
Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2008-04-17

Exploring the Common Design Space of Dissimilar
Assembly Parameterizations for Interdisciplinary
Design
Brady M. Larson
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Mechanical Engineering Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Larson, Brady M., "Exploring the Common Design Space of Dissimilar Assembly Parameterizations for Interdisciplinary Design"
(2008). All Theses and Dissertations. 1696.
https://scholarsarchive.byu.edu/etd/1696

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F1696&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F1696&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F1696&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F1696&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F1696&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarsarchive.byu.edu%2Fetd%2F1696&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/1696?utm_source=scholarsarchive.byu.edu%2Fetd%2F1696&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

EXPLORING THE COMMON DESIGN SPACE OF DISSIMILAR

ASSEMBLY PARAMETERIZATIONS FOR

 INTERDISCIPLINARY DESIGN

by

Brady Marc Larson

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Mechanical Engineering

Brigham Young University

August 2008

Copyright © 2008 Brady Marc Larson

All Rights Reserved

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

 of a thesis submitted by

Brady Marc Larson

This thesis has been read by each member of the following graduate committee and by
majority vote has been found satisfactory.

________________________ __
Date C. Greg Jensen, Chair

________________________ __
Date Jordan J. Cox

________________________ __
Date Spencer P. Magleby

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the thesis of Brady Marc
Larson in its final form and have found that (1) its format, citations, and bibliographical
style are consistent and acceptable and fulfill university and department style
requirements; (2) its illustrative material including figures, tables, and charts are in place;
and (3) the final manuscript is satisfactory to the graduate committee and is ready for
submission to the university library.

________________________ __
Date C. Greg Jensen
 Chair, Graduate Committee

Accepted for the Department
 __
 Matthew R. Jones
 Graduate Coordinator

Accepted for the College
 __
 Alan R. Parkinson

Dean, Ira A. Fulton College of Engineering and
Technology

ABSTRACT

EXPLORING THE COMMON DESIGN SPACE OF DISSIMILAR

ASSEMBLY PARAMETERIZATIONS FOR

 INTERDISCIPLINARY DESIGN

Brady Marc Larson

Department of Mechanical Engineering

Master of Science

 The use of parametric CAD models in engineering, analysis, and optimization has

greatly enhanced the effectiveness and efficiency of the product development process.

Parametric models provide an attractive avenue for expansive design exploration. There

still exists, however, a great challenge for products requiring design input from multiple

disciplines.

 The collaboration of engineering disciplines can be hampered by many factors

including: competing design objectives, communication of design changes, the use of

different design and analysis software, and different geometry definitions. These

obstacles become compounded when developing products at the assembly level. The use

of solid parametric assembly models is not readily employed for products developed by

groups from differing engineering disciplines. This is due to the huge cooperative effort

required to create, analyze, and iterate on the geometry of the assembly model.

The objective of this thesis is to present a method for separate disciplines to be

able to analyze multiple parameterizations of the same CAD assembly to help develop a

master parametric assembly, and to define the design space to be explored during analysis

and optimization. This is done through a custom application developed using the

Application Programming Interface of Siemens’ NX CAD software. The custom

application allows the user to monitor the affects of manipulating the driving parameters

of an assembly by observing user specified geometry, features, or parametric expressions.

The application also allows switching from one set of parametric design rules controlling

the assembly to another in a matter of seconds. Manipulating and observing key

geometry from different parameterizations allows engineering teams to discover the

impact of each discipline’s driving equations and geometry on another discipline. This

will have a profound impact on multidisciplinary design teams in developing a robust

parametric assembly, while still taking consideration of the requirements of each

discipline.

The collaborative efforts in the development of parametric assembly models used

by multidisciplinary design teams are vastly improved through the method and

application developed herein. This research will also show both the enhancements that

could be made to existing CAD software, as well as the benefits of custom design tool

development within the CAD environment.

ACKNOWLEDGMENTS

I would like to express my appreciation for all of those who helped me to pull this

thesis together. I’m particularly grateful for my wife Jill for encouraging and supporting

me as I worked to finish. I also thank my advisor Dr. Jensen for giving me the

motivation and inspiration to explore new territory and grasp onto some of my potential.

I will always look back on my experiences as a graduate student as the springboard that

boosted me into the real world. I would also like to thank the other students in the

ParaCAD research group at BYU for being so great to work with and for helping me

formulate my research and computer code. This thesis could not have taken shape

without the groundwork and tutoring that I received at their hands. I also need to thank

Steve Kramer and many others at Pratt & Whitney who helped me to formulate my thesis

topic as well as give valuable feedback regarding my test case CAD geometry. Pratt &

Whitney also provided funding to help pay for my costs as a graduate student. Lastly I

would like to thank my parents and my in-laws for giving me their support in my desire

to seek a graduate degree. I hope that my education will help motivate my children to

excel in whatever they choose to study as well.

 ix

TABLE OF CONTENTS

LIST OF FIGURES ... xiii

LIST OF TABLES .. xvii

CHAPTER 1: Introduction ... 1

1.1 Problem Statement .. 3

1.2 Thesis Objective.. 4

1.3 Delimitation of the Problem .. 5

1.4 Naming Conventions and Definitions ... 5

CHAPTER 2: Literature Review.. 7

2.1 CAD/Assembly Parametrics ... 8

2.2 Use of the CAD API ... 15

2.3 Multidisciplinary Optimization and CAD .. 18

CHAPTER 3: Background ... 23

3.1 API Programming in NX .. 23

3.2 Set Theory and Notation ... 27

CHAPTER 4: Method .. 31

4.1 Classification of Problems Addressed .. 32

4.2 Parametric Assemblies .. 35

4.2.1 Test Case 1: Simple Assembly .. 38

4.2.2 Test Case 2: Exit Nozzle Assembly .. 39

4.4 Parametric Data and Set Theory ... 40

4.3.1 Definition of Data Sets.. 41

4.3.2 Conflicts, Overlap, and Other Issues .. 43

4.4 Using the CAD API for the Custom Application ... 47

 x

 xi

4.5 Verification of Valid Geometry .. 54

CHAPTER 5: Development ... 59

5.1 Classification and Exploration of Typical Problems .. 60

5.1.1 Tracking Downstream Effects and Sensitivity ... 60

5.1.2 Tracking Effects from One Parameterization to Another 61

5.1.3 Finding Common or Conflicting Design Space .. 64

5.2 Swapping the Assembly Parameterizations .. 66

5.3 How to Track, Observe, and Output Parametric Manipulation 79

5.4 Uses and Drawbacks of this Method .. 82

CHAPTER 6: Results ... 85

6.1 Creation and Validation of Parametric Assembly Models 85

6.2 Successful Swapping of Assembly Parameterizations 86

6.3 The Application Interface Design ... 89

6.4 How the Effects of Parametric Manipulation Were Observed 92

6.5 Presenting the Observation Data for Review .. 95

CHAPTER 7: Conclusions / Recommendations .. 99

7.1 Future Work .. 102

HUAppendix A: Example Expression Files ... UH105

HUAppendix B: Component.cpp source file ... 109

HUAppendix C: dSpace.cpp source file .. 115

 xii

 xiii

LIST OF FIGURES

UFigure 2-1 Radius centered parameterizationU .. 13

UFigure 2-2 Clearance centered parameterizationU ... 13

UFigure 2-3 Multiple parameterizations in CAD modelsU .. 14

UFigure 3-1 A set of CAD parameter expressionsU .. 28

UFigure 3-2 Venn diagrams showing set operationsU ... 30

UFigure 4-1 Model control from multiple disciplinesU ... 36

UFigure 4-2 Modeling considerations for parts and assembliesU .. 37

UFigure 4-3 Exit nozzle subassembly from a Pratt & Whitney jet engineU 40

UFigure 4-4 Definition of sets of parametric dataU ... 41

UFigure 4-5 Overlap of setsU ... 42

UFigure 4-6 Neutral parameter set used by each discipline to control the CAD geometryU 44

UFigure 4-7 Invalid union of sets with identical elementsU .. 46

UFigure 4-8 Constructor callback code for initializing the custom applicationU 49

UFigure 4-9 Update failure menuU .. 53

UFigure 4-10 Switching an assembly component to the working modelU 54

UFigure 4-11 Launching the system interference analysisU .. 57

UFigure 5-1 Example output from "Aero" parameterizationU ... 64

UFigure 5-2 Code used to export expression files from the CAD assemblyU 69

UFigure 5-3 Code used to import expression files into the CAD assemblyU 71

UFigure 5-4 The custom function “DerefExp”, which neutralizes the expressions in the
active modelU .. 72

UFigure 5-5 The “RewriteExp” custom function which neutralizes the parametric
expressionU ... 74

UFigure 5-6 User interface with values specifiedU .. 80

UFigure 5-7 Simple output file comparing parametersU .. 81

UFigure 6-1 Example of geometry changes upon execution of the programU 88

 xiv

 xv

UFigure 6-2 Assembly parameterization GUI.. 90

UFigure 6-3 Second tab of the custom GUIU ... 92

UFigure 6-4 Code fragment for choosing an expression to observeU 93

UFigure 6-5 Code Fragment for the “get PartExps” FunctionU ... 94

UFigure 6-6 Example Output FileU .. 97

 xvi

 xviii

 1

CHAPTER 1: INTRODUCTION

Parametric CAD packages have greatly enhanced both the speed and efficiency of

the design cycle for new products. These software packages have allowed engineers and

designers to more effectively create models which reflect their design intent. One of the

major benefits of carefully planned parametric models is the ability to quickly and

reliably change their size, shape and topology for analysis and optimization scenarios.

Research in this area has shown that the use of robust parametric CAD models in

Multidisciplinary Optimization (MDO) loops can dramatically reduce the product design

cycle. There are some challenges, however, in attempting to use parametric assembly

models for interdisciplinary design situations. To date any research involving assembly

level optimization has used very simplified representations of the assembly, often

reduced to a two dimensional sketch. Thus the advantages of using a 3-D parametric

assembly model for MDO have largely been unexplored due to model complexity,

computing capacity, and the large collaborative effort involved.

One of the challenges with parametric CAD models lies in the planning of the

rules which will control the way the geometry is configured. In assembly modeling this

scheme should reflect the design intent and establish a hierarchy of components and

parameters. The hierarchy places certain components and parameters as “drivers” of the

system, while forcing any corresponding components and parameters to be dependent and

 2

therefore less likely to need direct manipulation. This one way characteristic of

parametric schemes is often in conflict with traditional methods for analyzing and

optimizing an assembly.

Assembly level design of complex mechanical and other systems involves

multiple and competing criteria. The point of MDO analysis is to drive the design toward

a desired balance of the performance and design objectives. If each of the components is

at its optimal configuration for its specific function it is not likely that the system will be

optimal, or even physically plausible. The objectives determine how the parameter

scheme will be set up to “flex” the models within the ranges to be explored. Problems

arise when competing objectives would benefit from having a very different parametric

schema to manage their behavior. It is also the case that the unidirectional nature of

CAD parametric expressions and relationships do not allow for various parameter

schemes to be easily represented or iterated on in a single assembly model.

This thesis will propose a method to easily and quickly evaluate the common

geometry, features, or parameters of completely separate assembly parameterizations.

The proposed method will enable engineers from multiple disciplines to see the affects

that each parameterization will have on key geometry when manipulating the driving

parameters. This is made possible by enabling the designer to manipulate the assembly at

both high and low levels of the assembly tree, and by automated switching from one

parameterization to a completely different one. This process could have a significant

impact on the ability of interdisciplinary teams to collaboratively develop a master

assembly model. The method will essentially enable the designers to discover the

available design space which can be explored as the assembly design is fine tuned.

 3

1.1 Problem Statement

The use of parametric CAD models in multidisciplinary design presents several

challenges. The first challenge is to create an appropriate parametric model that will not

become invalid or unrealistic during optimization. This is true at the part level, and even

more so with assemblies. Many researchers have addressed the issues surrounding

parametric modeling, model failure, and the complicated process of developing a robust

model. It has been shown that the implementation of a well thought out parametric

scheme can greatly enhance the effectiveness and efficiency of optimization using CAD

models (Srinivasan et al. 2000).

Parametric assemblies are commonly created in industry, but are seldom used in

detailed optimization and exploration of configurations for several reasons. One reason

is the computing power and time necessary to perform such tasks. This is quickly

becoming less of an issue with the increased capacity and availability of high-end

supercomputing and clustering facilities. Another challenge to overcome is involving all

of the different disciplines which have a say in the design configuration of the assembly

and its components. Designers and engineers from each discipline want to explore the

sensitivities and impact that changing the geometry will have on the performance

benchmarks and requirements for their discipline. The rules that determine how the

geometry flexes and which dimensions or parameters drive that change are likely to be

different for each discipline. The common practices which attempt to address or avoid

this problem include developing a master model containing a compromise on

parameterization, or exploring the design space as separate disciplines and then

compromising on a final configuration.

 4

1.2 Thesis Objective

As discussed above, reparameterization of assemblies is virtually impossible

through the use of current interactive CAD tools. The objective of this research is to

develop a method to allow a complete change of parameterizations controlling a CAD

model at the assembly level. The feasibility and implementation issues surrounding the

creation and use of this method will be thoroughly discussed. The method will be

demonstrated through a custom program using C/C++ as within the Application

Programming Interface of NX. The functionality made available through this program

would enable designers from different disciplines to control the same master geometry

using different, even conflicting sets of rules and parameters. Some discussion will also

be given regarding the limitations in the current CAD systems to be overcome and/or

addressed by this research. Specifically, the questions to be answered by this research

will include:

1. What are the types of parametric assembly problems that are typically

encountered that will be addressed by this research?

2. How can multiple parametric schemes be seamlessly “swapped” to change

the driving parameters of the system?

3. How can the effects of manipulating driving parameters from multiple

parameterizations be observed by a concurrent engineering team?

4. How should these effects be presented for comparison and review?

5. What are the uses and drawbacks of this method in design exploration?

 5

1.3 Delimitation of the Problem

This work will include the development and implementation of a method for

exploration and observation of multiple parametric assemblies. This will be

accomplished by means of a custom application. Parameterizations for test case

assemblies will be created and tested. The application of this method in design

exploration and collaboration between disciplines will be conceptually discussed. The

specific strategies involved in determining a final master assembly model will not be

discussed in detail. Also, the steps that would be needed to incorporate the operations

performed by the custom application into an optimization loop will be left for future

discussion.

1.4 Naming Conventions and Definitions

The purpose of this section is to explain the different naming conventions and

fonts that are used in this thesis. Words in Bold Courier font are used to indicate a

C++ class name, or code fragments and examples.

When discussing CAD data, the terms parameter, rule, expression, and variable

are all used to describe the method of controlling and assigning the values associated with

CAD geometry. These terms have the same meaning for the purposes of this thesis, but

the term “parameter” will be used in place of the other terms listed for consistency.

 6

 7

CHAPTER 2: LITERATURE REVIEW

For those readers who are well read and comfortable with the topics of Parametric

Assemblies, customization of CAD via API programming, or MDO using a CAD-centric

approach, the author encourages you to proceed to Chapter 3. The following sections

will provide the basis and frame the problems relating to the management of multiple

parameter schemes for optimization of CAD assemblies. The following topics will be

reviewed and discussed:

• CAD/Assembly Parametrics (Section 2.1)

o Robust Parameterizations

o Managing Parameters and Updating Part Models

o Inter-part Relationships and Mating Conditions

o Multiple Parameterizations

• Use of the CAD API (Section 2.2)

o Extending the System Capability/Compatibility

o Building Custom Engineering Applications

• Multidisciplinary Optimization and CAD (Section 2.3)

o Multidisciplinary Design Optimization

o CAD Centric Optimization

 8

2.1 CAD/Assembly Parametrics

Parametric Technology Corporation changed the way solid modeling was

approached with the introduction of their Pro/ENGINEER CAD system in the 1980’s

(Hoffman and Kim 2001). Parametric modeling, as exemplified through

Pro/ENGINEER, allowed a more strategic method to be applied to the dimensioning and

modification of geometry. Models could now be easily and quickly modified, enabling a

more design and engineering friendly development platform. Shapiro and Vossler (1995)

stated that one of the most important practical uses of parametric solid modeling today is

creating and maintaining an “electronic master” of geometric data that can be quickly

modified to accommodate required engineering changes.

A parametric master model is usually viewed as a repository of knowledge and

data of which the CAD model is a subset, or client (Hoffman and Joan-Arinyo 1998).

This structure provides a means for all pertinent models of the system, not just the CAD

model, to be updated upon the change of any of the master parameters. Although the

realm of parametrics in engineering and design has now taken shape at such a high level,

the focus for this thesis will be placed on the rules and parameters which control the

variation of the CAD model only. Parametric modeling involves both strategic planning

and careful implementation to maintain a robust model. This thesis will introduce to the

reader the challenge of involving multiple parameter schemes in the same assembly. This

challenge will require a new perspective and a different approach to the planning and

parameterization of the models in the assembly in order to maintain a robust assembly

model.

 9

2.1.1 Robust Parameterizations

In order for a parametric model to be deemed robust it should be able to maintain

a feasible, valid, and physically meaningful configuration while having its controlling

parameters varied within a desired range. Hoffman and Kim (2001) have recognized that

proposing a general solution for generating valid CAD models is a hard problem.

Making a model “unbreakable” can result in a very limited flexible range, while a lack of

robust parametrics leads to unwanted or invalid geometry. Srinivasan et al. (2001)

showed, however, that careful planning of a parametric scheme can significantly reduce

generation of invalid models. Thus the planning of the governing parametrics is mainly

left to the experience and skill of the designer.

According to Bidarra (2002) “an ideal product modeling system should support

both part modeling and assembly modeling, instead of just either of them as is the case in

most current CAD systems.” The crossover from part modeling to assembly modeling

requires the used of more high level parametrics, meaning that the planning of the

parameter scheme must consider the relationships that exist between each part in the

assembly. The creation of robust, parametric parts does not guarantee a robust assembly.

The quality of the parametric scheme, and therefore the robust nature of the

model, is judged at the most basic level by the ability of the model to regenerate or

update itself reliably upon modification of parameter values. The types of update failures

are diverse, but are often related to the intrinsic nature of the chosen schema for

parameterization of the model (Hoffmann and Kim 2001). A poorly planned parameter

scheme does not account for possible intersection, overlap, or other situations which

result in invalid geometry or an over or under-constrained model. Whether or not an

 10

update is successful is determined by the CAD system through solving a system of

equations which determine if the constraints and relationships governing the creation,

configuration, assembly, etc. of the geometry are satisfied. Therefore, when planning and

creating a parametric model, it is advantageous for the designer to have a working

knowledge of the system of constraints to be evaluated by the software upon a model

update.

2.1.2 Managing Parameters and Updating Part Models

The use of parametric modeling strategies at the assembly level requires an even

more careful, well thought out strategy, to achieve a successful robust model (Srinivasen

et al., 2002). The major considerations that arise are inter-part relationships and potential

interference between parts or components. If features or dimensions from one

component are to affect, or be reflected in another component, a relationship or rule is set

up to control the dependency; this is deemed an inter-part relationship. The other main

method for controlling part to part association in an assembly is through the use of

mating conditions. Mating conditions are used when assembling components to each

other to constrain the special relationships and orientation of each component relative to

the assembly. Examples of mating conditions are aligning or mating two faces, assigning

an offset distance between two components, and enforcing a tangency constraint between

a curved surface and another feature. This association between part models and features

is the basis for successful integrated product development (Xu, Wang 2002). The

modeling methods that employ these types of associative practices are discussed below.

 11

These types of situations also require a new approach to updating the assembly

when changes are propagated. If a component is not fully loaded in the assembly, the

changes in another component which affect the partially loaded component will not

immediately be reflected. The CAD system keeps track of these changes, and upon

loading any affected components the geometry is updated.

