
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=raec20

Applied Economics

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/raec20

Stochastic volatility forecasting of the Finnish
housing market

Josephine Dufitinema

To cite this article: Josephine Dufitinema (2020): Stochastic volatility forecasting of the Finnish
housing market, Applied Economics, DOI: 10.1080/00036846.2020.1795074

To link to this article:  https://doi.org/10.1080/00036846.2020.1795074

© 2020 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

Published online: 26 Jul 2020.

Submit your article to this journal 

Article views: 101

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=raec20
https://www.tandfonline.com/loi/raec20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00036846.2020.1795074
https://doi.org/10.1080/00036846.2020.1795074
https://www.tandfonline.com/action/authorSubmission?journalCode=raec20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=raec20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/00036846.2020.1795074
https://www.tandfonline.com/doi/mlt/10.1080/00036846.2020.1795074
http://crossmark.crossref.org/dialog/?doi=10.1080/00036846.2020.1795074&domain=pdf&date_stamp=2020-07-26
http://crossmark.crossref.org/dialog/?doi=10.1080/00036846.2020.1795074&domain=pdf&date_stamp=2020-07-26


Stochastic volatility forecasting of the Finnish housing market
Josephine Dufitinema

School of Technology and Innovation, Mathematics and Statistics Unit, University of Vaasa, Vaasa, Finland

ABSTRACT
The purpose of the article is to assess the in-sample fit and the out-of-sample forecasting 
performances of four stochastic volatility (SV) models in the Finnish housing market. The compet-
ing models are the vanilla SV, the SV model where the latent volatility follows a stationary AR(2) 
process, the heavy-tailed SV and the SV with leverage effects. The models are estimated using 
Bayesian technique, and the results reveal that the SV with leverage effects is the best model for 
modelling the Finnish house price volatility. The heavy-tailed SV model provides accurate out-of- 
sample volatility forecasts in most of the studied regions. Additionally, the models’ performances 
are noted to vary across almost all cities and sub-areas, and by apartment types. Moreover, the AR 
(2) component substantially improves the in-sample fit of the standard SV, but it is unimportant for 
the out-of-sample forecasting performance. The study outcomes have crucial implications, such as 
portfolio management and investment decision-making. To establish suitable time-series volatility 
forecasting models of this housing market, these study outcomes will be compared to the 
performances of their GARCH models counterparts.
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I. Introduction

Volatility modelling and forecasting are a vital task 
in financial markets. As the asset volatility holds 
critical information; it has been recognized as the 
most risk measure broadly used in many areas of 
finance (Bollerslev, Chou, and Kroner 1992). In the 
housing market, as housing assets have a dual role 
of consumption and investment; understanding 
price volatility plays an essential role in the housing 
investment decision-making and the asset alloca-
tion (Milles 2008a). Moreover, housing is a crucial 
factor for the country’s economy; in particular, in 
Finland, Statistics Finland (2016) reported that 
housing made up to 50.3% of the Finnish house-
holds’ total wealth. Thus, housing affects the coun-
try’s economy through wealth effects (Case, 
Quigley, and Shiller 2013) as well as through influ-
ences on many parties exposed to housing and 
mortgage activity. Therefore, better housing mod-
elling and forecasting would be beneficial for con-
sumers, mortgage market, mortgage insurance and 
mortgage-backed securities (Segnon et al. 2020). 
Furthermore, as pointed out by Zhou and Haurin 
(2010), insights into house price volatility are the 
key input in designing housing policies. In the light 

of the abovementioned points, understanding the 
dynamics of the house price volatility is crucial for 
portfolio management, risk assessment and invest-
ment decision-making.

