Equation 2.3

becomes 
φ̇

θ̇

ψ̇

 =


p

q

r

 . (2.20)

To simplify the angular rate equations (2.4), two assumptions are made. First,

the coriolis terms pq, qr, and pr are assumed to be negligible. In addition, due to the

symmetry of the quadrotor, the o�-axis moments of inertia are neglected. The new

angular rate equations are then 
ṗ

q̇

ṙ

 =


1
Jx
τφ

1
Jy
τθ

1
Jz
τψ

 (2.21)
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and, combining Equations 2.20 and 2.21, the attitude dynamics can be simpli�ed to
φ̈

θ̈

ψ̈

 =


1
Jx
τφ

1
Jy
τθ

1
Jz
τψ

 . (2.22)

This simpli�ed model makes it clear that the attitude dynamics are due primarily to

the torques induced by di�erential thrust on the motors.

To develop a simpli�ed model for the position dynamics, Equation 2.1 is dif-

ferentiated yielding
p̈n

p̈e

ḧ

 =


cθcψ sφsθcψ − cφsψ cφsθcψ + sθsψ

sθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ

sθ −sφcθ −cφcθ



u̇

v̇

ẇ

 . (2.23)

Neglecting the coriolis terms and assuming small angles, Equation 2.2 becomes
u̇

v̇

ẇ

 =


0

0

g − FT
m

 . (2.24)

Combining Equations 2.23 and 2.24 results in a simple model for the position

dynamics: 
p̈n

p̈e

ḧ

 =


0

0

−g

+


−cφsθcψ − sφsψ

−cφsθsψ + sφcψ

cφcθ

 FTm (2.25)

where g is the gravitational constant and FT is the total thrust produced by the

four motors. According to this simple model, the lateral and longitudinal dynamics

are uncoupled and directional accelerations are directly tied to attitude angles. This

suggests that nested linear controllers can e�ectively control the system. Therefore,

successive loops are closed around attitude and then position as discussed in the next

section.
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2.5 Control Loops

Attitude tracking is essential to position tracking and thus acts as the inner

loop. Velocity and position controllers are built as outer loops whose output is a set

of desired attitude angles. Yawing torques are easily cancelled using equal force on

each motor and yawing dynamics are treated separately from all the other loops with

good results. Thus, four systems of loops were designed: θ → pn, φ → pe, h, and

ψ. Each of the control systems will be described below. The PD gains used in hover

�ight are presented in Table 2.1.

Table 2.1: PD Gains for Quadrotor Control
Control Loop Kp Kd Units of output

Heading Hold 150 50 PWM
Roll (φ) 75 15 PWM
Pitch (θ) 75 20 PWM

Lateral Velocity (v) 0.6 0.3 radians of desired roll
Longitudinal Velocity (u) 0.6 0.3 radians of desired pitch
Lateral Position (py) 0.4 0.1 m/s of desired velocity

Longitudinal Position (px) 0.4 0.1 m/s of desired velocity
Altitude (h) 80 60 PWM

2.5.1 Heading Control

Two methods of controlling heading were attempted. First, a simple yaw-

damping scheme was implemented. This e�ectively slowed yawing, but the vehicle

slowly drifted around the yaw axis. This drift is attributed to imperfections in the mo-

tor correlation to PWM output and imperfect motor mounting. The second method

used PD control and was very e�ective in holding heading. Provided an accurate

heading estimate, the vehicle was able to hold heading consistently. Gains were

tuned using a yaw plate which constrained vehicular motion to the yawing direction.

These gains required no additional tuning in real �ight.
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2.5.2 Attitude Control

It is essential to control attitude angles well to achieve autonomous �ight.

Since the quadrotor has decoupled lateral and longitudinal dynamics, control can be

applied independently on each axis. PD controllers were applied to control pitch and

roll. A block diagram representing the roll controller is shown in Figure 2.3. This

inner loop contains two successive loops. Rather than numerically di�erentiating roll

error to compute the derivative of the error, a desired roll rate of zero was used and

roll rate error was computed according to

d

dt
(φc − φ) ≈ 0− p (2.26)

where φc is the commanded roll angle. Control e�ort was saturated to use higher

control gains without causing divergence. This inner loop was tuned empirically

by setting desired angle commands from an RC transmitter. The pitch inner loop

is identical and therefore not pictured. All of the control gains for the system are

described in Table 2.1.

Figure 2.3: Roll Block Diagram: PD Control is su�cient to control attitude angles.
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As the block diagram suggests, the roll control e�ort τφ is calculated according

to

τφ = Kpφ(φc − φ)−Kdφp. (2.27)

Holding nonzero attitude angles on a quadrotor vehicle is problematic in an

indoor setting because the vehicle quickly accelerates in the horizontal direction.

Therefore, by constraining the quadrotor's motion in the lab, results were collected for

pitch and roll angles before testing in real �ight. First, the quadrotor was constrained

to rotate about the y-axis and pitch angles were tracked as shown in Figure 2.4 (a).

Then, the quadrotor was constrained to rotate about the x-axis and roll angle tracking

was shown in Figure 2.4 (b). These results show the ability to track within a few

degrees of the desired angle.
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Figure 2.4: Pitch and Roll Angle Tracking: While restraining the quadrotor to
move about each axis independently, attitude angles were successfully tracked using
PD control. Sub�gure (a) demonstrates pitch control and the associated PWM e�ort
while (b) shows roll control and e�ort.

After gaining con�dence in attitude angle tracking, outer loops were added to

control the quadrotor's position.The �ight results in Figure 2.5 demonstrate adequate

attitude tracking to maintain hover on the quadrotor vehicle using the previously

mentioned PD loop structure.
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Figure 2.5: Attitude Angle Tracking: Pitch and roll tracking is demonstrated
while in a hover condition. Desired pitch and roll angles are generated by position
control in an outer loop as discussed in Section 2.5.3. Attitude tracking is uncoupled
and adequate to maintain position.

2.5.3 Position and Velocity Control

Position and velocity control were implemented as successive loops around the

inner attitude loops. It is assumed that the velocity dynamics are signi�cantly slower

than the attitude dynamics, so the inner attitude loops are treated as a block with

unity gain and desired attitude angles are computed as the output from the velocity

loop. Similarly, the desired velocity commands are generated by calculating control

e�ort from position error. This creates a three tiered successive loop system where

desired positions are the input, as shown in Figure 2.6.

The velocity and position estimates returned from the optic �ow sensor are

surprisingly robust and drift very little. Control based on these position and velocity

estimates produces a stable hover. This was demonstrated in several hovering ex-

periments. Sustained hover in a tight circle was maintained over a period of seven

minutes without any repositioning by a human pilot. Figure 2.7 shows optic �ow
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Figure 2.6: Position and Velocity Control Loops: Successive loops allow control
gains to be tuned independently in a cascade fashion. This block diagram illustrates
the successive loops used to control position with velocity damping.

position readings over a �ight of approximately 75 seconds in duration. Though the

�gure indicates less than 0.5 meters of position drift over the entire �ight, video of

the �ight indicates some accumulated error in the position estimate returned by the

optic �ow sensor. However, the true position drift is estimated to be less than one

meter of the course of the �ight.

2.5.4 Altitude Control

Altitude was the most challenging of the controllers to implement successfully

due to coupling with attitude angles, unmodeled behavior due to battery depletion,

and ground e�ect. First, pitch and roll motions away from level resulted in substantial

loss of lift that contributed to oscillations in altitude. Limits had to be imposed on the

altitude controller to prevent serious oscillations. Second, as batteries were depleted,

the motor response changed which called for changes in the altitude limits. Finally,

ground e�ect, an aerodynamic e�ect where the wash from the propellers causes extra

buoyancy, made altitude a nonlinear function of thrust near ground level. The optic

�ow sensor performs best close to the ground, and therefore, when it was in use,

the vehicle was close to or in ground e�ect. In addition, height readings close to

the ground were inaccurate when using the ultrasound sensor which cannot range

less than 0.15 meters. All of these e�ects contributed to di�culties in altitude control
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Figure 2.7: Position Hold: A sustained �ight of over 70 seconds in duration was
completed without manual piloting. This demonstrates the ability of the helicopter
to hover well provided a good position/velocity measurement. The desired position
is always zero meters and has not been pictured.

exhibited by a steady-state o�set of 0.125 meters as shown in Figure 2.8. Good results

were obtained by limiting control e�ort, adding integral control, and �ne-tuning the

altitude controller.
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Figure 2.8: Altitude Tracking: A steady-state o�set exists on altitude making
the actual value slightly below the desired value. This is not ideal, but �ight was
maintained at a desired altitude by specifying a height slightly greater than the actual
desired height.

2.6 Summary

In this chapter, much of the related work regarding helicopter control was

discussed and compared to the results shown herein. Dynamic vehicle models de-

scribing how state variables relate to inputs, forces, and torques were developed for

use in simulation and control. Finally, the implemented control system composed of

PD control for heading, attitude, position, and altitude control were described, and

real-world results on a hovering quadrotor were exhibited.
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Chapter 3

Sensors and Estimation

The control loops mentioned in Chapter 2 rely on fast, reliable estimates of

the pose (attitude and position) and velocity states of the vehicle. A six-degree-of-

freedom system presents several estimation issues which deserve discussion. Attitude

estimation and rotation representation are areas of discussion and research on their

own. Position estimation then adds additional complexity. To tackle these problems,

a sensor array has been selected and estimation schemes developed. This chapter �rst

describes the physical hardware including the onboard computing capabilities and the

full sensor suite on the vehicle. Models are derived for each sensor and estimation

schemes are shown. Kalman �ltering provides a framework for fusing attitude and

position estimates from various sensors. Time and measurement update equations

used in onboard Kalman �lters are presented with results from the hovering aircraft.

3.1 Onboard Computing

Two onboard computers are used to interface the sensors together and provide

low-level control. The Kestrel autopilot acts as a small inertial measurement unit

(IMU) housing the three-axis accelerometers and gyros. It also contains interfaces

for analog input and SPI communication which are used for the ultrasound and optic

�ow sensor respectively. To handle vision processing, a great deal of additional com-

putation power is needed. Two solutions have been proposed for this: the Gumstix

Verdex Processor [25], and the VIA EPIA PX Pico-ITX small computer [26].
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3.1.1 Kestrel Autopilot

The Kestrel autopilot, pictured in Figure 3.1, contains an array of sensors in-

tended for autonomous �ight of �xed-wing UAVs which include three-axis accelerom-

eters, three-axis rate gyros, barometric altitude sensor, and di�erential airspeed sen-

sor. The barometric and di�erential pressure sensors are considerably less accurate

at small changes of altitude and low airspeeds (less than �ve meters per second) and

therefore are not used on the quadrotor. This autopilot is marketed by Procerus

Technologies [27] and provides the basis for hover �ight on the coaxial and quadrotor

helicopter platforms discussed in this thesis. In summary, the autopilot functions as

the heart of the estimation and control algorithms implemented on the quadrotor.

The attitude estimation, servo output, and ground communication are all interfaced

through the autopilot. The groundstation runs a program called Virtual Cockpit that

communicates to the autopilot using a spread spectrum serial modem. This ground-

station application has been adapted to �t the needs of the quadrotor system. The

UAV autopilot and communication and simulation software used in this thesis are

based on previous systems discussed further in [28].

Figure 3.1: Kestrel Autopilot: The autopilot interfaces with all sensors, computes
estimates of attitude and position, and send PWM control signals to the four motors.
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3.1.2 Onboard Vision Processing

While the Kestrel autopilot interfaces with sensors and provides low-level esti-

mation and control, additional processor power is desirable to process video onboard.

Two onboard computers were used at di�erent stages in this research which enabled

onboard video processing for the helicopter: the Gumstix Verdex Processor and the

VIA EPIA PX Pico-ITX small form factor computer.

Gumstix Processor The Gumstix line of processors are famous for their small

size, approximately the size of a stick of gum, weighing just 2.5 oz. (see Figure 3.2),

and their impressive processor speeds. The Verdex processor, for example, runs at

600 MHz and is based on Intel XScale technology. The processor boards come with

up to 128 MB RAM and 128 MB of �ash memory which acts as a solid-state hard

drive. Many daughter boards can be attached to either of the two interface ports on

the processor board giving such capabilities as serial communication, PWM output,

wired and wireless ethernet, microSD card storage, and USB On-The-Go support.

Figure 3.2: Gumstix Processor: The Gumstix processor is a very small Linux
computer. Weighing just 2.5 oz., it provides enough processing power to perform
moderate computer vision calculations.

Gumstix processors natively run a custom build of the Linux operating sys-

tem, making them rather simple to navigate and use. Software is easily cross-compiled
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using an ARM-Linux cross-compiler making software development fairly rapid. Im-

age processing is possible on the Gumstix using libraries such as OpenCV [29] and

EmbedCV [30], and images are easily captured using a standard web camera. Com-

munication with other devices is accomplished through serial and ethernet interfaces.

Pico-ITX Small Computer Though the Gumstix wins hands-down when it comes

to size, the Pico-ITX provides faster computational speeds for image processing and is

still a very small computer. Incorporating a 1.0 GHz VIA C7 Processor and contain-

ing all the standard peripherals of a laptop computer (including wired ethernet, VGA

monitor support, USB, and PS2 mouse and keyboard), the Pico-ITX provides a fa-

miliar working environment. Therefore, the Pico-ITX was selected as the processor of

choice for developing onboard computer vision applications. In this research, a solid-

state hard-drive was attached to the SATA connector on the main board providing

4 GB of storage space and Ubuntu Linux was installed to provide a stable operating

system. In order to provide wireless connectivity while in �ight, a VNT6656G6A40

54 Mbps wireless USB module [31] was installed.

Two methods of remotely viewing applications are possible. SSH tunneling

with X-Windows forwarding provides a simple method of running remote applica-

tions, but the connection is rather slow. NoMachine [32], a desktop virtualization

company, provides much faster remote desktop access to the Pico-ITX computer

than X-Windows forwarding. Their server, NxServer was therefore installed on the

quadrotor and a client application runs on the ground station. Thus, there are two

wireless ground links: the autopilot modem connection (rather slow at a baud rate of

115200) and the digital video link implemented through the Pico-ITX. The Pico-ITX

is con�gured to start an ad-hoc network upon boot-up to which the ground station

can connect.

The major convenience of working with the Pico-ITX is the ability to remotely

compile and run programs and get real-time visual feedback from the remote system.

Figure 3.4 shows a screenshot of a ground station computer connected wirelessly to the

Pico-ITX onboard the quadrotor. Using this remote interface greatly simpli�es and
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Figure 3.3: Pico-ITX Processor Board: The Pico-ITX form factor computer
provides a substantial amount of processing power in a very small size. Running
Ubuntu Linux, it is capable of running computer vision algorithms in real-time and
of interfacing to remote computers over wireless remote desktop connections.

improves the software development system for the quadrotor. Programs are written

using standard C and C++ and compiled onboard. Then, streams of processed video

are viewed in real-time on the groundstation. Such a system has been invaluable in

moving forward with computer vision research on the quadrotor platform.

3.2 Sensors

The quadrotor helicopter used in this research is out�tted with several sensors

to estimate the essential states necessary to control and maneuver the aircraft. The

full sensor suite includes:

1. A triad of MEMS rate gyros oriented along each axis to measure body-frame

angular rates p, q, and r,

2. A triad of MEMS accelerometers which measure speci�c forces along the axes

of the vehicle body frame,

3. An ultrasound sensor positioned downward facing to measure height above

ground (HAG),
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Figure 3.4: Remote Desktop Over Wireless: A PC running Windows XP views a
computer vision application run on a Ubuntu Linux PC on the quadrotor in real-time.

4. An optic �ow sensor that measures pixel �ow across an optical sensor much like

an optical computer mouse, and

5. A standard web camera (Logitech QuickCam Pro 4000) providing video frames

at a maximum rate of 30 frames per second.

