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ABSTRACT

DESIGN OF A THREE-PASSAGE, LOW REYNOLDS NUMBER TURBINE

CASCADE WITH PERIODIC FLOW CONDITIONS

Daniel R. Rogers

Department of Mechanical Engineering

Master of Science

A numerical method for modeling a low Reynolds number turbine blade, the L1M,

is presented along with the pitfalls encountered. A laminar solution was confirmed to not

accurately predict the flow features known in low Reynolds number turbine blade flow.

Three fully turbulent models were then used to try to predict the separation and reattach-

ment of the flow. These models were also found to be insufficient for transitioning flows.

A domain was created to manually trip the laminar flow to turbulent flow using a predictive

turbulence transition model. The trip in the domain introduced an instability in the flow

field that appears to be dependent on the discretization order, turbulence model, and tran-

sition location. The method was repeated using the Pack B blade and the same obstacles

were apparent.

The numerical method developed was then used in an optimization technique de-

veloped to design a wind tunnel simulating periodic flow conditions using only 2 blades.

The method was first used to predict a cp distribution for the aft loaded L1A research blade

provided by the U.S. Air Force. The method was then extended to a larger domain emu-

lating the 2 blade, 2D wind tunnel. The endwall geomtry of the tunnel was then changed





using previously defined control points to alter the distribution of cp along the suction sur-

face of the interior blades. The tunnel cp’s were compared to the computationally aquired

periodic solution. The processed was repeated until an acceptable threshold was reached.

The optimization was performed using the commercially available software iSIGHT by

Engineous Solutions. The optimization algorithms used were the gradient based Succesive

Approximation Method, the Hooke Jeeves, and Simulated Annealing.
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Chapter 1

Introduction

The Global Hawk unmanned air vehicle (UAV), seen in Figure 1.1 initiated the

investigation of very low Reynolds (Re) number flows through low pressure turbines (LPT).

A schematic showing the components of a typical jet engine is shown in Figure 1.2. The

LPT is found near the end portion of the engine just before the nozzle. During development

of the engine it was found that because of the flight envelope of the aircraft, i.e. cruise

altitude of 60,000 feet and the ability to loiter in an area for an extended period of time,

the Reynolds number of the flow seen by the turbine was as low as 10,000 to 25,000 [1].

Operating at this low Reynolds number decreased the efficiency and power output of the

LPT dramatically. The reason for the decrease was due to the complex flow field found

in the LPT. Specifically, the laminar boundary layer along the turbine blade was prone to

separate along the suction surface. This separation reduced the available lift on the blade

and was a major limitation in LPT performance. This loss in efficiency reduced the range,

loiter ability, and electrical power that was needed in the surveillance UAV. To increase

efficiency at low Re, flow control is being studied as a means to reduce flow separation.

Some of the ideas under evaluation are passive surface protrusions and recesses,

electro static discharge devices, heated wires, MEMs actuators, and vortex generating jets

[2]. To study the flow control effects, high turning angle blades have been developed that

purposely create a flow separation. If the blade has enough turning for the flow to separate,

two things can occur. One, the flow will reattach to the blade, or two, the separated region

will extend beyond the trailing edge of the blade and become an unsteady flow, shedding

vorticies off the trailing edge of the blade. Figure 1.3 shows both of these possibilities.

Reattachment to the blade has been hypothesized to be caused by the transition of the shear

1



Figure 1.1: Global Hawk UAV, Photo by George Rothmaller, Courtesy of Air Force News.

layer to turbulence [3]. The extension of separation beyond the trailing edge of the blade

leads to the most loss, in some turbine configurations as much as 7% [4].

To produce accurate data from the numerous experiments needed to test all the

methods of flow control and increase understanding of the complex flow field generated by

the LPT blade, the methods of modeling and analyzing the flow field, both experimental

and computational, must be improved.

1.0.1 Periodic Conditions

Periodicity is a flow condition that plays an integral role in turbomachinery re-

search. A periodic flow field is defined as the repetition of small domains to create a larger

domain. An example of this is a radiator that has multiple heat exchanger fins repeated

multiple times, a square inch can define the whole radiator. This allows a solution of a

smaller portion of the domain to solve for the whole domain. There are many naturally oc-
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Figure 1.2: Shows location of low pressure turbine in a turbofan engine.

Figure 1.3: The computational solution for LPT blade with no turbulent transition (left)
and the experimental contour plot of velocity magnitude for a LPT blade showing the reat-
tachment of flow (right).

curring periodic domains. A computationally based explanation of periodicity is presented

by Patankar [5] and is summarized below. This approach provides the basis of experimental

and computational periodic flows.
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Consider calculating the flow field of Figure 1.4. This configuration can be de-

scribed by a repetition of identical smaller domains. This configuration is commonly found

in heat exchangers and heat transfer augmentation devices. The entire domain is large and

would require an excessive amount of computational resources to solve the flow field nu-

merically. The alternative to solving the whole domain is to separate the large domain by

repeatable smaller sections, as seen by the dashed lines in Figure 1.4. These sections that

have the same geometry, if fully developed, will also have the same temperature and ve-

locity fields. This allows the calculation of a much smaller, less computationally expensive

domain. Because the flow fields for each smaller domain are the same, the inlet and outlet

conditions are the same.

Figure 1.4: Periodic heat exchanger configuration.

In solving the flow for this geometry the inlet and exit velocities of the domain are

not known and are not needed. If the smaller domain is repeated in rows, the domain exit

plane is the exact same as the domain inlet plane, thereby making all the fluid properties

and vectors for the two planes equal. So all that is needed is an initial average condition

to begin the numeric calculation. This method assumes that all the streamwise stations are

arranged as if it were in an infinite loop. This is also applicable if the domain was repeated

in columns. The top and bottom boundaries of the columns would be the same.
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This method for calculating periodic heat exchanger flow can also be used to model

a turbine blade row. Turbine blades are usually evenly spaced in the circumferential direc-

tion. This means that the blade row can be broken into smaller domains including just one

blade or one passage (space between blades). The domain created in this situation is only

partially periodic. The inlet and outlet conditions are not equal because the small number

of blade rows. This requires inlet values to be known. The rotational direction, however, is

periodic. So the boundaries separating each individual blade have the same values of ve-

locity and other fluid properties. For this case the assumption is that the blades are stacked

on top of each other creating an endless row of blades as can be seen in Figure 1.5. The

annulus or blade row is accurately modeled in this manner because it really is an endless

loop of blades.

(a) (b)

Figure 1.5: Turbine blade configurations showing (a) annular blade rows and (b) an exam-
ple of a linearized blade cascade.

1.0.2 Experimental Techniques

Experimental studies are an important means of analyzing the flow fields and in-

vestigating critical flow features. In complex flow fields, especially those with turbulence

generation, a high resolution study of the flow fields is needed. Experimental resolution
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is based on how many data points can be taken in an specific area of the domain. More

data points result in better resolution. A widely used practice is to build linear blade cas-

cades for experiments and use only the data from the interior blades where the flow is most

periodic. This way the periodic conditions are simulated if enough blades are included.

However, using a multiple blade cascade increases the size of the experimental configura-

tion and increases the required mass flow rate of the tunnel. Based on the Reynolds number

relationship between length, l and velocity, u where Re =
ul
ν

, the smaller blade chord in-

creases the necessary velocity, while the large blades will decrease the velocity. If too small

a cascade is used there is not enough useful resolution, or not enough data points to accu-

rately define the flow. To increase the resolution of the experiment it is advantageous to

reduce the blade count of the cascade and make the blade larger. This reduction of blades

and increased size allows increased optical access, and the ability to increase the number

of data points taken in a specific domain region. The problem then is keeping the periodic

behavior of the blade cascade.

In reality, periodic conditions are not exactly maintained in a wind tunnel config-

uration. The boundary layer created by the wind tunnel wall causes the flow fields of the

blades nearest the wall to change. The difference in the near wall blade’s flow field prop-

agates through the rest of the domain. If there are enough blades, the innermost blades

will represent the nearest periodic flow. As discussed previously, too many blades can

greatly influence cost and resolution of the experiment. Currently, periodicity has been

maintained by using suction to remove the upstream boundary layer and tailboards [3]. Fig-

ure 1.6 shows the experimental cascade used by Bons et al. [6] where suction and tailboard

movement was used to adjust the pressure coefficient, cp, distribution where cp = p−pre f
1
2 ρre f v2

re f
,

p =static pressure, pre f =reference pressure (atmospheric), ρre f =reference density (for

air ρre f = 1.225), and vre f = 1m
s was the reference velocity. The cp used in Chapter 2 was

defined differently to match the data of Bons et al. [6] as cp = pT,in−plocal
pT,in−pS,in

where pT,in =total

inlet pressure, plocal =local static pressure, and pS,in =static inlet pressure. These exper-

imental methods can be tedious to implement [7]. The comparison of experimental data

to CFD can also be problematic due to the varying inlet conditions. The resolution of the

experimental study could be improved, resulting in much more data of smaller scales that
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could be recorded and analyzed. In the case of low Re turbine blades where a shear layer

transition to turbulence occurs, more spatial resolution would significantly increase the un-

derstanding of the system. This would directly benefit the current research in LPT flow

control. To create a wind tunnel that creates a periodic flow field of a blade row with a low

number of blades greatly increases the experimental resolution of the experimental mea-

surements and eliminates the inconsistencies of tailboard movement and the immeasurable

amounts of suction.

Figure 1.6: Experimental tunnel cascade implementing suction and tailboard movement for
a 35◦ inlet flow angle.

1.0.3 Optimization

In an inviscid flow field, the end walls of the tunnel would simply need to follow

the streamlines of the periodic solution and the respective surfaces of the blade. In the

case of a real experiment, viscosity is a major contributor to the near wall flow and the

7



wall geometry is not as easily defined. The definition of the wall geometries needed for the

viscous experiments could be solved using numerical simulations. As discussed previously,

the flow field of this type separates and can either reattach or the wake can extend off

the trailing edge of the blade. Both outcomes have disadvantages. At this point in time

there is not an adequate RANS turbulence model capable of predicting the transition of the

laminar separation on the blade, and unsteady cases are computationally expensive. A new

method of solving transition flows, the k− kl−ω model, has recently been included in a

developmental beta version of Fluent. This model was introduced after the development

of the method presented here. The new k− kl−ω method could greatly simplify flow

analysis if it is found to sufficiently predict LPT flows. Large eddy simulations (LES)

studies have been performed by Gross et al. [8], [9], and have shown an accurate prediction

of the flow field for the described LPT separation zones and reattachment. LES, however,

is very expensive computationally and does not lend itself well to iterative optimization.

Recent studies by Laskowski et al. [10]. have shown the successful application of

optimization techniques in solving the boundary geometry of an experimental wind tunnel’s

walls for a transonic turbine blade flow. This application was based on computational fluid

dynamics (CFD) using a RANS k−ε model, and an iterative approach to solve for the wall

shape that produced periodic flow between blades. The main difference for this research

is the extension of the idea to low Reynolds number flows, which as previously discussed

introduces different physical flow characteristics.

1.0.4 Objective

The objective of this research is to design a periodic linear cascade of LPT vanes by

optimizing tunnel wall geometry based on CFD simulations using an automated iterative

optimization technique. The experimental tunnel used by Bons et al. [6] was used to define

inlet dimensions and conditions of the periodic tunnel cascade. The first step in this process

was to obtain a method of numerically solving the complex flow field of low Reynolds

number, high turning angle turbine blades using readily available commercial codes, and

highlight potential pitfalls of using CFD for separated transitional flows. Then the periodic

wind tunnel could be designed by iteratively manipulating the geometry of the end walls

until the cp distributions of both blades in the domain match the cp distribution obtained
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through the periodic numerical solution of step 1. The final design was determined by

matching the cp of the periodic solution and a visual inspection of the manufacturability

of the end wall geometry. Each step of the modeling and optimization processes will be

explained, and a conclusion made on the effectiveness of the techniques.

The CFD model developed to accurately predict the flow fields of reattaching LPT

blades is presented in Chapter 2. The model was then used to define cascade design guide-

lines. Chapter 3 presents cascade design guidelines determined from a parametric analysis

of tunnel wall spacing, tailboard shifting, and blade shifting. The optimization was then

run using control points to define the end wall geometry of the domain. The optimization

runs, their results, and a discussion of results is presented in Chapter 4. Conclusions and

recommendations are given in Chapter 5
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Chapter 2

CFD Model

To use an optimizing routine to find the tunnel end wall geometry, an accurate

prediction of the desired flow field must be calculated. This prediction could come from

already existing experimental data, or for the case of a new blade that has no experimental

data, it could come from a CFD calculation. Some CFD models have been used to predict

LPT blade flow fields that transition to turbulence along the blade surface [9]. However, the

methods used do not lend themselves well to iterative processes of optimization due to the

computational cost of the methods. This chapter will present a method developed to solve

for an accurate pressure coefficient, cp, prediction. This method was validated using the

experimental cp distributions of the Pack B and L1M blades. The method was then used

in the following chapters, to solve the periodic flow field of a new research blade with no

experimental data.

The nature of low pressure turbine blades at low Reynolds numbers poses many

problems for computational modeling. Experimental and computational studies of two

research turbine blades has greatly advanced understanding of the flow field. The Pack B

blade profile is a Mach number scaled adaption of a highly loaded LPT blade by Pratt &

Whitney. The design solidity, σ =
cx

s
, where cx = axial chord and s = blade spacing, for

the blade is 1.13 and has an inlet flow angle of 35◦ and exit angle of 55◦ [6]. The L1M

is a mid-loaded (maximum lift on the middle section of the blade) variation of the Pack

B designed by the Air Force Research Laboratory [11]. The L1M has a solidity of 0.99

and the same design inlet and exit flow angles as the Pack B [3]. An LES study performed

on theses blades by Gross et al. [8], [9] at Re=25,000, showed the flow fields over both

blades had significant separation, and each blade had a unique axial location of separation.

Separation for the L1M was predicted at 57%cx. The behavior of flow over the blade was
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also presented in experimental studies by Bons et al. [3]. In this study, the inlet had a free

stream turbulence level of 3% intensity and Re=20,000. The flow consisted of laminar

boundary layer growth despite the existence of free-stream turbulence. The combination of

the boundary layer growth and the curvature of the blades in the cascade caused separation

to occur. If the transition to turbulence occurs in the separated free shear layer the flow can

then reattach to the blade. For the L1M blade at these flow conditions, flow separation was

identified at 59%cx and reattachment was noted at 73%cx. This separation and reattachment

can be seen in Figure 2.1, an experimental contour plot created by Reimann et al. [12]. Bons

et al. [3] hypothesized that the cause of this reattachment was boundary layer transition to

turbulence. The location of reattachment is a function of Reynolds number, blade curvature,

blade spacing and free stream turbulence.

Figure 2.1: Experimental contour plot of velocity magnitude for the L1M blade [12].
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2.1 Model

The steady, incompressible, Navier Stokes equations (RANS equations in the case

of turbulent simulations) were integrated using an unstructured, segregated, pressure-based

finite-volume procedure as implemented within the Fluent version 6.2 solver (Fluent, Inc.,

Lebanon, New Hampshire). The solution/discretization procedure, employed pressure-

velocity coupling using the SIMPLEC algorithm [13]. Differencing of the convective terms

in the momentum and turbulence equations used a 1st order upwind scheme.

