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ABSTRACT

PRODUCT FAMILY DESIGN USING SMART PARETO FILTERS

Jonathan D. Yearsley

Department of Mechanical Engineering

Master of Science

Product families are frequently used to provide consumers with a variety of ap-

pealing products and to help maintain reasonably low production costs for manufacturers.

Three common objectives in the design of product families are used to balance the inter-

ests of both consumers and manufacturers. These objectives are to maximize (i) product

performance, (ii) product distinctiveness as perceived by the consumer, and (iii) product

commonality as seen by the manufacturer.

In this thesis, three methods are introduced that use multiobjective optimization and

Smart Pareto filtering to satisfy the three objectives of product family design. The methods

are progressive in nature and begin with the selection of product family members using

Smart filtering and develop through the establishment of scale-based product platforms to

the design of combined scale-based and module-based product platforms.

Each of the methods is demonstrated using a well-know universal electric motor

example problem. The results of each method are then compared to a benchmark electric

motor product family that was previously defined in the literature. Additionally, a pressure

vessel example problem is used to further demonstrate the first of the three methods.
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Chapter 1

Introduction

1.1 Problem Statement

In today’s world marketplace, consumers increasingly demand variety, customiza-

tion, and personalization in the goods they purchase [1]. For manufacturers, economi-

cally satisfying these demands is a notable challenge. The field of mass customization [2]

has emerged, in recent years, in direct answer to these challenges. Within the realm of

mass customization, a number of complementary tools have been developed including:

computer-aided-engineering, design automation, and flexible manufacturing. Each of these

tools further enables manufacturers to produce a truly endless set of customized products

that near perfectly satisfy consumers’ wants and needs.

However, because of limits in manufacturing technologies and processes, many

products cannot be economically produced in a full customizable fashion. Take, for exam-

ple, a laptop computer. A variety of screen sizes and storage capacities are available, but

these product attributes are not customizable over a continuous range. Due to the complex

processes involved in their production, a discrete set of sufficiently different screens and

hard drives are made available instead.

As is the case with a laptop’s screen and hard drive, many other products cannot

be produced in a fully customizable fashion using today’s technology. As an alternative

to full customization, product families can provide consumers with a sufficient, albeit lim-

ited, variety of appealing products while helping manufacturers maintain reasonably low

production costs through increased economies of scale and scope [3]. The objective of this

thesis is the development of an approach that aids designers in determining product fam-

ily size, members, and platform, including the identification of modular components and
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scalable parameters to be used in the design of a combined module-based and scale-based

product family.

1.2 Background and Literature Survey

When designing product families, three objectives are considered to balance the

interests of both consumers and manufacturers. These goals are to maximize (i) product

performance, (ii) product distinctiveness as perceived by the consumer, and (iii) product

commonality as seen by the manufacturer [4, 5].

Product families are built on two primary types of platforms: module-based plat-

forms and scale-based platforms [6]. A module-based platform is the foundation for a

collection of related products that have differing functions through the addition or subtrac-

tion of modules. A scale-based platform is the foundation of related products that have

differing function through the scaling of non-platform design features.

In the literature a variety of approaches exist for the optimization of both scale-

based and module-based product families. Many of these approaches use sequential quadratic

programing [7,8], genetic algorithms [9–11], generalized reduced gradients [12,13], or or-

thogonal arrays [14, 15] in determining a solution. In most cases, scale-based and module-

based design are treated independently, although the two types of platform design are not

mutually exclusive. Only two cases were identified where scale-based and module-based

design were addressed in conjunction with each other [16, 17].

Many scale-based platform design methods focus on identifying the optimal set of

and optimal values for the design variables that define the product platform. Traditionally,

to optimize a scale-based product family the following primary tasks are completed.

(1) Determine the number of and identify product family members through

market segmentation.

(2) Identify the variables that are held constant for all products in the product

family; the platform variables.

(3) Determine the most suitable value of each platform variable.

(4) Determine the value of each non-platform or scalable variable.

2
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Figure 1.1: Traditional market segmentation grid

Module-based platform design methods have traditionally focused on the combina-

torial nature of modular design. The following three primary tasks are often completed in

the design of a module-based product platform.

(1) Determine the number of and identify product family members through

market segmentation.

(2) If not predefined, define module attributes using scale-based optimization.

(3) Determine the optimal combination of modules in the design of each prod-

uct family member.

As is noted in the process descriptions above, the first step for either scale-based or

module-based design is, traditionally, the use of market segmentation to identify product

family members. When using market segmentation, a grid is constructed by first deter-

mining principal customer groups, then by subdividing each group using product perfor-

mance/price gradations [18]. Thus used, market segmentation discretizes the market to

determine the number of product family members and identify the members themselves. A

typical segmentation grid is shown in 1.1.

To ensure that each member of the optimized product family lies within its re-

spective product performance envelope, as defined through market segmentation, equality

3



constraints are often defined so that each product will possess certain performance char-

acteristics [19, 20]. Performance characteristics that are not captured in the constraints are

made design objectives and each product family member is individually optimized. The

use of market segmentation for defining product family members produces encouraging

results. However, this approach depends on a company’s ability to identify and segment

the market, a task to which complete disciplines and full departments within a company are

often dedicated.

However, when sufficient market data is unavailable or is not easily obtained or

distilled by the company developing the product family, traditional segmentation methods

become difficult to implement. For example, entrepreneurs and small to mid-sized com-

panies may not have a dedicated marketing department or the financial resources needed

to purchase market research from an outside firm. When planning to launch a series of

products built on a common platform, these small companies may struggle to gather and

process the market data needed to construct the segmentation grid traditionally used to

identify product family members. As an alternative to traditional segmentation, the use of

Smart Pareto filters as a method for selecting product family members is introduced in this

thesis. Thus used, Smart Pareto filtering leverages the designer’s knowledge of the product

area and/or customer interests when selecting members of a product family. Importantly,

Smart Pareto filtering is not intended to replace market segmentation in every application.

It is intended, however, to provide a systematic method for family member selection when

traditional segmentation cannot be easily used.

Additional methods that address the intricate and important tradeoff that often exists

between product commonality, functional performance, market performance, manufactur-

ing costs, and revenue have been developed to aid designers in defining a product family.

Nested Logit Demand Modeling [21] and leveraging existing market models [22] are two

approaches for considering the effect that increased commonality may have on the market

performance of product family members. The added power of these methods to consider

the effect of commonality decisions on market performance is valuable. These methods,

however, also require extensive knowledge of the product family’s potential market niche

as well as competing products.

4



Each of the individual papers that constitute this thesis contain their own literature

survey that provides additional background information on the design of product families.

1.3 Research Approach

The research included in this thesis was developed through the preparation of three

recent publications [23–25]. These publications constitute the following three chapters. In

each of the following chapters, variations on a common design approach, including the use

of Smart Pareto Filters in the selection of product family members, are presented for the

design of product families. The common approach is summarized in the following three

step process:

(1) Objective performance of each product family member is maximized through

the use of multiobjective optimization.

(2) Product distinctiveness is ensured by using Smart Pareto filters for the se-

lection of product family members.

(3) One of three distinct methods of establishing product platforms is used to

maximize product commonality.

Chapter 2 introduces the use of Smart Pareto filtering for the selection of product

family members [23]. The method begins by surveying the family’s multiobjective design

space and identifying a discrete representation of the Pareto frontier. Importantly, the Pareto

frontier captures the tradeoff among all optimal product configurations. A Smart Pareto

filter is then used to reduce the Pareto frontier to the spanning set of product configurations

to include in the product family. Next, the design variables that are best suited as platform

variables and those that are best suited as scalable variables are identified using a previously

published method. Finally, the product family, sharing a common platform, is compared

to the set of individually optimized products to show the change in performance resulting

from the implementation of the product family.

In Chapter 3, a Pareto filter that concurrently considers both objective and variable

spaces is used to identify a product family where each product in the family possesses opti-

mal and distinct performance characteristics [24]. Simultaneously, the filter also identifies

5



features that can be shared by the products in the family. The filter functions as follows:

(1) Given a set of Pareto solutions, a starting design is identified and classified as the first

member of the product family. (2) A region of insignificant tradeoff is constructed about

the starting design in objective space. Any design located within the region of insignificant

tradeoff is considered insignificantly different from the starting design and is eliminated

from the set of candidate product family members. (3) Each remaining candidate prod-

uct family member is ranked according to the effect that its addition to the product family

would have on the variation among design variables. Specifically, the design resulting in

the lowest calculated standard deviation to mean ratio, summed across all design variables,

is selected as the next member of the product family. (4) A region of insignificant trade-

off is constructed about this design and any designs located within this space are removed

from the set of candidate product family members. Steps 3 and 4 are then repeated until all

points have either been included as a member of the product family or identified as being

insignificantly different from at least one product family member. Considering all products

in the family, if for any design variable the variation from product to product in the family

is sufficiently small, then that variable is identified as well suited to become common to the

entire family.

Chapter 4 introduces an interactive framework that is used in conjunction with con-

current Smart Pareto filtering in variable and objective spaces in the design of a combined

scale-based and module-based product platform [25]. In the first step of this interactive

process, the designer uses physical decomposition techniques to identify the major compo-

nents that comprise the finished products. Second, the designer identifies and summarizes,

in matrix form, the relationships that exist between each design variable and each product

component. Third, multiobjective optimization is used to identify a set of many designs

that are considered candidate product family members. Fourth, Smart Pareto filtering is

used to select product family members from among the candidate set previously identi-

fied. A scale-based product platform is simultaneously established using concurrent Smart

Pareto filtering and the component/variable relationships identified in the second step of

this process. Finally, the component/variable relationships are further used to determine

which product components are best suited to become modules and to determine the subset

6



of product family members that will use each module. In conjunction with the establish-

ment of each module, a designer specified sequence of optimization routines is used to

ensure that the three objectives of product family design, as noted above, are satisfied. As

a result, a combined scale-based and module-based product platform is established.

The three publications that constitute the following chapters collectively satisfy the

objectives of this thesis. Chapter 2 presents Pareto frontiers as candidate sets of product

family members and introduces the use of Smart Pareto filters for the selection of family

members. Chapter 3 builds upon the use of Smart Pareto filters by concurrently searching

design variable space, allowing for the simultaneous selection of product family members

and establishment of the product platform. Chapter 4 then applies concurrent Smart Pareto

filtering in the design of product families built upon a combined scale-based and module-

based platform.

In the final chapter of this work, conclusions are drawn and recommendations are

made for continuing work that could be completed in this area of research. Within this final

chapter, the applications and limitations of each of the methods presented throughout the

body of the thesis are discussed.
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Chapter 2

Product Family Design using a Smart Pareto Filter

2.1 Abstract

The design of product families requires that the family members be identified and

the optimal product platform be defined. In this paper, we present a Pareto filtering method

that can be used to determine the number of members to include in a product family and

identify the members themselves. The proposed method, coupled with common approaches

for defining the product platform, provides the designer with a new and alternative frame-

work for designing a product family. This method, which is not based on traditional market

segmentation data, is of particular use when such data is unavailable or is not easily gath-

ered or distilled by the company designing the product family. The method begins by

surveying the family’s multiobjective design space and identifying a discrete representa-

tion of the Pareto frontier. Importantly, the Pareto frontier captures the tradeoff among

all optimal product configurations. A designer-controlled filter is then used to reduce the

Pareto frontier to the spanning set of product configurations to include in the product fam-

ily. This spanning set, known in the literature as a Smart Pareto set, includes the members

needed to make a product family sufficiently diverse and provides adequate representation

of performance tradeoffs. As a near-final step in establishing the product family, the design

variables that are best suited as platform variables and those that are best suited as scalable

variables are determined using previously published methods. Finally, the product family,

sharing a common platform, is compared to the set of individually optimized products to

show the change in performance resulting from the implementation of the product family.

The result is a spanning set of products, designed on a common platform, that together

9



comprise a product family. Well-known case studies are used to demonstrate the method:

universal electric motor design and pressure vessel design.

2.2 Nomenclature

np Number of products in product family

nx Number of design variables

nµ Number of design metrics (objectives)

x Vector of design variables

µ Vector of design metrics (objectives)

g Vector of inequality constraints

h Vector of equality constraints

δ j Maximum allowable variation in design variable x j, across the product family

x∗j Vector of optimal values for design variable x j

∆x∗j Maximum difference among all values in x∗j , across the product family

Ji Aggregate objective function for product i

F Average fitness of product family

R Pressure vessel radius

L Pressure vessel length

Ts Thickness of pressure vessel shell

Th Thickness of pressure vessel head

V Volume of pressure vessel

P Maximum safe pressure of vessel

Γ Selling price of pressure vessel

Na Number of wire turns on armature

N f Number of wire turns on field, per pole

t Thickness of stator

I Electric current

Ls Stack length

Aa Armature wire cross-sectional area

10



A f Field wire cross-sectional area

r Outer radius of stator

η Efficiency

M Motor mass

T Motor torque

H Magnetizing intensity

Po Gross mechanical power output

Pi Electrical power input

Ms Stator mass

Ma Armature mass

Mw Windings mass

K Motor constant

φ Magnetic flux

2.3 Introduction and Literature Survey

The current world marketplace demands variety in consumer and commercial goods.

In order to be profitable and competitive in a market that emphasizes variety, manufactur-

ers are striving to produce, at mass production efficiencies, products that appeal to various

consumers. Product families can be leveraged to maintain or improve development and

production efficiencies while increasing product variety and as a result attract a wide range

of customers. A product family can be defined as a group of related products that are built

upon a common product platform and that balance product commonality and performance

diversity [4]. A product platform is defined in general terms as the basis of a product fam-

ily; the platform consists of features that are common to products within the family. The

literature specifically includes shared components, modules [26] and/or production pro-

cesses [27] in a product platform definition. By sharing components, processes, and other

features among products that are otherwise disparate, product families can decrease design

and manufacturing costs by using previously designed components and by economies of

scale [5].
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Product families are built on two primary types of platforms: module-based plat-

forms and scale-based platforms [6]. A module-based platform is the foundation for a

collection of related products that have differing functions through the addition or subtrac-

tion of modules. A scale-based platform is the foundation of related products that have

differing function through the scaling of non-platform design features.

To aid the design of scale-based product families, a number of optimization methods

have been developed [6]. Many of these methods have focused on identifying the optimal

set of and optimal values for the product platform variables that define the platform. The

objective of these methods is to create a family of sufficiently diverse products that possess

a high level of commonality and only minimal performance compromises, when compared

to individually optimized products. Traditionally, to optimize a scale-based product family

the following primary tasks are completed.

(1) Determine the number of and identify product family members through

market segmentation.

(2) Identify the variables that are held constant for all products in the product

family; the platform variables.

(3) Determine the most suitable value of each platform variable.

(4) Determine the value of each non-platform or scalable variable.