Operating in a GPS-denied environment requires specialized sensors to measure po-

sition and height above ground (HAG). The ultrasound range sensor measures HAG

while the OFS, previously used for such applications as height-above-ground sensing

and wind estimation, is used to determine displacements and velocities in the hori-

zontal plane. Using the downward-facing ultrasound and optic �ow sensor together,

accurate position measurements are obtained with very little drift due to integra-

tion. Thus, hover �ight and position tracking can be accomplished without external

position sensing.
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Speci�cations for each of the computing systems will be mentioned in the

following sections. Sensor models will then be presented for each sensor or set of

sensors except for the video camera which will be discussed in Chapter 4. Finally,

estimation techniques based on these sensor models will be presented.

3.2.1 Ultrasound

Ultrasonic transducers provide absolute measures of position for feedback con-

trol purposes. A single downward facing sonar sensor is used to provide a measure-

ment of height above ground. The sensors on the helicopter are made by Maxbotix

(pictured in Figure 3.5) and have noise characteristics which are important to model.

Figure 3.5: Maxbotix Ultrasound Sensor: Ultrasound sensing provides fairly
reliable height estimates and can additionally be used as a range sensor for obstacle
or wall detection.

The sensors have a range of approximately seven meters. Readings are also

constrained to be above 0.15 meters (6 inches). This results in a deadband at the

base of the sensor measurement which can lead to problems with maintaining heights

close to the ground. Ultrasound sensor readings occur at approximately 20 Hz. Using

an analog-to-digital converter on the autopilot, it is easy to collect the readings from

the sensor. Readings from the ultrasound sensor are fairly reliable, but noise does

occur. Two �ltering techniques were used to improve the signal and reject outliers.
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First, a slew �lter prevents the sensor from trusting spurious readings by preventing

large jumps. Then an alpha �lter is applied to smooth adjacent measurements.

3.2.2 Optic Flow Sensor

The optic �ow sensor is based on a small integrated circuit common to optical

mice used for computer input. The sensor used in this research is based on the Avago

ADNS 3080 optic chip [33] shown in Figure 3.6. It contains a 30 × 30 CMOS pixel

array which is sampled at 6400 frames per second. The output of the sensor is a

number of pixels that �ows across the imaging array in the x- and y-direction which

will be called γx and γy.

Figure 3.6: Optic Flow Sensor: A custom-made optic �ow sensor, pictured at left,
has been developed in the MAGICC Lab. It is based on the Avago ADNS 3080 optical
mouse chip pictured at right.

Optic �ow readings operate best at a light intensity of at least 80 mW/m2 and

at a wavelength between 600 and 700 nm (which is in the red portion of the light

spectrum). This leads to di�culties with using such sensors in �uorescent light, which

contains very little of this portion of the spectrum. For this reason, early tests of the

system were performed in the presence of bright �ood lights which contained adequate

red light. The sensor also responds best at a nominal height corresponding to the

nominal focal length of the sensor. A variety of lenses can be �tted to the sensor to

allow for di�erent situations and imaging needs. A lens with a narrow �eld of view is
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often advantageous because it allows frequent measurements to be taken and allows

the sensor to detect motion over surfaces with �ne textures such as carpeting or tile.

Optic �ow sensors have found applications in several di�erent UAV-related

projects. Gri�ths [34] utilized an optic �ow sensor based on an optical mouse chip

on a small UAV to avoid obstacles. In this application, the optic �ow sensor was used

to measure distance rather than velocities. The velocity readings from an airspeed

sensor and a GPS were combined with the pixel count reading to measure height-

above-ground or distance to a canyon wall. A downward-facing sensor was combined

with two laterally-oriented sensors (one out each side) to estimate �ow on opposing

walls and guide the vehicle safely through a canyon by maintaining equal optical �ow

on each side.

In Barrows and Neely [35], compact, lightweight optic �ow sensors were built

to provide visual sensing for micro air vehicles. These mixed-signal VLSI sensors

demonstrated the ability to use the optic �ow sensor to avoid collisions with walls.

At low altitudes, the optic �ow sensor works well as a HAG sensor and has

been used as an aid in precision landing [36]. The optic �ow sensor was used as a

ranging sensor by comparing the �ow of features detected by the imaging array to the

known ground-speed reported by a GPS receiver. The optic �ow sensor can thus be

utilized to compensate for drift in barometric sensors or to allow for varying take-o�

and landing ground heights without providing a complete terrain map.

Rodriguez, et al. [37] have used the ratio of longitudinal to lateral optical �ow

to estimate the crab angle of a �ying vehicle. From this measurement, combined with

ground track from the GPS and the airspeed, they have shown a method to compute

windspeed without loitering in place or relying on magnetometers.

Evidence has demonstrated that �ying insects such as �ies and bees use optical

�ow in their visual perception to control their speed and height. In [38], the authors

simulate the behavior of bees using an optic �ow reading. Similarly, in [39], e�orts are

made to mimic the �ight behavior of �ies to control very small indoor �ying vehicles.

The optic �ow sensor has been established as an e�ective sensor for estimating

velocity, and can be used as a range sensor when velocity measurements are already
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provided. Di�erential readings can be used to maintain distance between walls or

other surfaces. In this work, the optic �ow sensor is used as a velocity and position

indicator and under the right conditions, it provides very reliable readings which

greatly improve the hover �ight behavior of helicopters.

Optic Flow Sensor Model Figure 3.7 shows a diagram of the geometry underlying

the optic �ow sensor. The upper triangle is the imaging frustrum of the optical lens.

The quantity FOV is the lens �eld of view expressed in radians. The quantity ∆φ,

also in radians, represents an angular change through which the vehicle has rotated.

On the focal plane, the quantity pn represents the total pixel count of the sensor in

each dimension. The sensor in use is symmetric with pn = 30. The quantity ∆xm

represents the distance swept out on the ground in meters, and h denotes the height

above ground.

Figure 3.7: Optic Flow Sensor Geometry: The upper triangle is an enlarged
version of the viewing frustrum of the optic �ow lens. The quantities φ and FOV are
angles; the quantities γ and pnare in pixels; and the quantities h, Xview, and ∆xm are
in meters.
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The optic �ow sensor reads the combination of two quantites: the pixel change

due to actual translation and the pixel change due to a small change in angle, ∆φ.

Using assumptions proposed in [37] and using similar triangles an equation relating

the total pixel reading γ and ∆xm can be written as

∆xm
Xview

=
γ

pn
(3.1)

where

Xview = 2h tan

(
FOV

2

)
≈ h · FOV. (3.2)

A similar equation can be computed for the correlation between γ and ∆φ which

results in a model for the total pixel reading, γ, due to translation and rotation:

γ =
pn

FOV

(
∆xm
h

+ ∆φ

)
. (3.3)

An optic �ow pixel reading γ thus comes from both angular and linear motion.

If an estimate of rigid-body rotation is available, the translational motion of the sensor

can be detecte as discussed in the next section.

Velocity Estimation and Position Dead Reckoning from Optic Flow Sensor

Inverting the optical �ow sensor model given in Equation 3.3, we obtain equations

for determining change in position as a function of the γx and γy pixel readings from

the sensor:

∆xm = h

(
FOV

pn
γx −∆θ

)
(3.4)

∆ym = h

(
FOV

pn
γy + ∆φ

)
(3.5)

where the signs in front of the last term are selected according to angular sign con-

ventions. ∆θ and ∆φ are termed the pitch- and roll-e�ect and are easily subtracted

out of the pixel measurements to provide estimates of position and velocity.
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A simple lab test demonstrates the e�ectiveness of the optic �ow sensor velocity

readings in Figure 3.8. The helicopter, out�tted with a downward facing ultrasound

sensor and an optic �ow sensor, was subjected to perturbations in attitude angles

and position. Plot (a) shows the height reading from the ultrasound sensor. The

�rst half of the test was performed at a low height of approximately 0.5 meters

(shown in segments 1-4). Then, the helicopter was raised to 0.75 meters and the test

was repeated (shown in segments 5-8). The surface quality, shown in (b), changes

depending on the height above the imaged surface. Though this can be adjusted

by focusing the optic �ow lens, no focusing was performed during the experiment.

Surface quality (denoted squal) readings above 40 are typically reliable. The optic

�ow sensor performs best at low heights (less than approximately 1.5 meters in the

current lens con�guration).

The test was divided into four main time segments: pitching, x-translation,

rolling, and y-translation. These sections are delimited by number in the lower six

plots of 3.8. The test was performed by �rst swinging the helicopter around the

the body-frame y-axis in a pitching motion (Segment 1 and 5), then moving the

vehicle forward and backward quickly in the body-frame x-direction (Segments 2 and

6). Then, the vehicle was rolled about the body-frame x-axis (Segments 3 and 7)

and subsequently translated in the body-frame y-direction (Segments 4 and 8). The

pitching motion results in pixel movement across the optic �ow sensor which must

be subtracted out to return a good position or velocity reading. The angular motion

and translation both register pixel movement as shown in plots (e) and (f), but the

angular motion is e�ectively removed in plots (g) and (h). Thus, the optic �ow sensor

is e�ective at detecting changes in position when angular motion is correctly removed.

Though absolute position cannot be determined from the optic �ow sensor,

by adding up the incremental changes in x- and y- position, translation relative to

a starting location can be estimated through dead reckoning. In testing, position

feedback from the optic �ow sensor allowed for very e�ective hovering �ights in which

the autopilot was able to hover autonomously in a one-meter radius circle for nearly

the entire life of the battery. A portion of these results is shown in Figure 2.6. In
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Figure 3.8: Optic Flow Sensor Lab Test Results: A lab test demonstrates the
e�ectiveness of velocity readings from an optic �ow sensor. Pixel readings due to the
pitch and roll in plots (c) and (d) are e�ectively removed from the optic �ow reading
resulting in the reliable di�erential position measurements in (g) and (h).
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e�ect, the optic �ow sensor provides reliable position estimates which are in some

ways superior to GPS readings. For example, GPS readings provide absolute position

estimates relying on the precise timing of orbiting satellites. Typical GPS receivers

can receive position estimates at rates of 1-4 Hz (though more expensive units provide

slightly higher rates). At these relatively slow rates, instantaneous velocity estimates

can have signi�cant error. In addition, GPS receivers typically yield unreliable ve-

locity estimates at vehicle speeds less than �ve meters per second. In general, hover

�ight takes place at low velocities, so the optic �ow sensor's ability to return fast,

accurate velocity updates at rates between 20 and 50 Hz makes it superior for velocity

estimation.

Despite their high accuracy and capability, optic �ow sensors have several

drawbacks that must be recongized. First, the imaged surface must be of a certain

quality for the sensor to properly detect pixel movement. An ideal surface is similar

to a mousepad: plenty of surface texture near the resolution of the lens. Strongly

textured carpets work best while shiny surfaces do not. Lighting conditions are also

very important. As mentioned earlier, the sensor responds best in the range of 600-

700 nm which means that they work poorly in �uorescent light and poorly-lit rooms.

In initial �ight experiments in this work, �ood lights were used to light the hallway.

Then, to improve the system, a bright �ashlight bulb was added to the underside of

the quadrotor to provide adequate lighting for the sensor. This spotlight gave surface

quality readings equivalent to those provided by the �ood lights. In addition, the optic

�ow sensor operates best near a certain height which depends on the focal length or

�eld-of-view of the lens. In these experiments, the optimal range was between 0.1

and 2 meters. Possible improvements to the sensor will be discussed in the future

work at the end of this thesis. It is clear that under the right conditions, the optic

�ow sensor performs very well.

3.2.3 Accelerometers and Rate Gyros

The rate gyros are key components in attitude estimation because attitude

estimates can be found by simply integrating the Euler angle di�erential equation
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given in Equation 2.3. The signal from MEMS rate gyros contains noise which leads

to signi�cant drift when integrated for attitude measurements.

To bound the drift due to integration, vector measurements of attitude are

needed. Typical sensors which provide vector measurements are three-axis accelerom-

eters and three-axis magnetometers. However, both of these types of sensors, in the

size suited to small indoor aircraft, also su�er from accuracy issues. Though these

sensors do not drift as does the integrated signal from rate gyros, they exhibit behav-

iors which make them less suitable to provide adequate attitude estimates on hovering

aircraft.

Accelerometer Problems Near Hover Accelerometers consist of a proof-mass

suspended in a capsule. They can be used to estimate the orientation of the gravity

vector, but this measurement is mixed with a reading of body-frame accelerations

making the estimate ill-posed in some conditions. Studying a free-body diagram of

an accelerometer on a hovering aircraft demonstrates one of the primary di�culties

with accelerometers in a hovering condition.

Figure 3.9: Quadrotor Free Body Diagram: Free body diagram of a hovering
vehicle at an angle θ with respect to horizontal.

It is assumed that the vehicle provides a thrust which is enough to compensate

for the force of gravity and for the angle θ. Thus,

Mg = T cos θ, (3.6)
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whereM is the mass of the vehicle, T is the thrust force, oriented perpendicular to the

vehicle, and g is the gravitational constant. The pitch angle θ causes the vehicle to

accelerate in the inertial x-direction in response to a force T sin θ with an acceleration

ax = T sin θ
M

.

Now, we examine the forces on a proof mass representing an accelerometer

oriented along the body-frame x-axis of the vehicle, illustrating that the x- and y-

axis accelerometers will read close to zero on a hovering vehicle. The measurement of

the accelerometer is the sum of accelerations induced by forces acting a proof mass

as illustrated in Figure 3.10. Assuming that aerodynamic forces from the propellers

and body are negligible near hover and summing forces in the body-frame x-direction

we see that

ΣF b
x = −mg sin θ +

mT sin θ cos θ

M
. (3.7)

Using Equation 3.6, we see that the sum of forces in the body frame x-direction

would be identically zero, meaning that any attempt to use the accelerometers as a

vector measurement of gravity would give erroneous values near hover.

Figure 3.10: Accelerometer as a Proof Mass: The summation of forces acting
on a proof mass in the body frame of a hovering vehicle illustrates the di�culty of
measuring the gravity vector using a three-axis set of accelerometers.

Magnetometer Problems Magnetometers measure the magnetic �eld strength in

a particular direction. When three such sensors are mounted in orthogonal directions

on a vehicle, the magnetic �eld vector can be estimated. Since this magnetic �eld
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vector is a function of geographic location, look-up tables provide the known decli-

nation and inclination values for the true vector orientation. A signi�cant problem

with magnetometers is the fact that they measure magnetic variations, which in an

indoor setting can vary greatly due to disturbances from metal beams in ceilings and

walls. In addition, nearby system components such as motors and electrical wiring

can cause signi�cant electromagnetic interference. If such disturbances are constant,

they can be accounted for through calibration, but buildings often make magnetome-

ters behave erratically, corrupting measurements. Better sensors, then, are needed to

provide an unbounded correction to rate gyros in an indoor setting.

3.3 Attitude Estimation and Data Fusion

Kalman �ltering provides the primary framework for fusing measurements on

the hovering aircraft. Attitude is estimated using a Kalman �lter which fuses rate gyro

data and accelerometer measurements when the vehicle is stationary. Unfortunately,

when hovering, accelerometer measurements are typically unreliable, and a separate,

error-bounded measurement is sought from computer vision. This section discusses

methods for estimating the attitude of the vehicle and proposes a fusion method for

incorporating vision for bounding attitude error.

The �lter follows the continuous-discrete implementation of the extended Kalman

�lter (see Lewis, pg. 263 [40]) and is split into a time update, computed at a speci�ed

rate, and a measurement update, computed whenever sensor readings are taken. The

continuous portion needs to be computed at a fast sampling rate to accurately inte-

grate the continuous di�erential equations for all states. The discrete portion allows

each sensor measurement (observation) to be computed independently and then to

in�uence the estimates of all other interrelated states.

3.3.1 Kalman Filtering Basics

The Kalman Filter estimates the mean and covariance of a set of states, x,

of size n × 1 where the mean estimate is notated x̂ and the covariance is an n × n

43



matrix P. The Extended Kalman Filter relies on integrating a model of the system

of the form

ẋ = a(x,u) + η, (3.8)

y = c(x,u) + ξ, (3.9)

where ẋ indicates the time derivative of x, u is an array of inputs, y is an obser-

vation, and the noise terms η and ξ represent process noise and measurement noise,

respectively. Thus, we have some knowledge of how the states change with time and

can express them as a function of the states and inputs. We also have a function

c(x,u) which relates our observations (sensor readings) with the states and we have

some idea of the amount of noise on our model and our sensors.