The program Gambit (by ANSYS) was used to create the computational grid. The

domain consisted of a two dimensional single blade with periodic conditions imposed at

approximately the mid-passage (see Figure 2.2). The domain extends .3 cx upstream of the

leading edge with a velocity inlet condition and a velocity flow angle of 35◦ and an outflow

boundary .5 cx downstream from the trailing edge of the blade. Near the blade, a structured

quad mesh was generated to capture the boundary layer, also shown in Figure 2.2.

(a) Periodic Domain (b) Boundary Layer Mesh

Figure 2.2: (a) The periodic computational domain of the Pack B cascade with periodic
boundary shown by the white lines, and (b) the boundary layer mesh on the blade.

This boundary mesh had a spacing of h/cx = .0005 for the first point off the wall,

and extended approximately h/cx = .00516 from the wall and y+ ≤ 1. Outside the bound-
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ary mesh, unstructured triangles were used to mesh the remainder of the domain. Approx-

imately 125 points were used along the upper and lower blade surfaces. In total, approxi-

mately 40,000 total cells were used in the mesh. A second, finer mesh containing 80,000

cells was used to indicate grid convergence based on the cp distribution on the suction

surface. Figures 2.3 and 2.4 show the pressure coefficient, cp, distribution for the L1M

and Pack B blades respectively. A third grid of 120,000 cells was created and showed the

same solution as the 80,000 cell grid. The two solutions were calculated assuming fully

turbulent k− ε flow to avoid any complications introduced by separated flow regions that

are common on LPT blades. It can be seen from the figure that the two grids, coarse and

fine, produced similar results. This indicates that the fine grid used was good enough for

the calculations. The parameters of the boundary layer and growth of the grid cells were

held constant for all following grids.

Figure 2.3: Grid refinement study for the L1M blade, showing a coarse and fine mesh cp
distribution.

14



Figure 2.4: Grid refinement study for the Pack B blade, showing a coarse and fine mesh cp
distribution.

2.2 Results-L1M

2.2.1 Laminar Solution

Considering the low Reynolds number and low free stream turbulence levels along

with experimentally observed laminar boundary layers, a first attempt was made to model

this flow with a simple laminar model. Figure 2.5 shows the stream function of the L1M

blade for a steady laminar solution. Note that the assumption of 2D steady flow in the

separated regions is not appropriate.

Although the steady equations were solved, a pseudo-unsteady flow field resulted

in this region (i.e. a truly converged solution is not obtained). However, the predicted sep-

aration points for the Pack B and the L1M blades, as shown in Table 2.1, are found to be in

very good agreement with the higher-fidelity simulations of Gross [8] and the experiments

of Bons [3]. Additionally, the general trends of separation size in the separation regions

were observed to be correct.
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Figure 2.5: Stream function of the laminar solution for the L1M at Re=20,000.

Table 2.1: Separation Locations for Various Models and Cases in % Axial Chord

Model Pack B L1M Re Tu
Fluent 0.73 0.58 20,000 3%

Gross & Fasel [8], [9] 0.73 0.57 25,000 .3%
Bons et al. [12] 0.72 0.59 20,000 3%

Considering that the experimentally observed separation for both the Pack B and

L1M blades includes a transition point that reattaches the flow, this model was only accurate

for the regime from the leading edge to the separation point, where the modeling of the

laminar boundary layer was most appropriate.
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2.2.2 Turbulence Model

The experiment of Bons et al. [3] measured a free-stream turbulence level of 3%

intensity at the cascade inlet. Based on the 3% inlet turbulence level and the length scale

measured by Reimann et al. [12], the turbulent viscosity ratio was calculated to be 64. The

free stream turbulence was generated with a square bar grid spaced 5.2 cx upstream of the

cascade. Using these parameters, a periodic domain with a shorter inlet length from the

experiment to save on computation costs was run using three RANS turbulence models

in Fluent; the Spallart-Allmaras, k− ε , and k−ω . Neither of these models predicted an

accurate flow field compared to the data from Bons et al. [3]. Figure 2.6 shows cp plots

of each turbulent case for the L1M blade. The turbulent models showed no separation at

all. The cp does not show the sudden drop in cp around cx = 0.73 representing turbulent

transition and reattachment. This was because the boundary layer was modeled as turbulent

throughout instead of laminar, causing the flow to remain attached throughout the blade

passage.

Figure 2.6: Fluent solutions of the L1M cascade using the Spallart-Almaras, k− ε , and
k−ω turbulence models compared to data from Bons et al. [3](Re=20,000, Tu=3%).
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2.2.3 Turbulent Trip

Since fully laminar and fully turbulent simulations did not accurately predict the

reattachment of flow on the aft portion of the blade, it was concluded that these models

alone could not produce an accurate simulation, but that a method of transitioning between

laminar and turbulent flow was necessary. Using the transition point from the experimental

data of Bons et al. [3], the domain was split into two regions: a laminar portion upstream of

the transition point, and a turbulent portion downstream. Figure 2.7 shows the new domain.

This model also did not predict the correct features of the flow. The separation

was not significant. The problem was narrowed down to the geometry of the domain. As

can be seen from Figure 2.7, the transition to turbulence was applied to both the suction

and pressure surfaces at the same axial location. The now turbulent boundary layer on

the pressure surface was larger than the physically correct laminar boundary layer. This

pushed the mid-passage flow toward the suction surface causing the separation bubble to

completely disappear, even in the laminar zone. This result was somewhat surprising in

that it was not expected that the turbulent boundary layer on the pressure surface would

have such a strong effect on the overall flow field.

(a) (b)

Figure 2.7: The laminar and turbulent zones (a) initial domain, and (b) second attempt .

This was remedied by changing the position of the turbulent zone boundary. The

new domain is shown in Figure 2.7. Notice that the turbulent zone on the pressure surface

18



does not begin until the trailing edge of the blade. This new domain relieved the problem

and the CFD data showed the same flow features that were shown in the experimental

results of Bons et al. [3]. It must be noted that the trip to turbulence creates an instability

at the specified trip location. This is manifested as an oscillation located just before and

after the transition location of cx = 0.73 as seen in the cp data of Figure 2.8. It is believed

that the oscillation is caused by a sudden jump in turbulent properties when the domain

switches from laminar flow to turbulent. As can be seen from the Figure 2.7, the k−ω

model was more susceptible to this instability than the Spallart-Almaras and the k− ε

models. The susceptibility of the other models may be due to the size of the boundary

layer. It can also be seen from Figure 2.9 that the order of solver used also effects the

magnitude of the oscillation. The magnitude of the oscillation is much greater for the 2nd

order discretization, while the 1st order discretization dampens the oscillation.

Figure 2.8: The Fluent solutions to the tripped turbulent solutions using the experimental
transition data and the Spallart Almaras, k− ε , and k−ω turbulence models, compared to
the experimental data of Bons et al. [12] for the L1M blade at Re=20,000.
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The desired outcome of these simulations was to match the experimental observa-

tions of a separated boundary layer that reattaches at some point downstream. The k− ε

and Spallart-Almaras models do show a separation and reattachment, however, compared

to the experimental data the size of the separation is much smaller. It was determined that

the placement of the turbulent trip has an effect on this unstable behavior. This will also be

observed in the discussion of a predictive model for transition in Section 2.2.4.

Figure 2.9: The Fluent solutions to the 1st and 2nd order tripped turbulent solutions using
the experimental transition data and the k−ω turbulence model, compared to the experi-
mental data [12] for the L1M blade at Re=20,000.

2.2.4 Transition Models

It is not always practical to run an experiment just to find out where the transition

to turbulence occurs so that CFD will be able to predict the flow field. Bons et al. [3], [6]

compared their experimental transition location for the L1M with a transition model by

Praisner and Clark [14] and found that the difference between experiment and the model

was 9%. This model was also used to predict the transition location for the L1M model in
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the current Fluent study. The form of the model is:

L
Ssep

= CReD
θsep

(2.1)

where C = 173.0, D = −1.227, L is the distance between separation and the location of

transition, and Ssep is the surface distance between the leading edge of the blade where stag-

nation occurs and the location of separation. Reθsep is the momentum thickness Reynolds

number at the location of separation. The model used the separation location and boundary

layer parameters from the laminar solution, seen in Figure 2.5, to solve for the location of

transition. Table 2.2 shows the difference between experimental results and the Praisner

and Clark [14] model for both the Pack B and L1M. These values were used in the CFD

models and a comparison was made.

Table 2.2: Transition Locations for the Pack B and L1M blades in % Axial Chord

Transition Location Pack B L1M
Praisner & Clark [14] 0.87 0.82

Bons et al. (Experiment) [3], [12] 0.84 0.73

Figure 2.10 shows the simulation results when the transition is placed at the pre-

dicted value of Praisner and Clark [14]. The figure shows that the same general accuracy of

the models before transition matches that of the previous solution. But, the magnitude of

the oscillation at the transition location was greatly increased, and was also present with the

other two turbulence models. This implies that the position of the transition location makes

a significant difference in the stability of the solution. The Praisner and Clark [14] transi-

tion locations are further downstream compared to the experimental. It is possible that the

boundary layer separation grows too big before the the turbulent transition can reattach the

flow as observed in the experiment. More studies should be done to more accurately define

the source of this instability.

Figure 2.11 shows the velocity magnitude contour plot for the L1M blade with the

more accurate two zone domain. This matches well with the experimental data provided

by Bons et al. [3].
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Figure 2.10: The Fluent solutions to the tripped turbulent solutions using the Praisner and
Clark [14] transition data, compared to the experimental data for the L1M blade.

Figure 2.11: Left, computational contour plot using the k − ε turbulence model and
Re=20,000, right, experimental contour plot of velocity magnitude for the L1M blade
(Note: the color scales are not exactly the same).
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Figure 2.12: The Fluent solutions to the non-tripping turbulent solutions using Spallart
Almaras, k− ε , and k−ω models, compared to the experimental data [3] for the Pack B
blade at Re=20,000.

2.3 Results-Pack B

2.3.1 Pack B Application

The same process as outlined above was used on the Pack B turbine blade at

Re=20,000. Figure 2.12 shows the prediction from the pure turbulent simulation. The

Spallart-Almaras model tends to over estimate the pressure coefficient. The plot also shows

that there was no separation region. Just as the L1M, turbulence models without a laminar

zone did not accurately predict the flow field.

The Praisner and Clark [14] transition and the experimental transition models showed

the same trends for the Pack B as they did for the L1M (see Figure 2.13). The oscillation

still exists and it’s magnitude increased for the Praisner and Clark [14] model. This implies

that the distance downstream was a factor in the occurrence of the instability. However,

unlike the L1M, the instability only occurred in the k−ω model. The boundary layer sep-
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aration characteristics of the other two models for the Pack B were the same as the L1M.

The separation was not significant.

2.4 Conclusions from CFD Model Developement

Modeling low Reynolds number turbine blades is fraught with challenges that are

not easily remedied. A relatively simple method has been presented, although, not without

it’s own obstacles and weaknesses. This method, in short, consists of using a laminar solver

to predict the separation location on the blade and the other quantities that are used in

Praisner and Clark’s [14] turbulence transition model. From this information, the transition

location is found and the new domain can be built. The model can then be solved using

the most parsimonious method. In the case presented here, this would be the 1st order

discretization, with a single equation turbulence model. If the instability still occurs, then it

would be advantageous to shift the transition location forward. However, a more thorough

investigation of the cause of the instability still needs to be completed.

A new method of solving transition flows, the k− kl−ω model, has recently been

included in a developmental beta version of Fluent, after the development of the presented

method. The new k− kl−ω method could greatly simplify the process if it is found to

sufficiently predict LPT flows.

24



Figure 2.13: The Fluent solutions to the tripped turbulent solutions using Praisner and
Clark’s [14] (top) method of predicting transition and the experimental values for transition
(bottom) compared to the experimental data [3] for the Pack B blade at Re=20,000.
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Chapter 3

Mesh Manipulation

The design of a wind tunnel significantly affects the success of the experiments

performed in the wind tunnel. If the tunnel is designed for one type of experiment it may

not be good for another type. Current tunnel configurations may not be the best designs

and could introduce extra error in the experiment in the form of boundary layer effects

and a lack of periodicity. Types of experiments that include boundary layer suction and a

manipulation of tailboards are not ideal. Suction of the boundary layer requires knowledge

of the amount of mass evacuated from the tunnel which is hard to measure. Tailboard

movement is not exact and could introduce variation from moving the tailboard multiple

times. Hence, a tunnel geometry that could remove these inconsistencies is desirable. The

geometries for this experiment are described in this chapter, as well as the effect certain

aspects of the geometry have on the flow field.

3.1 Original Experimental Configuration

The wind tunnel configuration used to make the computational and experimental

comparisons is partially described by Eldredge et al. [15]. The tunnel is an open loop

facility driven by a centrifugal fan with an output capacity of 3 kg/s. After the flow leaves

the blower it enters a heat exchanger with adjustable heating and cooling elements capable

of maintaining constant air temperatures. The tunnel after the heat exchanger is shown in

Figure 3.1. The flow then passes through 9m of 0.67m diameter ducting before expanding

to 1.83m of 1.07m diameter conditioning plenum. At this point the flow has low turbulence

and is uniform in nature and enters 1.83m of 0.381m wide square ducting before entering

the test section. Prior to the test section a square grid turbulence generator is placed 5cx

upstream of the cascade inlet to define the turbulent intensity of the flow. The turbulence
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generator produced a turbulence intensity level of 3%, which has been shown to be a typical

free stream intensity level for low Reynolds number flows [12].

Figure 3.1: Original experimental tunnel configuration showing the last portion of the 9m
section to the outlet of the test section.

Eldredge et al. [15] found that the modular design of the wind tunnel allows for

only the test section to be adjusted. It is the geometry of this test section that is the focus of

this research. It was decided that the test section would consist of three passages, requiring

the manufacture of two identical blades and two wall sections to be determined from the

numerical work. A sample test section geometry can be seen in Figure 3.2. This geometry

is the original used by Eldredge et al. [15].

3.1.1 Experimental Methods of cp Matching

The original experimental test section, shown in Figure 1.6 and 3.2, was a dual

passage design with a single blade placed in the center of the tunnel. The tunnel walls were

based on the blades suction (top wall) and pressure (bottom wall) surfaces. The spacing

between the blade and the walls was determined from the design solidity of blade. This

configuration required that something be done with the boundary layer developed along the
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Figure 3.2: Original experimental tunnel test section configuration [15].

1.83m section of square ducting. To remove the boundary layer a bleed on both walls was

placed just in front of the curved sections. The exact amount of air bled was undetermined

due to the inability to measure it. This removal of mass from the flow also has an effect on

the Reynolds number of the flow at the inlet plane of the blades. A tail board was also made

to adjust the cp distribution. By altering the size of the bleed and the position of the tail

boards it was possible to match the cp of the dual passage test section to the cp distribution

that was found using an eight blade cascade.

3.2 New Test Section Configuration

A new three-passage experimental test section was designed to allow the tunnel end

walls to be manipulated through optimization runs. This was done by slightly reducing the

size of the blades so that the spacing between end walls and blades was 9.9% larger. The

magnitude of this change was based on an estimation of the boundary layer thickness of
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the flow entering the test section. The estimation was based on previous boundary layer

experiments using the same tunnel of Bons et al. [15]. By changing the blades, the rest of

the tunnel did not need to change. So at the end of the 1.83 square duct of the tunnel as

described previously, only the test section was adjusted.

The test section consisted of two L1A blades placed in the center of the test section.