Market segmentation, an important part of the first step in the traditional approach, con-

structs a market grid that can be used to identify possible product family members. Market

segmentation first determines principal customer groups, then subdivides each group using

product performance/price gradations [18]. Thus used, market segmentation discretizes

the market to determine the number of product family members and identify the members

themselves. The set of products identified though segmentation make up the product family

that is subsequently optimized in steps two through four of the traditional approach.

To ensure that each member of the optimized product family lies within its re-

spective product performance envelope, as defined through market segmentation, equality

constraints are often defined so that each product will possess certain performance char-

acteristics [19, 20]. Performance characteristics that are not captured in the constraints are
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made design objectives and each product family member is individually optimized. The

use of market segmentation for defining product family members produces encouraging

results. However, this traditional approach depends on a company’s ability to identify and

segment the market. A task to which complete disciplines and full departments within a

company are often dedicated.

We pause now to make an important comment regarding the identification of prod-

uct family members. Both the market segmentation approach and the method presented

herein identify the product family members only in an approximate way. Each member is

only approximately identified because its performance characteristics will change, often in

a small way, with the establishment of the product platform. For this reason the product

family members are not completely identified until the platform has been established.

Additional methods that address the intricate and important tradeoff that often exists

between product commonality, functional performance, market performance, manufactur-

ing costs, and revenue have been developed to aid designers in defining a product family.

Nested Logit Demand Modeling [21] and leveraging existing market models [22] are two

approaches for considering the effect that increased commonality may have on the market

performance of product family members. The added power of these methods to consider

the effect of commonality decisions on market performance is valuable. These methods,

however, also require extensive knowledge of the product family’s potential market niche

as well as competing products.

In this paper, we propose an alternative method for designing a product family –

one that can be used when traditional market data is unavailable or is not easily obtained or

distilled by the company developing the product family. Such an alternative method may be

of particular interest to entrepreneurs or small to mid-sized companies planning to launch

a series of products built on a common platform but that do not have adequate resources

to gather/process the market data. Rather than identifying product family members by

constructing a market segmentation grid, the proposed method leverages the designer’s

knowledge of the product area and/or customer interests to select family members.

The method described herein begins by surveying the family’s multiobjective de-

sign space and identifying a discrete representation of the Pareto frontier, which is defined
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as the set of non-dominated design solutions. Depending on the design at hand, these

solutions may represent the optimal tradeoffs among size, weight, cost, number of passen-

gers, towing capacity, fuel type, or any number of additional performance considerations

and importantly, can be considered a set of candidate family members. Further, the set of

non-dominated design solutions is of particular interest for product family design because

it can be used to identify disparate designs that cover a wide range of performance en-

velopes thereby aiding the designer in finding a set of products that appeal to a wide range

of customers.

In the next step of the proposed method, a filter based on designer knowledge of

the product area and/or customer interests is used to reduce the discrete Pareto frontier to a

spanning set, known in the literature as a Smart Pareto set [28], where each point in the set

is a member of the product family. Because the filter only selects points that are sufficiently

diverse, the products selected to be members of the family are distinct, thereby minimizing

performance overlap within the product family. Next, the product platform is defined by

identifying the design variables that are best suited as platform variables as well as those

that are best suited as scalable variables. This is done using existing methods, one of which

is briefly described in the next section. The result is a product family that shares a common

platform and that is comprised of a spanning set of family members that provide adequate

variation in performance characteristics. The method concludes by comparing the product

family to the Smart Pareto set of individually optimized products to show the performance

compromises that result from the implementation of the product family.

The remainder of this paper is presented as follows. A preliminary review of the

simple platform method used in the example problems is included in Section 2.4. In Sec-

tion 2.5, the proposed Pareto filtering method is presented in its theoretical form. Examples

illustrating the application of the method are presented in Section 2.6, with our concluding

remarks given in Section 2.7.
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Figure 2.1: Identifying platform variables using each variable’s threshold of variation

2.4 Technical Preliminary: A Product Platform Definition Approach

This section briefly presents a typical method for defining the product platform [29].

It is presented here for completeness, as the method is used in both of the example problems

included in Section 2.6. The purpose of the method described in this section is to identify

which variables should be fixed across the complete product family, and what their values

should be.

Figure 2.1 depicts the framework for classifying the variables. Along the horizontal

axis of the plot, a discrete space represents the products in the product family; product 1,

product 2, and so on. Along the vertical axis of the plot are the variable values. The solid

line represents the variable x1, while the dashed line represents x2. The purpose of this plot

is to illustrate how the variables differ from product to product within the family.

A maximum allowable difference (δ j) in the values of a single design variable ( j),

across all products in the product family is provided by the designer for the identification of

platform variables. This maximum allowable difference is called the threshold of variation.

In vector form, the threshold of variation set is summarized by Equation 2.1.

δ = [δ1,δ2, ...,δnx ] (2.1)

15



Each design variable’s threshold of variation is used to determine if that variable is

well suited as a platform variable or if it is better suited as a scalable variable. For each

design variable x j where j = 1, ...,nx, the largest possible difference is taken between the

elements of the vector x∗j and the difference is then compared to the corresponding thresh-

old of variation, δ j. Mathematically, the process of comparison is defined as follows:

If:

δ
j
> ∆x∗j (2.2)

Where:

∆x∗j = maximum(x∗j)−minimum(x∗j) (2.3)

Then: x j is best suited as a platform variable.

From the comparison shown in Figure 2.1, it is seen that design variable x2 is best suited

as a scalable variable while x1 is well suited as a platform variable, because ∆x∗1 lies within

the limits of the envelope of allowable variation defined by δ1.

Once the platform variables are identified, the value of each one must be determined

in order to fully define the product platform and finalize family member identification. In

defining the product platform, the method explores platform variable values at the maxi-

mum, minimum, and mean values of each platform variable x∗j . If more than one of these

values is found to satisfy all design constraints, the value that introduces the least amount

of change, as compared to the individually optimized products, is selected. It is important

to note that the establishment of the platform will likely move one or more members off

the Pareto frontier. This effect will generally become more extensive as the product family

becomes more common (i.e., more variables become platform variables). This is a pri-

mary conflict to be mitigated during product family design; thereby achieving maximum

commonality with minimal deviation from performance optimality.
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2.5 A Framework for Determining the Number of Family Members and Identifying
the Members Themselves

In this section, we introduce a design framework that can be used to determine the

number of members to include in a product family, and identify the members themselves.

The method requires that: (i) a multiobjective optimization problem can be formulated that

captures the objectives of the product family, (ii) the problem can be solved for a set of

solutions comprising a Pareto frontier, and (iii) the designer has sufficient experience in

the product area to be able to specify intuitive parameters that define design distinctiveness

(these parameters are defined shortly). The proposed framework is presented according to

the flow diagram of Figure 2.2 and is comprised of the following steps:

Step 1 Develop a multiobjective optimization statement by identifying the key

performance objectives and constraints for the product family. From the op-

timization statement, generate a discrete Pareto frontier representation of the

objective tradeoffs.

Step 2 Identify a spanning set of products that represent the multiobjective de-

sign space by using a Smart Pareto filter. The spanning set of Pareto designs

consists of product family members and each is notably distinct from any other

in the Smart set.

Step 3 Define the product platform by first identifying the design variables that

are best suited as platform variables and then by determining the best-fit value

for each platform variable.

Step 4 Identify the performance compromise (deviation from Pareto frontier)

that results from the implementation of the product family by comparing the

Smart Pareto set of individually optimized products to the products in the prod-

uct family.

The subsections that follow present steps 1, 2, and 4 in detail. Recall that step 3 was

presented in Section 2.4.
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Formulate Multiobjective Problem

Step 3: Determining the Product Platform

Step 2: Identifying the Family Members

Generate a Discrete Pareto Frontier
Representation

Step 1: Developing Optimization Problem Statement

Use Filter to Determine the Number of Family
Members and Identify Members Themselves

Step 4: Evaluating the Cost of Implementation

Determine the Best-Fit Value for Each
Platform Variable

Assess Performance Compromises
Required to Establish Product Family

Determine the Smart Pareto Filter Parameters

Identify Variables that Can Be Held Constant for All
Products in the Family; Platform Variables

Figure 2.2: Pareto filtering approach to product family design

2.5.1 Multiobjective Optimization Problem

In product family design, multiobjective optimization is often used to evaluate the

tradeoff that exists between the conflicting objectives that define product performance

[30, 31]. We note that although multiobjective problems are not used exclusively, most

product family design problems can be formulated as a multiobjective problem. Mathe-

matically, a multiobjective optimization problem can be defined as shown in problem 1.
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Problem 1 (P1): Generic Multiobjective Optimization

min
x

µ(x) (2.4)

subject to:

g(x)≤ 0 (2.5)

h(x) = 0 (2.6)

xl ≤ x ≤ xu (2.7)

Multiobjective optimization problems, such as P1, are of interest in the selection of

product family members because they result in many Pareto solutions. A Pareto solution

is one where any improvement in one design objective can only occur at the expense of at

least one other objective [32] and the complete set thereof comprise the Pareto frontier. Im-

portantly, the Pareto frontier is a representation of the tradeoffs between conflicting design

objectives. Figure 2.3(a) shows a Pareto frontier for a bi-objective problem. The Pareto

frontier is of interest in the identification of product family members because it consists

of every optimal combination of product performance objectives that could be included

in the product family. Together, these designs comprise a set of candidate product family

members. In general we don’t identify an infinitely large set of designs that complete the

frontier but rather a discrete set that adequately represents the frontier.

2.5.2 Using the Smart Filter to Determine the Number of Product Family Members

Through the generation of the Pareto frontier, candidate product family members

are identified. Mattson et al. [28] observe, however, that many designs, corresponding to

points along the Pareto frontier, are practically indistinguishable from one another. Nelson

et al. [31] note that as products in a family become excessively common, the effectiveness

of the product family decreases as the performance characteristics of the products within

the family become less distinct. The method purposed in this paper identifies a set of

family members that balances product commonality, performance, and distinctiveness by
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Figure 2.3: (a) Discrete representation of Pareto frontier (b) 2-D Smart Pareto filter (c)
Smart Pareto set of solutions corresponding to family members
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identifying a spanning set of Pareto solutions, including only those points that correspond

to designs of sufficiently different, yet optimal, product performance.

A Smart Pareto filter is used to reduce the Pareto frontier to a minimal set of dis-

tinct designs, called the Smart Pareto set [28]. Smart Pareto filters perform pairwise com-

parisons of designs in a Pareto set. When the comparison concludes that the points are

overly similar, one is removed from the set. The pairwise comparison, and consequently

the Smart Pareto filter, is based on two designer defined parameters, ∆t and ∆r – as shown

in Figure 2.3(b), for the bi-objective case. Specifically, ∆t and ∆r define a region called

the Region of Insignificant Tradeoff. In Figure 2.3(b), the region of insignificant tradeoff is

the space inside the geometric shape centered on the point labeled µ̂ . Any point inside the

region of insignificant tradeoff is deemed to be not significantly different than µ̂ . Thus, the

filter removes any point within the region of insignificant tradeoff, and defines the next of

the remaining points in the set as µ̂ and repeats.

To execute the filter, the designer must be able to specify ∆t and ∆r. The two

parameters can be understood by the following; when comparing two Pareto points (or

designs), any difference in µi that is less than ∆ti is considered to be insignificant. As

such, one of the two designs being compared should be removed since it is insignificantly

different – at least in one objective. When, however, the difference in µi, between two

points, is within ∆ti, but the change in another objective (µ j) is significantly large (greater

than ∆r j), then the design should not be removed. In other words, any change in µ j that

is larger than ∆r j is deemed significant – regardless of how small the change in another

objective is.

The originally published Smart Pareto filter configuration [28], described above,

performs well for problems where a notable increase or decrease in an objective value are

of equal interest. However, when cost, for example, is included as an objective and all other

objectives show insignificant tradeoffs, a notable decrease in cost is of interest but a notable

increase in cost is of no interest, regardless of magnitude. Improving the general usefulness

of the Smart Pareto filter, we have modified the filter to allow the designer to specify differ-

ent levels of notable change in an objective, for increasing and decreasing objective values

respectively. In other words, the Smart Pareto filter thus modified preferentially accepts an
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Figure 2.4: Smart Pareto filter with unequal levels of objective notability

objective change in one direction over the other. This modification allows for the correct

treatment of objectives such as noise level, efficiency, and weight. The difference in levels

of notable change for increasing and decreasing values of µ2 can be seen by comparing ∆r1
2

and ∆r2
2 in Figure 2.4.

To provide the designer with the increased flexibility in characterizing the needed

product family, we use separate sets of ∆ti and ∆ri = ∆r1
i ,∆r2

i , ...,∆rnµ

i for each objective

and perform the filtering. We execute the filter on a non-normalized set of data so as to

make the declaration of ∆ti and ∆ri physically meaningful. When determining the magni-

tude of the filter parameter values, it is helpful to consider each parameter with respect to

market preferences. ∆ti represents a small change in objective performance that would be

considered insignificant by consumers. ∆ri represents a larger change in objective perfor-

mance that consumers would consider noteworthy in defining product variants regardless of

insignificant changes in other objectives. The magnitude of each parameter should be cho-

sen to reflect the knowledge available about these market preferences as closely as possible.

The filter algorithm is detailed in Mattson et al. [28]

The designs in the Smart Pareto set provide a minimal representation of candidate

members of the product family as is shown in Figure 2.3(c). From this we conclude that

the Smart Pareto set of designs adequately covers the required product performance range,

with minimal intra-family product competition. The Smart Pareto set, therefore, consists
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of the spanning set of needed product family members. Each design in the Smart Pareto set

becomes a member of the product family, thereby determining the number of members to

include in the product family as well as identifying the members themselves.

In using a Smart Pareto filter for the identification of product family members, it

is important to note the following. We only consider designs lying on the Pareto frontier

because any other design can be improved in every objective. The selection of product

designs that will become members of the product family, from among the Pareto optimal

solution set, is a somewhat subjective process that depends the filter starting point, as de-

scribed in Mattson et al. [28]. In other words, the number of members determined to be

included in the product family and the members themselves that are identified may vary in

a minor way as the filter starting point is changed.

By nature of the Smart Pareto filter and the multiobjective optimization, the prod-

ucts that make up the Smart Pareto set identified in this section have mathematically optimal

performance and an adequate level of distinctiveness. This set, consisting of product fam-

ily members, must now be evaluated to determine the common platform upon which the

product family is to be built. Many methods for establishing scale-based product platforms

have been developed and could be implemented at this point to further define the product

family [6]. For simplicity, the method presented in the Section 2.4 is used in the example

problems that follow.

2.5.3 Characterizing the Performance Cost of Product Family Implementation

After defining a product platform using one of many available platform approaches,

we seek to classify the performance change resulting from the establishment of the product

family. To do this, the Smart Pareto set of individually optimized products and the platform-

based product family are compared based on objective performance. In the establishment

of a common platform, a number of performance changes can occur. A single design may

be unaffected by the platform, it may decrease in performance, or it may shift to another

Pareto optimal point. A set of designs may also become excessively similar through the

implementation of the product platform. To eliminate products that may have become

undesirable due to the establishment of the product platform, the designer may check the
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Figure 2.5: Performance change of product family due to platform implementation

Pareto optimality of the product family members and/or use a second iteration of the Smart

Pareto filter to remove excessively similar products.