Time Update In its original form, the Kalman �lter (KF) relies on ẋ being a

linear function of the states and inputs in the form ẋ = Ax+Bu, where A and B are

linear operators (matrices). The Kalman Filter is proven to be the optimal �lter for

minimizing the squared error if noise on both the model and observation is Gaussian

with zero mean. We express this as

η ∼ (0,Q) (3.10)

ξ ∼ (0,R) (3.11)

where ∼ (0,S) means that a variable is normally distributed with zero mean and

covariance S.

The extended Kalman �lter (EKF) �extends� the regular KF by allowing the

state equations to be nonlinear in form. An approximation is made when propagating

the �lter by replacing the state transition matrix A with the Jacobian of a(x,u). The

time update portion of the �lter integrates the equations of motion from Equation 3.8

and estimates the covariance matrix P according to

P+ = P− + ∆t · (AP + PAT + Q), (3.12)
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where P− and P+indicate the covariance before and after the update, respectively,

and ∆t represents a small change in time. Q, the model covariance, represents how

much uncertainty is introduced on the estimate at each time step.

Measurement Update When a discrete measurement is taken from a sensor, we

seek to fuse this measurement with the estimate from our model computed in the

time update. The observation is expressed as a linear combination of the states in

the matrix C, and we compute the Kalman gain K according to

K = PCT (CPCT + R)−1. (3.13)

The Kalman gain represents a stochastic ratio of how much we trust a given a mea-

surement compared to how much we trust the model. In practice, we estimate the

measurement covariance, R, by guessing the rate of error growth due to measure-

ments and then tune the model covariance, Q, to give a relative �trust factor.� Once

the Kalman gain is computed, we update the state mean and covariance according to

x̂+ = x̂− + K(y −Cx̂) (3.14)

P+ = (I−KC)P−. (3.15)

The Kalman �lter allows a model to be propagated and corrected or fused with

measurements asusming that the noise on the model and measurement is Gaussian

with zero mean. Kalman �lters are employed on the quadrotor to fuse rate gyro

measurements with accelerometer measurements and vision measurements in order

to estimate attitude and heading angles.

3.3.2 Attitude Kalman Filter

On a �xed-wing airplane, the attitude can be e�ectively estimated using a

fusion of data from the rate gyros and accelerometers. However, due to problems

already discussed, this method is less e�ective on a hovering vehicle because body-
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frame forces e�ectively cancel gravity force readings on the accelerometers rendering

them unsuitable for determining angular positions (see Section 3.2.3). However, a

Kalman �lter which fuses accelerometer and gyro readings is still useful for ground

tests, and it has been found that the quadrotor can �y reliably without any additional

attitude �ltering if an outer loop involving velocity and position is provided. Thus,

an attitude Kalman �lter using accelerometers to bound attitude errors is still useful

on the quadrotor and provides the basis for more complex �ltering which incorporates

visual measurements of attitude.

To develop an equation for the time update of the attitude Kalman �lter, it

is useful to think of the rate gyros as the model. Thus, the time update consists of

integrating the reading from the rate gyros to develop an estimate of attitude. Using

the measurements pgyro, qgyro, and rgyro and Equation 2.3, the time update of the

Kalman �lter is given in Algorithm 1.

Algorithm 1 Kalman Filter Time Update: The time update essentially inte-
grates the rate gyro readings to provide an estimate of pitch and roll angles.

x̂+ =

[
φ̂+

θ̂+

]
=

[
φ̂

θ̂

]
+ ∆t

[
pgyro + qgyro sin φ̂ tan θ̂ + rgyro cos φ̂ tan θ̂

qgyro cos φ̂− rgyro sin φ̂

]

A =
∂a (x̂,u)

∂x
=

[
qgyro cos φ̂ tan θ̂ − rgyro sin φ̂ tan θ̂ 1

cos2 θ̂

(
qgyro sin θ̂ + rgyro cos φ̂

)
−qgyro sin φ̂− rgyro cosφ 0

]
P+ = P + ∆t

(
AP + PAT + Q

)

The measurement update of the �lter consists of comparing the estimate pre-

dicted by the rate gyros in the time update with the reading produced by the ac-

celerometers. The accelerometers measure the speci�c force in the body frame of the

vehicle. The accelerometer measurement yaccel has three components corresponding
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to the body frame coordinate axes and is expressed according to

yaccel =


ax

ay

az

 =
1

m
(F− Fgravity) . (3.16)

Explicitly, we have
ax

ay

az

 =


u̇

v̇

ẇ

+


qw − rv

ru− pw

pv − qu

+


g sin θ

−g cos θ sin θ

−g cos θ cosφ

 . (3.17)

We do not have a method for directly measuring u̇, v̇, or ẇ. In addition,

attempts to measure u and v from the optic �ow sensor could be detrimental since

these measurements are coupled with rotational motion. Therefore, we assume that

u̇ = v̇ = ẇ = u = v = w = 0. In addition, the accelerometer readings can be

calibrated to be in units of [g], so Equation 3.17 is normalized by g resulting in a

simpli�ed expression of accelerometer measurements in terms of the attitude angles

φ and θ as follows:

yaccel =


− sin θ

− cos θ sinφ

− cos θ cosφ

 . (3.18)

This equation acts as c(x,u) for the Kalman �lter. One �nal change to the

�lter was added for computational reasons. The computation of the Kalman gain

given by Equation 3.14 would require a 3×3 inverse to be computed at every mea-

surement update. To reduce this computational load on the embedded processor,

the measurement update is rearranged to require two 2×2 inverses instead1. The

resulting measurement update is summarized in Algorithm 2.

Lab tests were completed that exhibited the e�ectiveness of this attitude

Kalman �lter. Figure 3.11 shows attitude estimates onboard a helicopter with mo-

1The matrix inversion lemma can be used to demonstrate the equivalence of these two methods.

47



Algorithm 2 Attitude Kalman Filter Measurement Update: The measure-
ment update consists of comparing the rate gyro estimate with the accelerometer
attitude estimate using the Kalman gain K.

C =
∂c

∂x
=

 0 cos θ
− cosφ cos θ sin θ sinφ
sinφ cos θ sin θ cosφ


P =

(
P−1 + CTR−1C

)−1

K = PCTR−1

x̂+ = x̂ + K (yaccel − c (x̂,u))

tors running (to simulate the vibrations occurring in �ight) using rate gyros and

accelerometers independently. The test performed consisted of simply rotating the

hand-held helicopter �rst about the x-axis and then the y-axis while running the

motors. The red dashed line shows that the rate gyro reading drifts over a matter

of seconds and quickly deviates from the true attitude which is zero-centered. The

accelerometer attitude reading (in blue) does not drift, but is very noisy resulting in

an unusable attitude estimate on its own.

However, combining the good high-frequency rate gyro signal with the non-

drifting low-frequency signal provided by the accelerometers, we have an e�ective

attitude estimate with bounded error and very little lag. The fused �lter is shown

in Figure 3.12. Accelerometer readings e�ectively bound the gyro estimate removing

biases. This �lter forms the base of a larger Kalman �lter involving attitude estimates

from computer vision. The �lter is tuned to trust the accelerometers approximately

100 times less than the rate gyros. This is primarily due to noise induced by vibra-

tions. In addition, the rate gyros are periodically calibrated to remove biases which

slowly change with time.

3.3.3 Adding Vision Estimates to the Filter

As mentioned, this gyro/accelerometer �lter provides the basis for a more

complex Kalman �lter. When computer vision estimates of attitude are computed,
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Figure 3.11: Naive Attitude Estimation: Naive Attitude Measurement using rate
gyros or accelerometers independently.

they are passed over to the autopilot over a serial interface. When measurements

arrive, measurement updates are performed to further correct the attitude readings

using the visual estimate. Pitch and roll are estimated from separate computer vision

algorithms making it necessary to perform two separate measurement updates. To

update the estimate of φ, the Kalman gain is computed using the variance computed

in the gyro/accelerometer �lter, pφ according to

Kφ =
pφ

pφ +Rφ

. (3.19)

The measurement of the roll angle from computer vision is termed φv, and the

state and covariance are updated according to

φ̂+ = φ̂− +Kφ(φv − φ̂−), (3.20)
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Figure 3.12: Attitude Estimation using Data Fusion: Kalman �ltered attitude
estimate using a fusion of accelerometer and rate gyro readings. The black line show
the Kalman �ltered estimate.

p+
φ = (1−Kφ)p−φ . (3.21)

The Kalman �lter allows the system to deal with unsteady rates of visual

updates. Rate gyros provide adequate estimation in general, but visual updates

provide corrections and bound errors. In addition, the attitude estimate from rate

gyros provides a method for rejecting false visual readings, which is discussed further

in Section 5.2.

3.4 Summary

The onboard computing abilities and sensors of the quadrotor were explained

including details regarding sensor models and estimation. In particular, the optic �ow

sensor was explored as a means of providing reliable position and velocity estimates

on a hovering vehicle. A simple method for removing the pitch and roll biases from
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the optic �ow reading has been demonstrated in a lab test. In addition, a Kalman

�ltering framework for attitude estimation has been developed and demonstrated with

results from the quadrotor.
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Chapter 4

Vision-aided Hallway Following

Computer vision is a well researched �eld with very promising applications

in all areas of robotics. The amount of information available to humans through

vision suggests that visual information be used more heavily in robotic applications.

Attempting to match the pattern-recognition and visual perception capabilities of

human eyesight is beyond the scope of this paper, but incorporating vision as a

sensor on an instrumented aircraft is both logical and in some cases essential.

Details regarding homogeneous coordinates and Euclidean and camera projec-

tion matrices are included in Appendix B. Also included in the appendix is a demon-

stration of an application of perspective projection mathematics showing a model of

a hallway being projected onto the imaging plane of the quadrotor's forward-looking

camera.

This chapter begins with an overview of many of the key related works in

vanishing point detection and its prerequisites. The approach in this thesis starts with

edge detection and line detection, both of which can be performed in various ways.

Sections 4.2.1 and 4.2.2 compare the methods attempted for edge and line detection in

this research and defend the �nal approach that uses the Canny edge detector and the

Hough transform. Using the output of these preprocessing stages, two main methods

of �nding vanishing points are discussed and compared in Section 4.2.4. Methods for

determining attitude and position from discovered vanishing points are explained in

Section 4.3. Finally, results of each method are compared using onboard processing

in Section 4.4.
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4.1 Related Computer Vision Research

The goal of this chapter is to explain a method of detecting vanishing points

in indoor hallways that is useful for attitude and position estimation on small air

vehicles. Humans navigate using an array of sensors including tilt sensing (much like

rate gyros), sound, touch, and most importantly vision. Visual cues give humans

a vast amount of information which allows them to safely navigate buildings, drive

cars, and �y planes and helicopters. Robotic vehicles currently tend to use specialized

sensors such as accelerometers, rate gyros, sonar, laser range �nders, and GPS before

visual techniques are employed. This is due to the ease with which these types of

sensors can be incorporated into a system. Historically, computer vision has been

a di�cult sensor to utilize in practice. This is due to several challenges inherent in

determining patterns from digital images such as digital storage and computational

needs, the di�culty of expressing perspective geometry in mathematical terms, and a

sheer lack of understanding of how human visual perception works. The availability

of onboard processing power for small UAVs has led to an increasing use of visual

techniques in micro air vehicle (MAV) applications.

There are three basic ways to use vision for navigation: visual servoing, visual

odometry, and simultaneous localization and mapping (SLAM). Visual servoing can

be described as creating control laws based upon visual measurements. This technique

is common in structured settings such as assembly line vision robots. The �eld of

computer vision has been explored in excellent tutorials described in [41] and [42].

Visual odometry is a technique that uses optical �ow or pose estimation to estimate

position and velocity based on visual readings. Some key works in this include [43] and

[44]. SLAM is a broad area of research which uses tracking of landmarks to localize

one's position within a map while simultaneously building the map (see [45] and [46]).

All of these methods provide means of navigating based on visual information.

In this work, a visual servoing approach is selected. Using edge detection

methods to �nd the vanishing points of lines, MAV pose is estimated from vanishing

point locations. Before introducing the proposed algorithms for vanishing point detec-

tion, related work in several subareas is discussed. This related work area is divided
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into preprocessing methods, vanishing point estimation methods, three dimensional

tracking methods, and mobile robot visually-aided navigation.

4.1.1 Image Preprocessing

Methods for edge detection and line detection are prerequisites for detecting

vanishing points. Edge detection algorithms are well understood and implementa-

tions of many methods are included in open-source software packages (such as Intel's

OpenCV [29]). Of primary importance to this work, the Sobel convolution operator

and Canny edge detector are used in many of the algorithms in this paper as pre-

processor steps. Descriptions of these algorithms are mentioned in section 4.2.1, and

more detailed descriptions are available in computer vision texts such as [47].

Two main line-�nding techniques were explored in this thesis work. The Hough

transform is a well-known method of �nding patterns in an image based on a patent by

Paul Hough in 1962 [48]. An accumulator is built up representing a parameterization

of edge points. Peaks in the accumulator space represent lines in the image space.

Other methods, like the Burns Line Detector [49], utilize the gradient direction in

addition to the gradient magnitude to trace lines in a method involving connected

components. Both methods were implemented and tested as part of this work.

Computer vision textbooks such as [50], [51], and [47] describe fundamentals of

computer vision, special Euclidean transformations, image preprocessing, and multi-

ple view geometry. The approaches proposed in this thesis are built on these methods.

The Canny edge detector typically gives the best results for detecting hallway edges

as long as proper thresholds are selected. A custom implementation of the Hough

transform was developed which allows a user to observe how lines in image space show

up in Hough space. These algorithms form a base for the vanishing point detection

algorithm utilized in this thesis.
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4.1.2 Vanishing Point Estimation Methods

Among the literature on vanishing point detection, two key articles are com-

monly cited in all new approaches: those of Barnard [52] and Magee and Aggarwal

[53]. Barnard presents general methods for interpreting perspective projections of

three dimensional data onto an imaging plane. He suggests projecting lines in the

image plane onto the Gaussian sphere. The Gaussian sphere is an imaginary sphere

centered at the camera's focal point and lying tangent to the imaging plane. Lines

projected from the image plane onto the Gaussian sphere become circles (called great

circles) which intersect at vanishing points. This changes image points at in�nity

into �nite points on the unit sphere. Bins in a histogram are then populated accord-

ing to how many lines pass through them and the maximum points indicate a high

likelihood of being vanishing points. Criticisms of Barnard's method include that

his parameterization of the Gaussian sphere is �ad hoc� (Magee and Aggarwal claim)

meaning that a histogram over the unit sphere produces unevenly spaced grid points.

Magee and Aggarwal propose a di�erent approach which determines lines and

vanishing points from successive cross products of homogeneous coordinates, a conse-

quence of the duality of points and lines. This duality is a well-known phenomenon in

the computer vision literature and is further discussed in Appendix B.1. Magee and

Aggarwal use a similar parameterization of the unit sphere but use a distance metric

on the geodetic surface rather than Barnard's uneven histogram over the unit sphere

. They add a constraint that the intersection of two line segments cannot lie on either

of the segments in order to decrease the computational load. The Magee-Aggarwal

algorithm requires computations on the order of n(n − 1)/2 where n is the number

of intersections. Tracing great circles, as required by Barnard's method, requires

computations on the order of nm where m is the number of divisions in each great

circle. Therefore, where high precision is required, Barnard's method may be more

computationally intensive.