An increasing amount of studies have attempted 
to model and/or forecast the house price volatility 
of individual markets. However, the literature has 
mainly focussed on the use of different Generalized 
Autoregressive Conditional Heteroscedasticity 
(GARCH)-type models. Under this approach, the 
volatility evolution is modelled deterministically; 
a framework which has its roots from the Engle’s 
(1982) and Bollerslev’s (1986) groundbreaking 
works. Taylor (1982), on the other hand, provided 
an alternative way; to model volatility probabilisti-
cally, meaning that volatility is treated as an unob-
served component that follows a stochastic process. 
The specification is known as the Stochastic 
Volatility (SV) models. Even though SV models 
are theoretically attractive and there is some 
empirical evidence in their favour over GARCH 
models (Jaquier, Polson, and Rossi 1994; Gysels, 
Harvey, and Renault 1996; Kim et al., 1998; 
Nakajima and Omori 2012); they have drawn little 
attention among practitioners. The challenges 
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pointed out by Bos (2012) are highly non-linear 
estimations and lack of standard software packages 
implementing these methods. In response to these 
challenges, Chan and Grant (2016b) provided the 
means for the Bayesian estimation of not only the 
vanilla SV model but also the heavy-tailed SV 
model and the SV model with leverage effects. 
Specifically, this study uses Chan and Grant 
(2016b) approach to model and forecast the studied 
housing market. To the best of the author’ knowl-
edge, in the housing markets, there has yet to be 
empirical modelling and forecasting using the SV 
framework. Hence, this is the first study that mod-
els and forecasts the Finnish housing market vola-
tility using the SV framework in general, and 
incorporating both non-Gaussianity and asymme-
try effects in particular.

Moreover, the emphasis of the housing market 
volatility modelling and/or forecasting has been on 
a limited number of countries such as the United 
States, United Kingdom, Australia and Canada. 
Regarding housing market volatility modelling 
without the forecasting aspect, the authors (to cite 
few) who have employed GARCH-type models to 
study US house prices include Dolde and Tirtiroglu 
(1997, 2002), Miller and Peng (2006), Milles 
(2008b), and more recently, Apergis and Payne 
(2020). The UK house price volatility investigation 
consists of the work of Willcocks (2010), Tsai, 
Chen, and Ma (2010), Milles (2011b), and more 
recently, Begiazi and Katsiampa (2019). The 
Australian house price volatility has been examined 
by Lee (2009) and Lee and Reed (2014b); while 
Hossain and Latif (2009) and Lin and Fuerst 
(2014) studied the Canadian house price volatility. 
For Finland, Dufitinema (2020) has recently 
explored different aspects of the Finnish housing 
market volatility. Regarding the housing market 
volatility forecasting, the US housing market is 
the widely studied housing market. Beginning 
with the work of Crawford and Fratantoni (2003), 
followed by Milles (2008a), Li (2012), more 
recently, Segnon et al. (2020). For Finland, there 
has yet to be an empirical forecasting of the Finnish 
housing market, even though Statistics Finland 
(2016) reported that housing made up to 50.3% of 
the Finnish households’ total wealth. Therefore, 
this article aims to fill that gap by being the first 
study that forecasts the Finnish housing market 

volatility and further extends the ongoing literature 
on the countries’ house price volatility forecasting.

Furthermore, in contrast to previous studies 
which employed the data sets of the family–home 
property type; the studied type of dwellings in the 
article at hand is apartments (block of flats) cate-
gorize by the number of rooms. That is one-room, 
two-room and more than three rooms apartment 
types. One reason is that, according to Statistics 
Finland Overview, at the end of 2018, among all 
occupied dwellings, 46% were in apartments; which 
reflects how living in flats is growing in popularity 
in Finland, compared to other house types. 
Detached and semi-detached houses occupied 
39%, terraced 14%, while 1% were in other build-
ings. The other reason is that apartments property 
type has not only increased its attractiveness in 
consumers but also in the Finnish residential prop-
erty investors. Currently, foreign investors own 
some 15,000 rental flats, and between 2015 and 
2018, in the Finnish housing development which 
has been very active in apartment buildings 
(Statistics Finland 2019); the share of foreign inves-
tors was up to 38%, and domestic and individual 
investors together hold some 40% (KTI, Autumn, 
2019). Additionally, in the same standpoint of 
housing investment, this study uses data on both 
metropolitan and geographical level, to analysis 
and cross-compare housing investment in different 
cities and sub-areas, and portfolio allocation across 
Finland.