The L1A is another research design blade by the Air Force Research Laboratory. The L1A

is a modification of the L1M, designed to move the maximum lift to the aft portion of

the blade. The correct spacing between the blades was maintained based on the design

solidity for the L1A blade of σ = 0.99. The dimensions of the tunnel walls were left to be

determined from the optimization runs. The end wall geometry for the initial computations

was the same as the blade surfaces, but shifted to match the tunnel inlet width of 2.655cx.

The domain extended 1.6 cx upstream of the leading edge of blade 2 and 2.2 cx upstream

of the leading edge of blade 3. The domain extends at least 3.3 cx downstream from the

trailing edge of the blades. The nozzle extends 0.42cx upstream in the horizonatal direction.

Figure 3.3 shows the initial domain.

Near the blade, a structured quad mesh was generated to capture the boundary layer

as shown in Figure 3.4. This boundary layer mesh had a spacing of h/cx = .0005 for the

first node off the wall, and extended approximately h/cx = .0158 from the wall, with a

growth rate of 1.1. Outside the boundary mesh, unstructured triangles were used to mesh

the remainder of the domain. Approximately 330 nodes were used along the upper and

lower blade surfaces. In total, approximately 350,000 cells were used in the mesh. This

mesh is an extension of the mesh created in Chapter 2, and uses the same boundary layer

parameters and growth rates. The results of a grid refinement study were used to prove the

grid configuration was sufficient and are shown in Figure 2.3 and 2.4.

3.2.1 Model Definition

The details of the numerical methods used to solve the problem are the same as

specified in Chapter 2. A two dimensional computational model was created for simplicity

and speed of calculation. 3D effects should be minimal as the wind tunnel was created to

simulate a two dimensional flow field [15]. The domain was bounded by end walls with

the no-slip condition applied. The blades also used the no slip condition. The domain
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Figure 3.3: The computational domain based on the geometry of the original wind tunnel.

outlet was defined to be an outflow boundary. Because the model only extends a couple

chords upstream the inlet conditions require a boundary layer profile along the inlet. The

boundary was defined as a velocity inlet and a velocity profile of the boundary layer was

used as the inlet velocity. The velocity profile was obtained from a numerical simulation

of a 1.83m by .381m two dimensional duct, with inlet conditions of a uniform velocity and

the blades design Reynolds number of 20,000. The uniform velocity profile was used to

best match the experimental tunnel at the location just after the conditioning plenum where

the flow should be uniform. The k− ε turbulence model was used to solve the turbulent

characteristics of the flow. Also included in the inlet conditions of the test section were an

inlet free stream turbulence intensity level of 3%, and a turbulent viscosity ratio of 64 to

match the experimental turbulence characteristics produced by the generator [12].
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Figure 3.4: Structured boundary layer mesh transitioning to unstructured triangular grid.

3.3 Parametric Study of Design Variables

To produce a good design of the end wall geometry of the tunnel, it was important

to understand what effects different geometrical parameters have on the flow field. This

knowledge is needed to make important design decisions and when using an optimization

technique to generate a feasible periodic solution. The main geometric factors that can be

changed to influence the flow field, outside of changing the blade geometry, are solidity,

inlet conditions and outlet geometry. In this case, end wall geometry could also be changed.

To define the basic guidelines only the solidity (distance between the wall and the blade

surface), inlet geometry and outlet geometry were changed. The curvature of the wall

directly above and below the blades was constant and identical to the pressure surface and

suction surface of the blades respectively.

3.3.1 The Variables

The first variable examined was solidity. More specifically for this case, the distance

from the end walls to the nearest blade. The spacing between blades was fixed and did not

change. The inlet tunnel width was also fixed and therefore the spacing must be changed

between the end of the tunnel and inlet of the test section. This was done by placing a

nozzle at the entrance of the test section. Figure 3.5 shows the three domains used to test
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how this spacing affects the flow field, and more specifically the cp distribution. The design

spacing is the center configuration. The other spacings are 10% larger and 9% smaller than

design.

Figure 3.5: Changes in spacing between the walls and the blades for three cases, 9% smaller
than design, design spacing, and 10% larger than design.

The second variable is the tail board. The tail board section begins just after the

trailing edge of the blades and extend to the outflow boundary. This section could be

moved into the flow field to create a nozzle or out of the flow to create a diffuser. The tail

board was shifted for all cases of wall spacing, as shown in Figure 3.6. The change was

rapid at trailing edge location and transitioned to a more gradual diffusion. This was done

to make the top end wall more like a true periodic case where the end of the blade results

in an instantaneous expansion.

The third variable is shifting the blades. The blades were shifted up and forward

in the domain, maintaining the spacing between the blades as well as the spacing between

blade 3 and the top wall. By shifting the blades forward it was expected that the location
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Figure 3.6: Tail boards shifted out for each case of pitch.

of the peak cp on the blades would be pushed forward. The shifting up was expected to

have a similar effect to changing the end wall spacing in that decreasing the spacing would

increase the peak cp of blade 3, while maintaining the magnitude of the cp for the lower

blade 2. Figure 3.7 shows the shifted blades compared to the original domain. The spacing

between the top blade and the straight portion of the wind tunnel has decreased, making

the tunnel wall boundary layer closer to blade 3. This decreased distance between blade

and boundary layer plays a significant role on the blade cp.

3.3.2 Parametric Study

The effect of wall spacing on the cp distribution can be seen from Figure 3.8. In

general, the smaller spacing caused a higher magnitude of cp. Interestingly, the suction

surface cp of blade 2 also increased even though the spacing between the blades was not

changed. This indicates that the Reynolds number at the inlet plane of the blade changes

depending on the wall spacing, which is influenced by the nozzles upstream. For the cases
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Figure 3.7: Blades shifted up and forward compared to the original domain.

of smaller wall spacing the Reynolds number increases, making the cp increase. The case

of a larger wall spacing has the smallest magnitude of cp.

In all simulations except the original, the location of peak cp of blade 3 was farther

downstream than for blade 2. The location of the peak moved farther downstream as the

wall spacing decreased. It was also noticed that the peak cp location for blade 2 was the

same for all the cases, indicating that the velocity changes created by diffusion and the

inlet nozzle did not effect the maximum cp location. Therefore, variables that altered the

location of the peak cp were the blade inlet plane flow angle, which can be altered by the

inlet nozzle, and the wall boundary layer.

Figures 3.9 - 3.11 shows the suction surface cp distributions of the shifted tail board

runs. The plots show that the shifted tail boards reduced the magnitude of the pressure co-

efficient significantly. This was done by diffusing the exit flow which reduced the velocity.

It also shows that the peak cp of blade 2 did not shift significantly. However, the peak cp of

blade 3 shifted substantially forward for the case of increased wall spacing. The forward

shift of the peak can also be attributed to the diffusing nature of the tailboard, increasing
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Figure 3.8: Comparisons of the cp distribution for variations in wall spacing.

the incoming velocity angle. An increased velocity angle results in the forward shift of the

maximum cp location. The lower cp created from the diffusion rolls the peak down the

existing cp curve, moving the peak to a more forward position.

The shifting of the blades inside the tunnel domain created three significant changes

to the cp distribution. These changes can be seen in Figure 3.12. The peak cp increased for

both blades, only the location of the peak cp for blade 2 shifted, and the oscillations that

were discussed in Chapter 2 are much smaller. The increase in cp shows that the velocity of

the flow increased. This increased velocity also reduced the oscillation or unsteadiness of

the flow. Because the blades were shifted, the spacing between the boundary layer on the

interior wall and blade 2 also increased. This increase reduced the effect of the boundary

layer on the flow and a more uniform flow entered the blade passage, thus moving the

location of peak cp to better match blade 3.
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Figure 3.9: Comparisons of tail board shift compared to original configuration for the
smaller wall spacing.

Figure 3.10: Comparisons of tail board shift compared to original configuration for the
original wall spacing.
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Figure 3.11: Comparisons of tail board shift compared to original configuration for the
larger wall spacing.

Figure 3.12: Comparisons of cp for shifted blade compared to original configuration.
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3.4 Summary

Based on this parametric analysis, basic rules can be created to improve the opti-

mization process used to define the wind tunnel geometry. The domain changes should be

considered when designing the computational experiment. In general, a wider tunnel will

decrease the magnitude of the peak cp, while the narrow tunnel will increase it. Increased

diffusion from the trailing edge of the blades to the outlet also decreased the maximum cp.

A sudden diffusion, like the models shown in Figure 3.6, did improve periodicity between

the 2 blades in the tunnel. Shifting of the maximum cp location is considered to be due to

flow direction and wall geometry. A forward shift indicated an increased velocity angle,

and rearward shifts indicated a decreased velocity angle. The only way for the location of

maximum cp to change for blade 2 was to alter the inlet flow angle due to the wall boundary

layer effects and the nozzle portion of the tunnel, turning the flow. Blade 3 maximum cp

could change due to changing the end wall geometry as well. Thus, the cp distribution of

blade 3 was easier to move than blade 2.
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Chapter 4

Optimization

4.1 Introduction

The objective of this study was to create a periodic linear cascade by optimizing the

end wall geometry using CFD. Optimization techniques have successfully been used to de-

sign airfoils and turbine blades. These optimizations were highly non-linear with computa-

tionally expensive objective functions and many constraints [16]. Ray et al. [16] discussed

the ability of using a swarm algorithm capable of handling single- and multi-objective

airfoils. The swarm algorithm was also able to handle constrained and unconstrained prob-

lems. The algorithm uses a simulation of social behavior to communicate to each flier

in the swarm what adjustments are being made, so that each flier can adjust accordingly.

This algorithm was used in accordance with a PARSEC geometry representation and euler

solver to compute the flow around the airfoil. A known airfoil cp distribution was used

as the design goal. The objective function used was f = ∑
M
i=1(cpi− cT

pi)
2 where cpi is the

pressure coefficient at the ith location of the airfoil and cT
pi is the target pressure coefficient

at the ith location. The optimization resulted in a decrease of f from 2.567 to 0.0737. An-

other inverse design optimization performed by Ashihara and Goto [17] used an objective

of performance efficiency to define the characteristics of 3D pump impellers. The design

variables were the blade loading parameters and the 3D grid consisted of 500,000 cells,

which was a borderline minimum acceptable grid size to reduce computation time. The

flow field was solved using a Dawes code for incompressible flows and Baldwin-Lomax

turbulence model. Four optimization algorithms were used to maximize the efficiency,

Sequential Linear Programming, Exterior Penalty, Simulated Annealing, and Genetic Al-

gorithm. Each optimization method resulted in a efficiency increase of about 2%.
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To design the desired wind tunnel so that manual suction and tail board movement

was not needed, as discussed in Chapter 3, to match the flow fields of the theoretical peri-

odic predictions, the tunnel walls were iteratively manipulated until an optimal solution was

produced. Recent studies by Laskowski et al. [10] have shown the successful application

of optimization techniques in solving the wall boundary geometry of an experimental wind

tunnel with turbine blades for a transonic flow. Laskowski’s application was based on com-

putational fluid dynamics (CFD) using a RANS k− ε model, and an iterative approach to

solve for the tunnel walls. The initial wall geometry chosen by Laskowski was a streamline

extracted from an infinite cascade simulation. This initial geometry was then altered until

the 2D CFD simulations predicted the desired surface isentropic Mach number (SIMN).

The solution was then modified using the separating streamline (due to a separation on the

upper end wall) as the end wall. This domain was then built and tested in an experiment.

Laskowski et al. [10] continued to improve their design by inserting a shear stress penalty

on the end wall to avoid the recirculation zone. The main difference for this research was

the extension of the idea to low Reynolds number flows, which as discussed in Chapter 2,

introduces different physical characteristics and challenges. The experimental validation

of the optimized tunnel domain will be conducted by another research group.

The experimental facility was designed to account for the boundary layer created

along the walls of the the wind tunnel. To accomplish this the spacing between the blade

and the wall simply increased instead of using the actual blade row solidity. This was done

by decreasing the size of the blades, making the needed width for the dual blade config-

uration smaller. By changing the blade size, the original tunnel was able to be used thus

avoiding a tunnel rebuild. The amount of space added was 9.9%cx, which was based on

an estimate of the size of boundary layer at the inlet plane of the blades. The baseline ge-

ometry for the optimization was based on the test section of the experimental tunnel. This

section included a three-passage, two blade cascade. The blades used for this optimization

were the L1A research blades developed by John Clark at the Air Force Research Labora-

tory. This blade is a modified version of the L1M blade previously discussed in Chapter 2,

where the ”A” signifies aft loaded. The initial tunnel wall geometry was the pressure and

suction surfaces of the blades.
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4.2 Method

The optimization was done using a program called iSIGHT by Engineous Solutions,

along with Gambit, Fluent, and Matlab. Gambit is a program from ANSYS that creates the

domain and grid for the numerical simulation based on user defined parameters. Fluent

is a numerical solver, also developed by ANSYS, that can solve a wide variety of fluid

flow and heat transfer problems. Matlab is a math program based on matrix mathematics.

iSIGHT can distribute jobs to different programs and extract the needed data from the

program’s output files. It then takes the information and either passes it on or uses it with

the optimization algorithms already programmed into the software.

The flow chart shown in Figure 4.1 shows how the optimization for this paper was

achieved. First iSIGHT assigns to Gambit the wall geometry parameters and Gambit cre-

ated the grid as defined by a pre-written journal file. Once Gambit completed the mesh it

was sent to Fluent to solve for the flow features and extract the needed data. In this case the

data taken was the coefficient of pressure along the suction surface of the blades. This data

was then used by Matlab to calculate the residual sum. The residual sum was calculated by

subtracting the cp of blade 2 and 3 from the periodic solution calculated by the CFD model

of Chapter 2 and squared at intervals of 1% along the blade chord. The squared differences

from each location was then summed. Equation 4.1 shows how to calculate the residual.

R.S. = ∑((cp1i− cp2i)2 +(cp1i− cp3i)2). (4.1)

iSIGHT then used this R.S. as the main variable in the cost function with a goal of mini-

mizing the R.S.. As the R.S. decreases, the cp distributions should become similar to the

periodic solution found by the methods of Chapter 2. Figure 4.2 shows the periodic solu-

tion of the L1A LPT blade used for the optimization runs. This periodic solution was used

for the calculation of the R.S. and the percent error plots.

Using this definition of residual sum, the R.S. of the models from Chapter 2 are

0.00065 and 0.0002 for the L1M and Pack B blades, respectively. Due to the discrepancy

in number of calculation points between the experimental solutions of Bons et al. [6], the

residual sum values were altered to a average residual per calculation point and multiplied

by the number of points (100 per blade) used in this residual sum calculation. The new
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Figure 4.1: Flow chart of steps in the global iteration process.

Figure 4.2: cp distribution for the L1A LPT blade calculated from the CFD model of Chap-
ter 2.

values of R.S. were 0.1299 and 0.0399 for the L1M and Pack B blade respectively. As

discussed in Chapter 2, an oscillation in the cp occurred at the turbulent transition location.