The change in family performance can be evaluated numerically by calculating a

family fitness value. The family fitness value is an average measure of objective func-

tion value across the entire product family and is calculated using an aggregate objective

function as shown in Equation 2.8. Note that this measure of family fitness exclusively

considers the effect that establishing a platform has on the average objective performance

of the family as a whole and does not consider commonality or diversity in its calculation.

F =
np

∑
i=1

(Ji)/np (2.8)

In the case of a minimization problem, a smaller family fitness value corresponds to a

higher average performance for the product family. Figure 2.5 shows the comparison of a

bi-objective product family and the Smart Pareto set of products from which the product

family was derived. In the section that follows, two well-known case studies are examined

using the proposed framework.
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2.6 Example Problems

To illustrate the application of the proposed method, two example problems are

included in this section. The first problem is the design of a product family of pressure

vessels. The second problem is the design of a family of universal electric motors. Both

example problems are taken from a testbed of product family optimization problems [33]

and have been reformulated as multiobjective problems.

2.6.1 Pressure Vessel Example Problem

The example that follows shows the application of the proposed method in the de-

sign of a family of pressure vessels. Recall that the method requires that a meaningful

optimization problem be formulated, that the problem be solved for set of Pareto solu-

tions, and that the designer specify parameters that define design distinctiveness (∆t and

∆r). Specifically, in this example, we show that the number of product family members

can be determined and that the members themselves can be identified using the proposed

approach. Figure 2.6 shows a schematic of the generic pressure vessel. Problem 2 details

the optimization problem statement used.

Problem 2 (P2): Multiobjective Optimization of a Family of Pressure Vessels

min
x

[−V (x) −P(x) Γ(x)]T (2.9)
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subject to:

V −30 m3 ≤ 0 (2.10)

10 m3−V ≤ 0 (2.11)

P−30 MPa ≤ 0 (2.12)

10 MPa−P ≤ 0 (2.13)

0 m ≤ R ≤ 1.5 m (2.14)

0 m ≤ L ≤ 7 m (2.15)

0.0063 m ≤ Ts ≤ 0.0762 m (2.16)

0.0063 m ≤ Th ≤ 0.0762 m (2.17)

where:

x = [R,L,Ts,Th] (2.18)

V = πR2L+4/3πR3 (2.19)

P = minimum
[

SyTs

R+0.06Ts
,

10SyTh

5R+Th

]
(2.20)

Cm = 2πρ(CsRTsL+ChR2Th +CsrTsR(Lsr −L)) (2.21)

Cw = 2πρ(2/9CwmT 2
s L+4/9CwmπT 2

s R) (2.22)

Γ = 0.673(Cm +Cw)+2700 (2.23)

The fixed parameters for this problem are material density, ρ = 7800 kg/m3; cost of shell

material, Cs = $0.80/kg; cost of head material, Ch = $2.00/kg, cost of raw plate material,

Csr = $0.30/kg; length of raw material, Lsr = 7 m; and cost of welding material, Cmw =

$15.00/kg.

Solving P2 results in a discrete representation of the Pareto frontier, with each

Pareto solution representing a candidate family member. Because each Pareto solution

represents a potential product family member, it is important that the discrete Pareto fron-

tier provide adequate and even representation of the entire design space so as to not ignore

large groups of possible product family members. An ε-constraint method results in an

26



Table 2.1: Pressure vessel product family members before platform is selected

R L Ts Th
0.68 5.98 0.0063 0.0063
0.64 7.00 0.0108 0.0063
0.64 7.00 0.0156 0.0077
0.80 7.00 0.0210 0.0103
0.84 7.00 0.0078 0.0063
0.84 7.00 0.0142 0.0070
0.92 7.00 0.0243 0.0120
1.00 7.00 0.0093 0.0063
1.00 7.00 0.0187 0.0093
1.07 7.00 0.0140 0.0069
1.07 7.00 0.0241 0.0119
1.07 7.00 0.0302 0.0149

V P Γ

10 10.00 3.66
10 18.00 4.27
10 26.00 5.04
16 27.95 6.79
18 10.00 4.30
18 18.00 5.50
22 27.97 8.35
26 10.00 4.96
26 20.00 7.26
30 14.00 6.26
30 24.00 9.19
30 30.00 11.12

adequate and relatively even distribution of Pareto solutions for Problem P2. The resulting

Pareto frontier is shown in Figure 2.7(a).

Using the following values for the ∆t and ∆r parameters, the resulting set of candi-

date family members is reduced to a Smart Pareto set of designs that consists of the product

family members: ∆tV = 3 m3, ∆rV = 7.5 m3, ∆tP = 3 MPa, ∆rP = 7.5 MPa, ∆tΓ = $700,

and ∆rΓ = $1500. Figure 2.7(b) shows the designs included in the product family. Note

that Figure 2.7(b) retains the overall shape of the design space shown in Figure 2.7(a) with

a more sparse distribution of Pareto solutions. The Smart Pareto solutions are summarized

in Table 2.1. The first four columns show the design variable values, and the final three

columns show the functional objectives values. Each row is a design. At this point, the

common platform has not yet been established. For this reason, the Smart Pareto set is

only an approximation of the the product family. As discussed earlier, we can calculate the

family fitness both before and after the establishment of the common product platform. In

this way, we can estimate the performance cost to implement the family. The family fitness

value for the pressure vessels prior to establishing a common platform is 1.5041.

Given thresholds of variation as follows: δR = 0.3 m, δL = 1.2 m, δTs = 0.005 m,

and δTh = 0.005 m it is concluded, by comparing the maximum difference in each de-
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Figure 2.7: (a) Pareto frontier, candidate family members (b) Smart Pareto set, product fam-
ily members without a common platform (c) Smart Pareto set without a common platform
(o) verses product family members sharing a common platform (x)
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11.49 10.00 3.73 0.68 7.00 0.006 0.006

Prod. V P Ts ThLRΓ

10.00 18.00 4.27 0.64 7.00 0.011 0.006

10.00 26.00 5.04 0.64 7.00 0.016 0.008

16.00 27.95 6.79 0.80 7.00 0.021 0.010

18.00 10.00 4.30 0.84 7.00 0.008 0.006

18.00 18.00 5.50 0.84 7.00 0.014 0.007

22.00 27.97 8.35 0.92 7.00 0.024 0.012

26.00 10.00 4.96 1.00 7.00 0.009 0.006

26.00 20.00 7.26 1.00 7.00 0.019 0.009

30.00 14.00 6.26 1.07 7.00 0.014 0.007

30.00 24.00 9.19 1.07 7.00 0.024 0.012

30.00 30.00 11.12 1.07 7.00 0.030 0.015

KEY DIMENSIONS

Figure 2.8: Pressure vessel product family members with platform

sign variable, across all products in the family, to its respective threshold of variation, that

length, L, is the only design variable that is adequately suited as a platform variable. The

platform variable value of L is set to 7.0 m because, in this case, selecting the maximum

maintains the feasibility of all products in the family and minimizes change as compared

to the individual optimums. The product family sharing L as common platform is shown in

Figure 2.8.

To summarize the change in performance resulting from the implementation of the

product family, Figure 2.7(c) shows a plot of both the Smart Pareto set of products and the

product family members sharing a common platform. By comparing the values shown in

Table 2.1 and Figure 2.8 note that the performance of only one product changed. Incidently,

the change in performance resulted in the shift of the design to another Pareto optimal

solution. Note that according to the parameters used in the Smart Pareto filter, the resultant

29



design is still significantly different from the other products in the family and is therefore

included in the final set of family members. The calculated family fitness value for the

family built on a platform of common length is 1.7984.

Alternative Case:

Because each radius requires a different die for the manufacture of each head, se-

lecting R and Th as the scalable variables is not very logical and would likely be cost pro-

hibitive. The selection of poorly suited variables as platform variables is not altogether

uncommon in product family optimization, as was illustrated by Simpson’s universal elec-

tric motor example where radius was chosen as a platform variable rather than the more

easily scaled stack length [6]. As an alternative solution to the pressure vessel platform

previously discussed, a set of four radii values have been selected as platform values, by

comparing δR to discrete intervals of products. The resultant changes in performance are

summarized in Figure 2.9. Figure 2.10 compares the product family built on the set of

platforms values to the original Smart Pareto set of products. The product family built on

four radii platforms closely matches the Smart Pareto set. This product family could also

be manufactured at lower cost because only four dies would be required. For the family

built on a platform of four radii, the family fitness value is 1.7763.

By comparing the family fitness values of the two product family formulations,

the difference in the performance can be seen. Because the optimization minimized each

objective, a decrease in the family fitness value indicates an improvement in the average

performance of the product family. The product family built on a common length has

a higher fitness value than the family built on four radii values. Further, recall that the

family with radii as its platform would be less costly to manufacture and should therefore

be considered in the formulation of the product family.

2.6.2 Universal Electric Motor Example Problem

The electric motor example problem included in this section is a tri-objective prob-

lem based on the well-known bi-objective problem [33]. Previous work has solved this

problem for a specified number of product family members each with a predetermined
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10.00 10.00 3.66 0.68 5.98 0.006 0.006

Prod. V P Ts ThLRΓ

11.49 16.87 4.39 0.68 7.00 0.011 0.006

11.49 24.36 5.20 0.68 7.00 0.016 0.008

18.00 10.00 4.30 0.84 7.00 0.008 0.006

18.00 18.00 5.50 0.84 7.00 0.014 0.007

18.00 26.45 7.02 0.84 7.00 0.021 0.010

26.00 10.00 4.96 1.00 7.00 0.009 0.006

26.00 20.00 7.26 1.00 7.00 0.019 0.009

26.00 25.88 8.83 1.00 7.00 0.024 0.012

30.00 14.00 6.26 1.07 7.00 0.014 0.007

30.00 24.00 9.19 1.07 7.00 0.024 0.012

30.00 30.00 11.12 1.07 7.00 0.030 0.015

KEY DIMENSIONS

Figure 2.9: Pressure vessel product family members with four platforms
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Figure 2.10: Product family of pressure vessels built on four radii platforms (x) verses
Smart Pareto set (o)
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torque constraint, as defined through market segmentation. In this formulation, torque is

included as an objective and Smart Pareto filtering is used to determine the number of mem-

bers to include in the product family as well as identify the members themselves. Note that

two distinct sets of filter parameters are used with the Smart filter resulting in two different

product families. This example illustrates the Smart filter’s capability of leveraging de-

signer knowledge of the product area and/or customer interests to define a product family.

The problem statement is detailed in Problem 3.

Problem 3 (P3): Multiobjective Optimization of a Family of Electric Motors

min
x

[−T (x) M(x) −η(x)]T (2.24)

subject to:

t− r < 0 (2.25)

H−5000 Ampere/m < 0 (2.26)

0.15−η ≤ 0 (2.27)

M−2.0 Kg ≤ 0 (2.28)

0.05 Nm−T ≤ 0 (2.29)

T −0.5 Nm ≤ 0 (2.30)

Po−300 W = 0 (2.31)

where:

x = [Na,N f , t, I,Ls,Aa,A f ,r] (2.32)

η = Po/Pi (2.33)

M = Ms +Ma +Mw (2.34)

T = Kφ I (2.35)
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Table 2.2: Electric motor product family members before platform is selected, using first
set of filter parameters

Na N f t I Ls Aa A f r
1156 54 6.88 5.98 26.16 0.25 0.25 25.60
1149 51 6.52 5.95 24.48 0.24 0.24 24.34
1065 49 5.70 5.83 23.74 0.21 0.21 22.67
1056 50 5.30 5.35 21.69 0.19 0.19 21.20
723 64 4.61 4.24 25.85 0.17 0.17 21.48
726 66 4.04 3.16 17.60 0.21 0.21 16.58

Torque Mass η

0.5 0.763 0.436
0.422 0.656 0.439
0.33 0.534 0.447

0.242 0.436 0.488
0.164 0.429 0.615
0.05 0.246 0.826

Additional supporting equations were used in the derivation of the objective functions as

detailed within the problem testbed [33].

P3 was solved using the Normal Constraint method [32], thereby generating a dis-

crete representation of the Pareto frontier. The modified smart Pareto filter was used to

preferentially select products of lower mass and higher efficiency; filter parameters were

defined as follows:

(1)∆η ≤ 0.05 is insignificant, an increase ∆η > 0.12 is notable, and no feasible

decrease in η is considered noteworthy.

(2)∆M ≤ 0.25 Kg is insignificant, a decrease ∆M > 0.75 Kg is notable, and no

feasible increase in mass is considered noteworthy.

(3) ∆T ≤ 0.03 Nm is insignificant and ∆T > 0.075 Nm is noteworthy.

The filter determined the number of members to include in the product family and identi-

fied the members themselves. The resultant set of product family members is summarized

in Table 2.2. Family fitness was calculated according to Equation 2.8, resulting in a fitness

value of 1.5518. Figure 2.11 shows the discrete representation of the Pareto frontier and

a comparison plot of the Smart Pareto set verses the product family, showing the perfor-

mance changes resulting from the establishment of the platform. Note that the resulting

Smart Pareto set is a curve rather than a surface as might be expected. This is the result of

the designer’s preference for low mass and high efficiency as specified by conditions 1 and

33



2 above. Careful examination of these conditions shows that they cause large sets of points

to be removed from the efficiency-mass plane, at various intervals of torque.
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Figure 2.11: (a)Pareto frontier for universal electric motor, (b) Smart Pareto set (o) verses
product family (*) using first set of filter parameters

Using a second set of filter parameters, as follows:

(1)∆η ≤ 0.05 is insignificant, an increase ∆η > 0.12 is notable, and no feasible

decrease in η is considered noteworthy.

(2)∆M ≤ 0.25 Kg is insignificant, a decrease ∆M > 0.50 Kg is notable, and no

feasible increase in mass is considered noteworthy.

(3) ∆T ≤ 0.03 Nm is insignificant and ∆T > 0.04 Nm is noteworthy.

A second product set was identified that more closely matches the benchmark set [33].

This set of product family members, family fitness of 1.5442, is summarized in Table 2.3.

Figure 2.12 shows the Smart Pareto set of products as well as the product family sharing a

common platform.