2.1.3 Assembly Modeling Methods

There are three approaches to assembly modeling: the “Bottom Up”, the “Top

Down”, or a combination of the two. Each method has its advantages, and all three can

still involve robust parametric control of the geometry (Zeid 2005). The Bottom Up

approach is better suited to smaller assemblies and is considered the most traditional and

logical approach to assembly design. This process begins with the creation of a blank

assembly model into which each of the previously modeled components will be imported.

The first part assembled is the base or host part on top of which the other parts will be

mated. This process is less likely to involve an intricate set of inter-part relationships

since the assembly considerations take place after the parts have been modeled.

Lee (1999) stated that probably the greatest use of assembly design capabilities

are in the automotive and aerospace industries. Top Down assembly design is a good

approach to take for such large assemblies. This process starts with a more abstract

approach by creating a “sketch” of the entire assembly model. This sketch, or perhaps

several sketches, will serve as a sort of “skeleton” for the detailed components of each

subassembly or subsystem. The most important part of Top Down design is space

planning (Zeid, 2005). Using this approach allows project managers to coordinate the

 12

layout of the assembly throughout the process. Three dimensional components may even

be parametrically tied to the skeleton sketch such that they update with any changes at the

top level. Thus the top level sketch may contain the master parameters for determining

the geometric or other properties for three dimensional details. Thus each of the

components of the assembly is built in context or concurrently with the surrounding

components such that the inter-part relationships are developed as the parts are being

constructed.

Kim Youngjun made an important observation regarding CAD assembly

structures as it relates to this thesis. He stated that when attempting to remove a part

from the assembly hierarchy, the user needs to unlink all the relationships associated with

it. This process is done manually and could take a significant amount of time (Youngjun,

2003). These same relationships come into consideration when attempting the types of

data and model manipulation discussed in this thesis.

The assembly to be used as a test case for this research will be created using the

more traditional bottom up design method. The method developed for the exchange of

parameterizations by this research however could be applied to an assembly created by

any assembly method. This is possible because the method developed here deals only

with the underlying parameter sets and rules used by the model. The types of rules, or

methods used to create them, does not affect the data transfer associated with this

research. The constraint systems involved in the data transfer to be performed by the

custom application are solved internally by the CAD system irregardless to the structure

of the parametric expressions.

 13

2.1.4 Multiple Parameterizations

Bettig and Shah (2001) have illustrated that parametric models can have different

dimensional schemes depending on the intent of the design. The figures below show two

ways of parameterizing the same geometry. Figure 2-1 shows design intent centered on

the importance of the radius of the cutout. Figure 2-2 shows a design intent emphasizing

the clearance to be maintained between the edge of the part and the cutout. Although this

illustrates the likelihood of different parameterizations being needed for the same model,

Bettig and Shah made no attempt to integrate the parameterizations into a single model.

Figure 2-1 Radius centered
parameterization

Figure 2-2 Clearance centered
parameterization

Many others have discussed issues such as the existence of different viewpoints of

a model, but such studies usually involve the representation of the same geometry using

differing design and software packages.

 Delap (2006) is apparently the first person to investigate the idea of including

multiple parameterizations in the same CAD model. In his research, Delap illustrates a

method for multiple users to be able to input different parameterizations to control the

 14

same model as illustrated in Figure 2-3. A two-dimensional model of a gas turbine

engine flowpath is used to show the usefulness of employing multiple parameterizations.

The parameterizations include a module-based and a row-based set. These titles refer to

the manner in which the splines used to represent the walls of the engine flowpath are

drawn and controlled. The module-based parameterization allows for a more high level

control of engine geometry by letting the user adjust the entry and exit geometry of a high

pressure turbine module, for example. The intermediate spline geometry is controlled

using interpolating methods. The row-based parameterization allows the user to input

adjustments for each row of blades or vanes in the engine module while the entry and exit

locations remain fixed.

Figure 2-3 Multiple parameterizations in CAD models

The use of multiple parameterizations in Delap’s (2003) graduate research allows

designers to quickly develop concept geometry for a jet engine flowpath while

maintaining both high and low level control. The use of multiple parameterizations was

made possible through the CAD API in conjunction with an object oriented programming

 15

structure. The calculations for placing and interpolating spline control points were

performed through the C++ code based upon user inputs to a custom user interface.

Although the research in this thesis also involves using multiple parameterizations

to control one model, the methods and application discussed follow a different approach,

and can be applied in a much broader sense. Delap’s research was applied to a single part

file on two-dimensional geometry while this research operates on three-dimensional solid

components of an assembly model. Further discussion of the differences in these efforts

will follow in the method and development chapters of this thesis.

2.2 Use of the CAD API

One of the most important parts of this research will be in the use and

implementation of custom menus and operations created within the CAD Application

Programming Interface (API). The use of the API of the CAD system has been found to

greatly enhance the ability of the engineer to quickly and repeatedly perform custom

design tasks (Tucker 2000). Tucker’s research involved the development of an API

translator which was able to convert API functions and code from one CAD system into

functions and code for another system. His research showed a partial solution to a

pervasive problem in CAD which is the collaboration and file sharing between groups or

companies which use different CAD packages.

In this section, a few examples of using the CAD API to enhance and customize

the software to perform design/engineering tasks will be shown. The nature and scale of

these examples varies, but the common thread supports the need for the ability to create

custom applications such as the one developed for this thesis. Software developers can

 16

learn a great deal about how to enhance CAD programs from these examples. Just as

important to learn, is the need to design platforms that can be built upon when needed in

an adaptable and user friendly way.

2.2.1 Extending the System Capability/Compatibility

Kim and Han (2004) used the API to access and manipulate data stored in a STEP

model that was exported from the CAD system. Their research showed the ability to use

API’s from both NX and Solidworks to access the STEP file’s geometric data to

reproduce the geometry in a native CAD model. Similarly this thesis will use the API to

perform assembly and data retrieval functions not readily available in the CAD system.

Ardalan (2000) used the API of Solidworks, and Visual Basic to create design

program which enabled less advanced CAD users to create complex spacecraft

assemblies. This was accomplished by means of a custom GUI where inputs were used

to change key parameters on standard parametric components of the spacecraft. The user

was guided through the creation and assembly of each component until an entire

sophisticated system was complete. This program illustrates the usefulness of custom

applications in conjunction with parametric modeling as effective means for aiding in

preliminary as well as detailed design and engineering.

2.2.2 Building Custom Engineering Applications

Sometimes the CAD API is used to perform functions or combinations of

functions not available in the interactive modeling environment. Much of my research

involved combining system functions and customizing functions to perform the desired

 17

tasks. The need for this type of approach is illustrated here, with examples of custom

applications used to overcome discovered limitations of commercial CAD software.

Myung and Han (2001) recognized that commercial CAD systems cannot handle the

parametric design of assemblies. They developed a custom application utilizing the API

of the system to aid in the design of a machine tool. This enabled the implementation of

parametric design strategies at the assembly level which were unavailable through

conventional use of the CAD system.

Use of the CAD API has also been effectively utilized in efforts to enable a more

collaborative design environment. Zhou et al. (2003) used the APIs of multiple CAD

systems in order to develop a CAD neutral module which will be able to interact with the

different commercial CAD packages enabling more collaborative design efforts to take

place. Kao and Lin (1998) used the CAD API to pass model information over a LAN as

well as the internet as part of a collaborative CAD/CAM system in development.

Rangel and Shah (2002) created an internal integration of CAD and CAM

operations through the use of the API creating a single continuous application. Their

work is a good illustration of the power of using the API in linking or combining

engineering tools to help centralize and unify the design process.

The ParaCAD research group at BYU, under the supervision and direction of Dr.

Jensen, has explored the utilization of API programming in many different applications.

This research has produced several theses and published articles showing the impact that

parametric modeling, coupled with programmatic linking of CAx tools, can have in both

industrial and academic efforts. Some of the work to come out of the ParaCAD research

group includes preprocessing of rapid prototyping models (Wilson 2004), CAD-centric

 18

CFD analysis with discrete features (King, 2004), and integration of commercial CAD

and analysis software for multidisciplinary design optimization (Hogge, 2002). This

work continues to be funded by aerospace and automotive industry leaders who are

interested in exploring and implementing advanced CAx applications which can give

them a competitive edge in engineering and time-to-market efforts.

As illustrated, the API available in some commercial CAD systems has been used

in several ways, all of which enable engineers and designers to enhance their ability to

design, analyze, and manufacture better products. The use of the API also allows for

opportunities to customize products through a combination of parametric design and

automated model generation. As parametric CAD systems become more and more

embedded with design and engineering knowledge, the use of custom applications will

help make a fully integrated design and analysis software more of a reality.

2.3 Multidisciplinary Optimization and CAD

 The previous sections have shown the key role that parametric CAD plays in the

development and analysis of new designs in both research and industry. This section will

discuss the optimization of a design using modern methods and technologies. Through

the use of popular optimization strategies, applied to parametric CAD models, engineers

are beginning to be able to explore for potential designs in a very meaningful and

effective manner.

 19

2.3.1 Multidisciplinary Design Optimization

Alexandrov and Lewis (1999) define Multidisciplinary Design Optimization

(MDO) to mean the systematic approach to optimization of complex, coupled

engineering systems, where “multidisciplinary” refers to the different aspects that must

be included in a design problem. There are basically two approaches to MDO (Cheng

and Li 1999). The first is to try to find the optimal solution directly by combining each

objective into one weighted objective. This approach limits the choice of the designer

since only one optimal solution is produced, and is determined by the weighting of the

objective. The second approach produces several optimal designs which are not

dominated by any other design. These are the Pareto designs, or the Pareto front of

designs. This method allows the designer to choose the weight of the objectives after he

has seen the possible optimal solutions.

2.3.2 CAD Centric Optimization

MDO of complex mechanical assemblies is made possible through the successful

construction of robust parametric CAD assembly models (Srinivasan et al. 2001).

Attempting true multi-objective optimization or distributed optimization of a separable

objective is not widely done in MDO at present (Alexandrov and Lewis 1999). There has

been some research, at the single part level, that has shown the feasibility of performing

true multidisciplinary optimization with parametric CAD models and other CAE tools

(Hogge 2002). This was done using a parametric model of a single turbine blade through

the use of commercial engineering software by utilizing the APIs and automated

functionality in modeling, analysis, and optimization. As mentioned, the focus of

 20

Hogge’s work was to show the feasibility of linking analysis and design software using a

CAD-centric approach with a parametric solid part model. This thesis expands the CAD

centered approach to explore assembly models and how to involve multiple disciplines,

while maintaining robust parametric methods.

 The point of view, design emphasis, and design approach of each discipline

specialist can be quite different. Too often the practice has been for specialists to

independently optimize each discipline with limited direct interaction or communication

with others (Townsend et al. 1998). Ledermann states that it is very important to have

clearly defined interfaces between different disciplines that allow the exchange of

reciprocatively required data. It is also noted, however, that the use of common

parametric-associative geometry as a basis for analysis is promising in helping to

overcome the difficulties encountered in aircraft pre-design (Ledermann et. al. 2005).

 Another approach to MDO presupposes that objective functions, rules,

constraints, etc. are being posed in a collaborative concurrent engineering environment,

where the structures, aerodynamics, manufacturing, etc. disciplines are all working

together to achieve an optimal design (Srinivasan et al. 2001). This collaborative effort

involves an attempt to develop one parametric CAD assembly model to be used for

analysis and optimization across all disciplines involved. During this process there are

many compromises or trade offs made early in the development of the parametric scheme

of the assembly. Thus there is significant effort put into creating a scheme which will be

able to properly represent the design as perceived by each of the disciplines. The

resulting model from a process such as this can be fairly robust in searching for an

 21

optimal design, although the search may take place within a limited space due to the

compromises made in the parametric setup.

 As mentioned above, developing a robust parametric CAD model is crucial to the

successful execution of MDO. Failure to properly parameterize the model will most

likely result in invalid or unusable geometry during iterations (Srinivasan et al., 2001).

This can become a very wasteful problem causing the analysis routines to either produce

unusable data, or to crash completely while trying to analyze the model. Since

computing time is already a limiting factor when attempting MDO with 3D models, a

poorly parameterized model further aggravates this situation.

 Sometimes a situation may arise in which the competing objectives are actually

more effectively explored using different parametric models. This thesis will

demonstrate a method which allows designers from each discipline to create their own

parametric schemes which maintain design intent regarding their discipline while also

allowing a more expansive search of the design space. This method will avoid the

limitations and compromises of using a single parametric model. Because the parametric

schemes will be able to be quickly and automatically swapped, a broader range of

potential designs covering the fully desired space from each discipline can be explored.

Similar to evaluating the designs on the Pareto front, this method will allow for designers

to choose the objectives and driving parameters for the model after much of the design

space has been explored.

 22

 23

CHAPTER 3: BACKGROUND

This chapter will give the reader background and explanation of two of the more

prevalent topics of this thesis: API programming in NX, and Set Theory and Notation.

The reader will be guided through the structure and creation of a custom application

using the NX API. This will illustrate how problems such as those addressed by this

thesis can be more effectively approached through custom applications. A brief

explanation of Set Theory and how it is used to help represent the problems of this thesis

will also be given. This representation will help the reader understand the relationships

and interactions of parametric data and the CAD models using that data.

3.1 API Programming in NX

Some of today’s CAD packages have a great advantage in their ability to be

customized for specific application in industry and research. One of the most powerful

ways to customize the CAD software is through the use of the Application Programming

Interface (API). Through the API a completely customized application can be developed

to use any combination of functions within the CAD package, as well as the functionality

of the programming language itself. The application to be developed for this thesis will

utilize the NX API to automatically perform tasks that are unavailable through typical

interactive use of the software. An explanation of the interface and capabilities of the NX

 24

API, along with a brief explanation of how a custom application is developed, will be

given here.

 The NX API is written in the C programming language providing the programmer

with the ability to easily implement any C/C++ functionality within the custom

application. This allows for custom calculations, file input and output, data manipulation,

and other operations to enhance the capability of the custom application. The API library

itself contains the following:

• A large set of user callable functions/subroutines that access the NX Graphics

Kernel, File Manager, and Database.

• Command procedures to link and run user programs.

• An interactive interface in NX to run those programs.

The programs written with the API can be run in two environments:

• External - these programs are stand alone programs that can run from the

operating system, outside of NX, or as a child process spawned from within NX.

• Internal - these programs can only be run from inside of a NX session. These

programs are loaded into main memory along side of NX kernel and access

routines within NX. One advantage to this is that the executables are much

smaller and link much faster. Once an Internal API Program is loaded into

memory, it can stay resident for the remainder of the NX session. If you call this

program again, it executes without reloading (provided it was not unloaded).

Internal API programs work on the current part and automatically modify the part

display (UG/Open documentation, Version NX2).

 25

Through the use of the NX API all of the functionality of the interactive program

is available. Therefore there is no limit to the type or capability of custom programs

utilizing the API. A fully developed custom application is typically desired when there is

a complex design process to be performed more than just a few times. Simple custom

calculations or operations are better suited for use with macros or small executable files.

The ParaCAD laboratory at BYU has been developing custom applications in

cooperation with industrial leaders that use product specific design rules to build,

manipulate, and optimize parametric models of their products. The use of the API allows

both custom control of the models as well as the ability to incorporate or link with other

applications such as spreadsheets, in-house code, analysis, and optimization software.

These applications are being implemented in industry to speed up the design process and

allow opportunities for greater design exploration.

The starting point for the development of a custom application using the NX API

is the UI Styler interface of NX. As mentioned above, NX also supplies a customizable

interface for creating any windows or menus to be used for the application. The interface

created is typically referred to as the Graphical User Interface, or GUI. Whenever the

programmer creates any buttons, entry fields, or other menu features, template code is

generated to assist in linking the GUI to whatever functionality the programmer wishes to

employ. The template functions created while designing the GUI are called “Callbacks”.

Custom callbacks can also be added and linked to buttons or other features of the GUI. If

specified, a button may launch a new dialog, allowing the program to be layered and

structured into a very complex and complete application.

 26

The UI Styler application within NX creates template code for program

initialization and entry points. The programmer is then able to add custom code to

execute the desired tasks. There are significant resources available in the API

programmers guide included in the NX documentation files. The callbacks used to

execute the code in the custom application developed for this thesis will use a

combination of NX user functions and custom code to manipulate the assembly models,

as well as the embedded parameterizations. A generic list of steps used to develop a

custom design application via the NX API is shown below.

1. The programmer designs the interface for the application with the desired

tasks in mind.

2. The programmer creates the program files and header files containing the

code and functions that will be used to execute the program.

3. The programmer “connects” the custom code to the user interface by inserting

the custom code into the callback functions related to the GUI.

4. The programmer compiles and tests the application by launching the newly

created GUI from an NX session.

Developing custom applications via the use of an API is an endeavor which

requires a large investment up front. Generally a program is written with the API if it is

to be used repeatedly and contains operations which would be time consuming when

performed interactively, or which are unavailable directly in the user interface. Another

case in which using the API is preferred is when design specific calculations are used to

 27

create a model, or if the designer is to be stepped through the model creation with the

user interface.

The program written in conjunction with this thesis performs a combination of

custom functions and API calls to perform operations not available in the interactive NX

environment. In this case the program was developed specifically to explore the

possibility of enhancing the CAD software’s capabilities in an area where limitations

became apparent. The layout and execution of these operations will be explained further

in the method chapter.

3.2 Set Theory and Notation

Set theory was founded by Georg Cantor, and has been around since the late

1800s. The concept of a set is very simple on the surface. A set is any collection, group,

or conglomerate (Hrbacek 1999). Another definition given by Levy (1980) states: A set

is a collection of distinct objects, without repetition, and without ordering. The elements

of a set are referred to as its members. In this thesis set theory will serve as the method

for representing all of the containment, interaction, and conflict of the parameters used in

a typical CAD assembly. An example of a set of CAD parameters is shown in Figure 3-1

below.

Set theory could be used in several ways to discuss the entities and operations

used in a CAD environment. The geometry of a CAD model is typically represented as a

group of features, bodies, and operations which constitute the “tree” or “history” of the

model. The features and bodies are made up of sets of lines, curves, and surfaces, each of

which has its own defining sets of data such as control points, curvature equations, and

 28

dimensions. Also, whenever a model is modified and updated there is a large set of

constraints that the system must check in order to determine if the model is still valid

after modification. These constraints and their interaction would appropriately be

represented using set theory and notation.

Figure 3-1 A set of CAD parameter expressions

There are certain requirements that an element of a set must satisfy. First, the

elements must be well defined to determine unequivocally whether or not any object

belongs to the set. Second, the elements of the set must be distinct and no element may

appear twice. Third, the order of the elements within the set must be immaterial (Zeid

2005).

Table 3-1 contains a summary of the symbols from set theory used in this thesis.

These symbols represent the operations performed on sets and are similar to

mathematical and Boolean operations.

 29

Table 3-1 Set theory symbols used in this thesis

∪: This represents the union of two sets, as in XY

∩: This represents the intersection of two sets

∈: This symbol is used to show membership in a set, as in x∈X

∉: This symbol excludes an element, declares it as a non-member

⊂: This symbol shows that one set is a subset of another

⊄: This symbol declares the set is not a subset of the other

 c: A lower case “c” represents the complement of a set, as in cX

Figure 3-3 shows some Venn diagrams illustrating the typical set operations to be

used in this thesis. The grayed areas show the result of the operation stated below the

Venn diagram. The diagrams only show the representation of the coexistence of the

elements described by each operation. The effect that these operations may have when

the elements of the sets are equations and expressions will merit further discussion in the

following chapters.