This oscillation could potentially reduce the accuracy of the optimization results. As long

as the oscillation does not occur in the desired periodic solution, the optimization can still

be effective because manipulating the end wall geometry was able to constrict the flow

and remove the oscillation. Based on the accuracy of the CFD model from Chapter 2 the
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design goal could be R.S. ≤ 0.13. If the optimization could predict the periodic solution

exactly, the potential error would be the same as the accuracy of the periodic solution. If

it was not exact the error of the optimization adds to the error of the periodic solution,

potentially driving the solution farther from what physically happens. For this reason the

closer the solution can get to the predicted periodic solution the better. The error of the

CFD model drives the total error of the optimization. The root of the sum of the squares

of the CFD model error and the optimization error shows that if the optimization error was

small enough, the final error would be marginally higher. Therefore, the design goal was

set at R.S. ≤ 0.01 to have as little effect on the final error as possible. Because the root of

the sum of the squares decreases slowly, the returns diminish and the cost of the iteration

was no longer worth the improvement in R.S.. As can be seen in the following data where

the solutions of R.S. were less than 0.03, the accuracy was visually better. The goal was

stated as R.S.≤ 0.01, however any R.S.≤ 0.03 was acceptable.

The computational model was made using control points on both the top and bottom

tunnel surfaces (see Figure 4.3). The nozzle portion located just before the inlet plane was

defined as a straight line. The points along the middle of the domain were used to make

cubic splines. These points were located at fixed x locations and could only be modified

in the y direction to reduce the amount of variables in the optimization routine. The last

section, or tail board section, was limited to a straight line as well. The straight line sections

were intended to simplify the production of the test section and to easily provide for future

design alterations. All the points after the nozzle portion of the test section were allowed to

change. In total 12 points were considered as control points, six for the top surface (A-F)

and six for the bottom surface (1-6).

The original optimization method used for the runs was the Successive Approxi-

mation Method. This method, as described by the iSIGHT documentation, is based on the

LP-SOLVE technique developed by M. Berkelaar and J.J. Dirks [18]. It is a direct numer-

ical technique that is gradient based, or based on the derivative of the design curve. This

derivative is minimized until it is equal to zero indicating an optimum. Based on previ-

ous work on designing turbine and compressor blades, as well as wind tunnel walls, it has

been found that gradient based techniques can be used successfully in optimizing a desired
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Figure 4.3: Tunnel domain with the variable control points on the top and bottom surfaces.

flow filed [16]. An example of this success was shown by Laskowski et al. [10] where the

method of steepest descent was used to optimize the wind tunnel geometry of a transonic

turbine blade. The successive approximation method uses a Simplex algorithm and sparse

matrix calculations for linearized problems. This method was included in the software

iSIGHT used for this computational experiment.

It will be seen from the results that the successive approximation method was not

completely satisfactory in creating an optimum periodic blade design. Thus two other

optimization methods were used to further reduce the R.S. of the cp curves. The methods

used were the adaptive simulated annealing and the Hooke-Jeeves method and are both

included in the iSIGHT software.

The adaptive simulated annealing, as described in the iSIGHT documentation, was

designed to resemble the annealing process of solid materials. Unlike the successive ap-

proximation method, this method is not gradient based. This technique is an exploratory

technique that can distinguish between local optima to find a global optimum. The sim-

ulated annealing method considers the neighbors of a current state and probabilistically

determines whether to stay at the current state or move to the neighboring state. The algo-
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rithm moves in the direction of ”lower energy” until the desired state is achieved or until

the computational budget has been exhausted.

A local optimum is where the design curve reaches a maximum or minimum that

is not the true/global optimum. For example, in the search for the highest point on earth,

a local maximum would be Mt. Mckinley, or any other mountain in the world besides

Mt. Everest. The only global maximum and the highest point on earth is Mt. Everest. It

is not designed for long running simulations due to the time it takes to do the necessary

calculations and the large number of iterations required. However, the number of possible

local optima is very large because of the number of control points. A method that best

overcomes these local optima to find the global optimum is preferable to a method resulting

in a incomplete optimization.

The Hooke-Jeeves method is a direct penalty optimization method that is not gra-

dient based. It works by creating a stencil of the objective, and calculating different points

on the stencil. The points calculated are defined by the exploratory movements in the finite

number of directions on the stencil. Unlike other methods, the Hooke-Jeeves method does

not use quantitative information about the function values, it uses only qualitative infor-

mation [19]. This method is also not well-suited for long simulations due to possibility

of repetition in calculating points on the objective stencil. This method is susceptible to

finding local optima, and should be used carefully to avoid the local optima.

Five differing test section domains were optimized using the successive approxima-

tion method. The domains include the original test section with a 0.41cx nozzle leading the

blade row inlet plane, a narrow tunnel case where the width of the original tunnel domain

was reduced by 0.1cx, an extended nozzle case where the length of the nozzle was doubled,

a variable Re case that was the same geometry as the extended nozzle with an added op-

timizing variable Re, and a full tunnel case, increasing the number of control points by 2,

that included the full length of the tunnel and not just the test section. The narrow tunnel

case was chosen because the original case was too wide. The extended nozzle case allowed

for a simple change that could improve the incoming flow field. Variable Re was tested to

simplify the domain without changing the domain parameters. The full tunnel was tested to
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prove that the incoming boundary layer profile, defined by the user, was not the limitation

of optimization, and allowed more control of the flow entering the blade passages.

The R.S.’s were calculated and the effectiveness of the domains were compared

using the R.S., domain geometry and velocity magnitude contour plots, cp comparison

between the domain blades and the periodic blades, and the percent error distributions of

the blades’ cp. Further investigations were made on two other optimization methods, the

simulated annealing and Hooke-Jeeves, to find whether local optimums were found using

the successive approximation method. The narrow tunnel and variable Re cases were used

with the simulated annealing method. While the extended nozzle and full tunnel were run

with the Hooke-Jeeves method.

4.3 Results

The first runs used in the optimization used the gradient based successive approxi-

mation method of optimizing. The 12 control points were changed one at a time as defined

in the optimization algorithms. A method of reducing the number of variables was to run

the optimization for the top surface only, then run the bottom surface later. The optimiza-

tion was then finally run with both surfaces to refine the results.

4.3.1 Original Domain

The optimization of the original domain resulted in a R.S. of 0.054. The R.S. was

a good measure of how close the whole cp distribution matches the periodic. However, a

more descriptive measure was needed to analyze the results more effectively. Percent error

was chosen to analyze the flow where

%error =
cp1i− cpni

cp1i
(4.2)

where i =axial location and n =blade number. The advantage of using the percent error is

that a profile of error can be plotted along the axial chord of the blades, enabling a more

detailed assessment of the accuracy of the solution. The percent error of the cp’s compared

to the periodic blade solution of Section 4.2, as seen in Figure 4.4 had a maximum error of

80% near the leading edge and after 50% axial chord reduced to below 5%. The reason for

the high error at the leading edge will be discussed in Section 4.3.2 This however created
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a wall geometry that was not desirable as shown in Figure 4.5. The nozzle, as defined the

Figure 3.3, reduced the area so much such that the downstream area bulged out to create

a recirculation zone. A recirculation zone is where the fluid flows in a circular pattern,

against the direction of the bulk flow. When the wall points were constrained to not allow

that behavior the R.S. increased to 0.079.

Figure 4.4: Percent error of both tunnel blades compared to periodic solution for the origi-
nal optimization domain.

Two correlating effects were believed to cause this odd solution to the wall geom-

etry. First, because the distance between the blade and end wall was larger than the blade

design spacing, the blade tended to have a lower pressure along the suction surface, in-

creasing the size of the blade separation region. To compensate for the larger spacing and

resulting lower velocity, the nozzle section constricts the flow which then increases the ve-

locity and the cp. This constriction is an attempt to better match the cp distribution along

the front section of the blade. The bulge acts similar to a bleed, removing some of the mo-

mentum from the flow, and thereby reducing the pressure coefficient along the mid-section

suction surface of the blade. Figure 4.6 shows the cp distributions of the blades for this

optimized solution.
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Figure 4.5: Tunnel geometry showing the large bulge on the pressure wall of the tunnel and
the velocity magnitude contours for the original optimization domain.

Figure 4.6: cp of both tunnel blades compared to the periodic solution.
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These two effects can both be remedied by changing the computational domain or

boundary conditions. Two ways were hypothesized to improve the solution by overcoming

the issues of the tunnel being too wide. One was to change the width of the tunnel and

the other to decrease the blade Reynolds number. These were both tested as to their effec-

tiveness. These changes are presented in the following section. The unrealistic geometry

seen in the optimization shows up in many of the subsequent experiments. Laskowski et

al. [10] provided a method of eliminating the bulges once the optimization has been com-

pleted. This method uses the streamline between the circulation and bulk flow as the wall

geometry. While attempts were made to obtain an optimized geometry without nozzle con-

traction and recirculation zone, in the end it will be shown that the method of Laskowski

was needed.

4.3.2 Narrow Tunnel

Figure 3.8 shows the effect of wall spacing on the cp distributions of the the blades.

The wide tunnel spacing shows a decrease in cp, while the narrow spacing increases the cp.

Because the tunnel was designed to be wide to allow the existence of a boundary layer the

cp is smaller than it should be. Figure 4.5 also shows the need for the tunnel to be narrower

because of the obvious nozzle constriction on the top end wall, increasing the velocity and

cp. The optimization was run with a narrow tunnel configuration to further reduce the R.S..

The optimization of the wind tunnel was run after the width of the tunnel was

changed by 0.6 inches or 0.1 axial chord. This change improved the optimization by 38%

to a R.S. = 0.03368, and the bulge created by the previous optimization run was less sig-

nificant but the recirculating region was still present, indicating the continued need for a

decrease in flow momentum over blade 3. Figure 4.7 shows the geometry of the narrow

tunnel and the recirculating region. It was observed that the boundary layer on the lower

wall was reduced and the size of the boundary layer on the upper wall constantly increased.

The cp distributions shown in Figure 4.8 show the difference between the desired

periodic solution (the design goal) and the narrow tunnel blades. The maximum cp was

larger and it was slightly shifted downstream. The leading edge of the blade was signifi-

cantly different, which can also be seen in Figure 4.9, from the percent error of cp between

the periodic blade and the optimized solutions. The region between 0.2cx and 0.5cx for
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Figure 4.7: Tunnel geometry showing the large bulge on the pressure wall of the tunnel for
the narrow tunnel case.

blade 3 shows the largest difference between the original solution and the narrow with the

error of the original reaching 20%, while the error of the narrow is reduced to 10%. The

percent error was more than 40% at the blade passage entrance, and was reduced to less

than 10% as the flow moved along the blade. The disparity of the optimized solutions

and the periodic solution near the leading edge of the blade can be partly attributed to the

magnitude of the cp. From the cp plot of Figure 4.8 the difference between the optimized

and periodic solutions are similar. Because of the size of the cp the percent error is larger.

However, the inlet flow characteristics of the cp are crucial to providing an accurate solu-

tion. If something starts with the wrong values, those wrong values will propagate through

the domain. The inlet characteristics of the flow, such as velocity and flow angle affect

the accuracy of these first crucial cp values. These characteristics were developed from the

boundary layers created by the tunnel walls.

It makes sense that a narrower tunnel would increase the cp values due to the ac-

celeration of the interior flow caused by the boundary layer thickness on the tunnel walls.
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Figure 4.8: cp distribution of the narrow tunnel using the successive approximation opti-
mization method.

Figure 4.9: Percent error of both tunnel blades compared to periodic solution for the narrow
tunnel domain.
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Figure 4.10: Velocity angle of the incoming flow at various cx locations for the narrow
tunnel domain.

In Chapter 3 it was discussed that flow direction had an impact on the cp of a blade. Fig-

ure 4.10 shows the flow angle difference between both blades. The plot shows the flow

angle with respect to height along five different vertical lines. It can be seen that the lower

half has different flow angles than the upper half. The lower half represents the flow in front

of blade 2 while the upper half represent the flow in front of blade 3. This difference in flow

angles explains the difference in maximum cp location for all flow solutions. An increased

flow angle will result in the maximum cp location shifted forward and vice-versa. The flow

angles for the upper half of the flow angle plot were larger, indicating that the maximum

cp location for blade 3 was shifted forward, which was also confirmed in the cp plots of

Figure 4.8. It can be seen that the narrow tunnel geometry does not satisfactorily predict

the desired flow field, as the R.S. is still too large.

4.3.3 Reynolds Number

Because the blades and the main sections of the tunnel have already been designed

and built, making the tunnel narrow is not a desired outcome. Only the test section can eas-
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ily be changed. Therefore it was hypothesized that by altering the inlet Reynolds number it

would be possible to better match the periodic solution by reducing mass flow and decreas-

ing the need for a bleed/recirculation zone. In the existing domain a velocity profile was

needed to account for boundary layer growth through the long tunnel section before the test

section. Changing the Reynolds number by changing the velocity profile would be compli-

cated and add much more time to the optimization routine. Hence, it was decided to simply

change the viscosity of the fluid to alter the Reynolds number of the flow in the test section.

A consequence of this approach was that changing the Reynolds number also changes the

velocity profile of the inlet plane of the blade row. However, a sufficient understanding of

the effect of the Reynolds number was achieved by doing this simple process.

Figure 4.11 shows the optimized domain achieved by adding fluid viscosity as a

variable in the optimization technique. The wall geometry did not dig into the flow as the

original case and the end wall became less pointed. This could be considered an improve-

ment, however, the R.S. was only reduced to 0.1143, double that achieved from the original

solution. The viscosity for the fluid was increased from 1.7984e− 5 to 2.3e− 5, which

reduced the Reynolds number, as expected, from 20,000 to 15,550. Even though the bulge

on the top wall was not as pointed, it still created a recirculating flow region. This charac-

teristic was undesirable and continued efforts to remove the bulge were made. A separation

region can also be seen on the bottom wall of the domain in Figure 4.11. This separation

was similar to the separation regions along the blade suction surface, however, much larger.

Because this separation exists downstream of the blades, it did not significantly affect the

cp.

The cp distribution shown in Figure 4.12 shows that the cp for blade 3 was still close

to the periodic solution, and similar to the previous distributions where the wall digging

into the flow had the same effect as increasing the Reynolds number. However, it was

also obvious that the cp of blade 2 was very different than the periodic solution. The

nozzle section constricts the flow and increases the velocity. The effect of the increase in

velocity behaved as expected, increasing the cp for blade 3, better matching the periodic

solution. The increase in velocity increased the cp distribution of blade 2 as well. The

spacing between blade 2 and blade 3 did not change, making the velocity too great for
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Figure 4.11: Tunnel geometry and velocity contours for the variable Reynolds number case,
Re=15,550.

that blade spacing. The error plot in Figure 4.13 shows that the error for blade 2 remained

unacceptably large. This change of the velocity had a detrimental effect on blade 2 and

a positive effect on blade 3. For this reason, changing the Reynolds number of the entire

flow was not a good method to optimize the domain, and changing only the wall geometry

should be sufficient.

4.3.4 Longer Nozzle

Due to the lack of improvement realized from using the Reynolds number as a vari-

able and the complications involved in making the whole tunnel narrower or wider, another

design variable was tested using knowledge gained from the previous results. It was appar-

ent that the narrow tunnel solution was accurate, the only downside being the requirement

of rebuilding the whole tunnel. The decreased Reynolds number solution showed that the

change in Reynolds number effected the magnitude of cp. Therefore a way to change the

cp locally, such as flow acceleration or deceleration, instead of globally was desired.
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Figure 4.12: cp distribution of the variable Reynolds number case, Re=15,550 using the
successive approximation optimization method.