Some work has been done to extend these vanishing point detection algorithms

by adding additional constraints and attempting to make them more robust to real-

world scenarios. Schuster et al. [54] use a method based on Magee and Aggarwal's
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algorithm which extends line segments by a given factor and excludes points in those

extended regions. They use a simple clustering algorithm on the accumulator elements

to group regions close to one another and then compute a weighted average (centroid)

on these regions to estimate the vanishing points. They use this algorithm with a

camera pointed towards the ceiling and rely on the structure of the ceiling tiles to

indicate orientation of a ground robot.

Many extensions of these algorithms, as well as innovative methods quite di�er-

ent from either, have been proposed. These include a cascaded Hough transform [55],

a voting scheme [56], a likelihood function [57], and line clustering techniques [58].

This is by no means a comprehensive list, nor is it an attempt to give a complete sur-

vey of vanishing point detection techniques. The work in this thesis is based primarily

on Barnard's and Magee and Aggarwal's approaches. Thus, though these additional

methods have merit, they will not be discussed further.

On the quadrotor aircraft, algorithms have been developed that follow the

methods of both Barnard and Magee and Aggarwal. Both have their bene�ts and

their limitations, and both will be shown to provide decent estimates of vanishing

points which give needed attitude estimates for the vehicle. These methods combined

with an understanding of perspective geometry will be shown to also provide an

estimate of position relative to the walls, ceiling, and �oor of the hallway.

4.1.3 Pose Estimation and Three-dimensional Tracking Methods

Many pose estimation methods seek to �nd feature points in an image and

track these features over time. Corners track particularly well, and thus a Harris

corner detector often serves as a pre-processing step. Strong corners or feature points

are then tracked over consecutive frames of a video stream, and given these corre-

spondences, iterative pose estimation schemes are employed to estimate the pose of

the camera with respect to viewed world points. Several such schemes exist in which

an error function is derived and minimized to �nd the correct pose. One of these

methods, proposed by Lu et al. [59], seeks to minimize a cost function in world space

iteratively and is proven to be globally convergent. This convergence does not guar-
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antee that the algorithm will escape local minima or that it will �nd the true pose.

Many such algorithms are sensitive to false correspondences, so much work seeks to

improve robustness of these types of algorithms. One example is the work of Wun-

sch and Hirzinger[60] in which occlusions are handled robustly in a Kalman-�ltering

framework which models the dynamic movement of the tracked object.

Drummond and Cipolla [61] propose an e�ective method for tracking rigid-

body objects using a Lie Group representing the space of rigid-body rotations and

translations. They use a method of iteratively re-weighted least squares to robustly

track objects in real-time. Kemp [13] then implemented a method based upon the

rigid-body tracking method to estimate pose on a quadrotor helicopter. The primary

insights used in this approach are the use of a multiple hypothesis tracking algorithm

which matches line segments in an a priori map to line segments observed in a noisy

video feed. The video is processed o�board in real-time using parallel processing on

a multi-core workstation to maintain a framerate of 50 Hz. The results from Kemp's

work suggests that line tracking provides a much more robust tracking system in

indoor environments than point tracking. In an indoor setting, point correspondences

are frequently unreliable due to poor textures on walls and the aperture problem (only

the motion perpendicular to a line is observable). The approach discussed herein of

matching hallway lines in image space to lines in 3-D space follows this logic and

presents a robust method for determining pose in a hallway.

4.1.4 Visually-Aided Mobile Robot Navigation

A large base of vision-aided navigation and control techniques exist in ground

robotics literature. In [62], Desouza and Kak present a survey of techniques for using

vision for mobile robot navigation. They explain techniques used for both indoor

and outdoor environments in both structured and unstructured environments. One

primary citation to note from their survey is the FINALE system of Kosaka and

Kak [63]. In summary, the FINALE system projects a known map onto the imaging

plane of a mobile ground robot. The system estimates pose by comparing the viewed

image with the map and tracking uncertainty in a Kalman-�ltering framework. This
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allows a ground robot to navigate buildings at substantial speeds (approximately 8-

10 meters/min) without being impaired by stationary or slow moving objects. Some

features of the FINALE system are similar to approaches attempted here, particularly

attempting to track features in a corridor.

The work of Kemp [13] mentioned above falls into this category as well since

it applies the 3-D tracking methods conceived by Drummond and Cipolla [61] on a

real-world �ying quadrotor. His work demonstrates the ability to use vision guidance

as the primary sensor for real-time �ight navigation. Concepts used in his work

apply well here and suggest methods for future work. Kemp also makes it clear

that accurate estimates of vehicle velocities are entirely essential to e�ectively control

the position of the quadrotor. This has proved entirely true in attempting to track

position commands on the vehicle reliably.

In addition to the map-based navigation methods, Moravec's now famous Stan-

ford Cart experiments [64] made more practical the �eld of exploring robots. The

Stanford Cart was able to explore unknown indoor scenes using stereoscopic imagery

in the year 1980, when the �eld of vision robotics was much less mature. At the time,

the cart was able to traverse a 20 meter corridor in approximately �ve hours. This

is mentioned primarily to show that mobile robotics has a long history of innovation

and that great things are possible. Moravec's work has been greatly expanded upon.

This thesis work is only a small step toward full vision-reliance, but it demonstrates

that computer vision is a capable sensor. For much more detailed summaries of both

the Stanford Cart and the FINALE tracking system, the reader is referred to the

survey paper by DeSouza and Kak [62].

Call [65] presents two methods for detecting and avoiding obstacles on a small

unmanned aerial vehicle. his results are primarily demonstrated in simulation and

consist of using a known map to plan a waypoint course through an area. Unmapped

obstacles are detected using a Harris corner detector and tracked through multiple

video frames transmitted to a ground station from a monocular camera. This work by

a labmate was a partial motivation to introduce additional computer vision techniques

for �ight navigation of UAVs.
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Though pose estimation and visual servoing approaches abound, the work dis-

cussed in this thesis is relevant because it seeks to bring together work from many

�elds and describe possible solutions to a complex problem. The pose estimation

scheme presented here is based upon �rst establishing rotation by �nding the vanish-

ing point representing the point of convergence of the lines that delineate a hallway.

Then, to extract position information, a homography is applied to correct for the dis-

covered rotation. Finally, an estimate of position is provided by correlating the ratios

of the angles between these lines in the image space. In addition to this method,

some early work has been started in 3-D motion tracking, but due to its immaturity,

it will be included in Appendix B for the interested reader.

4.2 Image Processing Description

The procedure for detecting vanishing points proceeds in four key steps. First,

preprocessing is done on the image resulting in an edge image. Using one of several

techniques, lines are discovered from the edges. These lines are �ltered to �nd desired

sets of lines. Finally, using these resultant lines, vanishing points are estimated.

Figure 4.1 shows each of the image processing steps including several alternative

methods for each that will be discussed.

4.2.1 Edge Detection

A discrete image, such as that from a digital camera, is simply a two-dimensional

set of color values which represent the color at each pixel. Many representations of

pixel values exist including RGB1, HSV2, and YUV3. Conversions between color rep-

resentations are straightforward and left to the literature (see [47]). The input to the

1In the RGB representation of pixels, each pixel is represented by its components of red, green,
and blue intensity.

2HSV stands for hue, saturation, value. The hue component corresponds to a location on the
color wheel. The saturation is a rough approximation of how pure the color is. The value is a
measure of how light the color is.

3In the YUV space, pixels are represented by one luma (Y) value and two chrominance (UV)
values. The luma image is thus a monochrome image and all of the color information is speci�ed by
the chrominance channels.
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Figure 4.1: Computer Vision Algorithm Flow Chart: This �ow chart shows the
�ow of the vanishing point �nding algorithm used to determine pose of the aircraft.
The image processing steps are shown along with several alternative methods that
will be discussed in this section.

edge detection algorithms are intensity values which are created by converting a color

image to grayscale (or simply using the Y channel of the YUV color space).

An edge in an image is de�ned as a region where intensity changes signi�cantly.

The principle used in detecting image edges is to compute the gradient of all pixels

resulting in a gradient image which represents how much the pixel intensity changes

at each given pixel location.

Edge detection is a standard image pre-processing method used to locate

changes in the intensity function of an image and is described at length in image

processing texts such as Sonka et al.[47]. Edges are detected where the intensity

(brightness) changes abruptly (the image gradient is high). Sonka et al. de�ne an

edge as a vector variable attached to a pixel with both a magnitude and a direction.

The edge direction, φe , is located at a right angle to the gradient direction, ψe (ro-

tated by −90◦). The gradient magnitude and direction of an image are computed

according to,

|grad g(x, y)| =

√(
δg

δx

)
2 +

(
δg

δy

)
2, (4.1)
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Figure 4.2: Gradient Magnitude Image From the Sobel Edge Detector: The
image gradient magnitude brings out strong edges. This image is the result of using
the Sobel kernel to estimate the pixel gradient.

φe = tan−1

(
δg

δx
,
δg

δy

)
. (4.2)

Since digital images are discrete in nature, gradients are often computed based

on di�erences between a given pixel and its neighbors. Image processing operators are

therefore developed which are simply convolution kernels that are passed over an im-

age. Edge detection is very important as a low-level task contributing to many higher

level image processing objectives, and therefore remains an active area of research.

The sheer number of detection methods makes picking the right edge detector a bit

of a challenge. Therefore, methods which have shown promise in other applications

have been chosen.

Some of the common operators used for edge detection are the Laplace opera-

tor, the Prewitt operator, and the Sobel operator, all shown in Table 4.1. The Laplace

operator approximates the second derivative and gives only the gradient magnitude.

A 3×3 mask representing a convolution sum is often used, which is shown in the

table. The Prewitt and Sobel operators both approximate the �rst derivative. They

can be created in several di�erent directions as required.

The gradient direction provides a great deal of interesting data. The principal

bene�t of it is that lines stand out as connected regions with a similar gradient
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Table 4.1: Common Image Operators for Edge Detection
Operator Kernel

Laplace

 0 1 0
1 −4 1
0 1 0

 ,
 1 1 1

1 −8 1
1 1 1

 ,
 2 −1 2
−1 −4 −1
2 −1 2


Prewitt

 1 1 1
0 0 0
−1 −1 −1

 ,
 0 1 1

1 0 1
1 1 0

 ,
 −1 0 1
−1 0 1
−1 0 1


Sobel

 1 2 1
0 0 0
−1 −2 −1

 ,
 0 1 2
−1 0 1
−2 −1 0

 ,
 −1 0 1
−2 0 2
−1 0 1



direction. This lends itself to line detection methods through line tracing as discussed

in Section 4.2.2.

Figure 4.3: Gradient Direction Image: The left image is a simple hallway imaged
in a video camera. The gradient direction image on the right preserves lines by
representing them as regions with similar direction vectors. Lines stand out as being
contiguous pixel regions which are easily traced to yield lines.

To speed up the preprocessing stage, the Sobel edge detector can be run

very quickly on embedded processors using only add and bitshift operations. Also,

CORDIC rotations speed up the calculation of gradient magnitude and direction by

using bitshift operations to convert from Euclidean to Polar coordinates.

An optimal edge detector that has gained respect in the computer vision com-

munity was designed by Canny in 1983 [66]. The Canny edge detector starts by

computing the gradient magnitude of the image. Then, instead of applying a static
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threshold to select edge pixels (edgels), thresholding with hysteresis is used. This

means that two thresholds are selected. Any pixels with gradient magnitude above

the upper threshold are selected as edgels. Then, other pixels adjacent to discov-

ered edgels are also classi�ed as edgels if their gradient magnitude is above the lower

threshold. After applying this threshold, non-maximal suppression is used to turn

o� edgels that are not the maximum magnitude in directions normal to discovered

edges.

The Canny edge detector, along with many common operators discussed above,

have been incorporated in an open computer vision library created by Intel Corpo-

ration entitled OpenCV [29]. Algorithms for edge detection, line detection, morpho-

logical operations, and a great variety of other functions have been included making

computer vision much more accessible in the programming community. The majority

of the programs implemented in this work use OpenCV to some degree, but custom

implementations of the algorithms often had to be developed to increase speed or

accessibility of variables.

In summary, edges in an image can be detected using a convolution operator

which computes changes in intensity around each pixel. The gradient magnitude and

direction can then be computed. Methods such as thresholding with hysteresis and

non-maxima suppression can also be used as aids for determining true edges. These

preprocessing steps are a critical part of the vanishing point detection system.

4.2.2 Line Detection

The next step in the overall image processing algorithm is to group edge pixels

into lines. Two main methods from the literature were tested based on the Burns

line detector and the Hough transform. In addition to these, a third algorithm was

developed which sped up operations from the Burns line detector by tracing adjacent

gradient direction edges.

Method 1: Burns Line Detection The Burns line detector [49] is a multi-phase

line detection algorithm which groups adjacent regions which share a similar gradient
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orientation into line-support regions. The full algorithm consists of the following

steps:

1. Group pixels into line support regions based on similarity of gradient direction

2. Fit a planar surface to the intensity surface and intersect this with a vertical

plane to determine the position of lines

3. Extract attributes from the lines such as length, contrast, width, location,

straightness, etc.

4. Filter lines according to their attributes for various purposes (according to ori-

entation, position, contrast, etc).

The �rst two steps are critical steps for line detection. To complete the �rst step,

the gradient direction image is thresholded in several overlapping orientation regions,

i.e. from 0◦ to 45◦, from 22.5◦ to 67.5◦, etc. Regions sharing pixel orientation are

then grouped using connected components and a voting procedure determines which

pixels belong to which lines.

The second step conceptually views the intensity image as a surface where

high intensity values are peaks and low intensity values are valleys. The algorithm

�ts a plane to each connected component and intersects this plane with a vertical

plane yielding a line location estimate.

The full Burns line detector algorithm requires substantial computing power

if performed over the entire image due to the connected component stage of the

algorithm. However, it was found that performing an image �AND� operation to

the thresholded gradient image and the Canny edge image yielded good lines. This

reduced the size of connected components in the image and signi�cantly increased

the speed of the algorithm. Results based on this method are demonstrated in Sec-

tion 4.4.1.

Method 2: Hough Transform The Hough transform is a very useful method

derived from the duality of points and lines. In summary, the Hough transform takes
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a binary input image and searches for patterns by sorting all points in an image

according to some metric. Two parameters are needed to describe a line, for example

the slope and intercept. However, this parameterization has a singularity at a vertical

slope (which occurs commonly in images). So, instead, a parameterization using polar

coordinates is recommended, replacing the slope-intercept form with a ρ,θ form as

shown in Equation 4.3. For each edgel in the image, values of ρ are calculated as a

function of θ and plotted in an accumulator where they show up as a sinusoid. This

type of plot is called the Hough accumulator. Peaks in the accumulator correspond

to lines in image space.

The following formula is used to represent a line in polar coordinates:

ρ = x cos θ + y sin θ (4.3)

A custom implementation of the Hough transform was developed which used

non-maxima suppression to detect peaks and eliminate multiple line discoveries near

each peak. Figure 4.4 demonstrates the results of performing the Hough transform on

a hallway image. The hallway has very well-de�ned black walls and a white ceiling.

The Hough accumulator is shown in sub�gure (b) where peaks are circled in colors

corresponding to the discovered lines in (a). Vertical lines are drawn in blue and

horizontal lines in green. The vanishing point, discovered using a method discussed

in Section 4.2.4 is shown as a blue dot.

Method 3: Line Tracing A second, faster, method was developed for use on

an embedded processor without �oating point hardware. This method starts o� in

a similar fashion to the Burns line detection method by thresholding the gradient

direction image in regions of interest. Only pixels above a certain gradient magnitude

are searched. Starting at the outside of the image and working inward, lines are

traced, looking for contiguous regions. Lines found using this method appear in

green in Figure 4.5.
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(a) (b)

Figure 4.4: Hough Transform Image: Lines in image space map to peaks in Hough
space. (a) Discovered lines are shown sorted by orientation. Horizontal lines are green,
vertical are blue, and diagonal are colored to match the corresponding peak in Hough
space. The blue point in the center represents the estimated vanishing point. (b) The
Hough accumulator image shows individual peaks in Hough space circled in a color
corresponding to the line in the image.