The figure below contains visual representations of the interaction of sets. The set

“W” is basically a global set which contains the sets “P” and “Q” and all of their

elements. These diagrams show the resulting configuration of elements and sets from

each operation. Chapters four and five of this thesis will go into more depth discussing

the interaction of the sets and the elements within the sets when such operations are

performed.

 30

a) Complementation (cP)

b) Difference (P-Q)

c) Union (P∪Q)

d) Intersection (P∩Q)

e) Exclusive Union (PU∪Q)

Figure 3-2 Venn diagrams showing set operations

Conflicts and constrained situations arise when the elements of the sets are mostly

equations. The dependencies and references between expressions in a parametric CAD

model will most definitely create these types of situations. For the purposes of this

thesis, set theory is used to describe the representation and interaction of the parameters

controlling the CAD geometry. Because the purpose of this research is to develop a

method and an application which allows the exchange of parametric rules and data, the

sets of rules and data from each separate part and assembly will need to be discussed both

separately and as a group. The possible interactions, conflicts, and overlap of parameters

from different parameterizations used for the same assembly model are best discussed in

the context of set theory and notation.

 31

CHAPTER 4: METHOD

This chapter contains the method that was initially proposed in the prospectus to

this thesis. The method consists of an approach which would enable a designer or

engineer to effectively observe the behavior, overlap, and potential conflict involved in

incorporating design parameters from multiple disciplines into a master parametric

assembly model. Part of this process allows for controlling the interchange of an entire

set of parametric rules and expressions for a 3D CAD assembly. This method involves

several steps and considerations including: (1) the classification and definition of the

expected scenarios that would benefit from the strategies and application described in this

thesis, (2) the creation of test assemblies parameterized according to different methods,

and the utilization of set notation and theory to represent the interaction and transfer of

data, (3) symbolic and mathematical representations of assembly model manipulation, (4)

the use of the CAD API and C/C++ programming to enable functionality not available in

the interactive CAD environment, (5) the gathering and export of the observed state of

key features and geometry for review and comparison. These steps will be described in

the sections of this chapter. It is intended that this method could be followed and

implemented by other engineers/designers to approach this and other similar problems in

parametric design. This method enables parametric design strategies to be considered

and implemented in ways that are prohibited by the CAD systems themselves. Some of

 32

the limitations of parametric rules and constraints used in modeling are addressed and

overcome through the application of the method found here.

4.1 Classification of Problems Addressed

This section will give a definition for the types of problems encountered when

developing parametric assembly models that will be addressed by this thesis. There are a

number of specific problems that could be alleviated by applying the methods and

utilizing the application developed here. These problems will be broken down into a few

general classifications and given definition and explanation.

The problem classifications are as follows:

1. How to track “downstream” effects of complex parameterizations

2. How to discover the effects of changes in one parameterization on key

geometry of another discipline’s parameterization

3. How to explore the sensitivity of key geometry or key analysis parameters to

high level changes or vice versa

4. How to find the common or conflicting design space of parameterizations

from different disciplines

4.1.1 Tracking Downstream Effects

In complex assembly parameterizations there may be geometry or parameters that

are several steps “downstream” from a driving parameter. This means that there is a

series of dependencies between the driving parameter and the affected geometry. These

items may still be of interest, or play a key part in the function of the system. The

 33

application developed for this thesis allows the user to quickly review the effect that

changing a driving parameter within a specified range will have on any downstream

feature within any component of the assembly.

4.1.2 Discovering Change Effects Between Parameterizations

One of the main objectives in developing the custom application for this thesis

was to be able to quickly change the parameterization being used to control an assembly

model. This functionality coupled with the ability to observe any portion of the model

that may be of interest allows for a new level of parametric exploration.

The ability to quickly change the entire scheme of parametric control for the

assembly can dramatically enhance the awareness between disciplines during the

development of a design. With the capabilities mentioned, the user could easily observe

the effect that manipulating the driving parameters from his/her discipline will have on

the key geometry for another discipline. Therefore, if communication is passed along

between disciplines such as “we need the thickness of this member to remain between

.125in. and .187in., the designers from other groups can easily track the effects of their

manipulation on the thickness of the geometry of concern.

4.1.3 Observing Sensitivity of Parametric Changes

Observing the sensitivity of parametric changes is similar to the scenario

described in section 4.1.1. However, when the user is interested in the sensitivity of

certain geometry or expressions, he/she will likely want to plot the values of the affected

 34

geometry while varying several of the driving parameters. In this way, the user can

effectively realize the relationship that exists between these features.

This strategy may also be employed between different parameterizations as

mentioned in the previous section. This becomes increasingly useful with the complexity

of the assembly parameterization. If there are several parametric relationships within the

assembly model, it can become very difficult to know the connection or sensitivity of

some features when manipulating the driving parameters. The application presented here

diminishes these difficulties.

4.1.4 Finding Common or Conflicting Design Space

One of the other key uses for the custom application presented is to more effectively

explore the design space between disciplines. By observing the effects of parametric

variation as described in section 4.1.2, the design team can begin compiling information

allowing them to discover the common or conflicting design space of the parametric

assembly.

This is done by compiling the range of variation for geometry of interest as it is

affected by modifying the driving parameters from each of the disciplines involved in the

design. The overlapping range, or lack thereof, will convey to the common design space

that is being used during manipulation of each of the parameterizations. This process

could be repeated for as many features as necessary. The designer can also know the

range that each of the driving parameters was varied within that produced the common

design space.

 35

4.2 Parametric Assemblies

An integral part of the formulation of this thesis is the planning and use of

parametric design strategies with assembly models. Test assemblies must be created

which will be a representative candidate for the issues addressed by this research. There

will be a very simple test assembly which will include parametric relationships that

illustrate the concepts laid out here. There will also be an assembly with a system of

components which require design considerations from multiple disciplines as shown in

Figure 4-1. Each discipline would be able to input its own design rules into the

parametric assembly.

The same geometry must be able to be used by designers from each discipline for

concept generation, parametric variation, or optimization. Design rules will be

implemented in a parametric fashion so as to be able to reliably change and update the

model upon variation of the key driving parameters.

For example, if a simple nut-plate were assembled to a bracket, the holes in the

nut-plate would need to maintain the appropriate size, position and spacing if any

changes were made to the bracket. Similar considerations will be present in the assembly

used in this thesis as the relative size and spacing of parts is crucial to the performance of

the system.

The method developed here is meant to be used in conjunction with parametric

assemblies. The benefits and usability of this method are more apparent when well

planned parametric models are used. The scenarios that are best suited for the use of this

method involve the interaction of design teams in a collaborative effort to explore design

space while maintaining the representation of each team separately. This thesis also

 36

surmises that such efforts could be aided by the use of a custom application such as the

one created here. The parametric design strategies used by advanced design teams in

industry today are not easily integrated into a single CAD model that could be used for

analysis and optimization by these groups. In many large scale applications this would

simply be impossible. It is proposed that by enabling multiple parametric schemes to be

incorporated and observed in a single CAD model that the integration of analysis and

exploration is greatly enhanced. Not only does this strategy bring the design teams into a

communicative environment, but it also allows them to work with the exact same

geometry. This means that a single parametric model can be adaptable for the uses of

different, discrete disciplines.

Figure 4-1 Model control from multiple disciplines

 37

Figure 4-2 Modeling considerations for parts and assemblies

Significant effort will be placed in the parameterization of the sample assemblies

used for this thesis. Since each discipline will need to use the same base geometry, it will

be created in such a way that the different disciplines will be able to easily customize the

way their design rules affect the geometry. This means that the generic form of the

model must not contain too many assumptions about design intent. It will therefore

contain a large set of independent controlling dimensions and parameters. The base

model would essentially be un-parametric according to the definition of parametric

models described and referred to in this thesis. Each dimension, parameter, or expression

will control only the entity to which it is directly associated.

The idea is that the design teams from each discipline would be handed a template

to work with. When the parameterizations developed by each discipline are to be applied

to the generic model, it will be as if they are simply filling in the blanks from the

template to create a fully parametric model specific to their design intent. Much like

 38

handing two sculptors an identical lump of clay, these groups could create very different

configurations from the same base model. The method laid out here will describe how

these configurations can be quickly and automatically applied to the same model in a way

not allowed by the parametric CAD system. In conjunction with switching between

parameterizations, the users will also be able to observe key geometry or features while

manipulating the driving parameters from each parameterization.

The parameterizations of the assembly from each discipline will contain rules and

relationships which would not be able to exist in the same model. This is due to several

factors including inter-part relationships, dependant parameters, and geometric

incompatibilities that will most certainly exist. These restrictions and limitations will be

described in the next section by means of Set Theory and notation.

The parameterizations for use in demonstrating the method of this thesis will

include a structural set, an aerodynamic set, and a general parameterization with

emphasis on the overall dimensions driving the system. Each of these parameterizations

will be carefully planned and created in order to obtain an effective and robust model

able to be flexed within a reasonable range of values. The driving parameters for each

discipline will be varied according to their appropriate limits and the model will respond

by changing and updating in a reliable and valid manner.

4.2.1 Test Case 1: Simple Assembly

The first test case assembly will involve only simple geometry. This assembly

will serve to validate the proper function of the custom application. It will be used to

show the effects of incorporating different parameterizations within the same model, and

 39

to give simplified examples of typical scenarios that are expected to be encountered when

implementing the methods discussed in this thesis. Once the functionality of the custom

application has been verified, a more complex and industry typical assembly will be used

as a test case. This is presented in the next section.

4.2.2 Test Case 2: Exit Nozzle Assembly

 The test case assembly to be used will be an exit nozzle subassembly that will be

loosely based on a typical jet engine configuration like the one shown in figure 4-3. The

components will include a tailcone, strut, support bracket, and a mixer. This section of

the jet engine is designed to allow the exit flow from the main engine and the bypass flow

to mix in order to reduce excessive noise. Noise from the exhaust system occurs due to

shearing of the high temperature, high velocity gases coming from the turbine with the

low temperature, low velocity air from the engine’s bypass flow. The design of this

geometry involves considerable analysis from aerodynamic and structural/vibrational

engineers. Each of the components in this subassembly has a significant contribution to

the effectiveness and efficiency of the overall system.

Parameterization of the two test cases will be determined and generated by the

author. This may not necessarily be representative of the most effective or appropriate

parameterization of this geometry, but should illustrate the concept and method

sufficiently. The method outlined in this thesis is intended to be used by a team of

experienced engineers working on the same geometry, and should involve their careful

planning and judgment in parameterizing the model. My parameterization of the exit

nozzle model will, however, effectively show the usefulness and validity of the method

 40

presented and program to be written. This model will contain rules and parameters that

exhibit the inter-part relationships and dependencies previously discussed which make

any swapping of parameterizations cumbersome through interactive methods.

Figure 4-3 Exit nozzle subassembly from a Pratt & Whitney jet engine

4.4 Parametric Data and Set Theory

The problem addressed by this thesis lies mainly in the interaction of multiple sets of

parametric data used to control a single CAD assembly. This section will discuss how

the interchange of parametric rules and data will be approached from a theoretical point

of view. Through the use of Set Theory and/or mathematical notation, a method will be

 41

outlined explaining the various scenarios that will possibly be encountered, and how to

avoid or work through any difficulties.

4.3.1 Definition of Data Sets

The sets of rules and expressions used in the different parameterizations of the

assembly will be represented in a symbolic form in order to more easily represent the

nature of their interaction. The definitions of these sets are given in Figure 4-4:

P = The global set of all parameters associated with the assembly

M = The set of parameters currently being used in the assembly

S = The set of parameters determined by the Structures discipline

A = The set of parameters determined by the Aerodynamics discipline

G = The set of parameters governed by assembly geometric properties

N = The set of independent parameters within the base model

Figure 4-4 Definition of sets of parametric data

 At any one time the parameters controlling the model are represented by the set

M. This set will contain at least one subset consisting of one of the sets defined above as

well as possibly containing other parameters from the global set P. The sets S, A, and G

contain all of the rules and expressions used to control the model as dictated by each of

the disciplines. Each of the sets S, A, and G are fully capable of controlling the

parametric model separately, but cannot exist simultaneously as subsets of the set M.

This will be discussed in more detail later in this chapter.

 Many of the parameters in the model will remain unchanged from one set to

another and are thus identical. In this sense there is some overlap in the definition of

 42

each of the subsets of the global set P as shown in Figure 4-5 below. Each of the

elements in the sets S, A, and G are either derived from the elements of the set N, or are

created as controlling parameters, calculations, or other representations within the model.

In other words, each of the design teams would be given a model containing the

independent and essentially un-parametric expressions used to create the geometry (the

set N). From those expressions, the teams would generate the desired relationships, rules,

and driving parameters for the system. Therefore, any overlap or existence of identical

elements between each of the sets S, A, and G, represents elements of the original set N.

Figure 4-5 Overlap of sets

 Along with overlap, elements of a set may have been created as either a driving

parameter, or a reference variable holding a calculated value. These are parameters

specific to a set, and have not been derived or modified from the original set N. Thus, the

parameter sets S, A, and G, used to control the model, are not subsets of the base set N.

An example of this would be if a parameter called Max_Load was created in the

structural set. This parameter would have an associated value which would be calculated

from other parameter values. This example is shown in Figure 4-6.

 P
S A

G

 43

Table 4-1 Example parametric expressions

Max_Load = (Avg_Velocity*Profile)*Safety_Factor

Avg_Velocity = (Inlet_Velocity+ExitVelocity)/2

Safety_Factor = 1.35

Inlet_Velocity = 240

.

 Max_Load is not directly associated with any geometry or features of the model, but

serves as a reference for the designers to check against as the geometry is varied.

 Another example might be a parameter called Inlet_Velocity from the

aerodynamic set. This parameter is likely to be varied in design exploration in a different

manner than the Max_Load variable mentioned earlier. In other words, the

Inlet_Velocity variable would be used to drive the variation of other variables or

parameters in the assembly. The parameters Max_Load, and Inlet_Velocity are examples

of variables created specifically for a certain parameterization to be referenced within the

assembly, but which are meaningless and ineffective outside of that parameterization.

4.3.2 Conflicts, Overlap, and Other Issues

 Each of the fully parametric sets of data will contain an intertwining network of

rules and relationships between elements of the set which make the geometry behave

appropriately when the controlling parameters are varied. Because each of these sets is

derived from the original set N, most of the parameters are directly related to a geometric

entity. Thus each set is created to literally control the same geometry. When the

 44

parametric sets are developed, however, they are kept separate and independent from

each other as shown in Figure 4-7. Each discipline or design group does not, and should

not have to, worry about what the other disciplines might be doing to control the CAD

model.

Figure 4-6 Neutral parameter set used by each discipline
to control the CAD geometry

The only thing that needs to be maintained between groups is that the geometry

itself is not altered. In other words, the features and geometric entities of the model

cannot be deleted, or otherwise redefined in such a way that requires a new or altered set

of the controlling parameters for that feature. If the base model were a lump of clay

handed to each design group, they would not be allowed to take pieces away from the

lump, add to it, or change its composition. They would only be allowed to push, pull, and

deform the clay according to their intended design to create their model.

 45

 The parametric data sets are simply a new set of instructions for the geometry to

follow. With multiple assembly parameterizations there would be multiple sets of

instructions for the same model. It is this concept which best illustrates the problem

addressed by this thesis. How can a single parametric CAD assembly model be able to

follow multiple sets of instructions? In particular, how can conflicting sets of instructions

be incorporated into the same model? The off-the-shelf CAD system does not, and

cannot, allow for conflicting relationships or constraints to exist within the model. The

solver for the system will not allow what would essentially be an over constrained system

of equations. This is one reason that multiple parameterizations in a single model are a

difficult problem. A more fundamental reason making multiple parameterizations

difficult is that a single variable, or parameter, cannot easily have two values associated

with it. Although there are provisions in the CAD systems which allow conditional

statements to control the value of a parameter, the use is limited and cumbersome.

 The issue of conflicting instructions is the center of the argument given for the

method proposed here for utilizing multiple parameterizations. If conflicting rules are

imported into the model, the software will not allow the user to proceed because of the

over constrained system mentioned earlier. In order to overcome this issue, the system

must be satisfied. For example:

Length = 2*Height

Length = Width/3

 This is a simple case where one designer might wish to associate the length of the

part to the height, while another might link the length to the width. There are two things

that are wrong with the conflicting equations shown. First of all, there are two variables

called “Length”. This will not be allowed by the software for the simple reason that it

 46

cannot distinguish between the two. The other part of the problem is that the system does

not know which value to assign to the parameter “Length” because of the conflicting

instructions on the right hand side of the equation. A union of the sets is attempted when

the user tries to update the model. This union will fail because of the inability of the

system to decide which expression is correct for the parameterization. In terms of Set

Theory this situation would violate one of the basic definitions of a set, which states, “A

set is a collection of distinct objects, without repetition, and without ordering” (Levy,

1980). The resulting set shown in figure 4-8 contains objects that are not distinct and are

repeated.

Figure 4-7 Invalid union of sets with identical elements

In terms of set theory, the above scenario occurs when two sets of parametric data

are to be imported into the same model. Both sets contain a parameter called “Length”,

but the dependency of the parameter upon other parameters or equations differs from set

 47

to set. Therefore when the two sets are brought into the same model there is an

intersection.

4.4 Using the CAD API for the Custom Application

 The API of NX will be used to create a custom program enabling the interchange

of parameterizations and observation of key geometry during model manipulation for the

test case assemblies. The development of the program includes the design and creation

of a Graphical User Interface (GUI) to gather the required input data and execute any

functions or processes necessary. Accompanying the GUI is the C/C++ code that will

execute the API commands and process the rules and expressions for each

parameterization.

 The process for observing the behaviors of different assembly parameterizations

and exchanging the assembly parameterizations will proceed as follows:

1. With an assembly model open, the API program interrogates the assembly model

upon being launched to gather component information and file locations

2. The user chooses model geometry, features, or expressions to observe and an

expression to vary

3. When the manipulation is executed within a specified range, relative output is

written to a file for later use

4. The user locates a new set of parameter expression files to be imported and

replace the current parameterization, changing the behavior and interaction of the

assembly components and geometry

 48

5. The user again chooses model geometry, features, or expressions to observe

(probably the same as was chosen earlier) and an expression to vary

6. During manipulation, the output is again written to the same file to be used for

comparison

4.4.1 Assembly Interrogation/ Application Initialization

Step one of the process is accomplished upon launching the program as part of the

“Constructor Callback”. This is a function that is automatically executed when the

application is started up and is used to perform any initialization necessary when using a

custom application. It may be used to set default values in entry fields, to set the

sensitivity or availability of buttons or other features on the GUI. In this case the code

within the constructor executes a series of functions used to gather information about the

assembly such as component names, CAD system identifiers, and file locations. This

function is shown in Figure 4-9.

Essentially, the code below is creating the data structure to store all of the

information about the assembly model, including file names and locations, parameters,

and other data to be used during execution of the program. The “root” part in the

assembly is the part onto which all of the other components are assembled. Once the root

part is determined, the program stores the names of each component in an assembly

structure using a C++ class data structure.