It is important to note that the two different sets of filter parameters used in this

example result in a varied number of product family members. Notably, the product set

identified by the first set of filter parameters consists of fewer products that span the same

design space and have more performance distinctiveness.
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Table 2.3: Electric motor product family members before platform is selected, using
second set of filter parameters

Na N f t I Ls Aa A f r
1156 54 6.88 5.98 26.16 0.25 0.25 25.60
1162 54 6.74 5.86 25.46 0.25 0.25 25.03
1149 51 6.47 6.00 23.45 0.24 0.19 24.20
1072 50 5.86 5.79 24.20 0.22 0.22 23.15
1041 48 5.81 5.93 21.32 0.20 0.20 22.62
1057 63 6.77 4.80 19.90 0.20 0.21 24.13
1044 66 5.20 4.02 25.07 0.23 0.23 21.02
723 64 4.61 4.24 25.85 0.17 0.17 21.48
668 67 3.95 3.55 23.55 0.18 0.18 18.90
726 66 4.04 3.16 17.60 0.21 0.21 16.58

Torque Mass η

0.5 0.763 0.436
0.46 0.719 0.445

0.403 0.624 0.435
0.349 0.566 0.451
0.292 0.471 0.44
0.248 0.504 0.544
0.205 0.53 0.649
0.164 0.429 0.615
0.091 0.329 0.736
0.05 0.246 0.826
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Figure 2.12: Smart Pareto set (o) verses product family (*) using second set of filter pa-
rameters

For each of these product sets a common platform was determined. Figures 2.11

and 2.12 show the change in performance that resulted from the implementation of each

product platform. The resulting product families are summarized in Tables 2.4 and 2.5.

The family fitness values using the first and second sets of designer preferences, 1.5579

and 1.5484 respectively, are slightly higher (decrease average performance for a minimiza-
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Table 2.4: Electric motor product family members after platform is selected, using first set
of filter parameters

Na N f t I Ls Aa A f r
1156 46 5.51 5.98 34.31 0.27 0.27 21.98
1149 46 5.51 5.95 29.25 0.25 0.20 21.98
1065 47 5.51 5.83 25.15 0.21 0.21 21.98
1056 52 5.51 5.35 20.28 0.19 0.19 21.98
723 65 5.51 4.24 25.36 0.17 0.17 21.98
725 88 5.51 3.16 10.34 0.23 0.23 21.98

Torque Mass η

0.5 0.78 0.436
0.422 0.663 0.439
0.33 0.535 0.447

0.242 0.437 0.488
0.164 0.432 0.615
0.05 0.27 0.826

Table 2.5: Electric motor product family members after platform is selected, using second
set of filter parameters

Na N f t I Ls Aa A f r
1156 47 5.63 5.98 33.53 0.26 0.26 22.27
1162 48 5.63 5.86 31.30 0.26 0.22 22.27
1149 47 5.63 6.00 27.07 0.24 0.22 22.27
1072 48 5.63 5.79 26.03 0.22 0.21 22.27
1041 47 5.63 5.93 21.89 0.20 0.20 22.27
1057 58 5.63 4.80 22.61 0.21 0.21 22.27
1044 70 5.63 4.02 22.59 0.23 0.23 22.27
723 66 5.63 4.24 24.78 0.17 0.17 22.27
669 79 5.63 3.55 17.81 0.17 0.18 22.27
725 89 5.63 3.16 10.11 0.23 0.23 22.27

Torque Mass η

0.5 0.777 0.436
0.46 0.73 0.445

0.403 0.626 0.435
0.349 0.567 0.451
0.292 0.471 0.440
0.248 0.501 0.544
0.205 0.529 0.649
0.164 0.433 0.615
0.091 0.337 0.736
0.05 0.272 0.826

tion problem) for each product family due to the performance changes that result from the

implementation of the product platform.

In comparing the results from the second set of designer-preferences to the bench-

mark family, it is noted that the family fitness of the product family from this example is

slightly higher than that of the benchmark family, 1.5442 compared to 1.5260. The higher

family fitness of the family from this example indicates a decrease in objective performance

of 1.2 percent.
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2.7 Concluding Remarks

This paper presented a method of product family design that can be used to deter-

mine the number of members to include in a product family, identify the members them-

selves, and define the product platform. The method is of particular use when traditional

market segmentation data is unavailable or is not easily gathered or distilled by the company

designing the product family. According to the methodology, (i) a discrete representation

of a Pareto frontier comprised of candidate family members is identified. (ii) A filter is

then used to identify a Smart Pareto set of products that constitutes the product family.

This Smart Pareto set includes the members needed to make a product family sufficiently

diverse and represents the least number of products that provide adequate representation of

product performance tradeoffs. (iii) A designer-specified maximum allowable difference

in each design variable, threshold of variation, is used to determine which of the design

variables are best suited as platform variables and which are best suited as scalable vari-

ables. (iv) Finally, the product family, sharing a common platform, is compared to the set

of individually optimized products to show the performance change that results from the

implementation of the product family. The result is a minimal set of products, designed on

a common platform, that together comprise a product family.

The approach presented herein was demonstrated with two popular benchmark

problems; the design of a family of pressure vessels and the design of a family of elec-

tric motors. In both cases, the design framework resulted in a conceivable and reasonable

family of products.

We note that in some cases, product families will require highly varying spaces be-

tween products in the product family along one or more objective axes. Such variability

may be required when tightly grouped subsets of products can be used, for example, to

discourage competitors from entering a particular market segment. The filtering method

presented in this paper does not provide a means for the designer to specify filter parame-

ters as a function of position along an objective axis and therefore does not generally result

in highly varying spaces between family members, although it can happen naturally de-

pending on the objective functions scales and the nature of the Pareto frontier. This type

of flexibility in specifying filter parameter would allow the filter to identify product fami-
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lies with highly varying spaces between products in that family. The development of this

flexibility is the focus of our next phase of research in this area.
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Chapter 3

Product Family Member and Platform Identification with Concurrent
Variable and Objective Space Smart Pareto Filtering

3.1 Abstract

Product families are frequently used to provide consumers with a variety of ap-

pealing products and to help maintain reasonably low production costs for manufacturers.

Three common objectives in the design of product families are used to balance the inter-

ests of both consumers and manufacturers. These objectives are to maximize product (i)

performance, (ii) distinctiveness as perceived by the consumer, and (iii) commonality as

perceived by the manufacturer. To accomplish these objectives, two general approaches to

product family design are frequently implemented: scale-based and module-based design.

Important to both of these design approaches is the selection of product family members

and the identification of common features that can be shared by family members. In this

paper, a Pareto filter that concurrently considers both objective and variable spaces is used

to identify a product family where each product in the family possesses optimal and dis-

tinct performance characteristics. Simultaneously, the filter also identifies features that can

be shared by the products in the family. The filter functions as follows: (1) Given a set of

Pareto solutions, a starting design is identified and classified as the first member of the prod-

uct family. (2) A region of insignificant tradeoff is constructed about the starting design in

objective space. Any design located within the region of insignificant tradeoff is considered

insignificantly different from the starting design and is eliminated from the set of candidate

product family members. (3) Each remaining candidate product family member is ranked

according to the effect that its addition to the product family would have on the variation

among design variables. Specifically, the design resulting in the lowest calculated standard
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deviation to mean ratio, summed across all design variables, is selected as the next member

of the product family. (4) A region of insignificant tradeoff is constructed about this design

and any designs located within this space are removed from the set of candidate product

family members. Steps 3 and 4 are then repeated until all points have either been included

as a member of the product family or identified as being insignificantly different from at

least one product family member. Considering all products in the family, if for any design

variable the variation from product to product in the family is sufficiently small, then that

variable is identified as well suited to become common to the entire family. A well-known

universal electric motors problem is used to demonstrate the method.

3.2 Nomenclature

x Vector of design variables

nx Number of design variables

µ Vector of design metrics (objectives)

nµ Number of design metrics (objectives)

g Vector of inequality constraints

h Vector of equality constraints

nϕ Number of candidate product family members (solutions on discrete Pareto frontier)

∆t,∆r Filter parameters defining a region of practically insignificant objective-tradeoff

∆pi Summation of the squared differences between each variable in product pi and the mean

of the same variable across all candidate family members

si Summation of the standard deviation to mean ratios for all variables in product pi

x̄ j
j Mean of design variable x j for the product set including Smart Pareto designs

and product pi

nξ Number of products in product family

ξ Matrix of product family members prior to the establishment of the product platform

ψ Matrix of product family members after the establishment of the product platform

Jpi Aggregate objective function for product pi

F Average fitness of product family
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∆Fnv Normalized change in family fitness per platform variable

nv Number of platform variables

Na Number of wire turns on armature

N f Number of wire turns on field, per pole

t Thickness of stator

I Electric current

Ls Stack length

Aa Armature wire cross-sectional area

A f Field wire cross-sectional area

r Outer radius of stator

η Efficiency

M Motor mass

T Motor torque

H Magnetizing intensity

Po Gross mechanical power output

Pi Electrical input power

Ms Stator mass

Ma Armature mass

Mw Windings mass

K Motor constant

φ Magnetic flux

3.3 Introduction and Literature Survey

In today’s world marketplace, consumers increasingly demand variety, customiza-

tion, and personalization in the goods they purchase. For manufacturers, economically

satisfying these demands is a notable challenge. In many instances, however, product fam-

ilies provide consumers a variety of appealing products and help manufacturers maintain

reasonably low production costs through increases in economies of scale and scope [3].

Three goals, common in the design of product families, are considered when balancing the
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interests of both consumers and manufacturers. These goals are to maximize product (i)

performance, (ii) distinctiveness, and (iii) commonality [4, 5]. In the literature, a number

of design and optimization approaches exist that address the three goals of product family

design [6]. Many of these approaches identify a set of design features that are shared by

product family members. In the literature, this set of shared features is known as a product

family platform [34].

Traditionally, product families have been built on two primary platform types:

module-based platforms and scale-based platforms [35]. A module-based platform is the

foundation for a collection of related products that have differing functions through the

addition or subtraction of modules. A scale-based platform is the foundation of related

products that have differing function through the scaling of non-platform design features.

Essential to product families built on either type of platform are the selection of product

family members and the identification of product platform features.

Many of the approaches included in the literature use a heuristic tool, market seg-

mentation, to identify product family members [36]. The set of product family members

thus identified is subsequently optimized to improve product performance and to iden-

tify a product platform. These approaches produce encouraging results but may introduce

sub-optimality because product family member identification is completed independent of

platform selection. Improved product family optimality, in many cases, can be achieved

when the selection of product family members and the identification of product platform

features are completed simultaneously.

Additionally, when sufficient market data is unavailable or is not easily obtained or

distilled by the company developing the product family, traditional segmentation methods

become difficult to implement. For example, entrepreneurs and small to mid-sized com-

panies may not have a dedicated marketing department or the financial resources needed

to purchase market research from an outside firm. When planning to launch a series of

products built on a common platform, these small companies may struggle to gather and

process the market data needed to construct the segmentation grid traditionally used to

identify product family members. As an alternative to traditional segmentation, the au-

thors previously introduced the use of Smart Pareto filters as a method for selecting family
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members [23]. Thus used, Smart Pareto filtering leverages the designer’s knowledge of the

product area and/or customer interests when selecting members of a product family.

In this paper, multiobjective optimization is used to identify a set of candidate prod-

uct family members and concurrent Smart Pareto filtering in objective and variable spaces

is used to simultaneously select product family members and identify the product family

platform. The method requires that a meaningful multiobjective optimization problem be

formulated and solved for a discrete representation of a Pareto frontier. A Smart Pareto

filter is then used to eliminate overly similar designs and thereby select product family

members from among the Pareto solutions.

The filtering of the Pareto frontier is important to product family member selection

because, as Mattson et al. [28] observe, many designs, corresponding to solutions within

the discrete representation of the Pareto frontier, are practically indistinguishable from one

another. Further, Nelson et al. [31] note that the effectiveness of the product family de-

creases as the performance characteristics of the products within the family become less

distinct. Traditional Smart Pareto filters [28], including the filter previously used by the

authors for family member selection [23], function in objective space only. However, the

concurrent Smart Pareto filter presented herein differs from previous filters in that in addi-

tion to searching in objective space, it seeks to minimize variable space variations during

the selection of the product family members, thereby improving the ease with which the

product platform is established.

The filter functions as follows: (1) Given a set of Pareto solutions, a starting design

is identified and classified as the first member of the product family. (2) A region of prac-

tically insignificant objective-tradeoff is constructed about the starting design in objective

space. Any design located within the region of insignificant tradeoff is determined to be

indistinguishable from the starting design and is removed from the set of candidate product

family members. (3) Each remaining design is considered as a subsequent member of the

product family and is ranked according to the effect that the addition of each would have

on the variation among the design variables. Specifically, the design causing the small-

est increase in the calculated standard deviation to mean ratio, summed across all design

variables, is selected as the next family member. (4) A vector space is then constructed
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about the subsequent design and any additional designs located within region of insignif-

icant tradeoff are again removed from the set of candidate family members. Steps 3 and

4 are repeated until all points have either been included in or deemed unimportant to the

product family.

The remainder of this paper is presented as follows. A preliminary review of a

generic multiobjective optimization problem is included in Section 3.4. In Section 3.5,

concurrent Smart Pareto filtering in variable and objective spaces is presented in its theo-

retical form. A well-know electric motor example illustrating the application of the method

is included in Section 3.6, with our concluding remarks given in Section 3.7.

3.4 Technical Preliminary: Multiobjective Optimization

The use of the any Pareto filtering method, including concurrent Smart Pareto filter-

ing in variable and objective spaces, requires that a meaningful multiobjective optimization

problem be formulated and solved to obtain a Pareto set. A generic, mathematical descrip-

tion of a multiobjective optimization problem is included in Problem 1 for completeness.

Problem 1 (P1): Generic Multiobjective Optimization

min
x

µ(x) (3.1)

subject to:

g(x)≤ 0 (3.2)

h(x) = 0 (3.3)

xl ≤ x ≤ xu (3.4)

When solved, multiobjective optimization problems, such as P1, result in many

Pareto solutions that together comprise a discrete representation of the Pareto frontier. Fig-

ure 3.1 shows a hypothetical Pareto frontier for a bi-objective minimization problem. The

shaded region in this figure represents feasible space, wherein all solutions satisfy every
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Figure 3.1: Discrete representation of Pareto frontier

constraint. However, because both objectives in this problem are minimized, the solutions

found on the lower left hand boundary of the feasible space, the Pareto solutions, are of

particular interest. Importantly, each Pareto solution is non-dominated, meaning that, for

each solution, no other solution exists that possesses equal or improved performance in

every objective. Also, each solution is mathematically optimal, meaning that, for a single

solution, any improvement in an objective can only occur at the expense of another objec-

tive [32]. Because of these important characteristics of Pareto solutions, the discrete set

of Pareto solutions captures objective tradeoffs between conflicting design objectives and

consists of many functionally different design alternatives.

3.5 Concurrent Smart Pareto Filtering in Variable and Objective Spaces

Because it consists of many optimal yet functionally different design alternatives,

a Pareto frontier can be considered a set of candidate product family members. Further,

through filtering, a Pareto frontier can be leveraged to directly satisfy two of the goals of

product family design: maximum product performance and distinctiveness. The third goal

of product family design, maximum commonality, can also be satisfied by using a filter to

select designs, from among Pareto solutions, that are similar with respect to certain design

variables. Considering both objective and variable spaces, concurrent Smart Pareto filtering
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is used to address the three goals of product family design simultaneously by selecting

product family members with optimal and distinct performance as well as by identifying

shared platform variables. The simultaneous selection of family members and platform

variables increases the potential of designing a product family with high levels of product

commonality and only minimal performance tradeoffs.