Figure 4.13: Percent error of both tunnel blades compared to periodic solution for the case
of variable Reynolds number, Re=15,550, using the successive approximation method.
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Previous solutions showed that the nozzle had an effect on the results of the opti-

mization runs. The nozzle effectively accelerates the flow as it enters the inlet plane of the

blade row. This change took place in such a short distance that the whole flow field may

not have been changed before the blade row inlet plane. It was hypothesized that the length

of the nozzle would make the needed velocity change more effectively than the original

length. Changing the nozzle length was a much simpler change compared to altering the

whole tunnel.

The nozzle geometry, as defined in Figure 3.3, was moved forward to 0.8cx, from

0.41cx of the original optimization geometry, upstream from the leading edge of the blade.

This nearly doubled the original length. The optimization of the extended nozzle did show

improvement over all the other cases tested except for the narrow tunnel case. The R.S.

was calculated to be 0.0498, which was a 8% improvement over the original domain opti-

mization. This improvement showed that a more gradual change of area resulted in a better

solution. However, it still did not satisfy the desired minimum of R.S.≤ 0.01.

Figure 4.14 shows the optimized solution created by the lengthened nozzle section.

The top wall has a sinusoidal shape that digs into the flow then stretches out the flow.

Although the geometry is undesirable, the principles it represents are accurate. The con-

stricting portion of the flow increases the fluid velocity and results in an increase in cp,

while the diffusing portion results in a decrease in cp. The fact that it is occurring was a

good sign that the optimization technique was moving cp in the right direction. This end

wall represents the need for greater acceleration (caused by a constriction) and deceleration

(caused by diffusion) for the cp to match the periodic solution. Again, this geometry was

not a desired solution.

The cp distribution for this solution is seen in Figure 4.15. The location of max-

imum cp was 0.02cx farther upstream than the periodic solution, a result of the changing

blade inlet plane velocity angles as was observed from the optimization run of the narrow

tunnel. The maximum cp of blade 3 was very near the periodic solution while the maximum

for blade 2 was much larger. This larger cp was a result of the accelerating flow entering

the unchanged spacing between blade 2 and blade 3. This distribution was very similar to

the case where Reynolds number was added as a variable.
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Figure 4.14: Optimized end wall geometry and velocity magnitude contours for the case of
extended nozzle length.

Figure 4.15: cp distribution of the extended nozzle length case using the successive ap-
proximation optimization method.
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The percent error of the extended nozzle run, shown in Figure 4.16, also shows

similarities to cases where the Reynolds number was added as a variable. The error was

very large near the beginning of the blade and decreased as it moved downstream, as shown

in all the optimization runs. The error for blade 2 was about half of what the variable

Reynolds number simulation predicted. This decrease showed that the nozzle had a similar

effect on the flow, but was able to predict a closer solution because of local changes to

geometry instead of a global Reynolds number change.

Figure 4.16: Percent error of both tunnel blades compared to periodic solution for the case
of extended nozzle length entering the test section.

4.3.5 Full Tunnel

Because none of the methods resulted in the desired minimum R.S., the whole tun-

nel was modeled to decide whether the inlet conditions of the smaller domains were the

reason for the higher than desired R.S.. The full tunnel also allowed more control of the

domain, increasing the ability to alter the flow field. Modeling the whole tunnel also al-

lowed for changes in tunnel width without having to redefine the inlet velocity profile.
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However, the simplicity of applying this design to the experimental hardware of Bons [6]

was diminished, since a new tunnel would need to be built.

The full tunnel domain adds 12cx onto the front of the previous domains. Fig-

ure 4.17 shows where two control points were added, now named B1 and TA. A boundary

layer mesh was placed on the walls of the new section of tunnel to match the already ex-

isting boundary layers. The boundary layer mesh had a spacing of h/cx = .0005 for the

first node off the wall, and extended approximately h/cx = .0158 from the wall, with a

growth rate of 1.1. The values for the mesh were determined from the grid refinement

study of Chapter 2. Outside the boundary mesh, unstructured triangles were used to mesh

the remainder of the domain. Adding the new length of tunnel onto the domain doubled the

number of cells from 344,806 to 687,256. Because the new domain had the same bound-

ary layer and unstructured grid parameters as the previous cases, the new grid was deemed

sufficient and a grid refinement study was not done. Figure 4.18 shows the extent of the

domain.

Figure 4.17: Full tunnel control point configuration, where B1 and TA are the added control
points.
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Figure 4.18: Full tunnel configuration including 12cx upstream from the inlet plane of the
blade row and velocity magnitude contours.

The optimized solution for the extended domain resulted in a R.S. of 0.05656,

slightly worse than the original domain. Figures 4.18 and 4.19 show the optimized re-

sults for the extended domain runs. Figure 4.18 shows that the large tunnel section before

the test section got wider as the flow moved toward the test section. This diffusion allowed

the velocity at the test section inlet to be the same and remain flat outside of the boundary

layer region. It was observed that the nozzle section constricted the flow after it had passed

through the diffusion of the rest of the tunnel. This process of diffusing and constricting

seems to remove the effect of the boundary layer on the flow. Figure 4.19 shows a closer

view of the wall geometry and the flow features. This wall geometry differed from the other

cases in that there were two smooth humps on the upper wall that grew in the cx direction.

The two smooth humps indicated the need for a reduction of cp in two spots instead of one.

The smooth curve abruptly ended at the beginning of the tailboard section. The end wall

on the bottom of the domain also had a recirculation zone that mimicked the separated flow

of the blades.
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Figure 4.19: Close up view of the tunnel geometry showing the large bulge on the pressure
wall of the tunnel and velocity magnitude contours for the full tunnel geometry using the
successive approximation optimization method.

The cp plot of Figure 4.20 shows some interesting features. The maximum cp for

blade 3 was 6% lower than the periodic, which indicated the velocity was not high enough.

The cp of blade 2 was 13% higher than the periodic, indicating the velocity was too high.

This is similar to results found in the cases where Reynolds number was added as a variable

and where the nozzle length was increased.

As with all other cases, the maximum percent error for this case was near the front

of the blade, as shown in Figure 4.21. The maximum error in this case was much smaller

compared to the other cases. The original case had a maximum error of over 80%, while the

maximum for the extended nozzle was less than 60%. This was likely due to the smooth-

ness of the end wall geometry, whereas the other cases always had an instantaneous change

in direction as observed in Figure 4.14. However for this case the percent error did not

steadily decrease like the previous cases. The large difference in maximum cp location for

blade 3 and the over-prediction of blade 2 prohibited a reduction in error. It was concluded
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Figure 4.20: Showing the cp distribution of the extended tunnel using the successive ap-
proximation optimization method.

that including the whole tunnel to the domain did not improve the solution, and the abbre-

viated domain should suffice. However, a test of optimization algorithms for this domain

would be interesting because the greater potential for good results.

4.3.6 Successive Approximation Summary

The successive approximation optimization method has been shown successful in

finding improvements to matching the cp distribution of the periodic blade solution. This

method has resulted in the best solution of R.S. = 0.03368 for the narrow tunnel case. The

results are shown in Table 4.1. Although the improved results did not meet the desired

criteria of R.S. ≤ 0.01, they were all as accurate as the CFD model itself from Chapter 2.

The error of the solutions obtained by the successive approximation method can add to

the error of the CFD model. Therefore less error is desired in the optimization solutions.

Gradient based methods, such as the successive approximation, have been found to get

stuck on local optima [20]. This may be the case for the successive approximation method

used here. The only way to find out if a global maximum was found is to continue the
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Figure 4.21: Percent error of both tunnel blades compared to periodic solution for the
extended tunnel case.

Table 4.1: R.S. for Successive Approximation Method

Successive Approximation Comments
Extended 0.05656 flat incoming velocity profile, smooth end

walls, potentially more accurate
Narrow 0.03368 Best solution, requires tunnel rebuild,

good for blade 2, bad for blade 3
Nozzle 0.0498 easy to build, improved R.S. over original

by 8%, dual hump end wall
Original 0.054 easy to build, large recirculation near end

wall, too wide
Reynolds 0.1143 reduced Re, increased constriction, good

for blade 3, bad for blade 2

search for an optimum using a different initial condition or other techniques. The next

section discusses other optimization methods to improve the error of the solutions.
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4.3.7 Optimization Method Change

The inability of the successive approximation method to reach a desired minimum

suggested a re-evaluation of the optimization methods used. Based on previous exper-

iments by Laskowski et al. [10] and conversations with other engineers that had done

similar optimizations, it was decided gradient based methods were sufficient. However

further investigation into gradient based methods shows that they are easily susceptible

to finding only local minimums and require a very good initial guess to achieve a global

minimum [20]. The following section will show that the successive approximation method

used was finding only local minima and was not able to find a global minimum. One of

the recommended methods given by Miyata et al. [20] for optimizing turbomachinary was

a simulated annealing method. This method, as described in Section 4.2, prevents the op-

timization from getting trapped in regions where a local minimum exists. The method was

also used by Ashihara and Goto [17] in a pump impeller design. Another method tried was

the Hooke-Jeeves, a direct penalty method, that could help remove the recirculation caused

by the end wall.

All previous optimization domains, other than the original, were used to test the

effectiveness of the two new optimization techniques. Two cases each were run with the

simulated annealing and Hooke-Jeeves optimization methods. The two domains run with

the simulated annealing were the narrow tunnel and the variable Reynolds number cases.

The Hooke-Jeeves method was run with the lengthened nozzle and the full tunnel. The

cases were run simultaneously.

Simulated Annealing Narrow Tunnel

The narrow tunnel showed the best results for the successive approximation method,

and has proven that narrowing the tunnel positively affects the solution. Because of the abil-

ity for this domain to achieve good results, a good comparison of the optimization methods

can be made using this domain. The difference in results between the successive approxi-

mation and the simulated annealing for the narrow tunnel can be seen in Figures 4.22, 4.23,

and 4.24. The R.S. was calculated to be 0.021 for the simulated annealing solution. This

was a 38% improvement over the successive approximation method.
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The differences in geometry, as seen in Figure 4.22 are the top end wall. The suc-

cessive approximation predicted the single large bulge in the top wall while the simulated

annealing predicted the more complex dual hump wall. The recirculation zones exist in

both solutions. These humps allow the geometry to directly change the cp distribution to

match the periodic cp. For this narrow tunnel case, the nozzle section actually becomes

a diffuser section, and the velocity decreases. The bottom wall transition to the tailboard

section shows another separation. This section has little effect on the upstream blades, and

is likely an insignificant feature of the solution. However, this method still did not reach an

acceptable minimum value of R.S., and the end wall geometry did not show the simplicity

desired.

The improvements in cp and percent error are shown in Figures 4.23 and 4.24 re-

spectively. The cp curves of blade 3 for the simulated annealing case showed an improve-

ment in predicting the maximum cp location from 0.57cx of the the successive approxi-

mation method to 0.59cx. The periodic value of the maximum cp location is 0.6cx. The

magnitude of the maximum for blades 2 remained the same, while blade 3 improved from

-0.365 to -0.37, where the periodic maximum is -0.375 still over predicted. The entrance re-

gion of both blades also matched better. The improvement of the entrance region is clearly

observed in Figure 4.24. Notice the maximum error, that had previously been very high,

started out lower at 0.6. The region between 0.5cx and 0.82cx showed a large decrease

in percent error, indicating that the solution optimized this region of the blade very well.

The ability to optimize the last half of the blades suggested that despite the blade row inlet

conditions, the end wall geometry effectively manipulated the cp distribution to overcome

the negative effects of boundary layer and flow angle present at the blade row inlet.

Simulated Annealing Reynolds Variable

The variable Reynolds number case was also re-run using the simulated annealing

optimization method. This method decreased the R.S. from 0.1143 to 0.07928, a decrease

of 31%. However, this value of R.S. did not reach the desired value of 0.01. The bulges

on the end wall were still present, seen in Figure 4.25. Another difference was the bottom

wall nozzle geometry. The new simulated annealing solution produced a geometry on

the bottom wall that did not constrict in the nozzle section of the domain, as well as a
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Figure 4.22: Tunnel geometry showing the end wall geometry of the tunnel and velocity
magnitude contours for the narrow domain case using (top) the successive approximation,
and (bottom) the simulated annealing optimization method.
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(a) Successive Approximation Solution (b) Simulated Annealing Solution

Figure 4.23: cp distribution of the narrow domain using (a) the successive approximation
optimization method and (b) the simulated annealing method.

(a) Successive Approximation Solution (b) Simulated Annealing Solution

Figure 4.24: Percent error of both tunnel blades compared to periodic solution for the
case of reduced width of the tunnel for (a) the successive approximation and (b) simulated
annealing methods.

less pronounced separation zone at the transition from end wall to tailboard. It was also

important in this case to compare velocity magnitude because of the direct relationship

between Reynolds number and velocity. The simulated annealing had a lower magnitude

of velocity resulting in lower cp for both blades. This effect of the lower velocity can easily

be seen in Figure 4.26
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Figure 4.25: Tunnel geometry showing the large bulge on the pressure wall of the tunnel
and velocity magnitude contours for the variable Reynolds number case for both the (top)
successive approximation and (bottom) simulated annealing optimization solutions.
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Both cp distributions for blade 2 and blade 3 were reduced, blade 2 by 3.5% and

blade 3 by 3%. The location of maximum cp did not change from the successive approxi-

mation method. The percent error plots were very similar, however the simulated annealing

generally had lower error over the domain with the exception of the entrance region of the

blades. Based on these two simulations, simulated annealing was demonstrated to be an

effective method for optimizing LPT flow fields. The results were very near to the desired

R.S., although not quite reaching the minimum threshold.

(a) Successive Approximation Solution (b) Simulated Annealing Solution

Figure 4.26: cp distribution of the variable Reynolds number using (a) the successive ap-
proximation and (b) simulated annealing optimization methods.

Hooke-Jeeves Lengthened Nozzle

The wind tunnel configuration with the lengthened nozzle would be the simplest to

implement in the actual tunnel because the inlet width is the same as the tunnel configura-

tion and no other modifications would need to be made. For this reason, this domain was

run using the Hooke-Jeeves optimization method. This method may still find local minima,

however if care is taken to avoid local minima, this model can be very good in defining the

domain geometry. The R.S. was reduced to 0.0461 from 0.0498, only a 7.5% improvement.

This improvement was barely visible in the associated plots. Figure 4.28 shows the domain

and velocity magnitude contours. The main difference observed was the separation bubble

located at the transition from end wall to tailboard was reduced.
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(a) Successive Approximation Solution (b) Simulated Annealing Solution

Figure 4.27: Percent error of both tunnel blades compared to periodic solution for the case
of variable Reynolds number using (a) the successive approximation and (b) simulated
annealing methods.

The cp distribution for both blades improved in magnitude. Blade 3 matches the

maximum exactly, while blade 2 improves by 0.01, as shown in Figure 4.29. The percent

error also showed a slight improvement in the region from 0.5cx to 0.82cx, shown in Fig-

ure 4.30. From 6% to 5% for blade 2 and 5% to 2.5% for blade 3. Again, the improvement

gained by this run was not as much desired. It is possible that the solution was a local min-

imum instead of a global minimum. Further optimization runs would need to be performed

when possible, to confirm that it is a local minimum.

Hooke-Jeeves Full Tunnel

The Hooke-Jeeves method was also tested with the full tunnel configuration. Al-

though a minimally improved solution was found for the longer nozzle case using the

Hooke-Jeeves method, a much improved solution was found for the full tunnel configu-

ration. The R.S. improved from 0.05656 to 0.017195, and represents and improvement of

70%. This configuration came closest to the desired minimum R.S. of 0.01.