 49

int EXP_constructor_cb (int dialog_id, void *
client_data, UF_STYLER_item_value_type_p_t
callback_data)
{
 if (UF_initialize() != 0)
 return (UF_UI_CB_CONTINUE_DIALOG);

 char *file_name = new char[132];
 char *file_path = new char[132];

 Component* root = new Component();
 root_part = UF_PART_ask_display_part ();
 root->SetPartTag(root_part);
 UF_PART_ask_part_name(root_part, root_name);
 FilestringDecomp(root_name,file_name, file_path);
 root->SetName(file_name);
 Assembly.push_back(root);

 root_occ = UF_ASSEM_ask_root_part_occ(root_part);

 Component* comp;
 int num_parts =
 UF_ASSEM_ask_part_occ_children(root_occ,
 &child_part_occs);

 for(int i=0; i<num_parts; i++)
 {
 comp = new Component();
 comp->SetPartTag
 (UF_ASSEM_ask_prototype_of_occ
 (child_part_occs[i]));
 char name[132];
 UF_PART_ask_part_name(comp->GetPartTag(),
name);
 FilestringDecomp(name, file_name, file_path);
 comp->SetName(file_name);
 Assembly.push_back(comp);
 }

Figure 4-8 Constructor callback code for initializing the custom application

 50

4.4.2 Observing And Manipulating The Assembly Model

The key component in the custom application developed for this thesis will be the

ability to efficiently observe the effects of parametric manipulation from multiple

schemes on common geometry. The user will be able to choose a feature, or expression

within a component of the assembly to observe, while varying a controlling parameter

from another component in the assembly. Then within a very short time the user would

be able to observe that same feature or expression as it is affected by the manipulation of

a driving parameter from an entirely different controlling parameterization. In this way,

one can observe the commonality or differences in the viewpoints of different disciplines

as it relates to key elements of the assembly.

The user would specify whether a feature or a single expression is going to be

tracked during the parameter variation, and then choose the feature or expression from

those available within the currently active component in the assembly. Next the

parameter to vary would be chosen, within another component of the assembly if desired.

The limits for variation would be specified, along with the number of increments to be

evaluated between the limits. Once all of these items have been determined, the user

executes the operation to initiate manipulation. The model is continuously updated

during the parameter variation so that any visible changes in the model are easily viewed.

The model is refreshed at each increment, showing the variation from lower to upper

limit. Upon completion of the manipulation, the user is then able to move on to the next

step of switching parameterizations so that similar observations may be executed again.

 51

4.4.3 Tracking Changes / Writing the Output File

As explained above, a driving parameter in the assembly model will be

automatically varied between user specified limits with a specified number of increments.

At each of these increments, the model will be updated to propagate the effects of

changing the driving parameter. The feature, geometry, or expression that the user has

designated for observation will be changed according to the parametric relationship,

whether directly or indirectly related to the driving parameter. At each of the increments

the numeric value of the item(s) being observed will be recorded in a variable array. At

the end of the incrementing cycle the variable array will be written to a text file and

formatted for convenient use at a later time. The values of the driving parameter are also

stored and written to the file so that a correlation may be observed.

When the manipulation and update cycle is completed, the user will change

parameterizations as explained in section 4.2.3, and follow a similar execution for the

new model parameters. The value here will be to observe the behavior of the same

geometry or features while manipulating a different driving parameter that coincides with

the design strategy of a different discipline. In this, it will become evident as to what the

comparable affects are in manipulating the key parameters from different disciplines.

The user may quickly observe any overlapping, conflicting, or other sensitivities

associated with the geometry of interest.

4.4.4 Swapping Parameterizations

It was mentioned earlier that importing new expressions to replace the current set

at the part level is easily performed by the CAD system. This is not true for an assembly,

especially a robust parametric assembly containing complicated rules and relationships

 52

that may occur between parts. The method employed in this research will manipulate the

CAD system into dealing with the components one at a time, after they have been

“neutralized,” thus avoiding any complicated relationships or system errors.

 The manipulation of the CAD system to enable the import of a new assembly

parameterization is made possible by controlling the current state of the assembly during

importing, and by delaying the system update until all changes have been made. The

function call UF_model_update within the API is usually executed whenever the user

finishes an operation interactively. This function triggers a system update which verifies

and updates the system of constraints and geometric entities that may have changed

during the previous operation. If this update is executed while inconsistencies or

conflicting constraints exist, a failure message is displayed (see Figure 4-10) stating that

the action cannot be performed and changes to the model are undone.

By delaying or disabling the system update during the importing of parameters,

the tangled web of relationships and equations in the parametric assembly can be

untangled and rebuilt without any interruptions or road blocks from the CAD system.

 The second way in which the CAD system is manipulated during the importing of

new parameters is by changing the state of the assembly so that the system is only

working with one part at a time. This is done by changing the “working part” of the

assembly so that during the operations only the active component is operated on.

 53

Figure 4-9 Update failure menu

Each of the components is made the working part and is operated on while the

system updates are suspended. When a component is made to be the working part as

shown in Figure 4-11, the user can access the only the features and expressions of that

part to manipulate its geometry. This allows the user to interact with each component

without having to open the part in a new window, and does not require that the assembly

be closed while its components are operated on. Much of this functionality is built into

the CAD system to enable a “top down” approach to modeling with assemblies. The

method described here both utilizes and has to work around these built-in assembly

features.

 54

Figure 4-10 Switching an assembly component to the working model

 The automated switching of parameterizations will allow previously unavailable

operations to be quickly executed by the user. The behavior of the entire assembly can

be modified in seconds to allow observation and manipulation of model geometry and

relationships heretofore not possible. This step is the key to enabling the engineer to

gather important information for comparison and collaboration in the development of

optimized geometry without compromising on differing viewpoints up front.

4.5 Verification of Valid Geometry

 To accomplish the steps described in the previous sections of this chapter, a

complicated set of parametric data needed to be neutralized and replaced with another

complicated set of data. When this has been done, it is necessary to verify that the

 55

assembly is still viable. The first indication of whether or not the exchange of

parameterizations was successful is in the system update of the model. As explained

earlier, the system update was suspended while the assembly parameterization was being

manipulated. Once this update is executed, the new parameterization is referenced by the

system in solving geometric constraints as well as the relationships and dependencies

among the parametric expressions themselves. If the assembly model updates to the new

configuration without errors, this is a good indication that the parametric model has been

restored to the fully functional state from which the imported parameterization was

originally created.

 The guidelines associated with the proper implementation of this method require

that the parameterizations developed from each discipline use the same base geometry,

and comply to a generic naming convention for the base parameters. If these guidelines

are followed, the import of new parameters should go smoothly. Only the interactions

between parameters as well as the existence of other key parameters not depended upon

by any geometry will change from one parameterization to another. These and other

items are summarized below.

• All disciplines will use the same base assembly model

• The base model will contain a generic naming convention that will not change

• No new features or geometry should be added

• No new information or parametric control should come from new expressions or

parameters only

• Efforts should be made to create a robust parametric model to promote stability

during parametric manipulation

 56

As a precaution a few additional checks should be performed on the model after

the parameters have been successfully imported. First, the user should visually verify

that the assembly configuration looks appropriate from the standpoint of spatial

relationships and size/shape of components. The user should also verify that the model

responds appropriately to the variation of several key parameters in the newly imported

set.

 In addition to the manual checks performed by the user, two other checks will be

performed on the model upon successfully importing the new parameter set. The custom

application to be developed will first check each of the parameters to see if it is

referenced or used in the assembly. Any unused or unreferenced parameters will be

removed from the set. This not only cleans up the data set, but prevents the user from

using or accidentally referencing a parameter that does not belong to the new set.

 Next, an interference analysis should be run on the model to verify that the new

parameterization has not changed the geometry into a configuration that is physically

implausible. A picture showing the menu for a simple interference check is given in

Figure 4-12 below.

This check verifies the proper configuration of geometry prior to performing

analysis or optimization. As mentioned in chapter 2, one of the greatest problems

associated with parametric assembly analysis and optimization is the wasted computing

time spent on invalid models (Srinivasan et. al, 2000). This is why it is so important for

each of the disciplines developing the different parametric schemes follow the guidelines

mentioned above as well as good parametric modeling practices.

 57

Figure 4-11 Launching the system interference analysis

 Once the assembly containing the new parameter set has been verified, the

process is complete. This whole process will take only a minute or two, regardless of the

size of the assembly. A manual effort at a similar assembly model re-parameterization

process, if it were to be attempted, could take several hours depending on the disciplines

involved and the size and complexity of the assembly. The method makes possible a

process that has been altogether avoided due to the magnitude of time and effort required

to undertake such a task.

 58

 59

CHAPTER 5: DEVELOPMENT

This chapter describes how the method presented in chapter four was applied and

tested. The questions to be answered during the development of this thesis were outlined

in chapter one as follows:

1. What are the types of parametric assembly problems that are typically

encountered that will be addressed by this research?

2. How can multiple parametric schemes be seamlessly “swapped” to change

the driving parameters of the system?

3. How can the effects of manipulating driving parameters from multiple

parameterizations be observed by a concurrent engineering team?

4. How should these effects be presented for comparison and review?

5. What are the uses and drawbacks of this method in design exploration?

 This chapter will show how the models and custom application that were

developed for this thesis answer the questions above, and overcome the limitations of

current practices.

 60

5.1 Classification and Exploration of Typical Problems

The classification of problems addressed by this research was given in the

previous chapter, and will be repeated here for convenience. The problem classifications

are as follows:

1. How to track “downstream” effects of complex parameterizations

2. How to discover the effects of changes in one parameterization on key

geometry of another discipline’s parameterization

3. How to explore the sensitivity of key geometry or key analysis parameters to

high level changes or vice versa

4. How to find the common or conflicting design space of parameterizations

from different disciplines

This section will give examples of how each of these types of problems was

addressed during the development of the custom application.

.

5.1.1 Tracking Downstream Effects and Sensitivity

For the purpose of this discussion, tracking the “downstream” effects of

parametric manipulation and exploring the sensitivity of key geometry will be discussed

together. These two problems were separated into different classes because they describe

different problems. However, both scenarios can be addressed in similar fashion by the

custom application discussed here.

Enabling the user to track the “downstream” effects of a complex

parameterization makes an otherwise rigorous process fairly easy. It may become the

case in a large or complex parametric assembly that the effects of dependencies among

 61

parametric relationships become difficult to track or retrace. It is a simple process to

query the model to discover parent/child relationships between parameters or assembly

components. However, it is not so simple to discover the mathematical relationship

between parameters, or in other words the effect or sensitivity that a downstream

parameter has to the variation of an upstream or driving parameter.

Consider the following scenario:

P1 = 10, P2 = P1/3, P3 = sqrt(P2), P4 = P2+P3/P1, and P5 = P4^3

If P1 were changed to a value of 13, what would the value of P5 be?

Alternatively, if P1 were varied between the values of 8 and 18, what would be the range

of values for P5? Discovering the answers to these questions without the aid of the

custom application developed here is certainly possible, although it may take a while to

dig out each of the relationships above and solve for the values in question. With the

custom application, the user is able to simply select the parameters to be varied and

observed and within seconds not only watch the model morph into its new form, but have

the parameter values of interest stored and outputted to a file. This is of particular value

if the user is not the person who developed the parameterization currently active in the

assembly. The user does not have to be familiar with the relationships that exist. He/she

may only be interested in the sensitivity of key geometry to the driving parameters of the

system. This scenario will be explained further in the next section.

5.1.2 Tracking Effects from One Parameterization to Another

One of the main purposes of the NX custom application used for this research is

to enable more effective collaborative efforts between engineering disciplines working on

 62

the same design. One way that this is accomplished is through the ability to track the

effect that manipulating the driving parameters of the system will have on key geometry

or features as viewed by the different disciplines involved in the design.

As mentioned above, the user is likely to be primarily involved with a design

team from only one discipline. Design teams are likely to pass certain criteria back and

forth to make sure certain envelopes or criteria are not violated in developing the product

design. Examples of this might be minimum thicknesses, clearance between components,

or profiles of critical geometry. Often in aircraft design, the loft of the flight control

surfaces is set before any of the interior components are designed and placed in the

assembly, thus this geometry becomes a limiting and controlling envelope for the design

of inward components.

With the custom application used here, the user can easily check to ensure that the

changes or design envelope that his/her discipline has been exploring does not result in

any violation of the criteria set forth by other disciplines. The following example shows

how different parameterizations of the exit nozzle assembly, shown earlier, could be used

to determine the affect of one discipline’s model manipulation on key geometry of

another discipline.

The structural group may require certain proportions for the geometry of the strut

to avoid any buckling or vibration concerns. The structural parameterization of the exit

nozzle assembly allows for direct control of the strut geometry. By contrast, the

aerodynamic parameterization of the exit nozzle assembly forces the strut to change its

geometry dependent upon other high level parameters such as flow rates. The

“STRUT_HEIGHT” parameter will be tracked to show how the variation of aerodynamic

 63

parameters might affect the geometry that is of key concern to the structural discipline.

This will illustrate a scenario that would require consideration and cooperation between

these two disciplines.

 The “STRUT_HEIGHT” parameter in the structural discipline has a numerical

value only, and is one of the parameters in the assembly that can be directly manipulated.

In the aerodynamic parameterization the same parameter has the following value:

STRUT_HEIGHT=AEROassembly::MainFlowArea/(AEROmixer::FWD_RADIUS-AEROTailcone::fwd_rad)

This parameter is immediately dependent on three other parameters, some of

which are also dependent on even more parameters. Ultimately, the numerical value of

the “STRUT_HEIGHT” parameter is determined by manipulating one or more

parameters at the assembly level. This shows the place that this application could have in

performing a sensitivity analysis for certain parameters. If proper communication exists

between the two disciplines, the structural group may request that the aerodynamic group

provide an envelope, or perhaps a maximum value that they expect to be required for the

strut height. By using the custom NX application, a member of the aerodynamics group

can observe how the manipulating these high level parameters will affect the

“STRUT_HEIGHT” parameter which is of key importance to the structural group.

Figure 5-1 shows the resulting values for the parameter of interest when the

“TotalFlowRate” parameter is manipulated in the desired range.

 64

Figure 5-1 Example output from "Aero" parameterization

The data shown can now be used in communication between the disciplines to

make any adjustments to either the design of the strut, or to place limitations on the range

that the model is allowed to change within. This type of scenario is one motivation for

developing the method and application presented in this thesis, and shows the value of

being able to quickly analyze dependent parameters, or parameters that play a key role in

the multidisciplinary design.

5.1.3 Finding Common or Conflicting Design Space

Another goal in developing the custom application was to be able to compare

parametric assembly designs in a way that allowed the discovery of common or

conflicting areas of the design space being explored by different disciplines. The

 65

common design space is being defined as regions within which the base geometry being

used by different disciplines has the same size or shape characteristics regardless of

which parameterization is controlling the assembly. It can also mean that the parameters

from each discipline have the same numerical value in this region. This can be classified

for individual parameters, features, or for a collection of items.

Finding this shared design space would be of great interest to a multidisciplinary

design team. This is the region within which they can safely optimize their design

without compromising on the performance objectives of each discipline. This would be

very useful if the multidisciplinary design were to be consolidated into a single

parametric model for this purpose. Obtaining knowledge about the common design space

would allow the development of a master parametric model without unnecessary

compromise on key features of the assembly.

The commonalities of the different parameterizations are found in much the same

manner as the operations described in the previous two sections. The user is essentially

performing the same operations, but with a different intent. Also, when searching for

common design space, it is likely that the use of the custom application will be much

more extensive, and the output more thoroughly analyzed. To find the common space,

the user would observe the same features or parameters from different parameterizations,

while manipulating driving parameters. Afterward, the user would analyze the output to

determine the overlapping areas of the items being observed. This process could be

repeated as many times as needed to encompass all of the features, parameters, or

geometry of importance to the common design.

 66

5.2 Swapping the Assembly Parameterizations

 One of the key elements in the application developed for this thesis is the ability

to quickly and automatically replace the current CAD assembly parameterization with an

entirely new one. This was accomplished using the C++ programming language in

conjunction with the NX API. The interface was developed using UIstyler, an integrated

user interface creation program inside of NX. UIstyler allows a programmer to create a

graphical user interface that facilitates the use of NX functionality in a custom

application. This approach allowed for the use of custom functions and operations not

available directly from NX while at the same time making access and execution of the

program very easy. The program was created to fit easily into the NX environment, but

is meant to illustrate concepts and methods which could be implemented on other CAD

systems as well. Similar challenges exposed in this thesis exist in each of the available

CAD systems found today, and could be approached in like fashion.

5.2.1 Use of the API

 As discussed in Chapter 3, the NX API (Application Programming Interface)

allows for advanced users and developers to access the functions used to execute the

operations of the software. This enables the user to customize the application to perform

specified tasks tailored to his or her needs. This section will present the methods and

functions that allow the swapping of an entire assembly parameterization and how this

information is processed by the software.

 67

 There are a few main functions which are executed by the GUI while swapping

parameterizations. These are called “callbacks” in the NX nomenclature. Each callback

is executed at a different stage in the program.

 The constructor callback is an initialization for the program that is executed when

the application is launched. It can be used for many things such as setting the sensitivity

or availability of features on the GUI. The constructor may also be useful in setting the

initial value of certain fields. For the custom application the constructor callback is used

to gather all relevant information about the current assembly and each of its components.

This information is then utilized automatically when other operations are performed. The

data is stored as long as the application is running, and can be retrieved at any time.

 The browse callback is use to invoke a file selection dialog. The user is able to

browse the computer or network to choose the folder containing the parameter expression

files to be imported. The programmer is able to specify filters enabling only the selection

of certain file types based on their extension, such as “.doc”, “.txt”, or in this case “.exp”.

 When the “save current” callback is executed, another file selection dialog box is

opened for the user. This will prompt the user to choose a location for the export of

expression files from the current assembly. When the location is determined, and the

user clicks the “Ok” button, this location is stored into the class data structure mentioned

above.

5.2.2 Custom Functions: Enabling the Process

The key to custom applications and enhancing the capabilities of the CAD system

is the integration of custom functions into the program. The research and development of

 68

this thesis came about upon discovering a potential need that the current parametric CAD

systems would not be able to fulfill. It was apparent from multiple sources discussed in

chapter two that a great amount of effort was being put toward developing parametric

models and integrated systems to facilitate design optimization. One subject that was

addressed only by a fellow graduate student was using parametric modeling principles

and custom applications to change the behavior of the CAD model to explore different

designs. This thesis has taken that idea from a different angle by dealing with parametric

assemblies and manipulating the controlling parameters located within the model itself.

This is only made possible through integrating custom functions into the application.

 There are several custom functions that were developed to enable the operations

that were desired for an interchange of parameterizations. The primary roles of the

custom functions were gathering model data and user input, processing or manipulating

the data, and verifying and cleaning up the model after the swap. A few of the critical

functions will be presented and explained here.

5.2.3 Exporting Parameter Sets

 The first operation of the program to be executed, if the user has chosen to save

the current state of the assembly, is to export the existing parameter sets. This has the

effect of “time stamping” the assembly, and creates a set of expression files that can later

be imported to restore the assembly to its current state and configuration.

 The operation of exporting expressions is quite simple to do interactively for a

single part. Exporting expression files for an entire assembly is not much more difficult,

but has to be done for each component in the assembly. This could obviously be a hassle

 69

for larger assemblies. The code used to execute these operations automatically will be

shown below. The input that is gathered from the user consists of the location that he/she

would like to export the files to, and a keyword to be attached to the end of each file

name to help identify the files for future reference and import. The main excerpt of code

used to perform this operation is shown in Figure 5-2 below.

save_key = UIS_getStringValue(dialog_id, EXP_SAVE_KEYWORD);

char* key_and_ext = strcat(save_key, ".exp");

 for(int i=0; i<Assembly.size(); i++)

 {

 char* path = Assembly.at(i)->GetExportPath();

 char* name = Assembly.at(i)->GetName();

 strcat(path, name);

 char* export_file = strcat(path, key_and_ext);

 UF_ASSEM_set_work_part(Assembly[i]->GetPartTag());

 Assembly[i]->ExportExp(export_file);

 }

UF_ASSEM_set_work_part(Assembly[0]->GetPartTag());

Figure 5-2 Code used to export expression files from the CAD assembly

The first two lines of code in the function shown in Figure 5-2 declare variables to

set the key word to be appended on the end of the file name and to set the file extension.