The purpose of the study is to assess the in- 
sample fit and the out-of-sample forecasting per-
formance of four stochastic volatility models in the 
Finnish housing market. The competing models 
are the vanilla SV, the SV model where the latent 
volatility follows a stationary AR(2) process, the 
heavy-tailed SV and the SV with leverage effects. 
In other words, the goal of this model comparison 
exercise is to examine, in the SV framework, which 
volatility model tends to fit better the dynamics of 
the Finnish house prices and which one provides 
superior out-of-sample forecasts. Additionally, 
these models are used to answer the following 
questions: Are leverage effects and heavy-tailed 
distributions crucial in modelling and forecasting 
the Finnish house price volatility? Is the AR(2) 
component a useful addition to the vanilla SV 
model? The study assesses the Finnish housing 
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market by apartment types categorize by the num-
ber of rooms. That is, single-room, two-room and 
apartments with more than three rooms. These 
apartment type prices are for 15 main regions 
divided geographically, according to their postcode 
numbers, into 45 cities and sub-areas. Each model 
is estimated for each city and sub-area with signifi-
cant clustering effects. For the assessment of the 
out-of-sample forecasting performance of the four 
models, the data is split into two parts: the training 
set used for the estimation and prediction, and the 
test set used for the evaluation of the forecast built 
by the fitted model. Results reveal that, for the in- 
sample fit analysis, in all three apartment types, the 
stochastic volatility model with leverage effect 
ranks as the best model for modelling the Finnish 
house price volatility. For the out-of-sample fore-
casting assessment, in most of the regions, the 
heavy-tailed stochastic volatility model excels in 
forecasting the house price volatility of the studied 
types of apartments. Additionally, the models’ per-
formances are noted to vary across almost all cities 
and sub-areas, and by apartment types – no geo-
graphical pattern is observed. Moreover, for the in- 
sample fit analysis, the AR(2) component is found 
to be a valuable addition to the vanilla SV, whereas, 
for the out-of-sample forecasting assessment, the 
vanilla SV model outperforms the SV-2 in most of 
the regions.

The remainder of the article is as follows. Section 
2 describes the data and outlines the methodology 
to be employed. Section 3 presents and discusses 
the results. Section 4 concludes the article.

II. Data and methodology

Data

The study uses quarterly house price indices of 15 
main regions in Finland estimated by Statistics 
Finland using the so-called hedonic method. The 
studied period is from 1988:Q1 to 2018:Q4, and the 
type of dwellings is apartments categorize by the 
number of rooms, that is, one-room, two-room 
and more than three rooms apartment types. The 
studied regions are Helsinki, Tampere, Turku, Oulu, 
Lahti, Jyväskylä, Kuopio, Pori, Seinäjoki, Joensuu, 
Vaasa, Lappeenranta, Kouvola, Hämeenlina and 
Kotka. Additionally, these regions are divided 

geographically, according to their postcode num-
bers, into 45 cities and sub-areas. The data regions’ 
ranking according to their number of inhabitants 
and regional division by postcode numbers is 
described in detailed in Dufitinema (2020).

For a sample of three cities in each of the apart-
ments categories, a house price movement is 
graphed in Figure 1. Those are Helsinki, 
Tampere, Turku in the one-room flats group; 
Pori, Joensuu, Vaasa in the two-room flats group; 
Lappeenranta, Hämeenlina, Kotka in the more 
than three rooms flats group. A similar pattern is 
observed in all sample graphs from the end of 
1980s to mid-1993. During this period, house 
prices in Finland experienced a structural break 
due to the financial market deregulation 
(Oikarinen 2009a, 2009b). Moreover, as it can be 
noted since the bursting of the bubble, one-room 
apartment prices have been increasing. Two-room 
apartments experienced downturns in the 2010s, 
same as large apartments; however, large apart-
ments prices continue to decrease especially in 
less densely populated regions such as Kotka-city.