The process of reducing the Pareto frontier to a product family is an iterative pro-

cess. The flowchart of Figure 3.2 illustrates this process. Each of the primary steps of

the process are detailed in the following sections: In Section 3.5.1 a method for selecting

a starting design is presented. In Section 3.5.2, the process of removing designs that are

insignificantly different from other product family members is described. Section 3.5.3

then details the selection of subsequent designs according to the variation that would be

introduced through the addition of a specific design. Section 3.5.4 details the calculation

of the average objective performance of the product family or family fitness. Additionally,

the normalized change in family fitness per platform variable is calculated as a measure of

the effectiveness of the product family platform.

3.5.1 Selecting a Starting Design (Single Pareto Point)

The first step of any Smart Pareto filtering process is the selection of a starting

design. Traditional Smart filters typically select one of the anchor points of the Pareto

frontier, a Pareto solution possessing the best possible value in a single objective, as their

starting design. While the Smart set subsequently identified by the traditional Smart filter

varies slightly with the selected starting design, when filtering in objective space only, the

differences in the Smart sets that result from using the different anchor points as the starting

design are generally small. In most cases, traditional Smart filters will produce acceptable

results regardless of which anchor point is used as the starting design.

In contrast, when using concurrent Smart Pareto filtering, the selection of an anchor

point as the starting design will generally yield suboptimal results. This is the case because

when using concurrent filtering, the starting design directly impacts decisions made in ob-

jective and variable spaces. Ultimately, the poor selection of a starting design complicates

the establishment of the product family platform. Therefore, when selecting a starting de-
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Figure 3.2: Algorithmic flowchart of concurrent Smart Pareto filtering in variable and ob-
jective spaces
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sign for use with concurrent filtering, it is desired that the starting design be similar, at least

in variable space, to the many candidate product family members. Using a design where

each variable deviates minimally from the central tendency of the same variable, across all

Pareto solutions, improved filtering results are obtained. Specifically, the summation of the

squared differences between each variable and that variable’s respective mean is used to

rank each candidate starting design. The design with the smallest sum is selected as the

starting design and becomes the first member of the product family. Equation 3.5 details

this calculation.

∆ pi =
nx

∑
j=1

(xi
j − x̄ j)2 (3.5)

The process of selecting a starting design is detailed in the upper right-hand section

of Figure 3.2. The three steps in this portion of the algorithm are described as follows: (1)

Initialize the algorithm indices and variables: a = 0, i = 0, γ = ∞, λ = 0, and b = index

matrix of size (1 x nϕ ). (2) For each Pareto solution perform the calculation detailed in

Equation 3.5. Store in the index variable λ the location of the design resulting in the lowest

total summation. (3) Update the index matrix at location λ so that b(λ ) = 2. The filtering

process then continues, as described in Section 3.5.2, by removing any designs that are

insignificantly different, in terms of objective performance, from the design located at λ .

3.5.2 Removing Designs of Insignificant Objective-Tradeoff

Having selected a starting design, the second step of the filtering process is to re-

move any designs that are insignificantly different, in terms of objective performance, from

the starting design. To accomplish this, a Smart Pareto filter, defining a Region of Insignif-

icant Tradeoff, is constructed and centered on the starting design, labeled µ̂ , as shown

in Figure 3.3. Pairwise comparisons are then made between the starting design and all

other candidate product family members. When these comparisons identify a design that

is located within the region of insignificant tradeoff, the design is removed from the set of

candidate family members.
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Figure 3.3: 2-D Smart Pareto filter

The geometric shape of the region of insignificant tradeoff is defined by a set of

designer specified parameters, ∆t = ∆t1,∆t2, ...,∆tnµ
and ∆r = ∆r1,∆r2, ...,∆rnµ

, where

∆ri = ∆r1
i ,∆r2

i , ...,∆ri−1
i ,∆ri+1

i , ...,∆rnµ

1 , for i = 1...nµ . Figure 3.3 shows each of these

parameters for the bi-objective case. The two parameters, ∆t and ∆r can be understood by

the following; when comparing two Pareto points (or designs), any difference in µi that

is less than ∆ti is considered to be insignificant. As such, one of the two designs being

compared should be removed since it is insignificantly different – at least in one objective.

When, however, the difference in µi, between two points, is within ∆ti, but the change in

another objective (µ j) is significantly large (greater than ∆r j), then the design should not

be removed. In other words, any change in µ j that is larger than ∆r j is deemed significant

– regardless of how small the change in another objective is. In this way, the parameters ∆t

and ∆r are physically meaningful and can be easily specified by the designer.

The comparison process used to identify designs that are insignificantly different

from product family members is detailed in the lower section of Figure 3.2. The six steps

in this portion of the algorithm are described as follows: (1) Initialize the algorithm indices

and variables: i = 0, j = 0, k = 0, m = 0, and λ = 0. (2) Locate the most recently identified

product family member as indicated by an index matrix value of b(i) = 2. Update the index

matrix at that location so that b(i) = 3. (3) Define the vector β by subtracting the design

metrics (objectives) of each remaining candidate family member from the design metrics
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of the recently identified member of the product family. (4) Compare the vector element

βk to the filter parameter ∆tk. If for any element the absolute value of βk is less than ∆tk,

proceed to step 5. Otherwise, the design in question is determined to be sufficiently dif-

ferent from the recently identified family member and, as a result, remains within the set

of candidate designs. (5) Compare all other elements of the vector β to the corresponding

filter parameter ∆rm. If for all vector elements, other than βk, the absolute value of βm is

less than ∆rm, proceed to step 6. Otherwise, the design in question is determined to be

sufficiently different from the recently identified family member and, as a result, remains

within the set of candidate designs. (6) For all designs located within the region of insignif-

icant tradeoff, as determined by steps 4 and 5 collectively, update the index matrix at the

corresponding location so that b( j) = 0. Importantly, as noted in Section 3.5.3, each design

where b( j) = 0 is removed from the set of candidate designs and is no longer considered

during the selection of subsequent product family members.

3.5.3 Selecting Subsequent Smart Set Designs

As noted previously, product family design has as its goal the maximization of prod-

uct performance, distinctiveness, and commonality. Because product family members are

selected from the set of Pareto solutions and insignificantly different designs are removed

from the set of candidate product family members, the designs selected as members of the

product family are, in terms of functional performance, optimal and distinct. The third goal

of product family design, maximum commonality, is more easily achieved if the designs

subsequently chosen as product family members introduce only small variation in design

variable space.

Each subsequent design is selected according to the impact that its addition to the

product family has on the summation of standard deviation to mean ratios for all design

variables and all included family members. Equation 3.6 summarizes the calculation used

to rank each design.

si =
nx

∑
j=1

[(∑
nξ

k=1(ξ
k
j − x̄i

j)
2 +(xi

j − x̄i
j)

2)/nξ ]1/2

x̄i
j

(3.6)
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The process of selecting subsequent designs is detailed in the upper left-hand sec-

tion of Figure 3.2. The three steps in this portion of the algorithm are described as fol-

lows: (1) Initialize the algorithm indices and variables: i = 0, γ = ∞, and λ = 0. (2) For

each Pareto solution that has not been removed from the set of candidate family members,

where removed designs are indicated by index matrix values of 0 or 3, perform the cal-

culation detailed in Equation 3.6. Store in the index variable λ the location of the design

resulting in the lowest total summation. (3) Update the index matrix at location λ so that

b(λ ) = 2. The filtering process then continues, as described in Section 3.5.2, by removing

any designs that are insignificantly different, in terms of their objective performance, from

the design located at λ .

After a subsequent design is selected, the process described in Section 3.5.2 is then

repeated with the filter centered on the design resulting in the lowest total summation, as

calculated using Equation 3.6. These steps are iteratively continued until all product family

members are selected and all other designs are identified as being insignificantly different

from at least one product family member. Considering all products in the family, if for

any design variable the variation from product to product in the family is sufficiently small,

then that variable becomes a platform variable and is made common to the entire family.

Figure 3.4 shows the hypothetical product family that results from the process.
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3.5.4 Measuring the Average Performance of the Product Family

In addition to the increase in commonality that results from the establishment of

the product platform, a decrease in objective performance typically occurs. To evaluate

the extent of these performance changes, the product family after the establishment of the

platform is compared to the family prior to the platform. The objective performance in

both cases is evaluated numerically by calculating a family fitness value. Family fitness

is an average measure of objective performance across the entire product family and is

calculated using a normalized aggregate objective function as shown in Equation 3.7.

F =
nξ

∑
i=1

(Jpi)/nξ (3.7)

In the case of a minimization problem, a smaller family fitness value corresponds to a

higher average performance for the product family. Note, however, that family fitness

exclusively considers the objective performance of the family as a whole and does not

consider commonality in its calculation. Instead, commonality is quantified, for a product

family built on a scale-based platform, simply as the number of design variables common

to all products in the family, nv.

Additionally, the performance decrease resulting from the establishment of the plat-

form can be evaluated, in terms of the increase in commonality, by using the family fitness

values from both before and after the platform implementation. Specifically, the normalized

change in family fitness per platform variable is calculated as a measure of the effectiveness

of the platform approach. Equation 3.8 details this calculation, where Fξ and Fψ are re-

spectively the family fitness values of the product family before and after the establishment

of the platform.

∆Fnv = (Fψ −Fξ )/(Fξ ·nv) (3.8)

In the section that follows, Equations 3.7 and 3.8 are used to compare the family of products

identified using concurrent filtering to a benchmark family of universal electric motors [12].
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3.6 Universal Electric Motor Example Problem

The example problem included in this section is a tri-objective problem based on

the well-known bi-objective problem [33]. In this example, given a set of filter parameters,

a traditional Smart Pareto filter that considers only objective space is used to select product

family members. Then, using the same filter parameters, concurrent Smart Pareto filtering

in variable and objective spaces is used to select product family members and to identify

the design variables that are well suited to become platform variables. To show the effec-

tiveness of the method, for each variable in the two resulting product families, the standard

deviation to mean ratios are compared. The problem statement is detailed in Problem 2.

Problem 2 (P2): Multiobjective Optimization of a Family of Electric Motors

min
x

[−T (x) M(x) −η(x)]T (3.9)

subject to:

t− r < 0 (3.10)

H−5000 Ampere/m < 0 (3.11)

0.15−η ≤ 0 (3.12)

M−2.0 Kg ≤ 0 (3.13)

0.05 Nm−T ≤ 0 (3.14)

T −0.5 Nm ≤ 0 (3.15)

Po−300 W = 0 (3.16)

where:

x = [Na,N f , t, I,Ls,Aa,A f ,r] (3.17)

η = Po/Pi (3.18)

M = Ms +Ma +Mw (3.19)

T = Kφ I (3.20)
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Additional supporting equations were used in the derivation of the objective functions as

detailed within the problem testbed [33].

P2 was, first, solved using a Normal Constraint [32] optimization approach. Then,

using the set of filter parameters detailed below, the discrete representation of the resultant

Pareto frontier was reduced to an individually optimized set of product family members.

(1)∆η ≤ 0.05 is insignificant, an increase ∆η > 0.12 is notable and no feasible

decrease in η is considered noteworthy.

(2)∆M ≤ 0.25 Kg is insignificant, a decrease ∆M > 0.50 Kg is notable, and no

feasible increase in mass is considered noteworthy.

(3) ∆T ≤ 0.03 Nm is insignificant and an increase or decrease ∆T > 0.04 Nm

is notable.

A traditional Smart Pareto filter, considering only objective space, was applied first, fol-

lowed by concurrent Smart Pareto filtering in variable and objective spaces. The results

of the two methods are included in Tables 3.1 and 3.2. Each row in Tables 3.1 and 3.2

corresponds to an individual product design within the respective product family. The per-

centages at the bottom of each table are the calculated standard deviation to mean ratios for

each design variable. Both product families are plotted in objective space in Figure 3.5.

Comparing the standard deviation to mean ratio for each design variable, between

the product families shown in Tables 3.1 and 3.2, it is observed that for six of the eight

design variables the standard deviation to mean ratio was reduced by using concurrent

filtering. Further, by calculating an average standard deviation to mean ratio for each of

the product families, it is noted that the average ratio was reduced from approximately

15.9 percent when using a traditional filter to 10.1 percent by using concurrent filtering–a

decrease of over 35 percent.

Perhaps most important, according to Nayak et al. [37], for this particular problem,

design variables with a standard deviation to mean ratio of 10 percent or less are consid-

ered well suited to become platform variables. Following this guideline, filtering only in

objective space failed to identify a single variable as a likely platform variable. Concurrent
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Table 3.1: Product family using Smart Pareto filter in objective space only with standard
deviation to mean ratios for each design variable

Na N f t I Ls Aa A f r
726 66 4.04 3.16 17.60 0.21 0.21 16.57
668 67 3.95 3.54 23.55 0.18 0.18 18.89
723 64 4.61 4.24 25.85 0.17 0.17 21.48
1044 66 5.20 4.02 25.07 0.23 0.23 21.02
1057 63 6.77 4.80 19.90 0.21 0.20 24.13
1041 48 5.81 5.93 21.32 0.20 0.20 22.62
1072 50 5.86 5.79 24.20 0.22 0.22 23.15
1149 51 6.47 6.00 23.45 0.19 0.24 24.20
1162 54 6.74 5.86 25.46 0.25 0.25 25.03
1156 54 6.88 5.98 26.16 0.25 0.25 25.59

19.9% 13.1% 20.0% 22.6% 12.1% 13.1% 13.3% 12.8%

Torque Mass η

0.05 0.25 0.83
0.09 0.33 0.74
0.16 0.43 0.62
0.20 0.53 0.65
0.25 0.50 0.54
0.29 0.47 0.44
0.35 0.57 0.45
0.40 0.62 0.43
0.46 0.72 0.45
0.50 0.76 0.44

Table 3.2: Product family using concurrent Smart Pareto filtering in variable and
objectives spaces with standard deviation to mean ratios for each design variable

Na N f t I Ls Aa A f r
676 89 6.59 2.99 18.42 0.31 0.32 21.27
672 97 7.00 3.14 21.86 0.29 0.29 24.33
675 93 5.84 3.31 30.36 0.29 0.29 24.52
1021 84 6.37 3.61 24.53 0.29 0.29 24.25
1051 86 7.26 3.74 25.73 0.29 0.29 25.65
1039 86 7.26 3.88 27.40 0.29 0.29 26.68
1070 86 7.57 4.01 28.24 0.30 0.29 27.50
1149 80 7.54 4.28 29.46 0.30 0.30 27.37
1154 78 7.59 4.47 30.18 0.30 0.30 27.78

22.0% 6.8% 8.7% 13.6% 15.5% 2.8% 3.4% 8.3%

Torque Mass η

0.07 0.42 0.87
0.11 0.56 0.83
0.18 0.73 0.79
0.23 0.70 0.72
0.28 0.79 0.70
0.33 0.87 0.67
0.38 0.95 0.65
0.45 1.00 0.61
0.50 1.04 0.58

filtering, on the other hand, identified five of the eight variables as well suited to become

platform variables.