The function then enters a loop in which the expression file is exported for each

component in the assembly. There are three things that happen for each component of

the assembly when exporting the parameter or expression file. First the full path for the

location of the file is retrieved and concatenated with the file name and extension,

 70

including the key word, at the end. Second, each component is temporarily made the

“work part” for the assembly. This has the effect of opening the part for editing and

operating on. Once the component is made the work part for the assembly, the final step

is taken to export the expression file. This process is repeated for each component in the

assembly until all controlling parameters have been exported and saved as expression

files corresponding to each component. The base or root part is then set to be the

working part of the assembly again, and the update process is complete.

5.2.4 Importing Parameter Sets

Importing new parameter sets into the assembly is performed in a similar manner

to the export operation described in the previous section. The difference is that the

expressions being imported have to replace the existing expressions in the assembly.

This requires some preparation and evaluation of the assembly to allow the process to

happen without errors or system failures. The code used for importing new expression

files into the assembly will be shown in Figure 5-3 below, with explanations of each

segment to follow.

The first few lines of code, before entering the for-loop, retrieve the key word that

is appended to each expression file name and concatenate it with the file extension

“.exp”. This will be used by the program to identify the parameter files to be imported.

The custom function “joinStrings” is used frequently throughout the program to

dynamically join two strings together.

 Once all of the file location and naming operations are complete, there are three

functions executed to take care of the importing of new parameter sets:

 71

UF_ASSEM_SET_WORK_PART(), Assembly[i]->DerefExp(), and

Assembly[i]->ImportExp. The first function sets the assembly work part. The

only argument needed to execute this function is the part “Tag”, which is a NX identifier

unique to each feature or entity in the CAD model. Once the designated component has

been made the work part, all operations will affect that part only.

 new_key = UIS_getStringValue(dialog_id, EXP_KEYWORD);

 char* ext = ".exp";

 char* new_and_ext = joinStrings(new_key, ext);

 for(int i=0; i<Assembly.size(); i++)

 {

 char* path = Assembly[i]->GetImportPath();

 char* name = Assembly[i]->GetName();

 char* pathName = joinStrings(path, name);

 char* import_file = joinStrings(pathname,new_and_ext);

 cout << "Import file: " << import_file << endl;

 UF_ASSEM_set_work_part(Assembly[i]->GetPartTag());

 Assembly[i]->DerefExp(Assembly[i]->GetPartTag());

 Assembly[i]->ImportExp(import_file, Assembly[i]-

>GetPartTag());

 }

 UF_ASSEM_set_work_part(Assembly[0]->GetPartTag());

Figure 5-3 Code used to import expression files into the CAD assembly

 72

The Assembly[i]->DerefExp() function is a custom function developed to

“de-reference” the expressions in the active part. This is necessary to avoid conflicting

parameter sets as well as system errors that occur when dependencies and other

references exist between expressions and assembly components. The active component

becomes neutral and independent of the other components in the assembly temporarily to

allow for the import of new parameters and rules. The code for this operation will be

shown in figures 5-4 and 5-5 below.

void Component::DerefExp(tag_t part_tag)
{
 double exp_value;
 int num_exps;
 tag_t *exps;

 UF_MODL_ask_exps_of_part(part_tag, &num_exps, &exps);
 for(int i=0; i<num_exps; i++)
 {
 char* exp_string = new char[128];
 char* new_string = new char[128];
 UF_MODL_ask_exp_tag_value(exps[i], &exp_value);
 UF_MODL_ask_exp_tag_string(exps[i], &exp_string);
 new_string = RewriteExp(exp_string, exp_value);
 UF_MODL_edit_exp(new_string);

 UF_free(exp_string);
 delete [] new_string;

 }
}

Figure 5-4 The custom function “DerefExp”, which neutralizes the expressions in the active model

The “DerefExp” function shown in figure 5-4 is a method within the C++

Component class. The reader may remember that the data stored during the execution of

 73

the program is stored in an object oriented class structure where the assembly consists of

a vector of Component classes. The function above begins by asking for all expressions

within the active part in the assembly using UF_MODL_ask_exps_of_part. The

function loops through each of the expressions and extracts the expression string, or left

hand side, and the expression value, or right hand side. A typical parametric expression

from the assembly would be something like “strutHeight=intakeHeight*3.2”. This

expression contains a reference to another expression “intakeHeight”, as well as an

arithmetic operator. This expression could not be replaced by the system because of the

dependency that exists. The expression will be re-written to neutralize it and avoid any

errors. The expression gets rewritten by another custom function called

“RewriteExp”, which is shown below in figure 5-5.

This function takes the existing expression and replaces the right hand side with

its equivalent numerical value with twelve significant figures of precision. This is

accomplished by first converting the expression value to a double variable with twelve

significant figures. The next portion of the function is a little bit tricky to follow, but

proceeds like this. The “cursor” is moved to the end of the expression, simulating this

same action as if it were done interactively to edit a string of characters. The cursor is

then stepped backward until it encounters the ‘=’ sign in the expression. It is then

stepped forward once and a carriage return ‘\0’ is placed there, effectively chopping off

the right hand side of the original expression. The final string is then created by

appending the numerical value extracted earlier to the remains of the left hand side and

‘=’ sign just created. The final product is the original left hand side of the expression,

and the numerical right hand side with twelve significant figures of precision.

 74

With the rewritten expression, the final operation of the DerefExp function is

performed by calling UF_MODL_edit_exp() which replaces the expression in the

CAD model with the new neutral expression. The operations shown in figures 5-4 and 5-

5 are performed for each expression in each component of the assembly in a fraction of a

second. This portion of the overall process alone would take several minutes to perform

interactively, even on a small model.

 The only remaining operation as shown in figure 5-5 is the “Assembly[i]-

>ImportExp()” function. This function is called only once for each component in the

char* RewriteExp(char* exp_string, double exp_value)
{
 // changes something like: p1=2*p2 to p1=12
 char* final_str;
 char* conv_val;
 char val_string[256];
 int sig_figs = 12;
 conv_val = _gcvt(exp_value, sig_figs, val_string);

 char* new_one = strdup(exp_string);
 int path_length = strlen(new_one);
 char* cursor = new_one + (path_length -1);
 // set cursor to end of string
 while(1)
 {
 if(*cursor == '=')
 {
 cursor++;
 *cursor = '\0';
 break;
 }
 cursor--;
 }
 final_str = joinStrings(new_one, conv_val);
 return final_str;
}

Figure 5-5 The “RewriteExp” custom function which neutralizes the parametric expression

 75

assembly. This is a simple function because of all of the preparation already performed

on the expressions in the part model. The program calls the UGOpen function

UF_MODL_import_exp() which requires the file to be imported, and an integer

which specifies how to treat expressions encountered that have the same name. In

reference to importing expression files, the NX documentation states:

 “There may be times when you have expressions in the text file that have the
same name as expressions already in your part file. When this conflict occurs, the system
either keeps the existing expression or replaces it with the expression in the text file. You
control how expression name conflicts are handled with one of these settings: Replace
Existing, Keep Existing, or Delete Imported.”

Because of the preparation discussed above, the “Replace Existing” option is

specified in the code, and an imported expression with the new rules and references is

able to be imported to replace the numerical or neutral expressions that have been set up.

This issue was discussed in chapters three and four in terms of Set Theory. The conflict

seen by the system occurs because there are two sets of expressions containing elements

that are identical. By importing the new set of parameters, an attempt is being made to

unite the two sets. The conflict is easily overcome because of the preparation of each

expression discussed earlier in this section.

5.2.5 Updating the Assembly

 While the parameter sets from the assembly model were being exported and

imported, any update of the CAD model was suspended. This was done to avoid

potential update failures that could occur due to inconsistencies that would exist when the

assembly was only partially parameterized. Any links, dependencies, or relationships

between components of the assembly could cause an update failure if the new parameters

 76

were loaded for one component, but not another when the system tried to update the

model. Suspending any model updates facilitates the mass import and export of

parameter sets without any check or interference in the process.

 This is an enabling step for the automation of the process; however, it is also a

risk that is taken. There is some risk that the parameter sets being imported have been

tampered with, or are not compatible with the current CAD assembly. This should not

happen if the original neutral model was used by each of the participating design teams.

This is one reason why the user would want to have the current state of the assembly

saved before importing a new set of parameters. If a problem occurred that seemed

difficult to fix, the user could simply import the original parameter set, thus restoring the

model to the state that it was in before the errors occurred.

 The actual update of the assembly is triggered by a simple call to the UG Open

function UF_MODL_update(). This function updates all features of the model in the

order in which they were created. Each of the features being updated are dependent upon

or affected by the expression list. This same type of update may also be observed when

interactively editing the model expressions. The user may edit one or more expressions

without actually changing the model. Once the user clicks “Apply” or “Ok”, the model

updates, and any errors are brought to the user’s attention. The user has the options of

undoing the changes, ignoring the errors, or listing the errors found.

 With the automated import as discussed above, the update is suspended while

nearly every expression in the assembly is modified. Once this is complete, the update is

executed and the model responds to the changes made. If no errors are communicated to

the user, the system has been satisfied, and the model has updated successfully. There

 77

are now a few steps the user should take to inspect the model and ensure valid geometry

and assembly configuration.

5.2.6 Validation and Verification of the Model

 As discussed in section 4.4, the model needs to be verified once the parameter

exchange has taken place. There are four main questions that need to be answered, once

the model has had a successful system update, to verify that the assembly model is still

viable:

1. Does the model visually look correct?

2. Does the model seem to respond appropriately to parameter changes?

3. Are there any unreferenced or unused parameters in the model?

4. Are there any interference conditions within or between components?

 The first two questions were quickly and easily answered by the user. A visual

inspection was performed which included checking to see that each component is in the

correct position relative to the others. By modifying a few of the key driving parameters

the user verified that the model responded appropriately. This was one of the most basic

ways in which the execution of the code was verified while developing and testing the

software. A few key parameters would be different in the set of parameters to be

imported when the program was executed. This allowed for an expected visual change to

occur. Another simple test was to check the list of expressions to verify that the newly

imported parameters were present.

 78

 To answer the third question about model validation, there were automatic checks

put into place in the code to verify each parameter or expression in the assembly. An

unreferenced expression is likely to be “left over” from the previous parameterization and

should be removed. Any expression that is being referenced or used by a feature in the

model or by another expression cannot be deleted directly. Thus, any expression that can

be deleted directly is an unreferenced expression. The code was set up to loop through

the expressions attempting to delete each of them. If there was an error, the code simply

moved on, resulting in the removal of all unreferenced expressions.

 The drawback of this method is that the user would not be able to create

expressions just for the sake of holding data or numbers for reference only. If the user

wanted to bookmark a value or equation for reference while modeling, the clean up

process discussed would delete such expressions. Fortunately, this should not be a big

concern because there are several other ways of accomplishing the same thing. One way

to create reference data that does not control the model in any way is through what NX

refers to as model attributes. The user can store extraneous information about any

feature, point, curve, or even information not associated with any geometry, with a model

attribute. This data can be retrieved manually, or through the programming API for

reference by the user. Other places to store such information would be in a spreadsheet,

database, or text file, which could all be linked to from the within the model or by the

programming API.

 The fourth question to be answered was “Are there any interference conditions

within or between components?” It was mentioned in the method chapter of this thesis

that this question was to be answered either automatically by the custom application, or

 79

by having the user execute the analysis functions built into the CAD system itself. It was

determined that even with very significant effort, it would not be likely that the custom

application could reproduce the built in analysis functions within NX with any

improvement on time spent, or feedback given to the user. The analysis and visualization

tools that are already a part of the interference analysis are very helpful, and would have

been difficult to reproduce, let alone improve upon. Therefore, in order to verify the lack

of interference conditions in the assembly, the user is advised to become familiar with

and utilize the built in interference analysis operations of the CAD system.

5.3 How to Track, Observe, and Output Parametric Manipulation

The ability to track and observe the changing values of key parameters or features

of the parametric assembly is crucial to studying the design space of common geometry.

Typical use of parametric manipulation only allows the user to view snapshots of the

model, or to export current values of the parametric expressions. This does not permit

the user to observe how the values changed, or what the assembly configuration looked

like during the transition from one state to another.

The custom application used here allows the user to know exactly what is

happening to geometry of interest during model variation. The observation takes place

both visually as well as being recorded analytically. The user is able to control the

displayed changes and the data being recorded by specifying the number of increments

that the driving parameter will use to change from the lower to upper limits which are

also specified by the user. Figure 5-6 shows the user interface with items selected for

variation and observation. The lower and upper limits are set manually, and the number

 80

of increments or evaluation points is set using a slider bar. If the current value of the

variational parameter is not between the chosen limits, the user is notified with a pop up

message. Upon execution, if the number of observed points does not seem sufficient, or

if the model seems to “jump” from one value to another, the user can increase the number

of increments to be evaluated.

Figure 5-6 User interface with values specified

While the model is changing, the values of the parameter(s) that are of interest are

recorded in a variable array at each incremental change. When the user is done

manipulating the driving parameters, these values are written to a file and formatted for

ease of use. A simple output file is shown in figure 5-7. As you can probably guess, this

 81

file was created to track the values of the parameter “b1Length” within two

parameterizations. The values in the first section range from 5.97 to 6.97, while the

values for the same parameter in the second section range from 5.0 to 7.5. This data

could be used to help address one or more of the questions raised in section 5.1. The data

is also easily copied into a spreadsheet for further analysis or graphical representation.

The format for the output data is something that can be easily changed in the program

code, but has been left as simple as possible for ease of use.

Figure 5-7 Simple output file comparing parameters

 82

5.4 Uses and Drawbacks of this Method

The uses of this method have been thoroughly covered in the previous sections,

and will only be listed for review with brief comments here. The problems addressed by

this research were listed in section 4.1 as:

1. How to track “downstream” effects of complex parameterizations

2. How to discover the effects of changes in one parameterization on key

geometry of another discipline’s parameterization

3. How to explore the sensitivity of key geometry or key analysis parameters to

high level changes or vice versa

4. How to find the common or conflicting design space of parameterizations

from different disciplines

Each of these problems is addressed when using the custom application in NX.

This tool is basically a program which enables exploration, manipulation, and

observation of a parametric assembly model that has been previously unavailable. The

application overcomes some of the limitations of parametric CAD systems by employing

custom functions designed to allow the user to manipulate assembly models and extract

desired information quickly without running into typical system errors. This is done

through utilization of the NX API to build a custom application that performs both

internal NX functions combined with custom functions enabling new operations to be

performed.

There are some drawbacks and limitations inherent in the methods and application

presented here. The first limitation is that the model to be used by more that one

discipline must contain enough information to be an effective base or starting point.

 83

Also, a naming convention for the parameters has to be chosen and adhered to throughout

the processes put forth in this thesis. This is not a difficult thing to do, but there must be

proper consideration up front to ensure that the generic model contains the proper type of

geometry and definitions to be able to be parameterized effectively by each of the

disciplines.

While the application developed here is put forth as a means of performing

complicated or unavailable tasks quickly and easily, the size of the assembly being used

will still be prohibitive at some point. Very large assemblies (with hundreds or even

thousands of components) may not work well with a program such as the one here. The

methods here are most suitable for a small to medium sized system, containing a more

manageable amount of components and parameters. While some of the functions used

here certainly could work on large assemblies, this has not been tested, and will be left

for future research.

 84

 85

CHAPTER 6: RESULTS

Chapter 5 showed how the questions and problems addressed by this thesis were

confronted and resolved. As explained, a custom application was designed and

programmed to accomplish parametric exploration and parameterization swapping as

outlined in the opening chapter of this thesis. The results of the test executions and

validation of this program and the models used will be discussed here.

6.1 Creation and Validation of Parametric Assembly Models

 As discussed in the previous section, a neutral or “dummy” model was developed

to be the basis from which all other parameterizations were derived. This was both

necessary and useful in the preparation of CAD assemblies to be controlled by

parameterizations influenced by different analysis disciplines. Generic variable names

such as “strut_length”, or “flange_height” were assigned in the dummy assembly model.

When a variable was not expected to be specifically referenced or used by another

expression or component, the automatically assigned variable name, such as “p7”, was

left unchanged.

 The parametric assemblies for each discipline were created by copying the

dummy assembly and then changing expression values, equations, and relationships to

exhibit behaviors specific to the intended performance variables of that discipline. In

 86

some cases, new expressions were created as reference points for calculations, limits for

expression values, or results of calculations based on the current value of expressions in

the assembly. The parametric assembly models were created by the author, and were

intended to exhibit differences from each other significant enough to cause the conflicts

and interactions discussed throughout this thesis. The models proved to be sufficient for

these purposes, and behaved as expected during the testing and execution of the

parameter swapping application. The models were not intended to be fully representative

of a robust and well thought out parameterization that could have been developed by a

team of engineers from a specific discipline. The development of such a

parameterization, if done using the guidelines and methods discussed in this thesis,

should exhibit the same behaviors if an attempt were to be made to perform parameter

exchange, or multidisciplinary optimization, as outlined here. This exercise will be left to

future research and exploration by a team of designers.

6.2 Successful Swapping of Assembly Parameterizations

The testing of the parameter swapping application proved to be interesting since the

actual execution of the program took only a few seconds. One might think that this

portion of the program either works or it does not, with little room in between. There are,

however, several things that can cause the program to succeed or fail. The tests that were

performed to validate successful switching of parameterizations is presented here.

 Whenever any problems arose during development, it had to be determined if the

problems were caused by bugs in the code, or by errors or incompatibilities in the CAD

 87

model. As discussed earlier, the use of the custom application developed here requires a

well thought out parametric model with robust characteristics.

 For initial testing, a few simple assemblies were modeled using basic geometric

shapes. This made the changes resulting from a successful parameter swap very easy to

observe. The expression sets being imported would change the size or shape of the

geometry in the model as expected.

 Once the code seemed to be performing as expected, the jet engine exit nozzle

assembly discussed throughout this thesis was tested. With the test assembly, the same

visual observations could be made regarding geometry changes, but further investigation

would be required to completely prove the success of a full parameterization swap.

 To test the execution of the program, each of the parameterizations developed

were used as a starting point for parameter swapping. The structural parameterization

would be imported in place of the aerodynamic parameterization and vice versa. Each

combination of exchanges was tested. This was done to simulate any of the possible

scenarios that would be encountered in an optimization setup. An example showing a

typical geometry configuration change due to a parameterization swap is shown below in

Figure 6-1. This figure shows a change in the size and shape of components, as well as

their relative positions in the assembly. What may appear as a simple geometry change

actually involves an entire shift in driving parameters and model behavior. The change is

completed in a fraction of a second for an assembly this size.

 88

Figure 6-1 Example of geometry changes upon execution of the program

Another test that was performed was to simulate moving from one extreme of the

design space to another extreme while swapping parameterizations. In other words the

values of many of the driving parameters in the current assembly model would be at or

near the likely lower or upper bound of the typical variation for that parameter. When the

new parameterization was imported, these values would be changed to the other

boundary in the design space. Large changes in parameter values have a greater

likelihood of causing regeneration failures than small changes. This would test whether

or not the assembly models were robust in the way they were parameterized.

 In each of the tests performed, the application code, and the parametric models

performed as expected. Any failures due to implausible or invalid geometry being

generated were discovered early in the development stages, and were corrected with

minimal effort. Also in each case, the code was executed quickly, with each of the

internal functions performing consistently as designed.