Figure 4.5: Line Tracing Algorithm Results: The Line tracing algorithm �nd the
prominent lines rather e�ectively by following patches of pixels with similar gradient
orientations. Once again, the blue dot represents the vanishing point.
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4.2.3 Line Grouping/Filtering

Having found many lines in the image, it then becomes necessary to decide

which lines support di�erent vanishing point locations. In a typical scene, there are

several vanishing points, so all lines do not necessarily converge to the same point.

We wish to estimate the vanishing point at the end of the hallway, but other van-

ishing points are also of interest. For example, vertical lines converge to a vanishing

point near in�nity in the positive z-direction. If this vanishing point is found, it will

give information useful for determining the roll angle of the vehicle. We attempt to

partition the lines into groups that converge at di�erent vanishing points.

The vanishing point of the horizontal lines between the �oor, walls, and ceiling

is the primary vanishing point of interest because it will give us a measurement of

our heading and pitch angle. Therefore, we initialize the vehicle with an orientation

towards this vanishing point.

As discussed in the related work section, Barnard suggested grouping lines

together using a histogram over the projection of the image plane onto the Gaussian

sphere centered at the camera focal point. Lines in the image then form great circles

which intersect at the vanishing points. This reduces the line sorting problem into

a histogram and peak detection problem. However, the accuracy of the estimate

depends on the spacing of the histogram. It is desired to �nd a region near the

last vanishing point where several lines pass. Thus a good approach is to create

a histogram over the image plane near the last vanishing point. Using a coarse

histogram, lines converging to a similar point are grouped. The area with the largest

support of lines is chosen as the best estimate of the vanishing point and the set of

lines through this area is selected and passed into the �nal portion of the algorithm

where the vanishing point estimate is further re�ned.

4.2.4 Vanishing Point Detection

Imaging of three-dimensional scenes through a perspective camera produces

images with lines that converge to vanishing points. The locations of vanishing points
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are invariant to position and thus provide vector measurements similar to those es-

timated by accelerometers, magnetometers or star-tracking. Stated a di�erent way,

vanishing points constrain the attitude of the vehicle with respect to the hallway

providing an e�cient way of estimating attitude regardless of position.

Figure 4.6: Example Hallway Image: Parallel lines in three dimensional space
converge to vanishing points in the image plane. Lines that intersect the image plane
appear as points such as the red dot at the end of the hallway. Lines that are parallel
to the image plane �converge� to points at in�nity in the image plane which can be
de�ned by a two-dimensional vector.

A line in three dimensional space can be de�ned by a point X1
0 and a di-

rection V. Let X1
0 =

[
X1

0 Y 1
0 Z1

0 1
]T

be a point on a line L1 and V =[
V1 V2 V3 0

]T
be the direction of the line. All other points on the line L1 can

be expressed as

X1 = X1
0 + µV (4.4)
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where the scalar µ represents the distance from X1
0 along the line. Two parallel lines

in three dimensional space, then, can be viewed as intersecting at a point at in�nity

with coordinates V, and the image of this intersection is a vanishing point in the

image plane. The intersection of parallel lines is expressed mathematically by the

fact that parallel lines meet at points with a homogeneous image point with a third

coordinate of zero.

Figure 4.6 shows how various types of world lines in a hallway are projected

onto the image plane. The parallel lines marking the intersection of the walls with

the ceiling, for example, lie orthogonal to the image plane and thus have a common

vanishing point near the center of the image. The horizontal lines do not appear to

intersect, but can be thought of as intersecting at in�nity. The same can be said of

vertical lines. Each of the vanishing points in the image provides information useful

for determining the attitude of the vehicle relative to its surroundings. The vanishing

point near the center of the image, for example, indicates the camera's orientation

relative to the hallway and can be used to determine pitch and yaw angles. The

vanishing point at in�nity to which the vertical lines converge indicates the roll angle

of the vehicle. Thus, by �nding the various vanishing points in the image, the full

attitude of the vehicle can be determined.

Histogram Method for Vanishing Point Detection As in the line grouping

algorithm, a histogram can be used to estimate the best vanishing point. If n lines

are found in an image, there exist n(n−1) intersections of these various lines. Using a

line of thought similar to that proposed in Magee and Aggarwal [53], all intersections

of the discovered lines can be accumulated over the image plane. Vanishing points

will typically have a great deal of line support, and thus many line intersections will

pass through them. Peaks in the intersection accumulator space, then, represent

likely candidates for vanishing points. Once again, using a coarse histogram, peaks

in the accumulator space are chosen as likely vanishing points and lines near these

candidates are chosen as support for selecting the best vanishing point in the �nal

step of the algorithm.
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Maximum Likelihood Estimation of Vanishing Points The set of convergent

lines discovered in the �rst several steps of the image processing is prone to error.

Pixelation of light intensities and inaccuracies in the Hough transform contribute to

this error. In e�ect, though a set of lines may pass through a single point in real life,

the discovered lines in the image typically do not. Many vanishing point estimation

methods simply choose the point closest to the set of lines that converge to a single

vanishing point. In this work, a maximum likelihood estimator described in [50] is

used to �nd the best vanishing point iteratively while allowing the line slopes to change

slightly. Thus, the point which minimizes how much the line slopes change is chosen

as the best estimate of the vanishing point. The error metric is the perpendicular

distance between the endpoint of the image line and the line which passes through

the image line centerpoint and proposed vanishing point as illustrated in Figure 4.7.

Figure 4.7: Vanishing Point Error De�nition: The error associated with a pro-
posed vanishing point is de�ned as the perpendicular distance between the image line
and the line that goes through the center of the image line and the proposed vanishing
point.

Mathematically, the error associated with a candidate vanishing point is rep-

resented by an error vector d where each element is computed according to

di =
v − ci
‖v − ci‖

× (pi − ci) (4.5)
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where v = (vx, vy)is the location of the vanishing point, ci = (cx, cy) is the centerpoint

of the line, and pi = (px, py) is an endpoint of the line.

To iteratively determine the best vanishing point, an initial guess is provided

(typically the vanishing point from the previous frame) and Levenburg-Marquadt iter-

ation is performed. The Levenburg-Marquadt algorithm is a quasi-Newton method of

optimization combining Gauss-Newton iteration with gradient descent depending on

whether the previous iteration improved or regressed. This relies on having an explicit

formula for the gradient of the error function which we seek to minimize. Therefore,

we need equations for how the error varies with the selection of the vanishing point.

These quantities, termed ∂d
∂vx

and ∂d
∂vy

, are found to be

∂d

∂vx
=

(py − cy)h
1
2 − h− 1

2 (vx − cx)f
h

, (4.6)

∂d

∂vy
=
−(px − cx)h

1
2 − h− 1

2 (vy − cy)f
h

, (4.7)

where f = (vx − cx)(py − cy)− (vy − cy)(px − cx) and h = (vx − cx)2 + (vy − cy)2. We

denote the gradient function

εp =

 ∂d
∂vx

∂d
∂vy

 (4.8)

and seek to minimize the sum of the squared error represented by the inner product

dTd. The Levenburg-Marquadt optimization algorithm approximates the Hessian of

the function as

gpp = εTp εp + εTppd (4.9)

and seeks to �nd an iterative solution. The solution is reached by computing an

increment ∆ to the vanishing point estimate at each iteration according to

∆ = (εTp εp + λI)−1εTp d (4.10)

where λ changes depending on whether the error increased or decreased. If the error

grows, λ is increased by a large factor, making the solution method resemble gradient
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descent. If the error diminishes, λ is decreased making the method approach Gauss-

Newton iteration.

This maximum likelihood algorithm provides a fast, iterative algorithm for

determining the best vanishing point given somewhat noisy measurements. The al-

gorithm converges quickly when line estimates are good. If outliers are present and

very few lines are found, the estimate may diverge or converge to a false solution.

The approach used here is to attempt to remove outliers using the grouping methods

mentioned previously and to tune the Hough transform to �nd many lines to decrease

the e�ect of single outliers. The convergence of the algorithm is pictured in Figure

4.8 where the initial guess is very few from the true vanishing point. The algorithm

converges in just �ve steps to the optimum.

Figure 4.8: Example of Vanishing Point Detection: Here, the vanishing point
is detected using the Levenburg-Marquadt algorithm. The approximation to the
Hessian quickly drives the estimate of the vanishing point to the optimum location.

4.3 Pose Estimation From Vanishing Points

Once the best vanishing points are determined from the image, they can be

used to determine an estimate of the attitude angles. The vanishing point at the

center of the hallway is used to determine yaw and pitch while the vertical lines

determine the roll of the vehicle.
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4.3.1 Attitude Estimation

Estimating the vanishing point locations is as simple as reversing the projection

from the image plane onto the Gaussian sphere centered at the camera center:

ψ = tan−1

(
γx
f

)
, (4.11)

θ = tan−1

(
γy
f

)
cosψ, (4.12)

where γx is the distance in the x-direction of the vanishing point from the center of

the image, γy is the vertical distance to the center, and f is the focal length of the

camera (which can be discovered through calibration).

This measurement of yaw angle can be combined with the yaw rate gyro in a

simple one-state Kalman �lter to provide a reliable estimate of heading with bounded

error. The yaw rate gyro is capable of estimating the yaw angle through integra-

tion, but after several seconds, the estimate becomes unreliable. But, with visual

feedback of �nding the vanishing point in the image, this error is bounded. This is

demonstrated in the results section by placing the quadrotor on a yaw-plate where

it is constrained to only move in the yaw direction. Onboard computing using the

Pico-ITX processor to discover the vanishing point. The quadrotor is thus able to

consistently �nd the correct heading and point itself straight down the hallway.

The roll angle can also be determined by determining which lines are vertical.

Figure 4.4 shows an image where horizontal, vertical, and diagonal lines are grouped

separately. The vanishing point to which the vertical lines converge is in a downward

direction. An estimate of the vector pointing towards this vanishing point is computed

by �nding the homogeneous intersections of all vertical lines. A single intersection

X̄ = [x̄, ȳ, z̄] indicates a roll angle of

φv = − tan−1 ȳ

x̄
(4.13)
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where it is assumed that z̄ is small (since the intersection is near in�nity). Thus, the

estimate of roll is estimated by averaging the roll estimate from all of the vertical line

intersections. This provides a roll estimate that does not drift and is independent of

position in the hallway.

4.3.2 Position Estimation

If the four main lines outlining the hallway can be found in a consistent and

reliable manner, an estimate of the vehicle's position in the hallway can be estimated.

To correctly estimate position, the discovered lines in the image must be recti�ed by

compensating for the attitude angles ψ and θ. Using a homography matrix based on

the rotation matrix of the vehicle discovered in the previous steps, a correction is

thus applied that moves the discovered vanishing point to the center of the image.

E�ectively, the line projection due to yaw and pitch is removed, and the vehicle's

position relative to the four lines is estimated.

The homography which removes the yawing and pitching motion can be com-

puted as

H = KRK−1 (4.14)

where K is the intrinsic camera calibration matrix and

R =


cosψ 0 sinψ

sin θ sinψ cos θ − sin θ cosψ

− cos θ sinψ sin θ cos θ cosψ

 . (4.15)

Applying this homography to the vanishing point places it in the exact center

of the image. Then, looking at the four lines outlining the hallway and assuming we

know the aspect ratio of the hallway, we can determine the ratios of the arcs between

the lines as shown in Figure 4.9. The vehicle's height and lateral position in the

hallway can then be estimated from these ratios according to

y = my

(
tan−1 (ratioLR)

)
+ by, (4.16)
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and

z = −mz

(
tan−1 (ratioUD)

)
+ bz (4.17)

where

ratioLR =
θUL + θLL
θUR + θLR

, (4.18)

and

ratioUD =
π − θUL − θUR
π − θLL − θLR

. (4.19)

The calibration coe�cients (my, by, mz, and bz) were determined using the

hallway simulation model described in Appendix B.2.

Figure 4.9: Line Angle De�nitions: De�nition of line angles used to estimate
position.

4.4 Results

Several methods of detecting vanishing points and hallway position were at-

tempted, with varying levels of success. The two main methods attempted were (1)

using a Burns Line Detector and line clustering using a histogram to cluster line

segments and (2) using a Hough Transform method and intersecting all lines exhaus-

tively. The Burns Line Detection method showed promise and was implemented on

the onboard gumstix processor. The second method proved to be the most consistent
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and reliable. Both were used to demonstrate heading hold on a yaw plate. Visual

results of these two methods are presented.

4.4.1 Burns Line Detection

First, an application was written in the Windows operating system. This

application, called HeliVisionApp is a great testbed for developing algorithms and

consists of a GUI frontend which uses OpenCV's HighGUI[29] to capture and display

images. A screenshot of the application is shown in Figure 4.10.

Figure 4.10: HeliVisionApp Application

This application was intended to be used on a ground station and therefore

endured some changes when implemented onboard the helicopter. It demonstrated

an ability to �nd lines in each frame using a Burns line detector customized to the

hallway at hand. The line detector performs a search for lines by thresholding the

gradient direction image and looking for connected components. The discovered lines
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are then passed into the Levenburg-Marquadt optimization method which �nds the

�best� vanishing point considering all of the lines.

In the majority of video frames, this algorithm reliably detected the prominent

lines on the edges of the hallway. Figure 4.11 shows several successful frames in which

the vanishing point is correctly identi�ed. As long as two diagonal lines were correctly

detected and no outliers were present the algorithm performed well. Two problems

with this algorithm were encountered, however. First, during some frames, blur due

to rapid camera motion prevented the line �nding algorithm from detecting any lines.

In these cases, no vanishing point was detected and the prior estimate was retained

as shown in frame 125 of Figure 4.12. Remarkably, even in these cases, the algorithm

was able to reacquire the correct vanishing point in successive frames since a global

line search is performed when each frame is received. So, though the algorithm

occasionally failed, estimates did not drift and thus were still e�ective in correcting

biases due to rate gyro drift. The second problem in the algorithm was associated

with outliers. If few lines were discovered, outlying lines greatly a�ected the vanishing

point estimate, as shown in frames 115 and 127 in Figure 4.12. The Levenburg-

Marquadt algorithm converges to a false estimate which could be detrimental if used

for attitude estimation. Thus, outlier rejection algorithms were implemented which

threw out estimates that varied too greatly from Kalman-�ltered estimates from the

inertial sensors.

This same algorithm was implemented on a Gumstix micro-computer and used

to track and control heading on a quadrotor vehicle. Results using this con�guration

are included in Chapter 5. Many changes were made to speed up execution time on

the Gumstix, which does not have a hardware �oating point unit and which has a

considerably slower processor speed than a typical desktop PC. With these improve-

ments to the algorithm, a frame rate of 7-10 Hz was achieved which was e�ective at

correcting heading measurements in real-time onboard the quadrotor.

78



Figure 4.11: Burns Line Detector Successes: The Burns Line Detector was able
to detect the vanishing point in many of the frames, even if the prior vanishing point
discovered erroneously, as shown in Frame 116.

4.4.2 Hough Transform Method

Hough transforms generally require a large amount of processing because for

each point in the edge image, a series of lines are drawn in the Hough-space accumu-

lator. However, on a faster processor like the Pico-ITX, this was reasonable, so an

algorithm was written using the Hough transform. In this method, all peaks in the

accumulator space above a given threshold were selected. Clusters of lines were found

by assuming that vertical and horizontal lines converge to a di�erent vanishing point

than do diagonal lines. A histogram was made in image space by sampling evenly

over the unit sphere. Peaks in this space were compared and the best peak near the

center of the image was selected as the optimal estimate of the vanishing point.
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Figure 4.12: Burns Line Detector Failures: If the number of lines found from the
Burns Line Detector was insu�cient, the Leveburg-Marquadt algorithm converged
incorrectly.

This method proved superior to the Burns line detector method for several

reasons. First, real-time visual feedback from the onboard camera allowed the cam-

era settings to be tuned prior to �ight. Thus, the camera settings and algorithm

settings were selected to �nd lines that reliably converged to vanishing points. Sec-

ond, the algorithm did not rely on any predetermined parameters of the hallway

itself. The Burns line detector presupposed a knowledge of the gradient direction of

each line. The Hough transform e�ectively found all lines in the image and grouped

them properly. Frame rates were somewhat slow in this algorithm due to an exhaus-

tive computation of the Hough transform. In addition, some outlier rejection was

needed, but reliable estimates were consistent. The vehicle was tested once again on
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a yaw-plate and showed the ability to hold heading for over three minutes without

any noticeable drift.