A product platform was established with each of the five variables identified by con-

current filtering becoming common to all product family members. Table 3.3 summarizes

the product family after the establishment of the product platform.
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Figure 3.5: (a) Product family identified using traditional Smart Pareto filter (b) Product
family identified using concurrent Smart Pareto filtering

Table 3.3: Product family using concurrent Smart Pareto filtering in variable and objective
spaces after the establishment of the product platform

Na N f t I Ls Aa A f r
678 78 7.45 3.08 15.00 0.30 0.30 26.92
799 78 7.45 3.23 19.53 0.30 0.30 26.92
820 78 7.45 3.38 26.64 0.30 0.30 26.92
1095 78 7.45 3.67 21.85 0.30 0.30 26.92
1055 78 7.45 3.77 26.33 0.30 0.30 26.92
1036 78 7.45 3.88 29.93 0.30 0.30 26.92
1068 78 7.45 4.05 30.99 0.30 0.30 26.92
1108 78 7.45 4.28 31.69 0.30 0.30 26.92
1020 78 7.45 4.32 37.35 0.30 0.30 26.92

16.2% 0.00% 0.00% 11.9% 25.9% 0.00% 0.00% 0.00%

Torque Mass η

0.07 0.49 0.85
0.11 0.62 0.81
0.17 0.79 0.77
0.22 0.77 0.71
0.28 0.86 0.69
0.33 0.94 0.67
0.38 0.98 0.64
0.45 1.00 0.61
0.50 1.11 0.60
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The normalized change in family fitness per platform variable that resulted from the

establishment of the platform was next calculated. First, the family fitness of the individu-

ally optimized product set, show in Table 3.2, was calculated. Similarly, the family fitness

of the product family shown in Table 3.3 was also calculated. These family fitness values

were 1.405 and 1.466 respectively. Also shown in Table 3.3, five platform variables were

identified. The resulting percent decrease in objective performance per platform variable

for the family identified using concurrent filtering was -0.87 percent, as calculated using

Equation 3.8.

The effectiveness of the platform established for the benchmark family presented

by Simpson et al. [12] was also calculated. The family fitness values of Simpson’s indi-

vidually optimized product set and product family are 1.526 and 1.615 respectively. The

number of platform variables is six. The resulting percent decrease in objective perfor-

mance per platform variable for the benchmark family is -0.97 percent, as calculated using

Equation 3.8.

Comparing the results of concurrent Smart Pareto filtering to those of the bench-

mark family, two notable differences are seen. First, the percent decrease in objective per-

formance that resulted from the implementation of the product platform was approximately

11 percent less when using concurrent filtering. This indicates that the simultaneous selec-

tion of product family members and platform features allowed for the establishment of a

more efficient product platform. Second, the family fitness of the product family identified

using concurrent filtering was 9.2 percent lower than the family fitness of the benchmark

family. Because this problem was a minimization problem, the decrease in family fitness

indicates an average improvement in the objective performance of the family identified us-

ing concurrent filtering as compared to the benchmark family. Importantly, this example

illustrates the improved ability of concurrent Smart Pareto filtering to achieve high levels

of commonality though minimal performance tradeoffs.

3.7 Concluding Remarks

Product families are frequently used to provide consumers with a variety of ap-

pealing products and to help maintain reasonably low production costs for manufacturers.
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Three common objectives in the design of product families are used to balance the interests

of both consumers and manufacturers. These objectives are to maximize product (i) perfor-

mance, (ii) distinctiveness, and (iii) commonality. Concurrent Smart Pareto filtering is used

to select product family members from among a candidate set consisting of many Pareto

solutions. This is accomplished by considering both objective and variable spaces during

the selection process. The result is a collection of many functionally optimal and distinct

products that also possess limited variation in design variable space. Finally, a standard

deviation to mean ratio is calculated and used in the establishment of a product platform.

Concurrent Smart Pareto filtering in variable and objective spaces is a valuable tool

to help balance product performance, distinctiveness, and commonality, when designing

product families with multiple functional objectives. For the universal electric motor ex-

ample included in Section 3.6, the average standard deviation to mean ratio for all design

variables decreased by over 35 percent, when using a concurrent Smart Pareto filter as com-

pared to traditional Smart filters. Concurrent filtering also identified five platform variables

while traditional filtering failed to identify a single platform variable.
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Chapter 4

Interactive Design of Combined Scale-based and Module-based Prod-
uct Family Platforms

4.1 Abstract

Product families are frequently used to provide consumers with a variety of ap-

pealing products and to help maintain reasonably low production costs for manufacturers.

Three common objectives in the design of product families are used to balance the interests

of both consumers and manufacturers. These objectives are to maximize (i) product per-

formance, (ii) product distinctiveness as perceived by the consumer, and (iii) product com-

monality as seen by the manufacturer. To accomplish these objectives, product families

are frequently designed around one of two common platform types: a scale-based product

platform or a module-based product platform. In this paper, an interactive design process

is presented for the design of product families built around a combined scale-based and

module-based product platform. In the first step of this interactive process, the designer

uses physical decomposition techniques to identify the major components that comprise

the finished products. Second, the designer identifies and summarizes, in matrix form, the

relationships that exist between each design variable and each product component. Third,

multiobjective optimization is used to identify a set of many designs that are considered

candidate product family members. Fourth, Smart Pareto filtering is used to select product

family members from among the candidate set previously identified. A scale-based prod-

uct platform is simultaneously established using concurrent Smart Pareto filtering and the

component/variable relationships identified in the second step of this process. Finally, the

component/variable relationships are further used to determine which product components

are best suited to become modules and to determine the subset of product family mem-
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bers that will use each module. In conjunction with the establishment of each module, a

designer specified sequence of optimization routines is used to ensure that the three ob-

jectives of product family design, as noted above, are satisfied. As a result, a combined

scale-based and module-based product platform is established. A well-known universal

electric motor example problem is used to demonstrate the process.

4.2 Nomenclature

x Vector of design variables

nx Number of design variables

xc Vector of design variables that define component interfaces

µ Vector of design metrics (objectives)

nµ Number of design metrics (objectives)

g Vector of inequality constraints

h Vector of equality constraints

nϕ Number of candidate product family members (solutions on discrete Pareto frontier)

∆t,∆r Filter parameters defining a region of practically insignificant objective-tradeoff

∆pi Summation of the squared differences between each variable in product pi and the mean

of the same variable across all candidate family members

si Summation of the standard deviation to mean ratios for all variables in product pi

x̄ j
j Mean of design variable x j for the product set including Smart Pareto designs

and product pi

nξ Number of products in product family

ξ Matrix of product family members prior to the establishment of the product platform

ψ Matrix of product family members after the establishment of the product platform

Jpi Aggregate objective function for product pi

F Average fitness of product family

nc Number of individual components required to manufacture all product family members

ni Number of individual components required to manufacture all individually optimized

product family members
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np Number of platform variables

C Measure of product family commonality, ratio of nc to ni

Na Number of wire turns on armature

N f Number of wire turns on field, per pole

t Thickness of stator

I Electric current

Ls Stack length

Aa Armature wire cross-sectional area

A f Field wire cross-sectional area

r Outer radius of stator

η Efficiency

M Motor mass

T Motor torque

H Magnetizing intensity

Po Gross mechanical power output

Pi Electrical input power

Ms Stator mass

Ma Armature mass

Mw Windings mass

K Motor constant

φ Magnetic flux

4.3 Introduction and Literature Survey

In today’s world marketplace, consumers increasingly demand variety, customiza-

tion, and personalization in the goods they purchase. For manufacturers, economically

satisfying these demands is a notable challenge. In many instances, however, product fam-

ilies provide consumers a variety of appealing products and help manufacturers maintain

reasonably low production costs through increases in economies of scale and scope [3].

Three goals, common in the design of product families, are considered when balancing the
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interests of both consumers and manufacturers. These goals are to maximize (i) product

performance, (ii) product distinctiveness as perceived by the consumer, and (iii) product

commonality as seen by the manufacturer [4, 5].

In the literature, a number of design and optimization approaches exist that address

the three goals of product family design [6]. Many of these approaches identify a set of

design features that are shared by product family members. In the literature, this set of

shared features is known as a product family platform [34]. Traditionally, product families

have been built around one of two common platform types: a scale-based product platform

or a module-based product platform [35]. A scale-based platform is the foundation of

related products that have differing function through the scaling of non-platform design

features. A module-based platform is the foundation for a collection of related products that

have differing functions through the addition or subtraction of modules. Although existing

approaches address scale-based and module-based product platform design independently,

the two types of product platforms are not mutually exclusive. In contrast, by carefully

selecting a limited set of scale-based design features along with a complimentary set of

module-based design features, a product family built around a combined scale-based and

module-based product platform may require fewer total components in the manufacture of

all product family members than would be required using a scale-based or module-based

platform alone.

In this paper, an interactive design process is presented for the design of product

families built around a combined scale-based and module-based product platform. In the

first step of this interactive process, the designer uses physical decomposition techniques

to identify the major components that comprise the finished product. Second, the designer

identifies and summarizes, in matrix form, the relationships that exist between each design

variable and each product component. These relationships are later used to identify the

design features best suited to become scale-based or module-based platform features.

Third, multiobjective optimization is used to identify a set of many designs that are

considered candidate product family members. Fourth, Smart Pareto filtering [28] is used

to select product family members from among the candidate set previously identified [23].

Concurrent with the selection of the product family members, Smart Pareto filtering is
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also used, along with the component/variable relationships identified in the second step

of this process, to identify scale-based product platform features [24]. The use of Smart

Pareto filtering for the selection of product family members and the identification of scale-

based platform features is of particular interest when sufficient market data is unavailable

or is not easily obtained or distilled by the company developing the product family. In

these cases traditional segmentation methods become difficult to implement. For exam-

ple, entrepreneurs and small to mid-sized companies may not have a dedicated marketing

department or the financial resources needed to purchase market research from an outside

firm. When planning to launch a series of products built on a common platform, these

small companies may struggle to gather and process the market data needed to construct

the segmentation grid that is traditionally used to identify product family members. Smart

Pareto filtering can be used in these cases for the selection of product family members as

an alternative to traditional heuristic tools such as market segmentation [23].

As a final step in the interactive design process, the component/variable relation-

ships are further used to help determine which product components are best suited to be-

come modules and to determine the subset of product family members that will use each

module. In conjunction with the establishment of each module, a designer specified se-

quence of optimization routines is used to ensure that the three objectives of product family

design, as noted previously, are satisfied. As a result, a combined scale-based and module-

based product platform is established.

The remainder of this paper is presented as follows. A preliminary review of a

generic multiobjective optimization problem is included in Section 4.4. In Section 4.5, a

method for establishing combined scale-based and module-based platforms is presented in

its theoretical form. A universal electric motor example illustrating the interactive approach

is included in Section 4.6, with our concluding remarks given in Section 4.7.

4.4 Technical Preliminary: Multiobjective Optimization

The use of the any Pareto filtering method including concurrent Smart Pareto fil-

tering, as used in the establishment of a combined scale-based and module-based product

platform, requires that a meaningful multiobjective optimization problem be formulated
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and solved for a Pareto frontier. A generic, mathematical description of a multiobjective

optimization problem is included in Problem 1 for completeness.

Problem 1 (P1): Generic Multiobjective Optimization

min
x

µ(x) (4.1)

subject to:

g(x)≤ 0 (4.2)

h(x) = 0 (4.3)

xl ≤ x ≤ xu (4.4)

When solved, multiobjective optimization problems, such as P1, result in many

Pareto solutions that together comprise a discrete representation of the Pareto frontier. Fig-

ure 4.1 shows a hypothetical Pareto frontier for a bi-objective minimization problem. The

shaded region in this figure represents feasible space, wherein all solutions satisfy every

constraint. However, because both objectives in this problem are minimized, the solutions

found on the lower left hand boundary of the feasible space, the Pareto solutions, are of

particular interest. Importantly, each Pareto solution is non-dominated, meaning that, for

each solution, no other solution exists that possesses equal or improved performance in

every objective. Also, each solution is mathematically optimal, meaning that, for a sin-

gle solution, any improvement in an objective can only occur at the expense of another

objective [32]. Because of these important characteristics of Pareto solutions, the discrete

representation of the Pareto frontier captures the tradeoffs that exist between conflicting

design objectives and consists of many functionally different design alternatives.

4.5 Combined Scale-based and Module-based Platforms using Concurrent Smart
Pareto Filtering

Because it consists of many optimal yet functionally different design alternatives,

a Pareto frontier can be considered a set of candidate product family members. Further,

a Pareto frontier can, through the use of Smart Pareto filtering, be leveraged to directly
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Figure 4.1: Discrete representation of Pareto frontier

satisfy two of the goals of product family design: maximum product performance and

product distinctiveness. The third goal of product family design, maximum commonality,

is satisfied, under the proposed method, by identifying a complimentary set of scale-based

and module-based design features.

The establishment of a combined scale-based and module-based product platform

is an interactive process. Each of the primary steps of this interactive process are detailed

in the following sections: In Section 4.5.1, physical decomposition is used to identify each

major product component. Additionally, a matrix is constructed summarizing the relation-

ships that exist between each product component and each design variable. In Section 4.5.2,

concurrent Smart Pareto filtering is used to simultaneously select product family members

and identify the scale-based product platform features. Modules are then identified and

the combined scale-based and module-based product platform is fully defined in Section

4.5.3. A method of comparing scale-based, module-based, and combined scale-based and

module-based product platforms is presented Section 4.5.4.

4.5.1 Identifying Relationships between Design Variables and Product Components

The first step in the establishment of a combined scale-based and module-based

product platform requires that the designer identify all components that together comprise
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Table 4.1: Relationships between components and design variables for hypothetical
product family

component1
component2
component3

x1 x2 x3 x4 x5
1 0 1 1 0
0 0 1 1 1
0 1 1 0 0

an individual product family member. To accomplish this, well-known physical decompo-

sition techniques are used. After having identified all product components, the designer

then determines which design variables affect multiple components and which design vari-

ables affect a single component.

The relationships that exist between design variables and components are then sum-

marized in matrix form where each row of the matrix represents a product component and

each column represents a design variable. A value of 0 in any matrix location indicates that

no relationship exists between the corresponding component and the corresponding vari-

able; a value of 1 indicates that a relationship does exist. Table 4.1 details the relationships

that exist between three product components and five design variables, for a hypothetical

product family member.