 89

 As discussed in chapter one of this thesis, the time savings represented by

automated parameterization swapping increases with the complexity of the assembly that

the operations are being performed upon. The test assemblies used here contained

relatively few components, with each component being controlled by only 10-20

parametric expressions. With larger assemblies, a team of engineers would not be likely

to work collaboratively on separate parameterizations of the assembly even if they were

aware of that as an option. This is because until now it wouldn’t have made much sense

to create separate parameterizations with a common goal in mind due to the cumbersome

and tedious effort that would have been required to switch parameterizations within the

same assembly model. In other words, the validation of automated swapping has opened

the door for a new kind of design collaboration that can bring different disciplines onto

the same page with regards to parametric assemblies. A parametric assembly model can

now be used as a baseline for analysis and optimization, and information about model

configuration can be quickly adjusted and transmitted between disciplines.

6.3 The Application Interface Design

 The application GUI is the front end of the processes described chapter 5. This

section describes how the interface accomplishes successful setup and execution. The

interface is designed for minimal input, allowing for as much automation as possible.

 90

Figure 6-2 Assembly parameterization GUI

 As shown in figure 6-2, the user interface requires relatively few pieces of

information from the user. This is the first of three tabs available to the user. Setup

flows from the top of the menu down. First the user can change the “work part” in the

assembly if needed. Next the user selects whether to observe a single expression, or all

the expressions of a chosen feature. The user then selects an expression to vary, and

specifies the lower and upper limit of the variation. The number of increments to

 91

evaluate during variation is chosen with a simple slider bar. Once each of these items is

specified, the user can execute the calculations and observe the geometry changes.

The second tab shows the options for switching assembly parameterizations. This

is a simple and quick process that is highly automated as explained in chapter 5. This

menu is shown in figure 6-3 below.

Again proceeding from the top down, the user first selects whether to save the

current parameterization and locates a folder to place the expression files. A key word is

designated which is appended to the expression file names for later use. Similarly, the

file location and keyword for the expression files to be imported is specified. All that

remains is to click the swap button and a few seconds later the new parameterization has

replaced the existing one in the assembly model.

The third tab in the user interface is identical in appearance to the first tab. The

only difference is that all of the operations are being performed on the second

parameterization that was just imported. In this way, the data from both

parameterizations can be stored and formatted for the output file. The user steps through

the same operations described above and the process is complete, presses “OK” to exit

the application. All of the gathered information is written to a default output file to be

used later.

 92

Figure 6-3 Second tab of the custom GUI

 If proper model preparation guidelines and good modeling practices have been

followed, the execution of the program takes only a few minutes. The user interface is

simple enough to be self explanatory, but it is intended to be used by fairly advanced

users who understand what the execution of the program entails. The interface has

proved successful in fulfilling the intended needs and purposes of its design.

6.4 How the Effects of Parametric Manipulation Were Observed

Observation of chosen features or expressions is a feature of the custom

application that is not available through normal use of the CAD system. The user can

track the changes to an item that may be in a completely different component in the

 93

assembly than the current work part. In lay terms, the user can push on one end of the

assembly and see what is happening on the other end

This process is made possible through the use of the NX API in conjunction with

some custom functions developed by the author. As presented in previous chapters, the

key to enhancing, circumventing, or otherwise overcoming the limitations of the CAD

system is the use of such functions to tailor the performance of the software to the needs

of the apparent design challenge. In this case, the author programmed into the

application the ability to let the user point to which objects in the assembly he/she would

like to deal with. The program, unlike the CAD system on its own, has the ability to

track the details of these objects or features. Each time the user selected an item to

observe or to manipulate, the program stores the “tag” of that object. The “tag” is used to

query information for the object, whether or not it is in the active component. Some

example code showing the gathering of observation data is shown in Figure 6-4 below:

if(toggle_label == "Expression")
 {

 pObserve1 = getPartExps();

 cout << "pObserve1 = " << pObserve1 << endl;

 UIS_setLabel(dialog_id, "SELECTED_EXP_LABEL",
pObserve1);
 //UF_free(exp_tags);
 }

 obs1Part_tag = UF_ASSEM_ask_work_part ();

Figure 6-4 Code fragment for choosing an expression to observe

 94

The code above sets a variable called “pObserve1” equal to the string that is

returned from the function “getPartExps()”. This function allows the user to choose an

expression from the active part, and returns the value of the expression chosen by the user

so that it can be stored into memory. This function is shown below in Figure 6-5.

extern char* getPartExps ()
{
 int error_code = 0;
 int response;

 if ((error_code = UF_initialize()) != 0)
 return (0) ;

 if ((error_code = UF_STYLER_create_dialog (
"expList.dlg",
 EXP_cbs, /* Callbacks from dialog */
 EXP_CB_COUNT, /* number of callbacks*/
 NULL, /* This is your client data */
 &response)) != 0)
 {
 char fail_message[133];

 // Get the user function fail message based on
the fail code.
 UF_get_fail_message(error_code, fail_message);
 UF_UI_set_status (fail_message);
 printf ("%s\n", fail_message);
 }

 return retExpression;

 UF_terminate();
}

Figure 6-5 Code Fragment for the “get PartExps” Function

 95

Once the user chose the item(s) to observe, and specified the parameter to vary,

including limits and number of increments, the main execution was ready to be

performed. The execution of the program was tested several times under differing

circumstances in order to verify the functionality of the program and to make sure that all

of the desired information was tracked and stored. As described in earlier chapters, as the

assembly model is manipulated, the resulting changes are tracked and stored in variable

arrays to be written to an output file. The code segment used to perform these steps is too

large to include here, but will be included in the appendices at the end of this thesis.

In each of the cases where the test models were used, the program successfully

tracked and stored the information for the specified features, expressions, or geometry of

interest. This information was then formatted and written to and output file for future

use. The results of this output are shown in the next section.

6.5 Presenting the Observation Data for Review

One of the questions to be answered in this thesis was to determine how to present

the results of parametric variation so that they could be used and interpreted by the user.

There were several possible ways to present the output from the custom application. The

choice was essentially whether to present the results graphically with some sort of chart

or graph, or to simply present the user with the numerical values of the data being

observed or manipulated. Ultimately, it was decided that the output should be given to

the user in the form of a text file containing the numerical data in a simple delineated

format. This solution certainly is not the most glamorous, but is more universal and can

 96

easily be used in a variety of ways. Presenting the user with a simplified output file

allows him/her to the freedom to use the information in whatever way is most beneficial.

The output file shown below gives an example of the type of data that would

typically be recorded, and the format of the output file. Figure 6-6 shows the results of

the user choosing to observe the parameter b1Length during manipulation of two

different parameterizations. This data can easily be imported into a spreadsheet or other

program for comparison or graphical analysis. One thing that should be pointed out is

that the parameter being observed was dependent on other parameters. This means that

what the user saw in the output file was the numerical value of the parameter of interest

at each increment. The actual parametric expression used and shown in the CAD system

would look the same at each stage. In this case, the parametric expression in the model

was “b1Length = overallHeight/3” in one parameterization, and “b1Length =

overallHeight/blockProportion” in the other. In both cases, the numerical result of this

expression was recorded at each increment during the variation of the parameter

“overallHeight”.

The file below shows the typical format for the expected output files, showing the

values of the parameter(s) being observed for two or more parameterizations of the

assembly model. As discussed in chapter 4, there could be a myriad of uses for this data

depending on the interest or intent of the user. The custom application was executed in

much the same way to address several different types of problems.

 97

Figure 6-6 Example Output File

 98

 99

CHAPTER 7: CONCLUSIONS / RECOMMENDATIONS

 The objective of this research was to develop a method to allow better exploration

of parametric assembly design involving multiple disciplines. Included in this effort, was

the ability to perform a complete change of parameterizations controlling the assembly

CAD model. This was accomplished through the creation of a custom application within

the NX CAD system. The application was programmed to use a combination of custom

functions and CAD API functions to perform all of the desired operations. The

capabilities developed in the custom application enable multidisciplinary exploration of

common geometry while maintaining discipline specific parameterizations.

The questions to be addressed during development are summarized as: What are

the types of problems addressed by this research? How can parametric schemes be

seamlessly “swapped?” How can the effects of manipulating driving parameters from

multiple parameterizations be observed by a concurrent engineering team? How should

these effects be presented for comparison and review? What are the appropriate uses of

the method? And, what are the drawbacks and limitations?

 The questions above were answered, and the objectives of this thesis

accomplished as presented in chapters 5 and 6. A summary of these conclusions is given

here. The types of problems typically encountered in parametric assemblies that were

addressed by this thesis were defined as:

 100

1. How to track “downstream” effects of complex parameterizations

2. How to discover the effects of changes in one parameterization on key

geometry of another discipline’s parameterization

3. How to explore the sensitivity of key geometry or key analysis parameters to

high level changes or vice versa

4. How to find the common or conflicting design space of parameterizations

from different disciplines

Examples of how each of these problems was addressed by the custom application

were given in section 5.1. As demonstrated, the custom application addresses several

types of issues, although the execution of the program is performed similarly for each

type.

One of the menus within the custom application provided the answer to the

question of how to switch the active assembly parameterization with an entirely different

parameterization of the same geometry. Section 5.2 explained that this was done using

custom functions that performed the necessary neutralization and parameter exchange

operations. This was done while avoiding typical CAD system errors and warnings that

occur when manipulating interdependent parameters and assembly components.

The question of how the effects of manipulating driving parameters from multiple

parameterizations should be observed and presented was answered in section 5.3. The

custom application tracked the value of any desired feature or expression chosen by the

engineer during parametric manipulation. The results of this automated observation were

recorded in an output file that was formatted to be easily transferred to a spreadsheet or

 101

presentation file for further comparison and review. This method was chosen for

simplicity, and to allow compatibility and portability to the user.

The appropriate uses and drawbacks of the method presented in this thesis were

proposed in section 5.4. To summarize this section, the custom application developed for

this thesis is a program which enables exploration, manipulation, and observation of a

parametric assembly model that has been previously unavailable. The application

overcomes some of the limitations of parametric CAD systems when dealing with

parametric assemblies. Some drawbacks of the method and application are that there is

still a certain amount of up front consideration and cooperation that needs to take place

when developing the initial “neutral” geometry. Also, this research has only tested the

effectiveness of the custom application on relatively small assemblies. Very large

assemblies, with several hundred or more components, may prove to be not well suited

for the method and application presented here.

As set forth from the beginning of this research, the efforts discussed above were

accomplished through the development of a custom application created to enhanced

design exploration and collaborative efforts. In general terms, this thesis reinforced the

idea that the use of the API of the CAD system allows engineers to perform customized

tasks providing functionality not available in the CAD software alone. Through creative

use of the built in API functions, and the development of new functions to perform data

manipulation and monitoring of the activities of the CAD models, significant

enhancement of the design exploration and collaborative engineering process is now

possible through the methods and techniques set forth in this thesis.

 102

7.1 Future Work

 There are several things that could be done to build upon the work of this thesis.

First of all, one of the main limitations that could be addressed, and could open up further

possibilities, is the restriction on naming convention across each discipline involved in

the development of parametric assembly models. It seems that the geometry would still

need to remain identical, but there may be a way to utilize the CAD API to employ some

sort of recognition between parameters and features across multiple parameterizations.

 Another item that could be explored would be to design a way to implement this

type of research into a batch optimization program. This would require modification of

the current application to be able to operate in a batch mode. Also, the user inputs would

have to be able to be incorporated into the optimization set up. There is some question as

to whether this could become part of a fully automated optimization process, and this

may be worth exploring in future research.

 The other suggestions that I would have for future work include mostly

enhancements to the functionality and usability of the interface of the custom application.

These would include such things as graphical selection of features or geometry and

providing more user control over the output of the program.

 A final recommendation for further testing and expansion of this research is to

implement the methods described here in a professional environment. This would truly

test the feasibility of the proposals in real world scenarios, and the collaboration required

for successful design exploration.

 103

REFERENCES

Ardalan, S., (2000), “DrawCraft: A Spacecraft Design Tool for Integrated Concurrent

Engineering,” Aerospace Conference Proceedings, IEEE, Vol. 11, pp. 501-510.

Bidarra, R., Kranendonk, N., Noort, A., Bronsvoort, W. F. (2002), “A collaborateive

framework for integrated part and assembly modeling”, Proceedings of the
Symposium on Solid Modeling and Applications, 2002, p 389-400.

Cheng, F. Y., and Li, X. S., (1999), “Generalized Center Method for Multiobjective

Engineering Optimization”, Engineering Optimization, v 31, p 641-661.

Delap, D., CAD Based Creation and Optimization of a Gas Turbine Flowpath Module

with Multiple Parameterizations, M.S. Thesis, Brigham Young University, 2002

Delap, D., Hogge D. and Jensen, C. G., “CAD-centric Creation and Optimization of a

Gas Turbine Flowpath Module with Multiple Parameterizations,” UComputer-Aided
Design and ApplicationsU, vol. 3, nos. 1-4, 2006, pp. 175-185.

Hoffman, C.M., Kim, K.J., (2000), “Towards Valid Parametric CAD Models”,

Computer-Aided Design, v 33, p81-90.

Hoffman, C. M., Sitharam, M., Yuan, B., (2004), “Making constraint solvers more

usable: overconstraint problem”, Computer-Aided Design, v 36, p 377-399.

Hogge, D., Integrating Commercial CAx Software to Perform Multidisciplinary Design

Optimization, M.S. Thesis, Brigham Young University, 2002.

Hrbacek, K., Jech, T., (1999), Introduction to Set Theory, Marcel D.

Jensen, C.G., Jones, C., Rohm III, T. and Tucker, S., (2000), “Parametric engineering

design tools and applications”, Proceedings of ASME Design Automation Conference,
Baltimore, MD, Sept. 10-13, p 657-664.

Kim, J., Soonhung, H., (2004), “Manipulating Geometry in a STEP DB from

Commercial CAD Systems”, Concurrent Engineering: Research and Applications, v
12, n 1, p 49-57.

 104

King, M. L., A CAD-Centric Approach To CFD Analysis With Discrete Features, M.S.
Thesis, Brigham Yound University, 2004

Ledermann, C., Claus, H., Wenzel, J., Ermanni, P., Kelm, R. (2005), “Associative

parametric CAE methods in the aircraft pre-design”, Aerospace Science and
Technology, v 9, n 7, p 641 – 651.

Lee, J. Y., Kim, K., (1996), “Geometric reasoning for knowledge-based parametric

design using graph representation”, Computer- Aided Design, v 28, n 10, p 831-841.

Lee, K., (1999), Principles of CAD/CAM/CAE Systems, Addison Wesley Longman, Inc.

Levy, L. S., (1980), Discrete Structures of Computer Science, John Wiley & Sons.

Myung S., Han S., (2001), “Knowledge-based Parametric Design of Mechanical Products

Based on Configuration Design Method”, Expert Systems with Applications, v 21, n
2, August, 2001, p 99-107.

Srinivasan, H., Jensen, C. G., Kopper, F. C., Staubach, J. B., Pack, D. R., (2001),

“Assembly Parametrics for Multidisciplinary Design Optimization”, ISPE
International Conference on Concurrent Engineering

Townsend, J. C., Samareh, J.A., Weston, R. P., Zorumski, W. E., (1998), “Integration of

a CAD System into an MDO Framework”, NASA/TM-207672, May 1998.

Tucker, S., Rohm III, T., Jensen, C. G., “Concurrent Engineering with Parametric

Design”, Proceedings of the 3rd World Conference on Intelligent Manufacturing of
Processes and Systems, Cambridge, MA, June 28-30.

Wan, S. Shin, R. A., (1991), “Interactive Multiple Objective Optimization: Survey 1-

Continuous Case”,

Wang, J.H., Wu, J.K., (1994), “An Assembly Constraint Model For Parameterized

Mechanical Systems”, ASME Database Symposium, Engineering Data Management:
Integrating the Engineering Enterprise, 1994, p 67-73.

Wilson, M. G., Integration Of Rapid Prototyping Preprocessing Operations With A

Commercial CAD System, M.S. Thesis, Brigham Young University, 2004

Youngjun, K., (2003), “Cad Model Assembly Hierarchy Reorganization for Application

in Virtual Assembly – a Hybrid Approach Using the CAD System and a Visualization
Tool”, Proceedings of the ASME Design Engineering Technical Conference, v 1b,
2003, p. 1173 - 1181.

Zeid, I., (2005), Mastering CAD/CAM, McGraw-Hill.

 105

Appendix A: Example Expression files

mixerSTRUCT.exp:

DATUM_OFFSET=MIXER_LENGTH
FWD_RADIUS=18
HOLE_LEN=1.75
HOLE_WIDTH=0.75
L2HOLE_CENTER=10
LOBE_FLAT=HOLE_WIDTH/2
LOBE_LOW_RAD=0.75
LOBE_UP_RAD=1
LOW_LOBE_ANGLE=20
MIXER_LENGTH=16
TIP_RADIUS=21
UPPER_STRAIGHT=4
UPPER_TRANS=8
connector_diameter=TIP_RADIUS*2
cut_top=TIP_RADIUS-1
p0=MIXER_LENGTH
p1=UPPER_STRAIGHT
p2=FWD_RADIUS
p3=6
p6=-10
p19=3.59224793597646
p29=0.5
p31=1.5
p32=1.75
p44=FWD_RADIUS
p52=0.025
p57=0.08
p58=0.125
p59=0.1875
p60=1
p61=1
p62=-10
p63=10
p64=0.05

 106

p66=90
p70=0
p80=10
p86=TIP_RADIUS
p87=UPPER_TRANS
p88=MIXER_LENGTH
p89=UPPER_STRAIGHT
p90=FWD_RADIUS
p91=UPPER_STRAIGHT

supportbracketSTRUCT.exp:

thickness=0.125
axial_start=10
fwd_rad=Tailcone::fwd_rad
straight_profile=Tailcone::flange_length
radius=64
axial_end=18
p12=-10
p13=10
pocket_datum=fwd_edge+length
p15=0.125
p16=0.05
p17=pocket_width/2
pocket_width=2.0
p19=0
p20=0
p21=pocket_length+thickness
p22=thickness
p41=p38/2
p23=thickness+0.125
p24=thickness
p25=1.5
p26=0
p27=0
pocket_length=4.5
p29=fillet
p38=2.5
p32=fillet
fillet=0.125
p33=fillet+thickness
p34=0.125
p35=0.125
p37=0.25
p43=0.125

 107

length=Tailcone::hole_len
width=Tailcone::hole_width
fwd_edge=Tailcone::len_to_hole
p47=3
p48=3
p49=3
p50=3
p51=0
p54=0.125

 108

 109

Appendix B: Component.cpp program file

//---
//
// File: Component.cpp
//
// Description:
// Declaration of the base Component class. Other
// Components will be derived from this class.
//
// Author: Brady Larson
//
//---

#include "Component.hpp"

Component::Component(void)
{

}

void Component::ImportExp(char* file, tag_t part_tag)
{
 // NEED TO CHECK IMPORT FILE AGAINST CURRENT EXPS
 // TO SEE IF ANY NEW EXPS NEED TO BE CREATED TO MAKE
 // IMPORT POSSIBLE (IF EVEN ONE DOESN'T EXIST, IT WON'T IMPORT
ANYTHING AT ALL)

 /*vector<char*> names;
 int num_exps;
 tag_t *exps;
 UF_MODL_ask_exps_of_part(part_tag, &num_exps, &exps);
 for(int i=0; i<num_exps; i++)
 {
 char* exp_string = new char[128];
 UF_MODL_ask_exp_tag_string(exps[i], &exp_string);
 char* name = strtok(exp_string,"=");
 names.push_back(name);