Figure 4.13: Finding All Vanishing Points: Hough Transform Method of Finding
all vanishing points

4.5 Summary

In this chapter, vanishing point detection was discussed including related work

and actual implementations on a quadrotor helicopter. Edge detection, line detection,

line clustering, and vanishing point estimation all play crucial roles in determining

pose on the aircraft. Methods for determining attitude and position from discov-

ered vanishing points were demonstrated. Image processing results for two particular

methods were compared, and the best algorithm based on a Hough transform was

elaborated upon. Flight results using these methods are further discussed in the next

chapter.
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Chapter 5

Results and Discussion of Results

To culminate the work presented in this thesis, each of the elements from

control, estimation, and computer vision discussed in earlier chapters were combined.

Di�culties such as varying trim angles and inconsistent response to battery voltage

made real-life demonstrations signi�cantly more challenging than simulations and

predictions, but occasionally Murphy's Law abated enough to collect valuable data

and demonstrate useful abilities on the quadrotor. These capabilities include hands-

o� operation, hallway guidance, visual detection of vanishing points, and heading

correction during �ight.

It is important to note some of the di�culties encountered in demonstrating

the capabilities developed here. Therefore, in addition to the positive results, some

notes on what made things di�cult will also be presented. Emphasis will be placed

on developments that have not been published elsewhere such as the use of the optic

�ow sensor for positioning and vanishing point detection for attitude estimation. The

results are divided into three main areas: position hold, heading estimation from

vanishing points, and hallway following.

5.1 Reliable Position Hold

The ability to reliably maintain position on a six degree-of-freedom vehicle

depends primarily on two things: fast, reliable, non-drifting position estimates and

the ability to control position by tracking attitude angles. Using the control loop

structure developed in Section 2.5.3, the quadrotor was able to hold its position
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within a one meter radius circle for a seven minute �ight using the optic �ow sensor

as the only position sensor.
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Figure 5.1: Position Hold Results: Complete hands-o� hover �ight is demonstrated
in this data plot of actual position measured by the optic �ow sensor. This demon-
strates the ability of the helicopter to hover well provided a good position/velocity
measurement. True position measurements are not available, but a video recording
shows very little drift, estimated to be less than one meter over a period of 7 minutes.

Three hover �ights were conducted, each demonstrating a reliable position

hold. The �rst lasted approximately 90 seconds in duration and a small amount of
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drift occurred. The second �ight lasted approximately two minutes, at which time

the batteries were exhausted and replaced. After a small amount of retuning due to

a change in response to new batteries, a seven minute �ight without manual position

corrections was performed. A portion of this third �ight is shown in Figure 5.1. Due

to limitations in memory onboard the autopilot, telemetry data is only available for a

portion of the �ight, but this data shows an ability to track position e�ectively. The

optic �ow sensor readings of position error are always less than 0.4 meters, showing

that the helicopter tracks position very reliably. Truth values are not available, but

a video of the �ight shows that very little drift occurred.

The full sensor suite needed to demonstrate this ability was remarkably small.

Only a set of rate gyros, accelerometers, a sonar, and the optic �ow sensor were

used to estimate the full pose. The total cost of this sensor suite is rather small

when compared to sensor suites on larger vehicles with similar capabilites. Despite

vulnerabilities to drift in the rate gyros, the attitude estimate remained well-centered

and the position estimate drifted remarkably little during the seven minute �ight.

The heading estimate, relying only on the integral of the rate gyro, also drifted very

little, estimated to be less than 30◦ over seven minutes of time.

Results such as these rely on certain special conditions. First, the optic �ow

sensor must have adequate lighting to maintain a high surface quality reading dur-

ing position-hold �ight. Otherwise, some amount of position drift will occur as the

attitude estimates are imperfect and lead to errors in position estimates. Lighting

was enhanced using bright �ood lights which contained light in the speci�c part of

the spectrum to which the OFS is sensitive. Second, the ground surface must be

adequately texture-rich and of a complimentary brightness for the OFS to read pixel

�ow across its imaging array. The hover �ights mentioned here took place in a room

with a �nely-textured carpet. The small �eld-of-view lens was able to pick up texture

change well in this situation, making the estimates reliable. However, surface qual-

ity readings over tile �oors and �oors with re�ective coatings were poor and made

position and velocity estimates unreliable. This make the optic �ow sensor e�ective
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only in certain conditions, limiting its e�ectiveness. However, when the conditions

are right, no o�board cameras or GPS information are required for long-term �ight.

Additional tests were completed using onboard lighting. First, red LED lights

were attached to the underside of the vehicle providing light in the desired area of the

spectrum. However, the LED lighting was insu�cient to provide usable optic �ow

readings. A bright xenon bulb provided surface quality readings comparable to those

provided by �ood lights and was chosen as a superior lighting method. Hover �ight

results similar to those mentioned earlier were demonstrated using this spotlight. This

capability greatly increases the sensor's utility in real world situations such as rooms

lit by �uorescent light.

5.2 Heading Hold using Computer Vision

To demonstrate the e�ectiveness of computer vision algorithms, the quadrotor

was �rst tested on a yaw plate - a device intended to constrain motion of the vehicle

to be around the z-axis. This �lazy Susan� device allowed testing of the heading

estimate from computer vision independent of all other measurements.

A simple experiment was carried out in which the quadrotor was placed on

the yaw plate and commanded to a heading of zero which corresponded to facing

directly down the hallway. First, an algorithm based on the Burns line detector was

implemented on the gumstix processor. This algorithm computed heading estimates

at rates of approximately 4 Hz, comparable to a GPS sensor. A single-state Kalman

�lter was implemented on the autopilot which was tuned to trust the computer vision

estimate very highly and integrate the yaw rate gyro in between vision updates. The

quadrotor was able to maintain heading for over 30 seconds despite biases on the rate

gyro. The quadrotor was manually pulled away from its forward facing position and

the heading control quickly returned it to the desired forward-facing heading.

A second experiment demonstrated even better results using the superior

Hough transform method of detecting lines implemented on the Pico-ITX. Figure

5.2 compares the results from simply integrating the yaw rate gyro signal with the

superior estimate which came from fusing gyro data with vanishing point detection.
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An EKF was used to combine these measurements. Several times, the plate was

turned, moving the quadrotor as much as 20◦ away from the desired heading (noted

as �Disturbances� in the �gure). The helicopter consistently returned to the desired

angle facing itself straight down the hallway. The estimate from integrating gyros

drifted a total of 80◦ over the four minute test. The vision estimate is capable of

e�ectively correcting this drift.
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Figure 5.2: Yaw Estimation Using Vanishing Point Detection: Over a period of
four minutes, the vanishing point detection algorithm was used to correct the heading
estimate. Here, the estimate from integrating the yaw rate gyro signal is compared
with the estimate which results by fusing the gyro measurement with computer vision.
The vanishing point detection corrects the yaw estimate and the quadrotor is able to
maintain heading down the hallway for the entire time. The quadrotor was disturbed
several times, but was always able to correct itself.

Figure 5.3 compares the yaw estimate from computer vision with the fused

estimate of yaw in the EKF. Vanishing point detection produces estimates that do not

drift, but occasionally outlying estimates occur. A simple outlier rejection algorithm

threw out vision estimates that were more than �ve degrees away from the EKF

estimate. This allowed the good high-frequency estimate of the gyros to be combined

with the low-frequency vision update, taking the best of both worlds.
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Figure 5.3: Comparison of Estimation Noise: The yaw estimate from vanishing
point detection contains outliers that must be rejected.

5.3 Hallway Following Using The Optic Flow Sensor

The original goal in this work was to �y a helicopter through a corridor using

a combination of inertial and visual sensors. This has been achieved by using a

combination of a sensor suite and an onboard vision system. The best set of results

is demonstrated in Figure 5.4 where the quadrotor's path is shown in blue. The

quadrotor started centered between the walls of a four-meter-wide hallway. The red

lines denote the positions of the walls. Using velocity control, the quadrotor was

steered down the hallway with only occasional corrections to lateral position. In this

test, �ood lights provided lighting for the optic �ow sensor. This method provided

the capability of following the hallway in several successive �ights.

Figure 5.5 shows telemetry data accompanying the hallway �ight. The HAG

(in plot (a)) was rather low to provide good surface quality readings on the optic �ow

sensor (shown in (b)). The quadrotor following a steady trajectory from the starting

location to a point approximately six meters down the hallway. The lateral position

error was less than a third of a meter throughout the �ight. Several hallway following

�ights were completed demonstrating a consistent ability to navigate the quadrotor

in a con�ned area.
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Figure 5.4: Hallway Following Telemetry Plot: The quadrotor's position as
reported by the optic �ow sensor is shown in blue. An accompanying video displays
the capability of navigating the hallway using desired velocity commands. The spike
at the beginning is due to a spurious sonar reading.

5.4 Discussion of Results

Quadrotors have traditionally been troublesome devices to �y reliably (see

[19] and [17]). High accuracy of attitude and position estimates along with high

estimation frequencies are necessary to provide reliable control. The results presented

above demonstrate an ability to deal with these attitude and position estimation
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Figure 5.5: Hallway Following Telemetry Data: Flying at a low height, shown
in (a), the optic �ow sensor's surface quality reading was fairly consistent after take-
o�. Plots (c) and (d) demonstrate trajectory following with very little error over the
corridor �ight.

challenges by using a combination of onboard sensors and computer vision. Full pose

can be determined using the sensor suite of rate gyros, accelerometers, sonar, optic

�ow sensors, and computer vision. The ability to combine the capabilities of each

individual sensor has been demonstrated.

While hover �ight and indoor navigation have been demonstrated to be pos-

sibe, several factors make quadrotor testing a tedious process. First, quadrotor dy-

namics change substantially when minor mechanical changes are made. For example,

occasional rough landings often caused one of the motor shafts to rotate slightly,

changing the attitude trim position substantially. This meant that trim settings for

each motor had to consistently be adjusted even when nothing obvious changed on

the physical quadrotor. It was not uncommon for trim biases to change from +5◦

to −5◦ pitch trim angle during one battery set's lifespan. These changes had to be

discovered empirically by observing the behavior of the system and tediously tuning
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out such biases. Often, by the time the biases were compensated for, they would

change or the set of batteries would be exhausted.

Second, the quadrotor responded unpredictably to di�erent sets of batteries.

All of the batteries used on the system were pairs of three-cell Lithium-Polymer

batteries with power ratings of 2100 mAh and nominal voltages of 11.1 V. However,

some brands had di�erent qualities of current consumption capability than others, and

even within batteries of the same brand, the quadrotor seemed to behave di�erently

when a new set of batteries were installed. During the time a battery drained from

12 V to 9.5 V, the altitude controller required frequent adjustment. The �nal solution

to this problem was to set an upper limit of PWM value which the altitude controller

could command and adjust it according to the battery voltage. It is admitted that

this is a non-optimal solution, but it allowed results to be collected.

These �rst two problems have to do with mechanical and electrical character-

istics of the system. But, they slowed testing progress and made it very di�cult to

complete additional tests with vision onboard. In addition to these problems caused

by physical characteristics of the vehicle platform, many problems contributed to dif-

�culties in using onboard vision. Some of these problems were solved while others

remain troublesome.

One problem imposed by computer vision was the tuning of the web camera.

Settings such as white balancing, shutter speed, and gain control settings can be

programmed to be automatic or set to particular values through a Linux API. This

meant that given di�erent lighting conditions, a human could tune the video settings

to match the needs of the scene. However, this was often a tedious procedure because

the automatic settings often did a poor job of preserving edges in the images in dark

lighting conditions. The ability to hand tune the camera was provided, but a set of

dials had to be tuned, and even doing so did not guarantee that the vision program

would �nd appreciable lines throughout the �ight sequence. This led to making the

algorithms often perform poorly, though they worked well in simulation and in slow

movements of a hand-held camera.
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In addition to tuning the camera, the vision algorithms themselves require

some degree of tuning to perform properly. For example, the vanishing point detection

algorithm using a Hough transform required four additional settings to be tuned in

addition to the camera settings already mentioned. First, the Canny edge detector

required an input of upper and lower thresholds. The upper threshold determined

which edgels would be automatically selected and the lower threshold speci�ed the

minimum edge magnitude that could be accepted. Typical values were 150 and 50, but

both needed to change depending on how well the edges showed up in the grayscale

image. Then, the Hough transform required an input parameter for the peak selection

threshold. Peaks in Hough space above this threshold would be considered lines in the

image. This value, however, depended on how well the Canny edge image preserved

true lines. If the Canny edge detector allowed short line segments to be preserved,

they resulted in multiple noisy lines in the Hough accumulator. So, a tedious process

resulted in which �rst the camera settings were adjusted to show good edges. Then,

the Canny edge detector was tuned to preserve key lines without detecting too many

short line segments. Then, the Hough transform was tuned to select lines that led to

the vanishing point desired.

In general, a great deal of human intervention was necessary to tune the vision

algorithms. During the tuning process, then, attitude and position estimates came

strictly from onboard sensors and computer vision estimates were entirely rejected.

Then, once computer vision estimates were determined to be somewhat reliable, EKF

gains in the autopilot were adjusted to trust the vision estimates more. However, in

order to reject outlying vision estimates, some simple outlier rejection schemes were

used. For example, the heading estimate from vision was only trusted if it was within

�ve degrees of the EKF estimate.

In summary, a great deal of tuning is necessary in all aspects of quadrotor

�ight. Trim angles, controller gains, estimator covariances, camera settings, and vi-

sion settings all had to be tuned and retuned to collect results such as those presented

here. However, given adequate dedication to these tuning procedures, good results
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were collected demonstrating reliable hover �ight, heading estimation using computer

vision, and hallway following using velocity tracking.
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Chapter 6

Conclusion and Future Work

Pose estimation for hovering �ight is a much sought-after capability which can

be acquired using onboard sensors and visual guidance. Several conclusions based

on the methods and results in this thesis will be discussed and recommendations for

future work will be made.

6.1 Conclusions

The research conducted on the quadrotor platform leads to several conclusions

that will be discussed relating to pose estimation, quadrotor modeling and control,

and the use of computer vision on the quadrotor platform.

First, modeling methods based on �rst principles were presented. The quadro-

tor has fast, unstable angular dynamics in the hover �ight regime. Proportional-

derivative control methods were demonstrated to su�ciently track angular commands.

Outer loops based on position and velocity tracking were then added to maintain po-

sition in a GPS-denied environment with no external cameras. Positive �ight results

demonstrated the ability to hold position for extended periods of time without user

intervention.

Second, a unique combination of sensors was introduced to determine attitude

and position on the quadrotor. The optic �ow sensor plays a key role in estimating

velocity and position in this work. It has the capability of delivering reliable estimates

at fast rates and has been explored as a possible sensor in a GPS-denied enviroment.

Results demonstrating the hover �ight and hallway following using the optic �ow

sensor are the �rst of their kind.
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Attitude angles can be reliably estimated in the short run by integrating the

angular rates from MEMS gyros, but noise on the signal leads to drift which renders

the measurement unsuitable to attitude estimation in the long run. Typical methods

of providing vector attitude corrections such as accelerometers and magnetometers

have inherent weaknesses on hovering vehicles. Thus, an additional vector measure-

ment is necessary to correct attitude readings for long-term �ights. Two methods of

using image processing to determine vanishing points in a hallway have been demon-

strated. The more promising of the two uses a Hough transform to detect lines in the

image and forms a histogram of the intersections to detect likely vanishing point can-

didates. Once the vanishing point is detected, it has been demonstrated to e�ectively

act as a vector measurement to correct attitude estimates on the quadrotor vehicle

on a test stand.

All of these elements improve the �ight capabilities of quadrotor helicopters.