The large portion of the tunnel entering the test section, shown in Figure 4.31, still

had a diffusive angle and the nozzle section constricting the flow. The geometry of the top

end wall looks more like the previous cases of nozzle length and reduced tunnel width. This

was different from the successive approximation solution in that it now has a sharp corner
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Figure 4.28: Tunnel geometry showing the end wall geometry and velocity contours of
the optimized solution for the case of extended nozzle length using the (top) successive
approximation and (bottom) simulated annealing optimization methods.
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(a) Successive Approximation Solution (b) Hooke-Jeeves Solution

Figure 4.29: cp distribution of the extended nozzle length case using (a) the successive
approximation and (b) the Hooke-Jeeves optimization method.

(a) Successive Approximation Solution (b) Hooke-Jeeves Solution

Figure 4.30: Percent error of both tunnel blades compared to periodic solution for the case
of extended nozzle length entering the test section using (a) the successive approximation
and (b) the Hooke-Jeeves optimization methods.

connecting the nozzle section and the end wall instead of a smooth transition, increasing

the possibility of inaccurate results. The separation bubble on the bottom wall near the

transition to the tailboard section was also much smaller, more accurately mimicking the

momentum deficit left by the blade wakes.

The significant improvement in R.S. was also shown by the cp and percent error

plots of Figures 4.32 and 4.33. The magnitude and location of the maximum cp were very
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Figure 4.31: Characteristics of the test section geometry and velocity magnitude contours
of the full tunnel case for the (top) successive approximation and (bottom) Hooke-Jeeves
optimization methods

well predicted. The aft portion of the blade was also very close to the periodic solution. For

this solution the only portion of the blade where the cp was not close to the periodic solution

was the entrance portion of the blade. The reason for which was discussed in Section 4.3.2.
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The percent error of this section did improve over the successive approximation method,

however, the error was still near 50% at the inlet. This improvement is significant, but still

not as close as desired. The geometry of the top end wall is also undesirable. This geometry

in all the previous solutions has been unavoidable. However, methods for smoothing the

geometry were suggested by Laskowski [10].

(a) Successive Approximation Solution (b) Hooke-Jeeves Solution

Figure 4.32: cp distribution of the full tunnel using (a) the successive approximation and
(b) the Hooke-Jeeves optimization methods.

4.3.8 Separating Streamline

The top wall geometry was similar to the initial solutions of Laskowski et al. [10]

where a large recirculation zone exists in a bulged upper wall. One method presented in his

work was to use the separating streamline between the recirculation zone and the remainder

of the flow as the wall boundary. This method was implemented by Laskowski to achieve

a very good solution and eliminated the undesirable geometry.

Figure 4.34 shows the domain and velocity contours of the full tunnel solution using

the separating streamline as the upper wall geometry. In this case the wall geometry was

not truly smooth. The dividing streamline was not smooth due to the dual circulation zones

of the optimized full tunnel case seen is Figure 4.31. Defining the upper wall geometry with

the dividing streamline did not produce the desired flow field. The R.S. for this solution was
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(a) Successive Approximation Solution (b) Hooke-Jeeves Solution

Figure 4.33: Percent error of both tunnel blades compared to periodic solution for the full
tunnel case using (a) the successive approximation and (b) the Hooke-Jeeves optimization
methods.

0.1281, much larger than all the previous experiments and 745% larger than the optimized

solution from which the streamline was taken.

Based on the velocity magnitude contour plot, the results did not show any obvious

abnormalities. However, the cp and the percent error plot in Figures 4.35 and 4.36 show

that the results were not acceptable. The cp plot shows that the distribution was not smooth.

This kind of behavior typically indicates an instability or a false flow feature caused by

skewed elements of the domain that propagate throughout the domain. Considering there

are no skew elements in the grid (checked using the Fluent grid checker), the cause for this

unsteady behavior is due to some instability created by the domain geometry. Examples of

possible instabilities are reversed flow on an outflow boundary or vortex shedding. Other

than this odd behavior only blade 2 predicted the flow accurately at the maximum. The cp

of blade 2 then dropped down to match blade 3 at 0.8cx Blade 3 cp was 12% smaller than

the periodic solution. The percent error plot in Figure 4.36 reiterates the inaccuracy of the

solution.

A new end wall geometry was used for the separating streamline. The separating

streamline used previously used the exact path of the flow, which unfortunately included

rapid or sharp changes in direction. These sharp turns make the geometry unacceptable for

manufacturing purposes and produced an unstable flow solution. The same streamline was
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Figure 4.34: Tunnel geometry and velocity magnitude contours using the separating
streamline end wall from the best Hooke-Jeeves extended tunnel case.

Figure 4.35: cp distribution using the separating streamline end wall from the best Hooke-
Jeeves extended tunnel case.
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Figure 4.36: Percent error using the separating streamline end wall from the best Hooke-
Jeeves extended tunnel case.

used for a second solution of the flow, however, it was smoothed out by fitting a spline to 9

evenly spaced points that were extracted from the original shape. This end wall geometry

was then run using the same parameters as the previous solutions. The shape of the end

wall can be seen in Figure 4.37. Notice the smoothness compared to Figure 4.34.

The solution of this new smooth domain resulted in a R.S. = 0.0182. This is only a

6% increase in R.S. from the Hooke-Jeeves optimized solution of the full tunnel geometry.

This is an acceptable increase in R.S. to simplify the end wall geometry of the tunnel. The

accuracy can be seen visually from the cp distribution seen in Figure 4.38 and the percent

error shown in Figure 4.39. Both plots show very similar solutions to the full tunnel Hooke-

Jeeves optimization. The most evident improvement was the reduction of error introduced

at the leading edge of the blades, reducing the error from 55% and 29% of the Hooke-

Jeeves full tunnel, to 44% and 24% of the smooth separating streamline. This was another

indication that the smoothness of the wall affected flow of the leading edge of the blade.

The elimination of the complex end wall geometry is a significant improvement.
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Figure 4.37: Tunnel geometry using the smooth separating streamline end wall from the
best Hooke-Jeeves extended tunnel case.

4.4 Summary and Analysis

The optimization of the geometry is dependent on multiple inter-relating factors

such as tunnel width, flow velocity, flow angle, blade position, blade spacing, tailboard

diffusion, and end wall contour smoothness. All of these factors were controlled by the

manipulation of the end walls. The optimization solutions acquired in this study have

shown the effectiveness of some optimization techniques and the effect of some parameters

on the solution. Table 4.2 shows the results of all the runs made. All the models were run

using the successive approximation method of optimization. Four more runs of the same

domain types were run using two different optimization algorithms. Optimization runs to

complete Table 4.2 were unable to be performed due to computational resource limitations.

Two models, the narrower tunnel and variable Reynolds number models, were run

using the simulated annealing optimization method. The improvements made by the sim-

ulated annealing method were significant for both models. The narrow tunnel improved
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Figure 4.38: cp distribution using the smooth separating streamline end wall from the best
Hooke-Jeeves extended tunnel case.

Figure 4.39: Percent error using the smooth separating streamline end wall from the best
Hooke-Jeeves extended tunnel case.
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by 38% over the original optimization case to a R.S. of 0.021 and the variable Reynolds

number improved by 31% to a R.S. of 0.07928 over the original optimization.

Two models, the full tunnel and the lengthened nozzle domains, were run again us-

ing the Hooke-Jeeves method with relative success. The lengthened nozzle only improved

by 7.5% over the original optimization and did not get close to the desired R.S. ≤ 0.01.

The full tunnel case improved significantly by 70% over the original optimization, and

came much closer to the desired results with a R.S. of 0.017195. However, the geometry

on the top end wall was not desired and the separating streamline method presented by

Laskowski et al. [10] was used to eliminate the recirculation regions near the end wall.

Table 4.2: R.S. for All Optimization Cases

Successive Approximation Simulated Annealing Hooke-Jeeves
Extended 0.05656 - 0.017195

Narrow 0.03368 0.021 -
Nozzle 0.0498 - 0.0461

Original 0.054 - -
Reynolds 0.1143 0.07928 -

The variable Re optimization solution showed that the magnitude of the cp distribu-

tions for the blades was dependant on the Re of the flow, as expected. This solution changed

the velocity of the whole domain, instead of smaller portions of the flow throughout the do-

main. The decrease of the inlet Re from 20,000 to 15,550 reduced the mass flow rate, and

reduced the need for the large recirculation. However, the improvement was only effective

for blade 3. Blade 2 was not improved due to the fixed spacing between the blades. The

narrow domain also decreased the amount of mass flow but kept Re=20,000. This domain

resulted in the best solution for the successive approximation.

Improvements in R.S. were also made by changing the flow velocity in certain lo-

cations. This was demonstrated by altering the end wall geometry to create constricting

and diffusing sections along the blade. The velocity changes resulted from an accelerating

flow through a nozzle, or a decelerating flow from diffusion. These changes in geometry
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are displayed in the complex form of the end walls, as seen in the velocity contour plots of

Figures 4.22 4.25 4.28 and 4.31, where the constricting and diffusing sections are obvious.

The full tunnel cases showed that the tunnel got wider as it approached the test

section, keeping the interior velocity profile flat and the same magnitude as the inlet. The

nozzle then constricted the flow reducing the size of the boundary layer. The end wall

solutions still showed a complex geometry, indicating accelerating and decelerating flow.

The results were very good for the Hooke-Jeeves method and shows that the more geom-

etry controlled by the optimization results in a better solution, although at three times the

computational cost.

The %cx location of maximum cp was only dependent on the incoming flow angle.

An increased flow angle shifts the maximum cp forward, while a decreasing flow angle

shifts the maximum downstream. The design of the wind tunnel cascade affects the incom-

ing flow angle. The flow angle changes were due to the boundary layer and nozzle section

of the tunnel geometry turning the flow. These flow angle differences can be controlled by

manipulating the end walls of the tunnel, more specifically, the nozzle section of the tunnel.

The extended nozzle case showed that a more gradual constriction due to the longer nozzle

improved results. The farther upstream the flow can be altered, the better the cp profile will

match the periodic solution.

In all the optimization runs the maximum percent error was found at the beginning

of the blade and decreased toward the blade trailing edge, making the prediction of cp’s

easier as the flow moves downstream. This was partly due to the size of the cp being so

small at that location making the percent error greater. The limited ability of the nozzle

to create the needed flow characteristics at the blade row inlet plane was the main factor

for creating error at the beginning of the blades. The longer nozzle and narrow cases

showed improvement in minimizing the R.S. at the inlet plane of the blades, as did the full

tunnel solution. The main differences between these cases was that the changes were made

upstream of the inlet plane of the blades. The smooth end walls of the full tunnel solution

using the successive approximation method also helped reduce the percent error. Due to

the improvement of the full tunnel and and the extended nozzle cases, it is hypothesized

that if the nozzle portion of the tunnel was included in the end wall spline to create a
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smooth transition and extended farther upstream, the cp of the entrance region would be

improved and result in a much better solution. Further numerical simulations would need

to be performed to prove this hypothesis.

The three methods of optimization used, successive approximation, simulated an-

nealing, and Hooke-Jeeves, can all be used in the design of LPT components. The succes-

sive approximation method, because it was gradient based, often found a local minimum

instead of the optimum. This was acceptable if only an improvement in R.S. was needed,

which was the case for most commercial applications. To find a true optimum, a different

method should be used. The Hooke-Jeeves method was a good method to use because it

was less sensitive to local optima, although the possibility of getting stuck on a local op-

timum still exists. This method proved to be useful in this experiment and provided the

best solution. However, in an industrial application where an improvement is desired in

the smallest amount of time this method may be temporally expensive. The simulated an-

nealing method showed more consistent improvement than the Hooke-Jeeves. While the

Hooke-Jeeves method was still prone to finding only local minima, the simulated annealing

was able to distinguish between local minima to find a global minimum. This method was

also computationally expensive. In the optimization runs, the Hooke-Jeeves and simulated

annealing methods needed three times as many iterations to achieve a solution. All three

methods have shown improved results for this turbomachinery case. The adaptive simu-

lated annealing method was the better method between the three discussed for finding a

true optimum in this turbomachinery application.

All the optimized solutions resulted in an end wall geometry that was undesire-

able. A simple end wall geometry is needed to efficiently build a test section using the

acquired end wall solutions. It was found that a smooth streamline separating the recircu-

lation caused by the end wall and the bulk flow could be used as a new modified end wall

geometry. This change resulted in a 6% increase in R.S. from the Hooke-Jeeves full tunnel

solution, where R.S. = 0.0182. This was the best solution obtained for this problem due

to the low R.S. and the smooth end wall geometry. The optimized domain compared to

the initial domain is shown in Figure 4.40. The optimized cp compared to the initial cp is

shown in Figure 4.41.
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Figure 4.40: Optimized tunnel domain using the smooth separating stream line compared
to the initial optimization domain.

The design of experimental periodic linear cascades for low Reynolds number LPT

blades can be designed accurately. The combination of CFD and optimization techniques

result in varying degrees of design accuracy depending on the methods and domains used.

The use of the CFD model of Chapter 2 is limited due to the inherent error of the process

as described in Section 4.2, but can be used as the desired result of the optimization. The

optimization methods using iSIGHT, Gambit, Fluent, and Matlab have been successful in

predicting a solution within the error of the CFD model. These results could be improved

by extending the smooth spline end wall section to include the extended nozzle, as well

as continuing the optimization process with the adaptive simulated annealing method. The

method of using computational methods to design these experimental facilities has shown

to been shown to be successful and promising for future experiments.

85



Figure 4.41: Optimized tunnel cp using the smooth separating stream line compared to the
initial domain cp.

4.4.1 Recommendations

It is difficult to create periodic flow conditions in LPT linear cascades because the

tunnel wall boundary layer alters the incoming flow field in such a way that the cp of

the blade nearest the wall changes. Due to the altered velocity profile, the change could

increase the cp if the spacing between the wall and blade is large, or decrease if the spacing

between the wall and blade is small. The cp change in one blade propogates through the

rest of the cascade, eliminating any periodicity that may have existed.

This research has shown that the end wall contours of the cascade can be opti-

mized to improve periodic flow through the passage. Specifically, changing the tunnel wall

spacing, including a nozzle, and changing the end wall contours can create periodic flow

through the passage. Changing the tunnel wall spacing reduces the flow rate through the

tunnel. Because less mass flows through the tunnel, not as much mass needs to be bled

resulting in a decreased amount of diffusion and recirculation needed to match the cp dis-

tribution. The nozzle increases the velocity of the flow field because of conservation of
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mass and a reduced area, and the uneven constriction of the top and bottom nozzle walls

turns the flow. The increased velocity caused by the nozzle, increases the cp distribution.

The turning caused by the nozzle changes the blade row inlet flow angle. The increase

of inlet flow angle shifts the maximum cp upstream, and a decreased flow angle shifts it

downstream. The wall countours allow more local changes to the flow field. Conservation

of mass explains the decreased velocity for diffusion and increased velocity for constric-

tion. The resulting end wall contours of the optimizations showed obvious diffusing and

constricting portions of the end wall, increasing and decreasing the velocity where needed

to match the periodic cp distribution.

Future optimization runs should be run to complete Table 4.2. The completion of

these runs are expected to further refine the analysis of the optimization methods used.

The optimization of the extended nozzle domain could also be improved and a separating

streamline for this domain used as the end wall. This would result in a simpler design to

build for the wind tunnel experiments. The straight sections of the tunnel, such as the nozzle

and tail board sections, could be included in the spline defining the end wall geometry.