 110

 UF_free(exp_string);
 }

 char buf[256];
 FILE* fp = fopen(file,"r");
 if(fp==NULL) {
 printf("ERROR opening expression file \n");
 return;
 }
 while(fgets(buf,sizeof(buf),fp)!=NULL)
 {
 char* token = strtok(buf,"=");
 if(token==NULL)
 continue;
 int found=0;
 for(i=0;i<num_exps;i++) {
 if(strcmp(token,names[i])==0) {
 found = 1;
 break;
 }
 }

 if(found==0) {
 // expression exists in part

 } else {
 char left[256];
 strcpy(left,token);
 token = strtok(NULL, "=\n");
 char new_exp[256];
 sprintf(new_exp,"%s=%s", left, token);
 UF_MODL_create_exp(new_exp);
 cout << "CREATED: " << new_exp << endl;
 }

 }
 fclose(fp);
 */

 UF_MODL_import_exp(file, 0);

}

void Component::ExportExp(char* file)
{
 UF_MODL_export_exp(file);

 111

}

void Component::DerefExp(tag_t part_tag)
{
 double exp_value;
 int num_exps;
 tag_t *exps;

 UF_MODL_ask_exps_of_part(part_tag, &num_exps, &exps);
 for(int i=0; i<num_exps; i++)
 {
 char* exp_string = new char[128];
 char* new_string = new char[128];
 UF_MODL_ask_exp_tag_value(exps[i], &exp_value);
 UF_MODL_ask_exp_tag_string(exps[i], &exp_string);
 new_string = RewriteExp(exp_string, exp_value);
 UF_MODL_edit_exp(new_string);

 UF_free(exp_string);
 delete [] new_string;

 }
}

void Component::CleanupExps(tag_t part_tag)
{
 int num_exps;
 tag_t *exps;
 int exps_deleted = 0;

 UF_MODL_ask_exps_of_part(part_tag, &num_exps, &exps);
 for(int i=0; i<num_exps; i++)
 {
 //ask exp tag string, dissect string, delete exp, output
 char* exp_string = new char[128];
 char* exp_name = new char[128];
 char* exp_val = new char[128];
 tag_t* out_tag;
 UF_MODL_ask_exp_tag_string(exps[i], &exp_string);
 UF_MODL_dissect_exp_string (exp_string, &exp_name, &exp_val,
out_tag);

 if(UF_MODL_delete_exp(exp_name)==NULL)
 {
 exps_deleted++;
 }

 112

 /*UF_free(exp_string);
 UF_free(exp_name);
 UF_free(exp_val);
 */
 }

 cout<< "Number of expressions deleted in " << GetName() << ": " << exps_deleted <<
endl;

}

char* Component::GetName()
{
 return mName;
}

void Component::SetName(char* name)
{
 mName = strdup(name);
}

void Component::SetPartTag(tag_t tag)
{
 mPrtTag = tag;
}

tag_t Component::GetPartTag()
{
 return mPrtTag;
}

void Component::SetExportPath(char* path)
{
 mExportPath = strdup(path);
}

char* Component::GetExportPath()
{
 return mExportPath;
}

void Component::SetImportPath(char* path)
{
 mImportPath = strdup(path);
}

 113

char* Component::GetImportPath()
{
 return mImportPath;
}

Component::~Component()
{

}

 114

 115

Appendix C: dSpace.cpp program file

#include "UIStylerFuncs.hpp"
#include <stdio.h>
#include <uf.h>
#include <uf_defs.h>
#include <uf_exit.h>
#include <uf_ui.h>
#include <uf_styler.h>
#include <uf_mb.h>
#include <dSpace.h>
#include "FilestringDecomp.hpp"
#include "Component.hpp"
#include <fstream>
#include <iostream>
#include <string>
#include "expList.h"
#include "workPart.h"

using namespace std;

vector<Component*> Assembly;
char* save_key;
char* new_key;
tag_t root_part;
char root_name[256 + 1];
tag_t root_occ;
tag_t* child_part_occs;

char* pVary1;
char* pObserve1;
tag_t* feature_tag;
int number_of_exps = 0;
int num_parts;
tag_t *exps;
char* pVary2;
char* pObserve2;

 116

vector<char**> ObsExpArray;
vector<char**> ObsExpArray2;
bool ObserveFeature1 = false;
bool ObserveFeature2 = false;
vector<char*> CompNames;
tag_t obs1Part_tag;
tag_t vary1Part_tag;
tag_t obs2Part_tag;
tag_t vary2Part_tag;

/* The following definition defines the number of callback entries */
/* in the callback structure: */
/* UF_STYLER_callback_info_t CDS_cbs */
#define CDS_CB_COUNT (14 + 1) /* Add 1 for the terminator */

/*--
The following structure defines the callback entries used by the
styler file. This structure MUST be passed into the user function,
UF_STYLER_create_dialog along with CDS_CB_COUNT.
--*/
static UF_STYLER_callback_info_t CDS_cbs[CDS_CB_COUNT] =
{
 {UF_STYLER_DIALOG_INDEX, UF_STYLER_CONSTRUCTOR_CB , 0,
CDS_constructor_cb},
 {CDS_CHANGE_WORK_1 , UF_STYLER_ACTIVATE_CB , 1,
CDS_CHANGE_WORKPART_CB},
 {CDS_P1_OBSERVE_BUTTON , UF_STYLER_ACTIVATE_CB , 1,
CDS_P1_OBSERVE_CB},
 {CDS_P1_VARY_BUTTON , UF_STYLER_ACTIVATE_CB , 1,
CDS_P1_VARY_CB},
 {CDS_CALC_1 , UF_STYLER_ACTIVATE_CB , 0, CDS_P1_CALC_CB},
 {CDS_CHANGE_WORK_1_P_0 , UF_STYLER_ACTIVATE_CB , 1,
CDS_CHANGE_WORKPART_CB},
 {CDS_SAVE_TOGGLE , UF_STYLER_VALUE_CHANGED_CB, 0,
CDS_save_toggle_cb},
 {CDS_SAVE_CURRENT_BUTTON, UF_STYLER_ACTIVATE_CB , 0,
CDS_SAVE_CURRENT_CB},
 {CDS_BROWSE_BUTTON , UF_STYLER_ACTIVATE_CB , 0,
CDS_BROWSE_CB},
 {CDS_SWAP_BUTTON , UF_STYLER_ACTIVATE_CB , 0,
CDS_SWAP_CB},
 {CDS_CHANGE_WORK_3 , UF_STYLER_ACTIVATE_CB , 1,
CDS_CHANGE_WORKPART_CB},
 {CDS_P2_OBSERVE_BUTTON , UF_STYLER_ACTIVATE_CB , 1,
CDS_P2_OBSERVEIT_CB},

 117

 {CDS_P2_VARY_BUTTON , UF_STYLER_ACTIVATE_CB , 1,
CDS_P2_VARY_CB},
 {CDS_CALC_2 , UF_STYLER_ACTIVATE_CB , 0, CDS_P2_CALC_CB},
 {UF_STYLER_NULL_OBJECT, UF_STYLER_NO_CB, 0, 0 }
};

static UF_MB_styler_actions_t actions[] = {
 { "dSpace.dlg", NULL, CDS_cbs, UF_MB_STYLER_IS_NOT_TOP },
 { NULL, NULL, NULL, 0 } /* This is a NULL terminated list */
};

extern void ufsta (char *param, int *retcode, int rlen)
{
 int response = 0;
 int error_code = 0;

 if ((UF_initialize()) != 0)
 return;

 if ((error_code = UF_STYLER_create_dialog ("dSpace.dlg",
 CDS_cbs, /* Callbacks from dialog */
 CDS_CB_COUNT, /* number of callbacks*/
 NULL, /* This is your client data */
 &response)) != 0)
 {
 char fail_message[133];

 /* Get the user function fail message based on the fail code.*/
 UF_get_fail_message(error_code, fail_message);
 UF_UI_set_status (fail_message);
 printf ("%s\n", fail_message);
 }

 UF_terminate();
 return;
}

extern int ufusr_ask_unload (void)
{
 /* unload immediately after application exits*/

 118

 return (UF_UNLOAD_IMMEDIATELY);

 /*via the unload selection dialog... */
 /*return (UF_UNLOAD_SEL_DIALOG); */
 /*when UG terminates... */
 /*return (UF_UNLOAD_UG_TERMINATE); */
}

extern void ufusr_cleanup (void)
{
 return;
}

/*---*/
/*---------------------- UIStyler Callback Functions ----------------------*/
/*---*/

/* ---
 * Callback Name: CDS_constructor_cb
int CDS_constructor_cb (int dialog_id,
 void * client_data,
 UF_STYLER_item_value_type_p_t callback_data)
{
 /* Make sure User Function is available. */
 if (UF_initialize() != 0)
 return (UF_UI_CB_CONTINUE_DIALOG);

 ///

 char *file_name = new char[132];
 char *file_path = new char[132];

 Component* root = new Component();
 root_part = UF_PART_ask_display_part ();
 root->SetPartTag(root_part);
 UF_PART_ask_part_name(root_part, root_name);
 FilestringDecomp(root_name,file_name, file_path);
 root->SetName(file_name);
 Assembly.push_back(root);

 119

 cout << "Root Part: " << root_name << endl;

 root_occ = UF_ASSEM_ask_root_part_occ(root_part);

 Component* comp;
 num_parts = UF_ASSEM_ask_part_occ_children(root_occ, &child_part_occs);
 for(int i=0; i<num_parts; i++)
 {
 comp = new Component();
 comp-
>SetPartTag(UF_ASSEM_ask_prototype_of_occ(child_part_occs[i]));
 char name[132];
 UF_PART_ask_part_name(comp->GetPartTag(), name);
 FilestringDecomp(name, file_name, file_path);
 comp->SetName(file_name);
 Assembly.push_back(comp);

 }

 for(i=0; i<num_parts+1; i++)
 {
 cout << "Tag" << i << ": " << Assembly[i]->GetPartTag() << endl;
 cout << "Name" << i << ": " << Assembly[i]->GetName() << endl <<
endl;
 CompNames.push_back(Assembly[i]->GetName());
 }

 //
 UF_terminate ();

 /* Callback acknowledged, do not terminate dialog */
 return (UF_UI_CB_CONTINUE_DIALOG);
 /* A return value of UF_UI_CB_EXIT_DIALOG will not be accepted */
 /* for this callback type. You must continue dialog construction.*/

}

/* ---
 * Callback Name: CDS_CHANGE_WORKPART_CB
int CDS_CHANGE_WORKPART_CB (int dialog_id,
 void * client_data,
 UF_STYLER_item_value_type_p_t callback_data)
{
 /* Make sure User Function is available. */
 if (UF_initialize() != 0)
 return (UF_UI_CB_CONTINUE_DIALOG);

 120

 /* ---- Enter your callback code here ----- */
 //launch dialog which lists all components of the assembly
 //send the function an array of char*'s (component names)
 //return the selected char*
 //retrieve part tag of the chosen part
 //set the new work part
 //update the model?
 //continue dialog

 char* workPart = changeWorkPart(CompNames, num_parts);

 tag_t new_work_tag = UF_PART_ask_part_tag (workPart);

 UF_ASSEM_set_work_part (new_work_tag);
 UF_MODL_update();

 UF_terminate ();

 /* Callback acknowledged, do not terminate dialog */
 return (UF_UI_CB_CONTINUE_DIALOG);

 /* or Callback acknowledged, terminate dialog. */
 /* return (UF_UI_CB_EXIT_DIALOG); */

}

/* ---
 * Callback Name: CDS_save_toggle_cb
int CDS_save_toggle_cb (int dialog_id,
 void * client_data,
 UF_STYLER_item_value_type_p_t callback_data)
{
 /* Make sure User Function is available. */
 if (UF_initialize() != 0)
 return (UF_UI_CB_CONTINUE_DIALOG);

 ///

 int checked = UIS_getIntValue(dialog_id, CDS_SAVE_TOGGLE);

 if(checked == 0)
 {

 121

 UIS_setSingleSens(dialog_id, CDS_SAVE_CURRENT_BUTTON,
false);
 UIS_setSingleSens(dialog_id, CDS_SAVE_KEYWORD, false);
 }
 else
 {
 UIS_setSingleSens(dialog_id, CDS_SAVE_CURRENT_BUTTON, true);
 UIS_setSingleSens(dialog_id, CDS_SAVE_KEYWORD, true);
 }

 //

 UF_terminate ();

 /* Callback acknowledged, do not terminate dialog */
 return (UF_UI_CB_CONTINUE_DIALOG);

 /* or Callback acknowledged, terminate dialog. */
 /* return (UF_UI_CB_EXIT_DIALOG); */

}

/* ---
 * Callback Name: CDS_save_current_cb
int CDS_SAVE_CURRENT_CB (int dialog_id,
 void * client_data,
 UF_STYLER_item_value_type_p_t callback_data)
{
 /* Make sure User Function is available. */
 if (UF_initialize() != 0)
 return (UF_UI_CB_CONTINUE_DIALOG);

 ////////////// My Code ///////////////////

 char *filter = new char[132];
 strcpy(filter, "*.exp");
 char *path_and_name = new char[132];
 char *file_name = new char[132];
 char *file_path = new char[132];
 int response=0;

 //prompt for user file selection

 122

 int rc = UF_UI_create_filebox("Browse...", "Browse...", filter, "default.exp",
path_and_name, &response);
 if(rc==0 && response==UF_UI_OK)
 {
 //FilestringDecomp(path_and_name, file_name, file_path);
 FilestringDecomp(path_and_name, file_name, file_path);

 for(int i=0; i<Assembly.size(); i++)
 {
 Assembly[i]->SetExportPath(file_path);
 }
 }
 else if(response==UF_UI_CANCEL); //continue like normal
 else uc1601("Unable to create file selection box.", 1);

 ///

 UF_terminate ();

 /* Callback acknowledged, do not terminate dialog */
 return (UF_UI_CB_CONTINUE_DIALOG);

 /* or Callback acknowledged, terminate dialog. */
 /* return (UF_UI_CB_EXIT_DIALOG); */

}

/* ---
 * Callback Name: CDS_p1_observe_cb
int CDS_P1_OBSERVE_CB (int dialog_id,
 void * client_data,
 UF_STYLER_item_value_type_p_t callback_data)
{
 /* Make sure User Function is available. */
 if (UF_initialize() != 0)
 return (UF_UI_CB_CONTINUE_DIALOG);

 /* THIS CALLBACK WILL STORE DATA REGARDING THE
EXPRESSIONS, FEATURES, OR COMPONENTS
 CHOSEN BY THE USER. THE DATA WILL BE STORED SO THAT
IT CAN BE EASILY EXPORTED AND
 FORMATTED FOR LATER REVIEW. */

 char* cue;
 cue = "Select a features to observe during expression variation.";

 123

 char* title;
 title = "Feature or Expression to observe";
 int response, count;
 response = 0;
 int i, j;
 void* filter;
 filter = NULL;
 string toggle_label = "nothing yet";

 UF_STYLER_item_value_type_t data;
 int irc = 0;
 data.item_id = "FEAT_EXP_TOGGLE";
 /* Set the item id */
 data.item_attr = UF_STYLER_VALUE;
 irc = UF_STYLER_ask_value (dialog_id, &data);
 /* Ask for the info*/
 int val = data.value.integer;
 if (val == 1)
 toggle_label = "Expression";
 if (val == 0)
 toggle_label = "Feature";

 if(toggle_label == "Feature")
 {
 UF_CALL(UF_UI_select_feature(cue, filter, &count, &feature_tag,
&response));
 if(response == UF_UI_OK && feature_tag != NULL)
 {

 cout << "Feature count = "<< count << endl;
 for (i=0; i<count; i++)
 {
 UF_MODL_ask_exps_of_feature (feature_tag[i],
&number_of_exps, &exps);
 UF_MODL_ask_feat_name (feature_tag[i], &pObserve1);

 cout << "Expressions for the feature: "<< pObserve1 <<
endl;
 char* exp_string;
 for(j=0;j<number_of_exps;j++)
 {
 UF_MODL_ask_exp_tag_string (exps[j],
&exp_string);
 cout << exp_string << endl;
 }

 124

 }
 }
 // SET LABEL SHOWING THE NAME OF THE SELECTED
FEATURE
 UIS_setLabel(dialog_id, "SELECTED_EXP_LABEL", pObserve1);

 //UF_free(feature_tag);
 ObserveFeature1 = true;

 }

 if(toggle_label == "Expression")
 {

 pObserve1 = getPartExps();

 cout << "pObserve1 = " << pObserve1 << endl;

 UIS_setLabel(dialog_id, "SELECTED_EXP_LABEL", pObserve1);
 //UF_free(exp_tags);
 }

 obs1Part_tag = UF_ASSEM_ask_work_part ();

 UF_terminate ();

 /* Callback acknowledged, do not terminate dialog */
 return (UF_UI_CB_CONTINUE_DIALOG);

 /* or Callback acknowledged, terminate dialog. */
 /* return (UF_UI_CB_EXIT_DIALOG); */

}

/* ---
 * Callback Name: CDS_p1_vary_cb
int CDS_P1_VARY_CB (int dialog_id,
 void * client_data,
 UF_STYLER_item_value_type_p_t callback_data)
{
 /* Make sure User Function is available. */
 if (UF_initialize() != 0)
 return (UF_UI_CB_CONTINUE_DIALOG);

 125

 pVary1 = getPartExps();

 cout << "pVary1 = " << pVary1 << endl;

 UIS_setLabel(dialog_id, "SELECTED_EXP_LABEL_P_13", pVary1);

 UF_terminate ();

 /* Callback acknowledged, do not terminate dialog */
 return (UF_UI_CB_CONTINUE_DIALOG);

 /* or Callback acknowledged, terminate dialog. */
 /* return (UF_UI_CB_EXIT_DIALOG); */

}

/* ---
 * Callback Name: CDS_P1_CALC_CB
int CDS_P1_CALC_CB (int dialog_id,
 void * client_data,
 UF_STYLER_item_value_type_p_t callback_data)
{
 /* Make sure User Function is available. */
 if (UF_initialize() != 0)
 return (UF_UI_CB_CONTINUE_DIALOG);

 /////////////////////////////////// MY CODE //////////////////////////////

 // PSEUDO CODE:
 // GET EXPRESSION TO VARY, AND EXPRESSION/FEATURE TO
OBSERVE
 // GET LIMITS
 // VARY SELECTED EXPRESSION AND ASK FOR VALUE OF
EXPRESSION(S) AT EACH INCREMENT (LOOP)
 // STORE OBSERVED VALUES IN AN ARRAY, OR GROUP OF ARRAYS
 // POSSIBLY OUTPUT VALUES TO A TEXT OR CSV FILE

 double lowerBound, upperBound;
 int numSteps = 0;
 tag_t p1_tag;
 double p1_val;
 char** lhs_str = new char*[1];
 char** rhs_str = new char*[1];

 126

 lowerBound = UIS_getRealValue(dialog_id, "LOWLIMITENTRY");
 upperBound = UIS_getRealValue(dialog_id, "UPLIMITENTRY");
 numSteps = UIS_getIntValue(dialog_id, "DRAG_SCALE_1");

 cout << "Limits: " << lowerBound << ", " << upperBound << endl;

 UF_CALL(UF_MODL_dissect_exp_string (pVary1, lhs_str, rhs_str, &p1_tag));
 UF_MODL_ask_exp_tag_value (p1_tag, &p1_val);

 cout << "Expression value: " << p1_val << endl;

 if (p1_val < lowerBound || p1_val > upperBound)
 {
 char* title_string = "User Definition Error";
 UF_UI_MESSAGE_DIALOG_TYPE dialog_type =
UF_UI_MESSAGE_WARNING;
 char** messages = new char*[1];
 *messages = "The current value of the expression to vary is outside of the
specified limits.";
 int num_messages = 1;
 logical translate = false;
 UF_UI_message_buttons_t* buttons = NULL;
 int* response;