Table 4.1 illustrates a number of important component/variable relationships. First,

the 1 shown in the matrix location corresponding to design variable x1 and component1

indicates that component1 is dependent on design variable x1. The 0’s in the matrix loca-

tions corresponding to design variable x1 and both component2 and component3 indicate

that neither component2 nor component3 is dependent on design variable x1. Notably, be-

cause only component1 depends on design variable x1, it can be said that design variable

x1 does not define an interface between product components. Similar relationships exist

between design variable x2 and component3 and design variable x5 and component2. The

second important relationship illustrated in Table 4.1 is shown by the 1’s in the matrix lo-

cations corresponding to design variable x4 and both component1 and component2. These

relationships indicate that both component1 and component2 depend on design variable x4,

or in other words, an interface between component1 and component2 is defined by design
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variable x4. The third important observation that is taken from Table 4.1 is that an inter-

face between all three components is defined by design variable x3. This is evident from

the 1’s in the matrix locations corresponding to design variable x3 and each of the product

components.

4.5.2 Selecting Product Family Members and Establishing a Scale-based Product
Platform

Using the Pareto frontier identified through the solution of a multiobjective opti-

mization statement similar the one presented in Section 4.4, concurrent Smart Pareto filter-

ing [24] is used to select the set of designs that become product family members. Simulta-

neously, concurrent Smart Pareto filtering is used to identify the scale-based design features

that will become part of the combined scale-based and module-based product platform.

Each of the primary steps of concurrent Smart Pareto filtering are detailed in the

following sections: In Section 4.5.2.1 a method for selecting a starting design is presented.

In Section 4.5.2.2, the process of removing designs that are insignificantly different from

other product family members is described. Section 4.5.2.3 then details the selection of

subsequent designs according to the variation that would be introduced through the addition

of a specific design.

4.5.2.1 Selecting a Starting Design (Single Pareto Point)

The first step of any Smart Pareto filtering process is the selection of a starting

design. Traditional Smart filters typically select one of the anchor points of the Pareto

frontier, a Pareto solution possessing the best possible value in a single objective, as their

starting design. While the Smart set subsequently identified by the traditional Smart filter

varies slightly with the selected starting design, when filtering in objective space only, the

differences in the Smart sets that result from using the different anchor points as the starting

design are generally small. In most cases, traditional Smart filters will produce acceptable

results regardless of which anchor point is used as the starting design.
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In contrast, when using concurrent Smart Pareto filtering, the selection of an anchor

point as the starting design will generally yield suboptimal results. This is the case because

when using concurrent filtering, the starting design directly impacts decisions made in ob-

jective and variable spaces. Ultimately, the poor selection of a starting design complicates

the establishment of the product family platform. Therefore, when selecting a starting de-

sign for use with concurrent filtering, it is desired that the starting design be similar, at least

in variable space, to the many candidate product family members. Using a design where

each variable deviates minimally from the central tendency of the same variable, across all

Pareto solutions, improved filtering results are obtained. Specifically, the summation of the

squared differences between each variable and that variable’s respective mean is used to

rank each candidate starting design. The design with the smallest sum is selected as the

starting design and becomes the first member of the product family. Equation 4.5 details

this calculation.

∆ pi =
nx

∑
j=1

(xi
j − x̄ j)2 (4.5)

The filtering process then continues, as described in Section 4.5.2.2, by removing any de-

signs that are insignificantly different, in terms of objective performance, from the starting

design presently identified. For greater detail concerning the selection of a starting de-

sign for use with concurrent Smart Pareto filtering, refer to the authors’ previous publica-

tion [24].

4.5.2.2 Removing Designs of Insignificant Objective-Tradeoff

Having selected a starting design, the second step of the filtering process is to re-

move any designs that are insignificantly different, in terms of objective performance, from

the starting design. To accomplish this, a Smart Pareto filter, defining a Region of Insignif-

icant Tradeoff, is constructed and centered on the starting design, labeled µ̂ , as shown

in Figure 4.2. Pairwise comparisons are then made between the starting design and all

other candidate product family members. When these comparisons identify a design that
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Figure 4.2: 2-D Smart Pareto filter

is located within the region of insignificant tradeoff, the design is removed from the set of

candidate family members.

The geometric shape of the region of insignificant tradeoff is defined by a set of

designer specified parameters, ∆t = ∆t1,∆t2, ...,∆tnµ
and ∆r = ∆r1,∆r2, ...,∆rnµ

, where

∆ri = ∆r1
i ,∆r2

i , ...,∆ri−1
i ,∆ri+1

i , ...,∆rnµ

1 , for i = 1...nµ . Figure 4.2 shows each of these

parameters for the bi-objective case. The two parameters, ∆t and ∆r can be understood by

the following; when comparing two Pareto points (or designs), any difference in µi that

is less than ∆ti is considered to be insignificant. As such, one of the two designs being

compared should be removed since it is insignificantly different – at least in one objective.

When, however, the difference in µi, between two points, is within ∆ti, but the change in

another objective (µ j) is significantly large (greater than ∆r j), then the design should not

be removed. In other words, any change in µ j that is larger than ∆r j is deemed significant

– regardless of how small the change in another objective is. In this way, the parameters ∆t

and ∆r are physically meaningful and can be easily specified by the designer.

Following the removal of all candidate product family members that are insignificantly

different from the starting design, the filtering process then continues, as described in Sec-

tion 4.5.2.3, with the selection of subsequent product family members. For greater detail

concerning the removal of designs of insignificant objective tradeoff, refer to the authors’

previous publication [24].
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4.5.2.3 Selecting Subsequent Smart Set Designs

When using concurrent Smart Pareto filtering for the establishment of a combined

scale-based and module-based product platform, each subsequent design is selected accord-

ing to the impact that its addition to the product family has on the summation of standard

deviation to mean ratios, taken across all product family members, for a subset of design

variables. Importantly, the subset of design variables considered during the selection of

subsequent product family members is limited to the set of design variables that define an

interface between product components. The component/variable matrix defined in Section

4.5.1 is used to identify the design variables included in this set. The design resulting

in the smallest sum is selected as the next member of the product family. Equations 4.6

and 4.7 summarize the calculation used to rank each design. For greater detail concerning

the selection of subsequent members of the product family, refer to the authors’ previous

publication [24].

si =
nx

∑
j=1

[(∑
nξ

k=1(ξ
k
j − x̄i

j)
2 +(xi

j − x̄i
j)

2)/nξ ]1/2

x̄i
j

(4.6)

Where:

x j ∈ xc (4.7)

Finally, because the starting design as well as the subsequent designs that become

members of the product family are selected so as to minimize the summation of standard

deviation to mean ratios for a subset of design variables, concurrent Smart Pareto filtering

minimizes variation among design variables that define component interfaces. Considering

each of these design variable individually, any design variable with a standard deviation

to mean ratio of less than 10 percent is considered well suited as a platform variable [37].

A single optimization routine is then used to eliminate all variation from platform vari-

ables and to adjust non-platform variable values so as to minimize changes in objective

performance. The result is the identification of the scale-based design features that will be

included in the combined scale-based and module-based product platform.
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Table 4.2: Design variable values of hypothetical product family members after
scale-based platform implementation

product1
product2
product3
product4
product5
product6

x1 x2 x3 x4 x5
5.51 4.63 2.25 1.52 6.41
5.42 6.77 2.25 1.52 7.13
3.44 4.52 2.25 1.52 9.54
3.37 6.84 2.25 1.52 8.78
3.41 5.82 2.25 1.52 7.87
5.46 5.70 2.25 1.52 8.36

4.5.3 Establishing a Module-based Platform

Following the identification of scale-based design features, including the identifi-

cation of platform variables, modules are identified by considering non-platform design

variables over discrete product ranges. The discrete ranges are selected so that the stan-

dard deviation to mean ratio, for each variable in a subset of design variables, is less than

10 percent. To illustrate the process, a hypothetical product family with five design vari-

ables and six members is considered. The design variable values for this family, after the

establishment of a scale-based platform, are included in Table 4.2.

The products in this family are made up of three major physical components each of

which could become a module. Table 4.1, as shown in Section 4.5.1, details the relationship

between each component and each design variable. Each value of 1 shown in Table 4.1

indicates that the corresponding component is dependent on the corresponding variable,

while a 0 indicates that no dependence exists between that module and variable. Following

the approach outlined in Section 4.5.2.3, design variables x3 and x4 have become platform

variables, common to all products in the family. The establishment of this scale-based

platform improves the possibility of identifying a complimentary set of modules following

the process described below.

By considering discrete groups of products, in conjunction with the component/variable

matrix shown in Table 4.1, modules are identified. First, from Table 4.1, it is noted that

component1 is dependant on design variables x1, x3, and x4, as indicated by the 1 shown
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Table 4.3: Design variable values of hypothetical product family members after combined
scale-based and module-based platform implementation

product1
product2
product3
product4
product5
product6

x1 x2 x3 x4 x5
5.47 4.58 2.25 1.52 6.41
5.47 6.81 2.25 1.52 7.13
3.40 4.58 2.25 1.52 9.54
3.40 6.81 2.25 1.52 8.78
3.40 5.77 2.25 1.52 7.87
5.47 5.77 2.25 1.52 8.36

in each of the corresponding columns. Further, for products 1, 2, and 6 it is noted that the

standard deviation to mean ratios for variables x1, x3, and x4 are each less than 10 percent,

as shown in Table 4.2. Likewise, the standard deviation to mean ratios for variables x1, x3,

and x4 for products 3, 4, and 5 are less than 10 percent. From this it is concluded that, for

all members of the product family, one of two modules will satisfy each product’s design

need for component1. Similarly, from Table 4.1, it is noted that component3 is dependent

on variables x2 and x3. For products 1 and 3, 2 and 4, and 5 and 6, taken each in turn, the

standard deviation to mean ratio for variables x2 and x3 are each less than 10 percent. This

indicates that one of three modules will adequately satisfy each product’s design need for

component3. Finally, because the standard deviation to mean ratio for design variable x5 is

greater than 10 percent for all product family member combinations, component2 does not

become a module; design variable x5 thus remains a scalable variable. The establishment

of these modules results in the design variable values shown in Table 4.3. Figure 4.3 shows

the hypothetical product family that results from the process.

4.5.4 Measuring Family Performance and Commonality

After defining a product platform, we seek to classify the performance and com-

monality changes resulting from the establishment of the product family. To do this, the

Smart Pareto set of individually optimized products and the platform-based product family

are compared. The change in both objective performance and product commonality can
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be evaluated numerically by calculating a family fitness value. Equation 4.8 details the

calculation. Note that this measure of family fitness considers the effect that establishing

a platform has on product performance and product commonality but does not consider

diversity in its calculation. Such considerations are the focus of future work.

F =
nξ

∑
i=1

(Jpi)/nξ +C (4.8)

C = nc/ni +(nx−np)/nx (4.9)

In the case of a minimization problem, a smaller family fitness value corresponds to a higher

average performance for the product family. The first term in the family fitness calculation

exclusively considers the objective performance of the product family. The second term of

the family fitness equation calculates product commonality. This calculation is detailed in

Equation 4.9. In the case of the hypothetical product family presented in Section 4.5.3, two

instances of component1, six instances of component2, and three instances of component3

are required for the manufacture of the six product family members, or 11 distinct compo-

nents in total. This is compared to the 18 distinct components required for the manufacture

of the individually optimized products. Further, two of the five design variables were deter-

mined to be platform variables. The resulting commonality calculation results in a product

commonality of 1.21.
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In the section that follows, Equations 4.8 and 4.9 are used to compare a product

family built on a combined scale-based and module-based platform to a benchmark family

of universal electric motors [12].

4.6 Universal Electric Motor Example Problem

The electric motor example problem included in this section is a tri-objective prob-

lem based on the well-known bi-objective problem [33]. In this example, given a set of

filter parameters, concurrent Smart Pareto filtering in variable and objective spaces is used

to select product family members and to identify the scale-based design features that are

included in the combined scale-based and module-based platform. Non-platform variables

are then considered over discrete product ranges and a complementary set of modules is

identified.

The process begins with the physical decomposition of the product and the iden-

tification of the relationships that exist between each product component and each design

variable. The universal electric motor consists of two major components: an armature and

a field. Eight design variables define the characteristics of each product. Table 4.4 details

the component/variable relationships that will be used in subsequent steps of this example

problem.

Table 4.4: Electric motor component dependencies by design variable

Armature
Field

Na N f t I Ls Aa A f r
1 0 0 0 1 1 0 1
0 1 1 0 1 0 1 1

After identifying the component/variable relationships, the interactive process con-

tinued with the solution of the multiobjective optimization problem statement detailed in

Problem 2. The result was a set of many functionally different electric motors that were

considered candidate product family members.
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Problem 2 (P2): Multiobjective Optimization of a Family of Electric Motors

min
x

[−T (x) M(x) −η(x)]T (4.10)

subject to:

t− r < 0 (4.11)

H−5000 Ampere/m < 0 (4.12)

0.15−η ≤ 0 (4.13)

M−2.0 Kg ≤ 0 (4.14)

0.05 Nm−T ≤ 0 (4.15)

T −0.5 Nm ≤ 0 (4.16)

Po−300 W = 0 (4.17)

where:

x = [Na,N f , t, I,Ls,Aa,A f ,r] (4.18)

η = Po/Pi (4.19)

M = Ms +Ma +Mw (4.20)

T = Kφ I (4.21)

Additional equations used in the derivation of the objective functions are detailed in the

problem testbed [33].

P2 was solved using a Normal Constraint [32] optimization approach. Figure 4.4(a)

shows a discrete representation of the resulting Pareto frontier. Using the set of filter pa-

rameters detailed below along with concurrent Smart Pareto filtering, the discrete represen-

tation of the Pareto frontier was reduced to the set of product family members shown in

Figure 4.4(b).
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Figure 4.4: (a) Discrete representation of Pareto frontier (b) Product family identified using
concurrent Smart Pareto filtering

(1)∆η ≤ 0.05 is insignificant, an increase ∆η > 0.12 is notable and no feasible

decrease in η is considered noteworthy.

(2)∆M ≤ 0.25 Kg is insignificant, a decrease ∆M > 0.50 Kg is notable, and no

feasible increase in mass is considered noteworthy.

(3) ∆T ≤ 0.03 Nm is insignificant and an increase or decrease ∆T > 0.04 Nm

is notable.

Table 4.5 shows the design variable values for each of the nine products that were

identified to be part of the product family. Using equation 4.8 family fitness was measured

prior to the implementation of the platform. The set of individually optimized product

family members had fitness of 3.4640.