In addition, experimentation with onboard vision systems has increased productivity

and provided higher quality video data for image processing than transmitted video

typically provides.

To reiterate, the overall contributions of this thesis are the following:

• The �rst example to our knowledge of using an optic �ow sensor on a quadrotor

helicopter with reliable position estimation demonstrated in position hold. This

was demonstrated with a seven-minute �ight and several other long �ights with

no pilot corrections.

• The �rst example to our knowledge of computing heading from vanishing points

onboard a helicopter and using that estimate to maintain a desired heading in

real-time.

• Several methods for determining vanishing points are used for attitude esti-

mation. A functional vanishing point detection algorithm was developed and

implemented on the quadrotor with �ight results.

• A reliable code base has been developed for estimating pose and controlling

quadrotors in hover.
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• Methods for modeling the projection of a hallway onto the imaging plane of a

monocular camera have been explored and modeled.

• Flight down a hallway has been demonstrated using velocity commands from a

human pilot.

• Onboard vision has been developed as a usable sensor with real-time visual-

ization on a remote workstation. This greatly aids computer vision algorithm

development and testing.

6.2 Future Work

The results obtained in this work suggest future projects which could improve

hover capability on the quadrotor platform. Some of the future projects might include:

1. Auto-trim capabilities: Finding trim values automatically through an optimiza-

tion method would greatly speed up �ight testing. Suggested methods might

include recursive least-squares estimation of trim values from �ight data or gra-

dient descent.

2. Adaptive control: Altitude control presented substantial challenges due to corre-

lations between battery voltage and motor output. This suggests that adaptive

control might be used for improved altitude hold. In addition, adaptive control

methods might correct the problems having to do with slight vehicle character-

istic changes which demanding meticulous tuning for �ight testing.

3. Improvements to optic �ow sensor: The optic �ow sensor only operates reliably

given certain external conditions such as adequate lighting and texture quality.

These needs stem primarily from the fact that a chip intended for a computer

optical mouse is being used for an entirely di�erent purpose. If this chip were

designed to respond better to other lighting conditions, it's utility would greatly

improve. Thus, it is suggested that research be conducted on improving the chip

design itself and that a chip be designed from ground-up with the intention of

being used on hovering vehicles.
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4. Outdoor Testing: The optic �ow sensor might be combined with GPS for very

accurate position sensing outdoors. This could provide accurate velocity read-

ings from optic �ow while relying on GPS to prevent position drift.

5. Complete reliance on computer vision: Experiment has shown that the speci�c

computer vision algorithms implemented herein require a great deal of �ne-

tuning in order to provide reliable estimates. Automatic tuning and threshold-

ing could greatly improve the reliability of these algorithms.

6. Hallway Rigid-body Tracking: Formulating the hallway tracking problem dif-

ferently could greatly speed up the vision algorithms and possibly lead to more

reliable pose estimation. Work was initiated by the author in this area (quite

late in the process, admittedly) that follows the work of Drummond, Cipolla,

and Kemp ([61], [13]). This method uses a tracking algorithm rather than a

global line search to track the hallway.

7. Disturbance rejection: the controllers derived in this work do not directly ac-

count for disturbances to the system such as wind. The controllers could be

improved to reject such disturbances and provide more robust control.
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Appendix A

Coaxial Helicopter Dynamics

A.1 Coaxial Helicopter Platform

The coaxial helicopter was designed around a Walkera 53#1 coaxial hobby

helicopter. The helicopter was heavily modi�ed, leaving only the main shaft and

servo assembly as original. Layers of G10 composite material were added below the

shaft base to hold all the necessary electronics. A spherical carbon-�ber shroud was

built around the whole unit to protect the brittle blades.

The coaxial helicopter provides an easy learning experience for pilots unversed

in helicopter �ight. Coaxial helicopters have a tendency to remain upright due to

the opposing motion of the two rotor assemblies. These helicopters provided a good

platform for testing sensors, but presented challenges due to vibration, sensitivity to

mechanical changes, and a lack of weight capability. Despite these di�culties, this

platform presented a welcome challenge and a good learning experience.

A.1.1 Quadrotor Vehicle Platform

In contrast to the coaxial helicopter, the quadrotor vehicle demands some level

of motion damping in order to �y. But, with relatively simple estimation and control,

the quadrotor is a good hovering platform due to its decoupled axes and forgiving

weight capacity. The quadrotor is able to carry a great deal of sensing equipment, at

the expense of requiring signi�cant battery power which shortens its �ight duration to

about 10 minutes per pair of batteries. However, as a vehicle testbed, the quadrotor is
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Figure A.1: Coaxial Helicopter Image

an excellent choice and is rather forgiving of minor crashes. The quadrotor helicopter

pictured in Figure 1.1 is equipped with a four Axi 2212/26 brushless motors and four

accompanying speed controllers. Each motor is capable of providing over a pound

of thrust, but the nominal hover throttle required is near 50%. The array of sensors

onboard will be discussed in section 3.2.

A.2 Coaxial Helicopter Dynamics

The behavior of the rotor system on helicopters adds additional degrees of

freedom to the system. To better understand how rotor dynamics a�ect the �ight

characteristics and dynamic behavior of the coaxial helicopter, a model has been

developed and tested in Matlab simulation. This model is presented along with the

speci�c properties of the modi�ed coaxial helicopter built and tested in the MAGICC

Lab.
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A.2.1 Physical Properties of the Helicopter

Some of the physical properties of the speci�c helicopter which we have chosen

to model are listed in table A.1.

Table A.1: Coaxial Helicopter Physical Parameters: Some key
parameters measured on the coaxial helicopter

Property Value Description

b 2 Number of blades per rotor
c̄ 2.3 cm (0.969 in) Average blade chord
R 22.4 cm (8.875 in) Blade radius from shaft to tip
m 0.805 kg Total mass of vehicle
Ixx 0.00892446 kg ·m2 Mass moment of inertia about body x-axis
Iyy 0.00801767 kg ·m2 Mass moment of inertia about body y-axis
Izz 0.00581 kg ·m2 Mass moment of inertia about body z-axis
Rfb 10.4 cm Radius of �ybar
Ifb 0.0002366 kg ·m2 Moment of inertia of �ybar about its hinge

The moments of inertia of the vehicle itself were measured using a bi�lar

pendulum experiment (see [67]). The o�-axis terms were neglected. The moment of

inertia of the �ybar was calculated from the geometry.

Given accurate measurements of the mass and moments of inertia of the ve-

hicle, we have all the necessary properties to describe the rigid-body motion of the

helicopter, assuming that the fuselage does not introduce any signi�cant aerodynamic

forces near hover. The forces and moments acting on the helicopter then are primarily

due to gravitational forces and the thrust vectors from the two rotors. Both rotors are

necessary to provide lift and both in�uence the translational and rotational motion

of the helicopter.

A.2.2 Rotor Reference Frames and Notation

Several Planes come into play when describing rotor motion. First, the control

plane (CP) is the plane through which the swashplate moves and thus induces cyclic
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feathering motion of the blades. The Hub Plane (HP) is simply the plane perpen-

dicular to the shaft. The Tip-Path-Plane is the plane in which the tips of the blade

move. All of these planes are pictured in Figure A.2.

Figure A.2: Rotor reference planes: Control Plane (CP), Hub Plane (HP), and
Tip-Path-Plane (TPP)

To describe the motion of helicopter rotors and their e�ective thrust forces

and moments, it is necessary to describe the notation and reference frames which will

be used. For each rotor, we will de�ne two new reference frames called the rotor hub

plane and the rotor tip-path plane. The azimuth angle of each blade will be denoted by

ψx where the subscript denotes which rotor we refer to, either ψb for the bottom rotor

or ψt for the top rotor. In general, we will refer to ψas a general variable denoting the

azimuth of a blade from the tail of the aircraft with positive rotation being counter-

clockwise as shown in Figure A.3. We will later make a change of variable from

azimuth angle to time (using Ω = ψt). Then, to account for clockwise rotating rotors

(like the bottom rotor on our coaxial helicopter), we will use a variable λ which will

be equal to one for counter-clockwise rotors and negative one for clockwise rotors.

The hub plane is de�ned as the plane which remains perpendicular to the

helicopter shaft with its axes centered at the rotor-shaft hinge and with directions

parallel to body frame axes. The blade goes through complex motion as it rotates

around the shaft at fast angular speeds (RPM > 2500). Blade hubs come in many
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Figure A.3: Azimuth Direction De�nition: Azimuth direction notation with re-
spect to vehicle frame.

varieties, and generally three hinges are built into the support for a single blade: the

feathering hinge, the �apping hinge, and the lead-lag hinge. These correspond to the

three degrees of freedom of the blade. These are depicted in Figure A.4.

Figure A.4: Additional degrees of freedom of a moving blade.

The coaxial helicopter we use has a hingeless blade. This means that there is

no �apping hinge, yet the blade will still �ap through elastic bending. It will later be

shown that on these particular helicopters, the blades are designed with an equivalent

hinge o�set which results in approximately 45◦ of phase lag between a control plane

de�ection (motion of the swashplate) and a subsequent tilt of the tip-path-plane. It

is typical for manufacturers to then pre-phase the control plane by 45◦ to account
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for this phase lag in order to create �apping moments as desired by control plane

de�ections.

The 45◦ o�set results in some strange nonlinear behavior in the rotor system.

In summary, there are cross-coupling e�ects which occur due to angular rates and

angular accelerations. A full dynamic model would need to take all of these cross-

coupling e�ects into account. My current understanding is limited to cross-coupling

due to e�ective hinge o�set.

A.2.3 Blade Element Method

Blade theory is the common method for integrating aerodynamic forces and

moments produced by a blade as it sweeps through a revolution. Elementary blade

element methods are used to solve for average thrust produced as a function of rotor

RPM. Since there are two thrust-producing rotors with independent speed control,

this method will be used independently on the two rotors to solve for lift and drag

components in the body-frame of the vehicle.

A.2.4 Lift and Drag Calculations

The lower blade is simple to model because it is similar to regular blades on

single-axis helicopters except that it is not subjected to collective pitch changes. The

blades on our helicopter are built with a permanent angle of attack which is greattest

where the chord is largest, a short distance from the blade root. The blades then slope

down to a smaller chord and smaller angle of attack near the tips. Rather than model

the blade twist, we have estimated the blade geometry as being of a constant angle-of

attack with a shortened e�ective radius due to losses at the blade tips and blade root.

The lift and drag are calculated by integrating incremental lift and drag over small

blade elements. The losses at the blade tips are included by using an e�ective radius,

Reff , which was found to be 0.97 ∗ R. The root losses are included by changing the
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lower limit of integration to an initial r value which was estimated to be 0.1 ∗R. The

total thrust is determined by integrating the increment of lift according to:

∆L =
1

2
ρ(Ωr)2aαc̄∆r (A.1)

and the total thrust is therefore found to be a function of rotor speed (in rad/s)

according to

L =
1

2
ρΩ2ac̄α

ˆ Reff

r0

r2dr. (A.2)

In the above equations, ρ is the local air density, a is the lift curve slope (a

good general value of 6 is used), and α is the local angle of attack. It is true that

this model does not take into account rotor in�ow or changes in angle of attack, but

constant in�ow is generally a good assumption near hover �ight (it is????) and the

angle of attack is instead taken into account by later modeling the tilt of the thrust

vector created by dynamic �apping.

The incremental torque produced by a rotor is composed of induced drag and

pro�le drag according to

∆Q = r(∆Lφ+ ∆D0) (A.3)

where we assume that induced drag is negligible and that all e�ective drag is due to

pro�le drag.

The corresponding drag integral for a rotor blade is

∆D =
1

2
ρ(Ωr)2cdc̄∆r. (A.4)

A.2.5 Flybar Modeling

The �ybar or stabilizer bar acts like a gyroscope and as an e�ective swashplate

with respect to the top rotor. The bottom rotor is attached to a swashplate and there-
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fore its feathering and �apping motion are strongly governed by the planar motion of

the swashplate. However, due to the small size of the blades and their small amount

of inertia (represented by a very small moment of inertia in comparison to full-size

helicopters), the top rotor would behave uncontrollably if not directly attached to the

�ybar. This was veri�ed by running the rotor with the �ybar detached and with only

the top rotor installed. The motion produced was erratic and produced vibrations too

strong to complete the test. The �ybar, then, is a completely necessary component

of the system due to the small size of the helicopter. Since there is no swashplate

attached to the top rotor, so, the �ybar is designed to act as an e�ective swashplate,

though not directly actuated by a pilot.

ċ = − c

τs
− q (A.5)

ḋ = − d
τs
− p (A.6)

The �ybar is simply a shaft with two equal sections hinged about its middle

on a hinge which spins with the top rotor shaft. On each end are adjustable weights

which create a large amount of rotational inertia in the plane perpendicular to the

shaft. If the shaft tilts with respect to the �ybar's plane of motion, the �ybar tends

to continue to stay in plane. This means that it opposes body-frame angles (and

angular rates). Testing demonstrated that the �ybar has a slow restoring moment

which will eventually return the �ybar to be perpendicular to the shaft after a given

amount of time. This behavior is a �rst-order system de�ned by a time constant,

τs(which has a value of about 2.5 seconds for the �ybar on our system). If left alone

(not attached to a rotor), the equation of motion for the �ybar would include two

new states, denoted by c and d, the respective pitch and roll of �ybar tip-path-plane.
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The variable c is de�ned as positive pitch up and d is de�ned as positive roll right to

correspond with typical pitch and roll de�nitions of air vehicles.

The important things to notice about this system are that the time constant

is very slow and that the �ybar tends to stay in its previous state in an inertial sense

which provides a stabilizing e�ect on the top rotor to which it is attached.

Figure A.5: Gyroscopic Flybar Behavior: This diagram illustrates the ideal be-
havior of a gyroscopic �ybar. If no friction or aerodynamics were present, the �ybar
would continue to spin in the plane in which it was originally rotated.

The �ybar is an important part of the overall system because it provides

damping to the angular rates of the rigid body and a gyroscopic correction to the

top blade tending to keep the helicopter pointed opposite of the gravity vector. The

�ybar (also referred to as a control rotor or stabilizer bar) is a rotating system with

additional degrees of freedom. The primary degree of freedom that we are concerned

with is the �ybar �apping angle, βfb, which is measured relative to the �ybar hub

plane. The coaxial helicopter's �ybar is a teetering rotor, meaning that it is hinged

directly at the shaft with no �apping hinge o�set. It is also designed to minimize

aerodynamic e�ects so that its behavior is primarily due to inertia, making it behave
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very much like a gyroscope. Conventional helicopter literature ([68],[69]) provide

equations of motion of a teetering rotor in terms of βfb as a function of azimuth angle

(de�ned in Figure A.3). The �ybar �apping angle can be represented as a periodic

function as

βfb = −β1c,fb · cos(ψfb)− β1s,fb · sin(ψfb)− . . . (A.7)

where we will drop all higher order terms above the �rst harmonic. The �ybar is

constrained from coning, so there is no constant term in the series. Moments around

the teetering hinge include inertial moments, aerodynamic moments (denoted Ma,fb),

gyroscopic moments (denoted Mgyro,fb) and moments due to the bearings or friction

at the hinge. For the moment we will neglect the bearing or friction forces and assume

that the �ybar does not provide any noticeable lift forces (the �ybar on most coaxial

helicopters are not airfoils in shape so no net forces are present perpendicular to the

relative wind). Solving for moment equilibrium about the teetering hinge we get

(insert equation here).

A.2.6 Flapping Equations of motion

A blade spinning about the rotor shaft induces several forces. First, the fast

rotation induces centrifugal forces which pull the blades away from the shaft. Second,

lift forces make the blade want to �ap out of the plane of rotation. Intertia opposes

the �apping motion induced by the aerodynamic forces. These forces are pictured in

Figure A.6.