This could reduce the minimum residual sum of the optimization runs by smoothening the

tunnel.
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Chapter 5

Summary & Conclusions

5.1 CFD Model

A method of modeling low Re flows over turbine blades that experience separation

and a transition to turbulence was obtained. This method involves using an initial laminar

solution in a periodic domain to obtain the needed parameters to calculate a turbulence

transition location. The location of transition was calculated using an empirical transition

model developed by Praisner and Clark [14]. The transition location was then modeled

by a physical split in the domain to create laminar and turbulent zones. This method to

create a solution for transitioning flow over LPT blades has given results accurate to an

R.S. ≤ 0.13. One downside to this method was the requirement of hand calculations to

define the transition location.

5.2 Mesh Manipulation

A set of guidelines were found to better understand how domain characteristics

effect the flow field and cp distributions of the suction surfaces of the blades. The three

domain characteristics studied were tunnel wall spacing, tailboard effect, and position of

the blades. These three characteristics were believed to be the main factors in altering the

flow field. The effects of these characteristics are as follows.

The increase in wall spacing decreased the cp by reducing the velocity over the

blade. Decreasing the wall spacing increased the cp due to an increased velocity. However,

the velocity decreases if the spacing was made too small due to the domination of viscous

effects in the flow. Because the flow was a low Re flow, the effect of downstream char-

acteristics can greatly influence upstream flow. The changes made in tail board geometry

allowed for only diffusion to occur. This diffusion of a low Re flow resulted in a lower cp
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distribution and moved the peak cp in the horizontal direction. The shifting of the blades

forward and up moved the blades into a cleaner air flow, with less boundary layer effect on

the lower blade 2. The velocity was increased for both blades and results in an increased

cp. The location of peak cp for blade 2 was also pushed downstream due to cleaner inlet

flow.

5.3 Optimization

The optimization was done using the CFD method of manually initiating turbulence

transition from Chapter 2 to obtain the cp distribution of the periodic blade. The cp of the

periodic blade was then used as the optimization goal. The program iSIGHT was used to

do the optimization with its built in optimization techniques and its capability to use Fluent,

Gambit, and Matlab in the optimization routine. The cost function used for the optimization

was a residual sum calculation as shown below.

R.S. = ∑((cp1i− cp2i)2 +(cp1i− cp3i)2) (5.1)

The results of minimizing the residual sum was shown in Table 4.2. The best so-

lution according to the optimization techniques performed was the full tunnel case using

the Hooke-Jeeves optimization method. This resulted in a residual sum of 0.017195. How-

ever the desired minimum threshold for the residual sum was less than 0.01. Of the three

optimization methods, the simulated annealing resulted in a more consistent improvement,

reducing the R.S. of both cases run by over 30%. The Hooke-Jeeves method improved

the full tunnel case by 70% and the extended nozzle by 8%. The successive approxima-

tion resulted in good results, however, it was unable to reach the desired minimum R.S..

The simulated annealing was more consistent and would be considered a preferred method,

while the Hooke-Jeeves method had the potential to give good results.

Some regions of the blade were easier to match to the desired periodic solution.

The tail section of the blades where turbulent flow exists was the easiest to match. The mid

section of the blade where the maximum cp was found was the next easiest. This portion

of the blade was more difficult because the difference in incoming flow angles changed the

location of the maximum cp. This difficulty originated from the nozzle turning the flow as

it entered the blade passage. The most difficult portion to match was the leading edge of
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the blade. The cp’s never achieved the curvature of the periodic solution. The inability of

the optimization to match the leading edge cp’s to the periodic solution was a result of a

straight nozzle. When the smooth separating streamline was used the error of the leading

edge of the blade was reduced by 10%.

The optimization of the geometry was dependent on multiple inter-relating factors

such as tunnel width, flow velocity, flow angle, blade position, blade spacing, tailboard

diffusion, and end wall smoothness. All of these factors were controlled by the manip-

ulation of the end walls. The manner the end walls were maniplulated also effected the

quality of the results. It was found that smooth end walls and the farther extent of the

manipulated region (upstream and down), resulted in better results. The optimized geome-

try showed complex end wall behavior that was undesirable, creating recirculation regions

along the end wall. An extra case was run using a smoothed separating streamline of the

best solution as the end wall geometry. This attempt to simplify the end wall successfully

provided a smooth end wall geometry that was near the desired threshold of R.S.≤ 0.01 at

R.S. = 0.0182. This has proven to be a successful method for designing experimental peri-

odic LPT linear cascades and the definition of the domain can be found in the Appendix.

This full tunnel geometry would not be an easy change for the current tunnel design

as it requires rebuilding the tunnel. Therefore the easiest solution for the current wind

tunnel facility, was the lengthened nozzle solution whose minimized R.S. was only 0.0461.

A further improvement could be made by including the nozzle section of the tunnel as part

of the end wall spline to remove the straight edges and corners. This improvement would

still need to be proven. Other runs could be made to improve the understanding of the

optimization methods by filing all the spaces in Table 4.2.

This study was limited to only CFD simulations and requires further study and val-

idation. The CFD model developed in Chapter 2 was based on matching simulations to

experimental results. For this reason the CFD model cannot be any better than the experi-

ment. The optimization was limited to the accuracy of the results of the CFD model. For

this reason it was difficult to know if the optimized result was better than the previous ex-

perimental method for obtaining periodic conditions in the two passage cascade. The only

way to truly optimize the wind tunnel geometry and improve the experiment would be to

91



do a higher level of iterations, including the computational optimization and experimen-

tal validation of the design. Once the computations result in the same flow field for the

experiment the iterations can cease.

5.4 Continuation and Improvement

The CFD model used in this work could be completely replaced with the transition

models recently added to the Fluent Beta version 12.0.7. Depending on the accuracy of the

models, the pitfalls of the manual turbulence transition could be avoided, and a more accu-

rate solution obtained. Optimization runs to complete Table 4.2 to improve understanding

of the different optimization methods. An improvement in the lengthened nozzle domain

could also be made. The straight edges of the nozzle and tailboard sections could also be

included in the end wall spline to improve the smoothness of the domain. This research in-

cludes only computational simulations and lacks validation of the results with experiments.

The validation of the results in an experiment should be done.
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Appendix A

Resources

A.1 Sample Matlab Code

clear all

[x1a,cp1a]=textread(’Pressure1a.xy’,’%f %f’,’delimiter’, ’)’ ,

’headerlines’,4);

[x2a,cp2a]=textread(’Pressure2a.xy’,’%f %f’,’delimiter’, ’)’ ,

’headerlines’,4);

[x3a,cp3a]=textread(’Pressure3a.xy’,’%f %f’,’delimiter’, ’)’ ,

’headerlines’,4);

[x1b,cp1b]=textread(’Pressure1b.xy’,’%f %f’,’delimiter’, ’)’ ,

’headerlines’,4);

[x2b,cp2b]=textread(’Pressure2b.xy’,’%f %f’,’delimiter’, ’)’ ,

’headerlines’,4);

[x3b,cp3b]=textread(’Pressure3b.xy’,’%f %f’,’delimiter’, ’)’ ,

’headerlines’,4);

i1a=length(x1a);

i1b=length(x1b);

i2a=length(x2a);

i2b=length(x2b);

i3a=length(x3a);

i3b=length(x3b);

x1a(i1a)=[];

x1b(i1b)=[];

x2a(i2a)=[];

x2b(i2b)=[];

x3a(i3a)=[];

x3b(i3b)=[];

cp1a(i1a)=[];

cp1b(i1b)=[];

cp2a(i2a)=[];

cp2b(i2b)=[];
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cp3a(i3a)=[];

cp3b(i3b)=[];

x1ai=0.01:.01:0.80;

cp1ai=spline(x1a,cp1a,x1ai);

x1bi=0.8:.01:1;

cp1bi=spline(x1b,cp1b,x1bi);

x2ai=0.01:.01:0.80;

cp2ai=spline(x2a,cp2a,x2ai);

x2bi=0.8:.01:1;

cp2bi=spline(x2b,cp2b,x2bi);

x3ai=0.01:.01:0.80;

cp3ai=spline(x3a,cp3a,x3ai);

x3bi=0.8:.01:1;

cp3bi=spline(x3b,cp3b,x3bi);

figure (1)

plot(x3ai,cp3ai,’b’,x2ai,cp2ai,’g’,x1ai,cp1ai,’r’,x3bi,cp3bi,

’b’,x2bi,cp2bi,’g’,x1bi,cp1bi,’r’);

legend(’Blade3’,’Blade2’,’Periodic’,’location’,’south’);

axis([0,1,-.4,0]);

set(gca,’YDir’,’reverse’);

title(’Blade Comparison of c_p for Extended Domain’);

xlabel(’Axial Chord, c_x’);

ylabel(’Coefficient of Pressure, c_p’);

L=length(cp1ai);

l=length(cp1bi);

St3ai=0;

for i=1:L-1

St3ai=St3ai+(cp3ai(i)-cp1ai(i))^2;

end

St2ai=0;

for i=1:L-1

St2ai=St2ai+(cp2ai(i)-cp1ai(i))^2;

end

98



St3bi=0;

for i=1:l-1

St3bi=St3bi+(cp3bi(i)-cp1bi(i))^2;

end

St2bi=0;

for i=1:l-1

St2bi=St2bi+(cp2bi(i)-cp1bi(i))^2;

end

Rsquared=St2ai+St3ai+St2bi+St3bi

percenterror2a=abs(cp2ai-cp1ai)./abs(cp1ai);

percenterror2b=abs(cp2bi-cp1bi)./abs(cp1bi);

percenterror3a=abs(cp3ai-cp1ai)./abs(cp1ai);

percenterror3b=abs(cp3bi-cp1bi)./abs(cp1bi);

figure (2)

plot(x1ai,percenterror2a,’b’,x1ai,percenterror3a,’r’,x1bi,

percenterror2b,’b’,x1bi,percenterror3b,’r’);

title(’Percent Error for Extended Domain’);

xlabel(’Axial Chord, c_x’);

ylabel(’Percent Error of c_p’);

legend(’Blade 2’,’Blade 3’);

fprintf(’FERTIG\n’)

A.2 Full Tunnel Journals

A.2.1 Gambit

import iceminput "L1Apsurf.dat" edge

import iceminput "L1Assurf.dat" edge

edge move "edge.1" "edge.2" offset 0 1.0101010101 0

import iceminput "L1Apsurf.dat" edge

import iceminput "L1Assurf.dat" edge

vertex create "Top_Trip" coordinates .80 0 0

vertex create "Bot_Trip" coordinates .80 3 0

edge create "Trip" straight "Top_Trip" "Bot_Trip"

edge split "edge.2" tolerance 1e-6 edge "Trip" keeptool connected

edge split "edge.4" tolerance 1e-6 edge "Trip" connected
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vertex cmove "vertex.5001" multiple 1 offset .0913545 .0406737 0

vertex cmove "vertex.5002" multiple 1 offset .1813545 .0806737 0

vertex create "Fixed_B_1" coordinates -0.80000 -1.324110 0

vertex create "B_Point_1" coordinates 0.00 -0.5800000 0

vertex create "B_Point_2" coordinates 0.33 -0.3525000 0

vertex create "B_Point_3" coordinates 0.67 -0.4625000 0

vertex create "B_Point_4" coordinates 1.00 -1.0950228 0

vertex create "B_Point_5" coordinates 1.33 -1.5625000 0

vertex create "B_Point_6" coordinates 2.00 -3.0875000 0

edge create "BOTTOM" nurbs "B_Point_1" "B_Point_2" "B_Point_3"

"B_Point_4" "B_Point_5" interpolate

edge split "BOTTOM" vertex "B_Point_4" connected

vertex cmove "B_Point_4" multiple 1 offset .0913545 .0406737 0

vertex create "Fixed_T_1" coordinates -0.80000 2.141800 0

vertex create "T_Point_1" coordinates 0.00 2.5099000 0

vertex create "T_Point_2" coordinates 0.33 2.5998000 0

vertex create "T_Point_3" coordinates 0.67 2.3607000 0

vertex create "T_Point_4" coordinates 1.00 2.5698440 0

vertex create "T_Point_5" coordinates 1.33 1.6221000 0

vertex create "T_Point_6" coordinates 4.00 -2.2933300 0

edge create "TOP" nurbs "T_Point_1" "T_Point_2" "T_Point_3"

"T_Point_4" "T_Point_5" interpolate

edge split "TOP" vertex "T_Point_4" connected

edge create "TopNozzle" straight "Fixed_T_1" "T_Point_1"

edge create "BottomNozzle" straight "Fixed_B_1" "B_Point_1"

edge create "TopDiffuser" straight "T_Point_5" "T_Point_6"

edge create "BottomDiffuser" straight "B_Point_5" "B_Point_6"

vertex create "inletB" coordinates -10.6489 -8.14795 0

vertex create "inletT" coordinates -12.1719 -5.97302 0

edge create "wallB_fore" straight "Fixed_B_1" "inletB"

edge create "inlet" straight "inletB" "inletT"

edge create "wallT_fore" straight "inletT" "Fixed_T_1"

edge create "Outlet" straight "T_Point_6" "B_Point_6"

edge create "Turb_T1" straight "vertex.5001" "vertex.5003"

100



edge create "Turb_T2" straight "vertex.5003" "T_Point_4"

edge create "Turb_M1" straight "vertex.5002" "vertex.5004"

edge create "Turb_M2" straight "vertex.5004" "vertex.1238"

edge create "Turb_B1" nurbs "B_Point_4" "vertex.5012" "vertex.3736"

face create "Laminar" wireframe "BOTTOM" "TOP" "wallB_fore"

"inlet" "wallT_fore" "Turb_T1" "Turb_T2" "Turb_M1" "Turb_M2"

"Turb_B1" "edge.1" "edge.2" "edge.3" "edge.4" "TopNozzle"

"BottomNozzle" real

face create "Turbulent" wireframe "edge.7" "edge.8" "edge.12"

"edge.10" "Turb_T1" "Turb_T2" "Turb_M1" "Turb_M2" "Turb_B1"

"Outlet" "TopDiffuser" "BottomDiffuser" real

edge mesh "edge.1" "edge.2" "edge.3" "edge.4" "edge.7" "edge.8"

successive ratio1 1 size 0.003

edge mesh "wallT_fore" "BOTTOM" "TOP" "wallB_fore" "BottomDiffuser"

"TopDiffuser" "TopNozzle" "BottomNozzle" "edge.12" "edge.10"

successive ratio1 1 size 0.003

blayer create first 0.0005 growth 1.1 total .01588624085 rows 15

transition 1 trows 0 uniform

blayer attach "b_layer.1" face "Laminar" "Laminar" "Laminar" "Laminar"

"Laminar" "Laminar" "Laminar" "Laminar" "Laminar" "Laminar" "Turbulent"

"Turbulent" "Turbulent" "Turbulent" "Turbulent" "Turbulent" edge

"wallT_fore" "BOTTOM" "TOP" "wallB_fore" "edge.1" "edge.2" "edge.3"

"edge.4" "TopNozzle" "BottomNozzle" "edge.7" "edge.8" "edge.12"

"edge.10" "BottomDiffuser" "TopDiffuser" add

sfunction create sourceedges "wallT_fore" "TOP" "BOTTOM" "wallB_fore"

"BottomDiffuser" "TopDiffuser" "TopNozzle" "BottomNozzle" "edge.1"