Concurrent Smart Pareto filtering was also used to simultaneously identify the

scale-based platform features. As described in Section 4.5.2.3, preference was given to

interface variables during the establishment of the scale-based platform. The percentages

at the bottom of Table 4.5 are the standard deviation to mean ratios for each of the design

variables. Importantly, the design variables Ls and r each have a standard deviation to mean

ratio of less than 10 percent, indicating that each of these interface variables is well suited to

become a platform variable. Additionally, the design variable t was also identified as well
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Table 4.5: Design variable values of product family members prior to the implementation
of a product platform

Na N f t I Ls Aa A f r
681 96 7.15 2.84 22.16 0.56 0.56 21.88
697 107 7.22 2.96 25.17 0.47 0.47 25.33

1000 84 6.49 3.48 24.48 0.29 0.29 23.41
985 84 6.79 3.71 25.39 0.28 0.24 24.82
997 71 6.57 4.40 25.98 0.24 0.19 24.74

1091 64 6.67 4.90 24.91 0.24 0.24 25.10
1086 57 6.82 5.54 24.81 0.23 0.21 25.17
1081 89 8.57 4.20 26.91 0.29 0.29 29.79
1155 54 6.89 5.97 26.13 0.25 0.25 25.62

17.6% 23.1% 9.0% 25.9% 5.3% 37.1% 41.3% 8.4%

suited to become a platform variable. The other five design variables remained scalable

variables.

Table 4.6 shows the design variable values of each of the nine product family mem-

bers after the implementation of the scale-based platform. The family fitness for the scale-

based product family was 3.1624. The decrease of 0.3016 in family fitness, as compared

to the individually optimized set of product family members, indicates that the increases in

product commonality were relatively large when compared to the performance decreases

that resulted from the establishment of the scale-based product family.

To further increase product commonality, subsets of non-platform or scalable vari-

ables were considered over discrete ranges of product family members. First, considering

the armature, products 1 and 2, 3 and 4, 5 and 6, 7, 8, and 9 were included in individual

product subsets. For the field, products 1, 2-4, and 5-9 were likewise grouped in prod-

uct subsets. At this point, an interactive series of designer specified optimization routines

were used to eliminate all variation from within each product subset for each component.

Notably, during the optimization routines, the designer recognized that for the field com-

ponent of product 5, the design variable N f tended toward a much lower value. As a result,

as part of the interactive design process, the designer reconfigured the product subsets so

that products 1 and 5, 2-4, and 6-9 were then grouped. A designer specified series of opti-
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Table 4.6: Design variable values of product family members after the implementation of
a scale-based product platform

Na N f t I Ls Aa A f r
500 60 6.93 3.23 26.91 0.24 0.24 28.98
500 94 6.93 3.36 26.91 0.23 0.23 28.98
560 99 6.93 3.69 26.91 0.21 0.21 28.98
646 94 6.93 3.90 26.91 0.21 0.21 28.98
699 83 6.93 4.42 26.91 0.20 0.20 28.98
784 77 6.93 4.75 26.91 0.21 0.21 28.98
879 77 6.93 4.75 26.91 0.23 0.23 28.98
971 77 6.93 4.75 26.91 0.25 0.25 28.98

1100 77 6.93 4.75 26.91 0.28 0.28 28.98
28.8% 14.6% 0.0% 15.3% 0.0% 11.2% 11.2% 0.0%

mization routines followed until all variation was eliminated from each product subset for

each component, resulting in six armature modules and three field modules. The design

variable values for the product family with a combined scale-based and module-based plat-

form are shown in Table 4.7. The product family with the combined platform had fitness of

2.7780. This notably lower family fitness value indicates that the product commonality and

performance changes resulting from the establishment of the combined scale-based and

module-based product platform have improved the overall characteristics of the product

family.

In order to compare the results of the combined scale-based and module-based prod-

uct platform to a benchmark product family [12], the family fitness of the benchmark family

was calculated, resulting in a value of 2.8652. Importantly, the benchmark family did not

identify a single module, but did identify six of eight design variables as platform vari-

ables. Notably, the family fitness of the product family built on the combined scale-based

and module-based platform was 3.1 percent lower that the family fitness of the benchmark

family. Because the universal electric motor problem detailed in this section is a minimiza-

tion problem, the slightly lower family fitness value of the combined platform corresponds

to an improvement over the benchmark family.
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Table 4.7: Design variable values of product family members after the implementation of
a combined scale-based and module-based product platform

Na N f t I Ls Aa A f r
499 59 6.93 3.26 26.91 0.24 0.19 28.98
499 65 6.93 4.02 26.91 0.24 0.07 28.98
455 65 6.93 5.04 26.91 0.18 0.07 28.98
455 65 6.93 5.56 26.91 0.18 0.07 28.98
815 59 6.93 4.83 26.91 0.21 0.19 28.98
815 75 6.93 4.71 26.91 0.21 0.25 28.98
880 75 6.93 4.81 26.91 0.23 0.25 28.98
970 75 6.93 4.81 26.91 0.25 0.25 28.98

1100 75 6.93 4.81 26.91 0.28 0.25 28.98

4.7 Concluding Remarks

In many cases, a combined scale-based and module-based product platform may

reduce the number of components required for the manufacture of a family of related prod-

ucts. In this paper, an interactive method for establishing a combined scale-based and

module-based platform is presented. The method begins with the use of physical decom-

position in the identification of all major product components. Next, the designer identi-

fies the relationships that exist between each product component and each design variable.

Third, the process continues with the use of concurrent Smart Pareto filtering to identify

product family members and to establish a scale-based platform for those products. Fourth,

non-platform variables are considered over discrete product ranges and modules are es-

tablished. Finally, measures for both objective performance and product commonality are

used to assess the effectiveness of the product platform. The method is demonstrated by

designing a family of universal electric motors.
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Chapter 5

Conclusion

5.1 Conclusions

In this thesis, three methods are introduced that use multiobjective optimization

and Smart Pareto filtering to satisfy the three objectives of product family design, namely

to maximize (i) product performance, (ii) product distinctiveness as perceived by the con-

sumer, and (iii) product commonality as seen by the manufacturer. The methods are pro-

gressive in nature, building on each other in concept and complexity. Each of the three

methods follows a common design approach. This common approach is summarized in the

following three step process:

(1) Objective performance of each product family member is maximized through

the use of multiobjective optimization.

(2) Product distinctiveness is ensured by using Smart Pareto filters for the se-

lection of product family members.

(3) One of three distinct methods of establishing product platforms is used to

maximize product commonality.

In the first of the three methods, Smart Pareto filtering is introduced as a means of

determining the number of members to include in a product family, identifying the mem-

bers themselves, and defining the product platform. The use of Smart filters is particularly

valuable when traditional market segmentation data is unavailable or is not easily gathered

or distilled by the company designing the product family. According to the methodology,

(1) a discrete representation of a Pareto frontier comprised of candidate family members
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is identified. (2) The filter is then used to identify a Smart Pareto set of products that con-

stitutes the product family. This Smart Pareto set includes the members needed to make

a product family sufficiently diverse and represents the least number of products that pro-

vide adequate representation of product performance tradeoffs. (3) A designer-specified

maximum allowable difference in each design variable, threshold of variation, is used to

determine which of the design variables are best suited as platform variables and which are

best suited as scalable variables.

In the second of the three methods introduced in this work, concurrent Smart Pareto

filtering is used to select product family members from among a candidate set consisting

of many Pareto solutions. Notably, concurrent filtering considers both objective and vari-

able spaces during the selection process. The filter functions as follows: (1) Given a set

of Pareto solutions, a starting design is identified and classified as the first member of the

product family. (2) A region of insignificant tradeoff is constructed about the starting design

in objective space. Any design located within the region of insignificant tradeoff is elim-

inated from the set of candidate product family members. (3) Each remaining candidate

product family member is ranked according to the effect that its addition to the product

family would have on the variation among design variables. The design resulting in the

lowest calculated standard deviation to mean ratio, summed across all design variables, is

selected as the next member of the product family. (4) A region of insignificant tradeoff is

constructed about this design and any designs located within this space are removed from

the set of candidate product family members. Steps 3 and 4 are then repeated until all

points have either been included as a member of the product family or identified as being

insignificantly different from at least one product family member. (5) A standard deviation

to mean ratio is calculated for each design variable and any variable with a ratio of less

than 10 percent is made a platform variable.

The third and last method introduced in this work presents an interactive method

for establishing a combined scale-based and module-based product platform. The method

begins with (1) the use of physical decomposition in the identification of all major product

components. (2) Next, the designer identifies the relationships that exist between each

product component and each design variable. (3) The process then continues with the use
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Table 5.1: Comparison of the results achieved through each of the introduced methods and
the benchmark family of universal electric motors

Benchmark Set
Benchmark Family
Traditional Smart Pareto Filter
Concurrent Smart Pareto Filter
Combined Scale-based/Module-based

Objective Aggregate
Performance Commonality Total

1.526 2.000 3.526
1.615 1.250 2.865
1.548 1.750 3.298
1.467 1.375 2.842
1.653 1.125 2.778

of concurrent Smart Pareto filtering to identify product family members and to establish

a scale-based platform for those products. (4) Non-platform variables are next considered

over discrete product ranges and modules are established.

Table 5.1 shows the objective performance and commonality measures for each of

the methods introduced in this work as well as the individually optimized set of bench-

mark products and the benchmark product family. Notably, the method resulting in the

best objective performance (the lowest value in the case of a minimization problem) was

concurrent Smart Pareto filtering. The method resulting in the highest level of product

commonality (again noted by the lowest value) was the combined scale-based and module-

based product platform. Each of the methods introduced in this work showed improvement

over the benchmark set of individually optimized products, as indicated by the correspond-

ing aggregate totals. This indicates that the decrease in objective performance that resulted

from the implementation of the respective product platform was relatively small in com-

parison to the improvement in product commonality. Importantly, the benchmark family

showed a similar improvement in its aggregate total when compared to the benchmark set

of individually optimized products. Also of note, both concurrent Smart Pareto filtering

and the combined scale-based and module-based platform approach showed improvements

over the benchmark product family.

As noted in Section 1.1, the objective of this thesis is the development of an ap-

proach that aids designers in determining product family size, members, and platform, in-

cluding the identification of modular components and scalable parameters to be used in the
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design of a combined module-based and scale-based product family. The research detailed

in the three publications that constitute the body of this thesis collectively satisfy this objec-

tive. Chapter 2 presents Pareto frontiers as candidate sets of product family members and

introduces the use of Smart Pareto filters for the selection of family members. Chapter 3

builds upon the use of Smart Pareto filters by concurrently searching design variable space,

allowing for the simultaneous selection of product family members and establishment of

the product platform. Chapter 4 then applies concurrent Smart Pareto filtering in the design

of product families built upon a combined scale-based and module-based platform.

At this point, a note on the use of each method is in order. First, of the three

methods introduced in Chapters 2 through 4, concurrent Smart Pareto filtering and com-

bined scale-based and module-based platform design are most useful. That being said, the

threshold of variation and Smart Pareto filtering method detailed in Chapter 2 is of value

in that it bridges the gap between research in multiobjective optimization techniques and

product family design. Further, Chapter 2 lays a groundwork for the developments detailed

in Chapters 3 and 4. Second, concurrent Smart Pareto filtering, as detailed in Chapter 3,

is limited in use to product families that can successfully be built on a purely scale-based

product platform. Third, concurrent Smart Pareto filtering can successfully and relatively

easily be used in the design of product families with any number of objectives and/or design

variables, as long as a Pareto set of optimal candidate solutions can be generated. In the lit-

erature, Pareto set generators are available that can identify many Pareto solutions (tens of

thousands) from problems consisting of hundreds of design variables, objectives, and con-

straints. The scale of the problem has only minor impacts on the usefulness of the method.

Fourth, combined scale-based and module-based platform design, as presented in Chapter

4, is, in contrast, severely limited by the scale of the design problem at hand. The difficul-

ties limiting its use principally arise from the high number of design variable/component

interactions that exist in large design problems. It is important to note that even for the

relatively simple universal electric motor example problem presented in Chapter 4, which

had only 16 design variable/component interactions, a significantly higher level of com-

plexity was observed in arriving at a solution using the combined platform approach as

compared to concurrent filtering. For design problems consisting of dozens of components
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and hundreds of design variables, the number of interactions could easily increase 10 fold

or more, perhaps making the resolution of all variable/component interactions impossible.

Finally, when selecting between the two methods, preference should be given to concurrent

Smart Pareto filtering for the design of complex product families. Combined scale-based

and module-based design would in turn be preferred for the design of product families

requiring a particularly high level product commonality.

Further, for each of the methods presented within the body of this thesis a few final

points should be considered. First, the successful identification of a set of product family

members is somewhat limited by the Pareto frontier that is identified by the optimization

algorithm. The designer should exercise care so as to select an optimization algorithm that

is well suited for the problem at hand. Second, Smart Pareto filters are relatively unaf-

fected by disjointedness or sparseness along the Pareto frontier, allowing for the selection

of product family members in otherwise difficult circumstances. Finally, for concurrent

Smart Pareto filters to function properly, each design must share a common set of design

variables. In other words, Pareto frontiers that are composed of multiple Pareto sets cannot

necessarily be used in conjunction with concurrent Smart Pareto filtering.

5.2 Future Work

In considering opportunities for future work, three major areas were identified.

First, both ε-Constraint and Normal Constraint methods were used in the example prob-

lems to identify the candidate set of products that made up each Pareto frontier. Each of

these optimization methods identifies the various Pareto solutions by completing, in a sys-

tematic way, many single objective optimization routines. In certain cases, an individual

optimization routine can identify an area within the objective space that contains no valid

Pareto solutions. The current systematic approaches used in both ε-Constraint and Nor-

mal Constraint will continue to search this space, even though no solutions will be found,

increasing computational time significantly. Improvements to the systematic approaches

used to identify the many Pareto solutions could be made so that any space that contains

no solutions is search only once. These improvements would increase the efficiency of the

three methods introduced in this work. Further, because a Smart Pareto filter is used to re-
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move overly similar designs from among the candidate set, many of the solutions identified

during the optimization routine are ultimately discarded. Additional improvements in effi-

ciency could be achieved by further refining the systematic approach of each optimization

algorithm so that candidate designs are only identified in areas where significant differ-

ences in objective performance exists. This Smart generation of designs could ultimately

eliminate the need for filtering altogether.

Second, it is noted that in some cases, product families will require highly varying

spaces between products in the product family along one or more objective axes. Such

variability may be required when tightly grouped subsets of products can be used, for ex-

ample, to discourage competitors from entering a particular market segment. The filtering

methods presented in this work do not provide a means for the designer to specify filter pa-

rameters as a function of position along an objective axis and therefore does not generally

result in highly varying spaces between family members, although it can happen naturally

depending on the objective functions scales and the nature of the Pareto frontier. This type

of flexibility in specifying filter parameters would allow the filter to identify product fam-

ilies with highly varying spaces between products in that family. The development of this

flexibility could be considered as next phase of research in this area.

Third, while the use of Smart Pareto filters in the selection of product family mem-

bers lends itself to the design of product families in the absence of market data, it is not

limited to such cases. An advanced marketing tool, conjoint analysis, could be used to de-

fined the tradeoffs that exist among design objectives. By defining these tradeoffs, conjoint

analysis in essence defines the parameters of the Smart Pareto filter as well. Formalizing

the link between market research, using conjoint analysis, and the selection of product fam-

ily members, using Smart Pareto filters, is an important next step of this research. This link

would improve the usefulness of the methods introduced in this work when designing a

product family in a well defined market niche.
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