A.2.7 Speci�c Modeling for a Coaxial Helicopter with One Actuated Ro-
tor

Coaxial helicopters are becoming a very popular hobby toy due to their in-

herent stability which makes them simple to learn how to pilot. Where conventional
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Figure A.6: Rotor Blade Flapping Moments: Forces acting on a blade element
include aerodynamic forces, centrifugal forces and inertial forces.

single-rotor helicopters tend to require a skilled pilot, coaxial helicopters are much

easier to keep upright. However, though their stability is augmented by the coaxial

rotation and the stabilizer bar connected to the top rotor blade, they are sluggish in

response to pilot inputs and therefore present some controllability challenges. Typical

models of coaxial helicopters, like that proposed by [70], assume that �apping angles

can be commanded directly and that these result in direct forces and moments on

their expected axes (i.e. lateral cyclic pitch results directly in a pure lateral moment,

etc.). From our experiments, we have determined that more complex dynamics are

commonplace due to the construction of the rotor mechanism on these hobby heli-

copters. The primary concern is that the swashplate is connected only to the bottom

rotor, leaving the top rotor to produce forces and moments which are not directly

implied by the cyclic commands. In addition, models such as that proposed by Dzul,

Hamel, and Lozano in [71] do not explicitly model the stabilizer bar and assume that

the top rotor is actuated by some swashplate mechanism. Unfortunately, we have
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found that this model is insu�cient to account for the transient behavior of the top

rotor which has a great e�ect on �ight handling qualities and position control.

Modeling Top Blade and Flybar Interaction The linkage tying the top blade

and �ybar together, and the fact that neither is directly actuated by the pilot presents

a signi�cant challenge to full authority control. Also, since a large portion of the forces

and moments acting on the rigid body are a result of the thrust vector from the top

rotor, it is very important to accurately model the dynamic motion which results

from the coupled system.

Viewing the helicopter from above, there is an angle o�set between the loca-

tion where the linkage connecting the �ybar and top rotor connects to the feathering

axis of the top rotor and the �apping axis of the �ybar. This angle, denoted θfb, is

easily measured to be 45◦ on the helicopter we have modi�ed. This angle is important

because it represents how the angles at, bt, c, and d interrelate. As previously dis-

cussed, the �ybar behaves similar to a gyroscope with a small moment due to bearing

and aerodynamic friction which eventually makes the �ybar align itself perpendicular

to the shaft. Thus, if left alone, it would behave as a �rst order system with a time

constant, τfb. The top blade responds primarily to two moments: the moment due to

the rigid hinge, which acts a like a strong spring making the blade quickly align itself

prependicular to the shaft, and the moment imposed by the �ybar which steadies the

�apping motion in a manner analogous to a swashplate.

The �ybar is not left alone, obviously, and we must model the moment that the

top blade imposes on the �ybar. The �apping cross coupling equations below attempt

to represent both of these interactions. They are set up in a sequential manner in

order to allow a di�erential equation solver to solve them numerically, as is the case

in the Matlab/Simulink simulator.
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ċ1 = − c

τfb
− q (A.8)

ḋ1 = − d

τfb
− p (A.9)

ȧt = α(− a
τt
− q) + (1− α)(

1

τt
)(cos(θfb)ċ− sin(θfb)ḋ) (A.10)

ḃt = α(− b

τb
− p) + (1− α)(

1

τt
)(sin(θfb)ċ+ cos(θfb)ḋ) (A.11)

ċ = ċ1 +Kfb(
1

τfb
)(cos(θfb)ȧ+ sin(θfb)ḃ) (A.12)

ḋ = ḋ1 +Kfb(
1

τfb
)(−sin(θfb)ȧ+ cos(θfb)ḃ) (A.13)

There are several important terms which have physical meaning and need to

be tuned in order to properly represent the true system. The time constants of both

systems are very important. The blade's time constant (τt) is much faster than the

�ybar's time constant (τfb) due to the spring action of the hingeless blade. This

means that the system will behave as a hybrid dynamic system responding to the

pushing and pulling of the two systems on each other through the linkage.

These equations help to explain the behavior of the system in �ight. When the

rotor is spun up before and during takeo�, the �ybar is naturally oriented horizontally

with respect to the ground. Once the helicopter lifts o�, it is stabilized by the

gyroscopic tendencies of the �ybar to stay aligned horizontally. However, once a pilot

introduces control moments through cyclic actuation of the lower blade system, the

helicopter induces a rolling and pitching motion which a�ects the top blade. The top

blade thus aligns itself perpendicular to the shaft and exerts forces which slowly pull

the �ybar out of its horizontal inertial plane into an o�-axis plane. There is no moment

naturally counteracting the �ybar's motion. This induces translational motion and

couples the �apping angles of the top blade into o�-axis moments. A pilot's main

goal, then, is to restabilize the aircraft by realigning the �ybar horizontally parallel
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to the ground, thus making the thrust vector directly oppose gravitational forces.

However, even if the pilot can succeed in doing so, the helicopter has by then induced

inertial translational accelerations which carry it away inde�nitely (if not for drag

forces acting on the rotor blades). So the pilot has an additional challenge: predict

the accelerations which will be induced by the rigid body motion and directly counter

them before (or while) stabilizing the �ybar. This proves to be a di�cult task due to

the great deal of cross-coupling introduced by the 45◦ o�set between the top blade

and �ybar.

A.2.8 Coupling Rotors with Rigid Body

Forces and moments come primarily from the thrust vector and the gravity

vector when the helicopter is near hover. Drag also enters in, but we typically model

drag as being negligible in the hover state (is this a good assumption?). The forces

from the motors are found rather easily using the �apping states. For each rotor, we

have: 
Tx

Ty

Tz

 =
T√

1− sin2 a sin2 b


− sin a cos b

sin b cos a

− cos a cos b

 (A.14)

Since the thrust vector tilts with respect to the shaft, moments are produced

about the center of gravity of the vehicle. In addition, the hingeless rotor acts like

a spring wanting the restore the rotors to be perpendicular to the shaft. This also

exerts forces on the shaft which result in moments about the center of gravity with

a moment arm of length equal to the distance l, between the rotor hub and the C.G.
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These moments are summed up as follows:


L

M

N

 =
|T |√

1− sin2 a sin2 b


−ly cos a cos b− lz sin b cos a

lx cos a cos b− lz sin a cos b

ly sin a cos b+ lx sin b cos a

 (A.15)

Mettler [72] makes small angle assumptions, assumes that lx and ly are small

and takes into account the moments due to spring forces which results in:

L = (lzT + kβ) b (A.16)

M = (lzT + kβ) a (A.17)

The moment about the z-axis due to thrust and hub sti�ness should be zero.

On the coaxial helicopter, we �nd that a trim value can be found which results in little

or no yawing motion in hover �ight as long as the rotors stay at constant throttle.

When throttle is modulated, moments due to rotor drag become more signi�cant.
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Appendix B

Perspective Geometry and Hallway Simulation

A background understanding of homogeneous points, rigid-body projections,

camera models, etc. are important to understand in using computer vision in a hall-

way. For those experienced in computer vision, these topics will be well understood,

while for those less familiar, this appendix will be important to read �rst. Even for

those with a general knowledge of perspective geometry may gain by reading this

section simply to familiarize themselves with the terminology and notation used in

this thesis.

First, perspective geometry is described using Euclidean transformation ma-

trices and homogeneous coordinates. The duality of points and lines and reasons

for using homogeneous coordinates are brie�y described. Rigid-body transformations

as well as camera projections are then covered. An application of using perspective

transforms to predict motion of the hallway is presented using a Matlab simulation.

B.1 Perspective Geometry

Human interpretation of perspective images is something to marvel at. The

human mind seemingly converts stereoscopic images from two eyes into a viewable

world in which humans are adept at operating. However, computers viewing the world

through a monocular camera must be taught to interpret the projective geometry

that results. As Hartley and Zisserman [50] and other computer vision texts note,

the only thing we can generally say that is preserved in a projective transformation
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is straightness. Angles, distances, etc, are not necessarily preserved. This fact leads

to the general system of incrementing the Euclidean space Rn by one dimension

to create a projective space Pn by representing points as homogeneous vectors. This

section discusses a way of representing points in a homogeneous fashion, how to apply

rigid-body transformations to these points, and how to mathematically represent the

perspective projection occurring in a camera

B.1.1 Homogeneous Representation of Points and Lines

In a Euclidean 2-space, we represent a point as a coordinate such as (x, y).

To make this a projective space, we simply append a third coordinate to represent

the same point as (x, y, 1). This allows us to represent regular points as we always

have, but it also allows us to represent in�nite points such as the intersections of

parallel lines. These lines will simply be denoted as an ordered triple where the

third coordinate is equal to 0. The convenience of working with homogeneous coordi-

nates quickly becomes apparent when �nding lines as intersections of points, �nding

vanishing points as intersections of lines, etc. These operations become simple cross-

products, greatly reducing computational complexity (and making the math easier

to follow). In fact, this simple fact (that the intersection of two points is a line and

the intersection of two lines is a point) leads to a general duality of lines and points.

This comes into play when we discuss localization methods, like those implemented

in SLAM. Many SLAM methods use feature point tracking, but the transition to

line-tracking is rather simple due to the duality in the homogeneous representation.

Following is a description of how to represent rigid-body transformations which

include both rotations and translations using homogeneous three-space. Then, we will

discuss how to compute projections of points or lines from a 3-D representation to a

2-D representation which will allow us to see how points and lines are mapped onto

an imaging plane. In general, homogeneous points will be represented using a bar
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notation so that a nonhomogeneous point, Pb, will have the homogeneous equivalent

P̄b.

B.1.2 Rigid-body Transformations in Homogeneous Coordinates

Rigid-body representations are elegantly represented using a Euclidean pro-

jection matrix, E. Any such matrix is composed of a 3x3 rotation matrix, R, and a

3x1 translation vector, T as follows:

E =

 R T

0 1

 (B.1)

where R is an orthonormal rotation matrix such that RRT = I and |R| = 1. Figure

B.1 shows two coordinate frames, the world frame centered at the world origin, W,

and the body frame, centered at B. To represent a world point Pw in the body frame

as a point Pb,we would apply the rotation and translation as follows:

Pb = RbwPw + Tbw (B.2)

where Rbw is the rotation matrix which changes points from the world frame to the

body frame and Tbw is the needed translation. This is mathematically identical to

applying the Euclidean transformation Ebw which represents a homogeneous world

point P̄w as a point in the body frame P̄b:

P̄b =

 Pb

1

 =

 Rbw Tbw

0 1


 Pw

1

 = EbwP̄w. (B.3)

Often, we do not keep track of the vector Tbw expressed in the body frame, but,

rather, we keep track of the position of the body frame relative to the world frame,
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Figure B.1: Rigid-body transformation: A point with known coordinates in a
world frame represented in the body-frame of the vehicle through a rigid-body rep-
resentation as depicted.

which we denote Cbw. The desired vector can be found using the following rule:

Tbw = −RbwCbw. (B.4)

With this rather simple model for representing rigid-body motion, we can

e�ectively calculate how to render a set of points in the world frame into the camera

frame by representing the entire transformation as the product of two Euclidean

transformations: Ebw, as already described, and Ecb, the projection of body frame

points onto the camera frame. Thus, to go from points in the world frame to points

in the camera frame, we use the following equation

P̄c = EcbEbwP̄w. (B.5)
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B.1.3 Camera Projection Model

Finally, the act of perspective projection requires knowledge of camera param-

eters which we represent using a camera calibration matrix,K. The camera calibration

matrix e�ectively shifts the coordinates from world units (such as meters or feet) into

pixel units and o�sets the origin to the edge of the image. This allows the common

representation of pixel points as an array beginning at the upper left of the screen.

The camera calibration matrix is a way of representing the intrinsic parameters of

the camera and is composed of the following elements:

• sx- scale factor in the x-direction representing the conversion from metric units

to pixel units

• sy- scale factor in the y-direction, typically sx = sy which means the pixels are

square

• f - the camera focal length

• cx- o�set of the origin in the x-direction from the center

• cy- o�set of the origin in the y-direction from the center

Additional intrinsic parameters are sometimes introduced to account for angular skew,

spherical distortion of the lens, etc. However, in the case of the web cameras em-

ployed on our vehicle, spherical distortion is negligible and calibration yielded no

angular skew. The camera calibration matrix is then an upper-triangular matrix of

the following form:

K =


fsx 0 cx

0 fsy cy

0 0 1

 . (B.6)
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In the case of the Logitech QuickCam employed on the vehicle, the K matrix

is

Klogitech =


395.5 0 160

0 395.5 120

0 0 1

 . (B.7)

Knowing the camera's intrinsic parameters allows us to e�ectively project

known world points into the camera frame to predict where lines would show up

in the image. We can later use this knowledge to limit our search for lines to be

close to predicted lines. Homogeneous image point locations, denoted P̄i, can be

represented as a three-vector computed from the camera frame point locations:

P̄i = KΠ0P̄c =


fsx 0 cx

0 fsy cy

0 0 1




1 0 0 0

0 1 0 0

0 0 1 0





xc

yc

zc

1


(B.8)

where Π0 is an identity matrix with an extra column of zeroes which represents the

perspective projection [51]. We go from a homogeneous four-vector to a homogeneous

three-vector. Finally, the actual image points are found by dividing out the scale

factor introduced by the homogeneous points:

Pi =

 ui

vi

 =
1

zi

 xi

yi

 (B.9)

Combining the rigid-body transformation with the projective camera model

results in the following set of operations to convert from world points to image points:

P̄i = KΠ0EcbEbwP̄w (B.10)
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B.2 Hallway Projection Simulation

In order to understand the perspective projection and test the correct modeling

of the camera, a model was built in Matlab which performs this projection based on

a given pose of the vehicle and known transformation of the camera frame from the

body frame. This projection model is based on the above transformation in Equation

B.10 with the following quantities de�ned:

Rcb =


0 1 0

0 0 1

1 0 0

 , (B.11)

Tcb =


0

0

−0.10

 , (B.12)

which convert from the body frame to the camera frame. The body frame of the

vehicle is de�ned by the position of the vehicle in the world frame and the rotation

parameterized by Euler angles. The Euler angles can be used to �nd the rotation

matrix from the body to world frame as follows:

Rwb = RφRθRψ (B.13)

where the intermediate rotations are de�ned with respect to the inertial frame, vehicle-

1 frame and vehicle-2 frame and are de�ned as follows:

Rψ =


cosψ sinψ 0

− sinψ cosψ 0

0 0 1

 , (B.14)
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Rθ =


cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

 , (B.15)

and

Rφ =


1 0 0

0 cosφ sinφ

0 − sinφ cosφ

 . (B.16)

In the camera projection, we desire the rotation of the world frame with respect

to the body frame, Rbw which is the inverse of Rwb, or simply the transpose due to

the nature of orthogonal matrices. Performing the necessary operations, the desired

matrix is written in closed form as:

Rbw =


cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ

cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ

−sθ sφcθ cφcθ

 (B.17)

where a c denotes a cosine and an s denotes a sine.

Finally, the translation of points in the world frame with respect to the body

frame, denoted Tbw, can be found from the known location of the vehicle in the

world frame, Cbw, according to Equation B.4. Performing these operations, we can

transform a known hallway onto an image of the hallway and compare, as shown in

Figure B.2.

This hallway simulation method can be extended to any rigid-body in the

�eld-of-view of the camera. A line tracking procedure will be discussed in section

B.2.1 which provides a fast algorithm for tracking the motion of a rigid-body.
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Figure B.2: Hallway Simulation: The �rst diagram shows the vehicle's position
with respect to the corridor. The second image shows a captured image from the
camera with the projected edges overlaid in cyan.

B.2.1 Line Tracking Method

My favorite method involves projecting a predicted pose based on prior mea-

surements and sensor data onto the imaging plane. This rendered pose gives an

initial guess of where lines will be located in the image plane. Then, a line search

is performed perpendicular to the predicted lines. Using the method proposed by

Drummond and Cipolla [61], a least-squares method is used to determine the most
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likely combination of pose changes which would generate the observed image-space

motion. This method shows great promise and has been shown by Kemp [13] to be

capable of tracking 3-D corridors in real-time.
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