 UF_UI_message_dialog (title_string, dialog_type, messages,
num_messages, translate, buttons, response);
 }
 // ASK FOR NUMBER OF INCREMENTS FROM USER???
 double testVal = lowerBound;
 double inc = (upperBound - lowerBound)/numSteps;

 for(int i=0;i<numSteps+1;i++)
 {
 if (i != 0)
 testVal = testVal + inc; //add incremental amount to rhs
 char* newExp = new char[256];
 sprintf(newExp,"%s=%lf",*lhs_str,testVal);//update expression
 cout << "Modified expression: " << newExp << endl;
 UF_CALL(UF_MODL_edit_exp(newExp)); //edit expression
 UF_MODL_update(); //update model

 vary1Part_tag = UF_ASSEM_ask_work_part ();
 //gather observed values of the expression(s) to be observed
 if(ObserveFeature1 == true)
 {

 127

 UF_ASSEM_set_work_part_quietly (obs1Part_tag,
&vary1Part_tag);
 char** Observe1Exps = new char*[50];
 UF_MODL_ask_exps_of_feature (feature_tag[i],
&number_of_exps, &exps);
 // NEEDED??? UF_MODL_ask_feat_name
(feature_tag[i], &pObserve1);

 char* exp_string;
 for(int j=0;j<number_of_exps;j++)
 {
 UF_MODL_ask_exp_tag_string (exps[j],
&exp_string);
 cout << exp_string << endl;
 //store expression
 Observe1Exps[j] = exp_string;
 }
 UF_ASSEM_set_work_part_quietly (vary1Part_tag,
&obs1Part_tag);

 ObsExpArray.push_back(Observe1Exps);
 }
 else
 {
 //get expression to observe and store value in observe array
 char** Observe1Exps = new char*[50];
 UF_ASSEM_set_work_part_quietly (obs1Part_tag,
&vary1Part_tag);

 char ** lhs_str = new char*[1];
 char ** rhs_str = new char*[1];
 tag_t exp_tag;
 double exp_value;
 char* numeric_exp;

 UF_MODL_dissect_exp_string (pObserve1, lhs_str, rhs_str,
&exp_tag);

 UF_MODL_ask_exp_tag_value (exp_tag, &exp_value);

 numeric_exp = RewriteExp(pObserve1, exp_value);

 Observe1Exps[0] = numeric_exp;
 number_of_exps = 1;
 UF_ASSEM_set_work_part_quietly (vary1Part_tag,
&obs1Part_tag);

 128

 ObsExpArray.push_back(Observe1Exps);
 }

 }

 //TEST WRITING OUTPUT TO FILE:
 ofstream f("Output.txt",ios::app);
 for(i=0;i<numSteps+1;i++)
 {
 for(int j=0;j<number_of_exps;j++)
 {
 f<<ObsExpArray[i][j] << "\t";
 }
 f<<endl;
 }

 //UF_free (lhs_str);
 //UF_free (rhs_str);

 UF_terminate ();

 /* Callback acknowledged, do not terminate dialog */
 return (UF_UI_CB_CONTINUE_DIALOG);

 /* or Callback acknowledged, terminate dialog. */
 /* return (UF_UI_CB_EXIT_DIALOG); */

}

/* ---
 * Callback Name: CDS_browse_cb
int CDS_BROWSE_CB (int dialog_id,
 void * client_data,
 UF_STYLER_item_value_type_p_t callback_data)
{
 /* Make sure User Function is available. */
 if (UF_initialize() != 0)
 return (UF_UI_CB_CONTINUE_DIALOG);

 //

 char *filter = new char[132];
 strcpy(filter, "*.exp");
 char *path_and_name = new char[132];
 char *file_name = new char[132];

 129

 char *file_path = new char[132];
 int response=0;

 //prompt for user file selection
 int rc = UF_UI_create_filebox("Browse...", "Browse...", filter, "default.exp",
path_and_name, &response);
 if(rc==0 && response==UF_UI_OK)
 {
 FilestringDecomp(path_and_name, file_name, file_path);
 cout << "Import path and name: " << path_and_name << endl;
 for(int i=0; i<Assembly.size(); i++)
 {
 Assembly[i]->SetImportPath(file_path);
 }
 }
 else if(response==UF_UI_CANCEL); //continue like normal
 else uc1601("Unable to create file selection box.", 1);

 ///

 UF_terminate ();

 /* Callback acknowledged, do not terminate dialog */
 return (UF_UI_CB_CONTINUE_DIALOG);

 /* or Callback acknowledged, terminate dialog. */
 /* return (UF_UI_CB_EXIT_DIALOG); */

}

/* ---
 * Callback Name: CDS_swap_cb
int CDS_SWAP_CB (int dialog_id,
 void * client_data,
 UF_STYLER_item_value_type_p_t callback_data)
{
 /* Make sure User Function is available. */
 if (UF_initialize() != 0)
 return (UF_UI_CB_CONTINUE_DIALOG);

 // CHECK TO SEE IF SAVING CURRENT ASSEMBLY EXPS IS DESIRED
 // IF SO, EXPORT EXP FILES TO THE CHOSEN DIRECTORY AND
KEYWORD
 int checked = UIS_getIntValue(dialog_id, CDS_SAVE_TOGGLE);

 130

 if(checked == 1)
 {
 save_key = UIS_getStringValue(dialog_id, CDS_SAVE_KEYWORD);
 char* key_and_ext = strcat(save_key, ".exp");
 for(int i=0; i<Assembly.size(); i++)
 {
 char* path = Assembly.at(i)->GetExportPath();
 char* name = Assembly.at(i)->GetName();
 strcat(path, name);
 char* export_file = strcat(path, key_and_ext);
 UF_ASSEM_set_work_part(Assembly[i]->GetPartTag());
 Assembly[i]->ExportExp(export_file);
 }
 UF_ASSEM_set_work_part(Assembly[0]->GetPartTag());
 cout << "exit Export " << endl;
 }

 // GET PATH TO IMPORT FILES FROM AND IMPORT NEW
EXPRESSIONS
 new_key = UIS_getStringValue(dialog_id, CDS_KEYWORD);
 char* ext = ".exp";
 char* new_and_ext = joinStrings(new_key, ext);
 for(int i=0; i<Assembly.size(); i++)
 {
 char* path = Assembly[i]->GetImportPath();
 char* name = Assembly[i]->GetName();
 char* pathName = joinStrings(path, name);
 char* import_file = joinStrings(pathName, new_and_ext);
 cout << "Import file: " << import_file << endl;
 UF_ASSEM_set_work_part(Assembly[i]->GetPartTag());
 Assembly[i]->DerefExp(Assembly[i]->GetPartTag());
 Assembly[i]->ImportExp(import_file, Assembly[i]->GetPartTag());
 }
 UF_ASSEM_set_work_part(Assembly[0]->GetPartTag());

 UF_MODL_update();

 // CHECK FOR UNUSED EXPRESSIONS BY ATTEMPTING TO DELETE EXPS.
 /*for(i=0; i<Assembly.size(); i++)
 {
 Assembly[i]->CleanupExps(Assembly[i]->GetPartTag());
 }
 */

 UF_terminate ();

 131

 /* Callback acknowledged, do not terminate dialog */
 return (UF_UI_CB_CONTINUE_DIALOG);

 /* or Callback acknowledged, terminate dialog. */
 /* return (UF_UI_CB_EXIT_DIALOG); */

}

/* ---
 * Callback Name: CDS_p2_observe_cb
int CDS_P2_OBSERVEIT_CB (int dialog_id,
 void * client_data,
 UF_STYLER_item_value_type_p_t callback_data)
{
 /* Make sure User Function is available. */
 if (UF_initialize() != 0)
 return (UF_UI_CB_CONTINUE_DIALOG);

 /* THIS CALLBACK WILL STORE DATA REGARDING THE
EXPRESSIONS, FEATURES, OR COMPONENTS
 CHOSEN BY THE USER. THE DATA WILL BE STORED SO THAT
IT CAN BE EASILY EXPORTED AND
 FORMATTED FOR LATER REVIEW. */

 char* cue;
 cue = "Select a features to observe during expression variation.";
 char* title;
 title = "Feature or Expression to observe";
 int response, count;
 response = 0;
 int i, j;
 void* filter;
 filter = NULL;
 string toggle_label = "nothing yet";

 UF_STYLER_item_value_type_t data;
 int irc = 0;
 data.item_id = "P2_FEAT_EXP_TOGGLE";
 /* Set the item id */
 data.item_attr = UF_STYLER_VALUE;
 irc = UF_STYLER_ask_value (dialog_id, &data);
 /* Ask for the info*/
 int val = data.value.integer;
 if (val == 1)
 toggle_label = "Expression";

 132

 if (val == 0)
 toggle_label = "Feature";

 if(toggle_label == "Feature")
 {
 UF_CALL(UF_UI_select_feature(cue, filter, &count, &feature_tag,
&response));
 if(response == UF_UI_OK && feature_tag != NULL)
 {

 cout << "Feature count = "<< count << endl;

 for (i=0; i<count; i++)
 {
 UF_MODL_ask_exps_of_feature (feature_tag[i],
&number_of_exps, &exps);
 UF_MODL_ask_feat_name (feature_tag[i], &pObserve2);

 cout << "Expressions for the feature: "<< pObserve2 <<
endl;
 char* exp_string;
 for(j=0;j<number_of_exps;j++)
 {
 UF_MODL_ask_exp_tag_string (exps[j],
&exp_string);
 cout << exp_string << endl;
 }
 }
 }
 // SET LABEL SHOWING THE NAME OF THE SELECTED
FEATURE
 UIS_setLabel(dialog_id, "SELECTED_EXP_LABEL_P_5", pObserve2);

 //UF_free(feature_tag);
 ObserveFeature2 = true;

 }

 if(toggle_label == "Expression")
 {
 pObserve2 = getPartExps();

 cout << "pObserve2 = " << pObserve2 << endl;

 133

 UIS_setLabel(dialog_id, "SELECTED_EXP_LABEL_P_5", pObserve2);
 //UF_free(exp_tags);
 }

 obs2Part_tag = UF_ASSEM_ask_work_part ();

 UF_terminate ();

 /* Callback acknowledged, do not terminate dialog */
 return (UF_UI_CB_CONTINUE_DIALOG);

 /* or Callback acknowledged, terminate dialog. */
 /* return (UF_UI_CB_EXIT_DIALOG); */

}

/* ---
 * Callback Name: CDS_p2_vary_cb
 * This is a callback function associated with an action taken from a
 * UIStyler object.
 *
 * Input: dialog_id - The dialog id indicate which dialog this callback
 * is associated with. The dialog id is a dynamic,
 * unique id and should not be stored. It is
 * strictly for the use in the UG/Open API:
 * UF_STYLER_ask_value(s)
 * UF_STYLER_set_value
 * client_data - Client data is user defined data associated
 * with your dialog. Client data may be bound
 * to your dialog with UF_MB_add_styler_actions
 * or UF_STYLER_create_dialog.
 * callback_data - This structure pointer contains information
 * specific to the UIStyler Object type that
 * invoked this callback and the callback type.
 * ---*/
int CDS_P2_VARY_CB (int dialog_id,
 void * client_data,
 UF_STYLER_item_value_type_p_t callback_data)
{
 /* Make sure User Function is available. */
 if (UF_initialize() != 0)
 return (UF_UI_CB_CONTINUE_DIALOG);

 pVary2 = getPartExps();

 cout << "pVary2 = " << pVary2 << endl;

 134

 UIS_setLabel(dialog_id, "SELECTED_EXP_LABEL_P_17", pVary2);

 UF_terminate ();

 /* Callback acknowledged, do not terminate dialog */
 return (UF_UI_CB_CONTINUE_DIALOG);

 /* or Callback acknowledged, terminate dialog. */
 /* return (UF_UI_CB_EXIT_DIALOG); */

}

/* ---
 * Callback Name: CDS_P2_CALC_CB
int CDS_P2_CALC_CB (int dialog_id,
 void * client_data,
 UF_STYLER_item_value_type_p_t callback_data)
{
 /* Make sure User Function is available. */
 if (UF_initialize() != 0)
 return (UF_UI_CB_CONTINUE_DIALOG);

 /////////////////////////////////// MY CODE //////////////////////////////

 double lowerBound, upperBound;
 int numSteps = 0;
 tag_t p2_tag;
 double p2_val;
 char** lhs_str = new char*[1];
 char** rhs_str = new char*[1];

 lowerBound = UIS_getRealValue(dialog_id, "LOWLIMITENTRY_P_8");
 upperBound = UIS_getRealValue(dialog_id, "UPLIMITENTRY_P_9");
 numSteps = UIS_getIntValue(dialog_id, "DRAG_SCALE_2");

 cout << "Limits: " << lowerBound << ", " << upperBound << endl;

 UF_CALL(UF_MODL_dissect_exp_string (pVary2, lhs_str, rhs_str, &p2_tag));
 UF_MODL_ask_exp_tag_value (p2_tag, &p2_val);

 cout << "Expression value: " << p2_val << endl;

 if (p2_val < lowerBound || p2_val > upperBound)
 {

 135

 char* title_string = "User Definition Error";
 UF_UI_MESSAGE_DIALOG_TYPE dialog_type =
UF_UI_MESSAGE_WARNING;
 char** messages = new char*[1];
 *messages = "The current value of the expression to vary is outside of the
specified limits.";
 int num_messages = 1;
 logical translate = false;
 UF_UI_message_buttons_t* buttons = NULL;
 int* response;

 UF_UI_message_dialog (title_string, dialog_type, messages,
num_messages, translate, buttons, response);
 }
 // ASK FOR NUMBER OF INCREMENTS FROM USER???
 double testVal = lowerBound;
 double inc = (upperBound - lowerBound)/numSteps;

 for(int i=0;i<numSteps+1;i++)
 {
 if (i != 0)
 testVal = testVal + inc; //add incremental amount to rhs
 char* newExp = new char[256];
 sprintf(newExp,"%s=%lf",*lhs_str,testVal);//update expression
 cout << "Modified expression: " << newExp << endl;
 UF_CALL(UF_MODL_edit_exp(newExp)); //edit expression
 UF_MODL_update(); //update model

 vary2Part_tag = UF_ASSEM_ask_work_part ();
 //gather observed values of the expression(s) to be observed
 if(ObserveFeature1 == true)
 {
 UF_ASSEM_set_work_part_quietly (obs2Part_tag,
&vary2Part_tag);
 char** Observe2Exps = new char*[50];
 UF_MODL_ask_exps_of_feature (feature_tag[i],
&number_of_exps, &exps);
 // NEEDED??? UF_MODL_ask_feat_name
(feature_tag[i], &pObserve1);

 char* exp_string;
 for(int j=0;j<number_of_exps;j++)
 {
 UF_MODL_ask_exp_tag_string (exps[j],
&exp_string);
 cout << exp_string << endl;

 136

 //store expression
 Observe2Exps[j] = exp_string;
 }
 UF_ASSEM_set_work_part_quietly (vary2Part_tag,
&obs2Part_tag);

 ObsExpArray2.push_back(Observe2Exps);
 }
 else
 {
 //get expression to observe and store value in observe array
 char** Observe2Exps = new char*[50];
 UF_ASSEM_set_work_part_quietly (obs2Part_tag,
&vary2Part_tag);

 char ** lhs_str = new char*[1];
 char ** rhs_str = new char*[1];
 tag_t exp_tag;
 double exp_value;
 char* numeric_exp;

 UF_MODL_dissect_exp_string (pObserve2, lhs_str, rhs_str,
&exp_tag);

 UF_MODL_ask_exp_tag_value (exp_tag, &exp_value);

 numeric_exp = RewriteExp(pObserve2, exp_value);

 Observe2Exps[0] = numeric_exp;
 number_of_exps = 1;
 UF_ASSEM_set_work_part_quietly (vary2Part_tag,
&obs2Part_tag);

 ObsExpArray2.push_back(Observe2Exps);
 }

 }

 //TEST WRITING OUTPUT TO FILE:
 ofstream f("Output.txt",ios::app);

 f << endl << "Parameterization 2:" << endl;
 for(i=0;i<numSteps+1;i++)
 {
 for(int j=0;j<number_of_exps;j++)
 {

 137

 f<<ObsExpArray2[i][j] << "\t";
 }
 f<<endl;
 }

 //UF_free (lhs_str);
 //UF_free (rhs_str);

 UF_terminate ();

 /* Callback acknowledged, do not terminate dialog */
 return (UF_UI_CB_CONTINUE_DIALOG);

 /* or Callback acknowledged, terminate dialog. */
 /* return (UF_UI_CB_EXIT_DIALOG); */

}

/////////////// ANY HOME GROWN FUNCTIONS ////////////////////

int round(double a) {
return int(a + 0.5);
}

	Brigham Young University
	BYU ScholarsArchive
	2008-04-17

	Exploring the Common Design Space of Dissimilar Assembly Parameterizations for Interdisciplinary Design
	Brady M. Larson
	BYU ScholarsArchive Citation

	Title Page

	Graduate Committee Approval
	Dept. / College Approval
	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Chapter 1: Introduction

	1.1 Problem Statement
	1.2
Thesis Objective
	1.3
Delimitation of the Problem
	1.4
Naming Conventions and Definitions

	Chapter 2: Literature Review
	2.1 CAD/Assembly Parametrics
	2.1.1 Robust Parameterizations
	2.1.2 Managing Parameters and Updating Part Models
	2.1.3 Assembly Modeling Methods
	2.1.4 Multiple Parameterizations

	2.2
Use of the CAD API
	2.2.1 Extending the System Capability/Compatibility
	2.2.2 Building Custom Engineering Applications

	2.3
Multidisciplinary Optimization and CAD
	2.3.1 Multidisciplinary Design Optimization
	2.3.2 CAD Centric Optimization

	Chapter 3: Background
	3.1
API Programming in NX
	3.2
Set Theory and Notation

	Chapter 4:
Method
	4.1
Classification of Problems Addressed
	4.1.1 Tracking Downstream Effects
	4.1.2 Discovering Change Effects Between Parameterizations
	4.1.3 Observing Sensitivity of Parametric Changes
	4.1.4 Finding Common or Conflicting Design Space

	4.2
Parametric Assemblies
	4.2.1
Test Case 1: Simple Assembly
	4.2.2
Test Case 2: Exit Nozzle Assembly

	4.3
Parametric Data and Set Theory
	4.3.1 Definition of Data Sets
	4.3.2 Conflicts, Overlap, and Other Issues

	4.4
Using the CAD API for the Custom Application
	4.4.1 Assembly Interrogation/ Application Initialization
	4.4.2 Observing And Manipulating The Assembly Model
	4.4.3 Tracking Changes / Writing the Output File
	4.4.4 Swapping Parameterizations

	4.5 Verification of Valid Geometry

	Chapter 5:
Development
	5.1
Classification and Exploration of Typical Problems
	5.1.1
Tracking Downstream Effects and Sensitivity
	5.1
.2 Tracking Effects from One Parameterization to Another

	5.1.3
Finding Common or Conflicting Design Space
	5.2
Swapping the Assembly Parameterizations
	5.2.1 Use of the API
	5.2.2 Custom Functions: Enabling the Process
	5.2.3 Exporting Parameter Sets
	5.2.4 Importing Parameter Sets
	5.2.5 Updating the Assembly
	5.2.6 Validation and Verification of the Model

	5.3
How to Track, Observe, and Output Parametric Manipulation
	5.4
Uses and Drawbacks of this Method

	Chapter 6:
Results
	6.1
Creation and Validation of Parametric Assembly Models
	6.2
Successful Swapping of Assembly Parameterizations
	6.3
The Application Interface Design
	6.4
How the Effects of Parametric Manipulation Were Observed
	6.5
Presenting the Observation Data for Review

	Chapter 7:
Conclusions / Recommendations
	7.1
Future Work

	References

	Appendix A

	Appendix B
	Appendix C