"edge.2" "edge.3" "edge.4" "edge.7" "edge.8" "edge.12" "edge.10"

growthrate 1.05 sizelimit 0.03 attachfaces "Laminar" "Turbulent" meshed

sfunction bgrid attachfaces "Laminar" "Turbulent"

face mesh "Laminar" "Turbulent" triangle size 1

physics create "Wall1" btype "WALL" edge "wallB_fore" "BOTTOM"

"BottomDiffuser" "BottomNozzle" "edge.10"

physics create "Pressure2" btype "WALL" edge "edge.3"

physics create "Suction2" btype "WALL" edge "edge.4" "edge.8"

physics create "Pressure3" btype "WALL" edge "edge.1"

physics create "Suction3" btype "WALL" edge "edge.2" "edge.7"

physics create "Wall4" btype "WALL" edge "wallT_fore" "TOP" "
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TopDiffuser" "TopNozzle" "edge.12"

physics create "Inlet" btype "VELOCITY_INLET" edge "inlet"

physics create "Outlet" btype "OUTFLOW" edge "Outlet"

physics create "Laminar" ctype "FLUID" face "Laminar"

physics create "Turbulent" ctype "FLUID" face "Turbulent"

export fluent5 "tunnel.msh" nozval

yes

save name "MeshCreation.dbs"

yes

exit

force

A.2.2 Fluent

file/read-case

"tunnel.cas"

/grid/smooth-grid

"skewness"

20

.4

/define/models/steady

yes

/define/models/viscous/ke-standard

yes

/define/boundary-conditions/fluid

Laminar

no

no

no

yes

0

0

no

yes

yes
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no

/define/materials/c-c

air

air

no

no

no

yes

constant

0.000017894000000

no

no

no

no

no

no

/define/boundary-conditions/velocity-inlet

inlet

yes

yes

no

.292

no

.8192

no

.5736

no

no

yes

3

64

/solve/initialize/compute-defaults/velocity-inlet

inlet

/solve/initialize/set-defaults/y-velocity

0

/solve/initialize/initialize-flow

yes
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/solve/monitors/residual/plot

yes

/solve/monitors/residual/c-c

yes

no

no

no

no

/solve/monitors/residual/convergence-criteria

.00001

/solve/set/pvc

21

/solve/set/ur/p

.9

/define/profiles/u-i

100

/solve/iterate

1000

/plot/plot

no

"Pressure2a.xy"

yes

yes

no

no

pressure-coefficient

yes

1

0

(suction2)

/plot/plot
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no

"Pressure2b.xy"

yes

yes

no

no

pressure-coefficient

yes

1

0

(suction2:014)

/plot/plot

no

"Pressure3a.xy"

yes

yes

no

no

pressure-coefficient

yes

1

0

(suction3)

/plot/plot

no

"Pressure3b.xy"

yes

yes

no

no

pressure-coefficient

yes

1

0

(suction3:012)

/plot/plot

no

"derivative.xy"

yes

yes
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no

no

dx-velocity-dy

yes

1

0

(wall4)

/file/write-case-data

"tunnel.cas"

yes

exit

yes

A.3 Test Section Journals

A.3.1 Gambit

import iceminput "L1Apsurf.dat" edge

import iceminput "L1Assurf.dat" edge

edge move "edge.1" "edge.2" offset 0 1.0101010101 0

import iceminput "L1Apsurf.dat" edge

import iceminput "L1Assurf.dat" edge

vertex create "Top_Trip" coordinates .80 0 0

vertex create "Bot_Trip" coordinates .80 3 0

edge create "Trip" straight "Top_Trip" "Bot_Trip"

edge split "edge.2" tolerance 1e-6 edge "Trip" keeptool connected

edge split "edge.4" tolerance 1e-6 edge "Trip" connected

vertex cmove "vertex.5001" multiple 1 offset .0913545 .0406737 0

vertex cmove "vertex.5002" multiple 1 offset .1813545 .0806737 0

vertex create "Fixed_B_1" coordinates -0.80000 -1.2516200 0

vertex create "B_Point_1" coordinates 0.00 -0.689523 0

vertex create "B_Point_2" coordinates 0.33 -0.392354279756546 0

vertex create "B_Point_3" coordinates 0.67 -0.504405438899994 0

vertex create "B_Point_4" coordinates 1.00 -1.07280480861664 0

vertex create "B_Point_5" coordinates 1.33 -1.721563339233400 0

vertex create "B_Point_6" coordinates 2.00 -3.117084741592410 0
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edge create "BOTTOM" nurbs "B_Point_1" "B_Point_2" "B_Point_3"

"B_Point_4" "B_Point_5" interpolate

edge split "BOTTOM" vertex "B_Point_4" connected

vertex cmove "B_Point_4" multiple 1 offset .0913545 .0406737 0

vertex create "Fixed_T_1" coordinates -0.80000 1.9896600 0

vertex create "T_Point_1" coordinates 0.00 2.607517000000000 0

vertex create "T_Point_2" coordinates 0.33 2.406000000000000 0

vertex create "T_Point_3" coordinates 0.67 2.798700000000000 0

vertex create "T_Point_4" coordinates 1.00 2.0962 0

vertex create "T_Point_5" coordinates 1.33 1.533300000000000 0

vertex create "T_Point_6" coordinates 4.00 -2.56957 0

edge create "TOP" nurbs "T_Point_1" "T_Point_2" "T_Point_3"

"T_Point_4" "T_Point_5" interpolate

edge split "TOP" vertex "T_Point_4" connected

edge create "TopNozzle" straight "Fixed_T_1" "T_Point_1"

edge create "BottomNozzle" straight "Fixed_B_1" "B_Point_1"

edge create "TopDiffuser" straight "T_Point_5" "T_Point_6"

edge create "BottomDiffuser" straight "B_Point_5" "B_Point_6"

vertex create "inletB" coordinates -0.81916 -1.26503 0

vertex create "inletT" coordinates -2.34206 0.909899 0

edge create "wallB_fore" straight "Fixed_B_1" "inletB"

edge create "inlet" straight "inletB" "inletT"

edge create "wallT_fore" straight "inletT" "Fixed_T_1"

edge create "Outlet" straight "T_Point_6" "B_Point_6"

edge create "Turb_T1" straight "vertex.5001" "vertex.5003"

edge create "Turb_T2" straight "vertex.5003" "T_Point_4"

edge create "Turb_M1" straight "vertex.5002" "vertex.5004"

edge create "Turb_M2" straight "vertex.5004" "vertex.1238"

edge create "Turb_B1" nurbs "B_Point_4" "vertex.5012" "vertex.3736"

face create "Laminar" wireframe "BOTTOM" "TOP" "wallB_fore" "inlet"

"wallT_fore" "Turb_T1" "Turb_T2" "Turb_M1" "Turb_M2" "Turb_B1"

"edge.1" "edge.2" "edge.3" "edge.4" "TopNozzle" "BottomNozzle" real

face create "Turbulent" wireframe "edge.7" "edge.8" "edge.12"

"edge.10" "Turb_T1" "Turb_T2" "Turb_M1" "Turb_M2" "Turb_B1"
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"Outlet" "TopDiffuser" "BottomDiffuser" real

edge mesh "edge.1" "edge.2" "edge.3" "edge.4" "edge.7" "edge.8"

successive ratio1 1 size 0.003

edge mesh "wallT_fore" "BOTTOM" "TOP" "wallB_fore" "BottomDiffuser"

"TopDiffuser" "TopNozzle" "BottomNozzle" "edge.12" "edge.10"

successive ratio1 1 size 0.003

blayer create first 0.0005 growth 1.1 total .01588624085 rows 15

transition 1 trows 0 uniform

blayer attach "b_layer.1" face "Laminar" "Laminar" "Laminar"

"Laminar" "Laminar" "Laminar" "Laminar" "Laminar" "Laminar"

"Laminar" "Turbulent" "Turbulent" "Turbulent" "Turbulent"

"Turbulent" "Turbulent" edge "wallT_fore" "BOTTOM" "TOP"

"wallB_fore" "edge.1" "edge.2" "edge.3" "edge.4" "TopNozzle"

"BottomNozzle" "edge.7" "edge.8" "edge.12" "edge.10"

"BottomDiffuser" "TopDiffuser" add

sfunction create sourceedges "wallT_fore" "TOP" "BOTTOM"

"wallB_fore" "BottomDiffuser" "TopDiffuser" "TopNozzle"

"BottomNozzle" "edge.1" "edge.2" "edge.3" "edge.4" "edge.7"

"edge.8" "edge.12" "edge.10" growthrate 1.05 sizelimit 0.03

attachfaces "Laminar" "Turbulent" meshed

sfunction bgrid attachfaces "Laminar" "Turbulent"

face mesh "Laminar" "Turbulent" triangle size 1

physics create "Wall1" btype "WALL" edge "wallB_fore" "BOTTOM"

"BottomDiffuser" "BottomNozzle" "edge.10"

physics create "Pressure2" btype "WALL" edge "edge.3"

physics create "Suction2" btype "WALL" edge "edge.4" "edge.8"

physics create "Pressure3" btype "WALL" edge "edge.1"

physics create "Suction3" btype "WALL" edge "edge.2" "edge.7"

physics create "Wall4" btype "WALL" edge "wallT_fore" "TOP"

"TopDiffuser" "TopNozzle" "edge.12"

physics create "Inlet" btype "VELOCITY_INLET" edge "inlet"

physics create "Outlet" btype "OUTFLOW" edge "Outlet"

physics create "Laminar" ctype "FLUID" face "Laminar"

physics create "Turbulent" ctype "FLUID" face "Turbulent"

export fluent5 "tunnel.msh" nozval
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yes

save name "MeshCreation.dbs"

yes

exit

force

A.3.2 Fluent

/file/read-case/

"tunnel.msh"

/parallel/partition/method

metis

12

/file/write-case

"tunnel.cas"

yes

exit

yes

file/read-case

"tunnel.cas"

/grid/smooth-grid

"skewness"

20

.4

/define/models/steady

yes

/define/models/viscous/ke-standard

yes

/define/boundary-conditions/fluid

Laminar

no

no

no
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yes

0

0

no

yes

yes

no

/define/u-d/c-f

compile

"libudf"

yes

"udf_velmag.c"

/define/u-d/c-f

load

"libudf"

/define/boundary-conditions/velocity-inlet

inlet

yes

yes

yes

yes

no

.8192

no

.5736

no

no

yes

3

64

/solve/initialize/compute-defaults/velocity-inlet

inlet

/solve/initialize/set-defaults/y-velocity
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0

/solve/initialize/initialize-flow

yes

/solve/monitors/residual/plot

yes

/solve/monitors/residual/c-c

yes

no

no

no

no

/solve/monitors/residual/convergence-criteria

.00001

/solve/set/pvc

21

/solve/set/ur/p

.9

/define/profiles/u-i

100

/solve/iterate

1000

/plot/plot

no

"Pressure2a.xy"

yes

yes

no

no

pressure-coefficient

yes

1

0
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(suction2)

/plot/plot

no

"Pressure2b.xy"

yes

yes

no

no

pressure-coefficient

yes

1

0

(suction2:014)

/plot/plot

no

"Pressure3a.xy"

yes

yes

no

no

pressure-coefficient

yes

1

0

(suction3)

/plot/plot

no

"Pressure3b.xy"

yes

yes

no

no

pressure-coefficient

yes

1

0

(suction3:012)
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/file/write-case-data

"tunnel.cas"

yes

exit

yes

A.3.3 UDF Fluent Files

x v

-2.34206 0

-2.340029641 0.00814434

-2.337796246 0.0168351

-2.335339512 0.0263379

-2.332637095 0.0367122

-2.329664458 0.0480225

-2.326394541 0.0603355

-2.322797648 0.0737169

-2.318841045 0.0882278

-2.314488803 0.103918

-2.309701313 0.120817

-2.304435088 0.138925

-2.29864229 0.158192

-2.29227024 0.17851

-2.285260705 0.199695

-2.277550536 0.221497

-2.269068991 0.243628

-2.259739731 0.265816

-2.249477225 0.286454

-2.233482153 0.298769

-2.215183741 0.303468

-2.195291818 0.307039

-2.173667295 0.30994

-2.150159094 0.311975

-2.124603348 0.313001

-2.096814607 0.313233

-2.066520691 0.313018

-2.033427037 0.312635

-1.997275455 0.312238

-1.957800958 0.31188

-1.915113058 0.311553

-1.869577859 0.311219

-1.821404793 0.310853

-1.772220543 0.310465

-1.723396003 0.31012

113



-1.675198956 0.309891

-1.627625405 0.309769

-1.58067535 0.309727

-1.533725295 0.309769

-1.486151744 0.309891

-1.437954697 0.31012

-1.389130157 0.310465

-1.339945907 0.310853

-1.29177284 0.311219

-1.246237642 0.311553

-1.203549743 0.31188

-1.164075246 0.312238

-1.127923663 0.312635

-1.09483001 0.313018

-1.064536093 0.313233

-1.036747352 0.313001

-1.011191606 0.311975

-0.987683405 0.30994

-0.966058882 0.307039

-0.946166959 0.303468

-0.927868548 0.298769

-0.911873475 0.286454

-0.901610969 0.265816

-0.892281709 0.243628

-0.883800164 0.221497

-0.876089995 0.199695

-0.86908046 0.17851

-0.86270841 0.158192

-0.856915612 0.138925

-0.851649388 0.120817

-0.846861897 0.103918

-0.842509654 0.0882278

-0.838553052 0.0737169

-0.834956159 0.0603355

-0.831686242 0.0480225

-0.828713604 0.0367122

-0.826011189 0.0263379

-0.823554454 0.0168351

-0.821321059 0.00814434

-0.8192907 0

/**********************************************************************

udf_velmag.c

UDF for specifying a steady-state velocity profile boundary condition

**********************************************************************/
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#include "udf.h" /* must be at the beginning of every UDF you write */

real plinterp(real *x, real *y, int n, real xp);

DEFINE_PROFILE(velocity_magnitude,thread,index)

{

real loc[ND_ND]; /* this will hold the position vector */

real x;

face_t f;

FILE *fp0;

static real inx[1000];

static real inu[1000];

char str[50];

if ((fp0=fopen("velmag_profile.txt","r"))==NULL)

{

Message0(" Cannot open velmag_profile.txt\n");

}

else

{

Message0(" Opened velmag_profile.txt\n");

}

fgets(str,50,fp0);

int n=0;

while (fscanf(fp0,"%f %f",&inx[n],&inu[n]) != EOF)

{

Message0(" x: %f\tu: %f\n",inx[n],inu[n]);

n++;

}

begin_f_loop(f,thread) /* loops over all faces in the thread passed

in the DEFINE macro argument */

{

F_CENTROID(loc,f,thread);

x = loc[0];

F_PROFILE(f,thread,index) = plinterp(inx,inu,n,x);

}

end_f_loop(f,thread)

}

real plinterp(real *x, real *y, int n, real xp)

{

int i;
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if(xp < x[0])

{

return (-999.);

}

if(xp > x[n-1])

{

return (999.);

}

i=0;

while(x[i] < xp) i++;

return (y[i-1]+(xp-x[i-1])*(y[i]-y[i-1])/(x[i]-x[i-1]));

}

A.4 Streamline ICEM Coordinates

2 9

-0.8 2.1479 0

-0.55 2.3023 0

-0.3 2.4141 0

-0.05 2.4845 0

0.2 2.5435 0

0.45 2.5495 0

0.7 2.4772 0

0.95 2.3715 0

1.2 1.8418 0
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