Methodology

The methodology used in this study is as follows: 
For each city and sub-area in each apartment type, 
we transform house price indices into continuous 
compound returns. Next, by employing the Akaike 
and Bayesian information criteria, we determine 
the ARMA model of appropriate order that filters 
out the first autocorrelations from the returns. 
Then, we test the clustering effects or 
Autoregressive Conditional Heteroscedasticity 
(ARCH) effects from the ARMA filtered returns. 
Lastly, for cities and sub-areas exhibiting ARCH 
effects, the four SV models’ in-sample estimations 
are performed, and the out-of-sample volatility 
forecasting performances are evaluated using the 
stochastic volatility framework.

Testing for ARCH effects
Two tests are employed to test clustering effects; 
those are Ljung-Box (LB) and Lagrange Multiplier 
(LM). An extensive discussion is given in 
Dufitinema (2020) and results are outlined in 
Table 1. In summary, both tests found significant 
clustering effects in over half of the cities/sub-areas 
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in all three studied types of apartments. Plus pre-
cisely, in the one–room flats category, ARCH 
effects were found in 28 out of 38 cities/sub-areas. 

In two-room flats category, they were significant in 
27 out of 42;, and in the more than three rooms 
flats category, they were found in 31 out of 39.
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Figure 1. The house price movement – Sample cities.
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In-sample fit analysis
For cities and sub-areas exhibiting clustering 
effects, the in-sample fit is performed using the 
stochastic volatility approach. That is, in contrast 
to the GARCH-type framework where the condi-
tional variance is assumed to follow 
a deterministic process; a stochastic volatility 
(SV) model treats the time-varying volatility as 
an unobserved component that mimics 
a stochastic process. The most popular SV model 
is the vanilla SV model with normal distribution 
errors proposed and developed by Taylor (1982, 
1986). However, several authors have pointed out 
that a normal distribution assumption is not 

plausible when analysing asset returns with SV 
framework as well as GARCH-type models (Tsay 
2013; Harvey and Shephard 1996; Omari et al. 
2007; Nakajima and Omori 2012). A suitable dis-
tribution requires to accommodate the character-
istics of asset returns such as skewness and fat 
tails. Therefore, for each city and sub-area in 
each apartment type, the in-sample estimations 
of the vanilla SV model and the SV model with 
additional AR(2) component are compared to the 
SV model with Student’s t errors (heavy-tailed 
SV) and SV model with leverage effects. The mod-
els are estimated on the whole sample data from 
1988:Q1 to 2018:Q4.

Table 1. ARCH effects tests results.
One room flats Two rooms flats Three rooms flats

Regions Cities/sub-areas ARMA ARCH? ARMA ARCH? ARMA ARCH?

Helsinki hki ARMA(2,1) Yes ARMA(2,1) Yes AR(1) Yes
hki1 MA(2) Yes ARMA(2,1) Yes AR(2) Yes
hki2 ARMA(2,1) Yes AR(1) Yes AR(1) No
hki3 ARMA(2,1) No AR(2) Yes AR(2) Yes
hki4 AR(2) Yes ARMA(1,1) Yes AR(2) Yes

Tampere tre ARMA(1,1) No ARMA(2,1) No ARMA(2,2) Yes
tre1 ARMA(2,2) Yes AR(2) Yes ARMA(2,2) Yes
tre2 ARMA(1,1) No ARMA(0,0) Yes ARMA(2,2) Yes
tre3 AR(2) Yes ARMA(2,2) No ARMA(1,1) Yes

Turku tku ARMA(2,2) Yes ARMA(2,2) Yes ARMA(2,2) Yes
tku1 ARMA(1,1) Yes AR(2) No AR(1) Yes
tku2 AR(1) Yes ARMA(0,0) Yes ARMA(2,2) Yes
tku3 AR(1) Yes MA(3) No ARMA(0,0) Yes

Oulu oulu ARMA(1,1) Yes AR(2) No ARMA(1, 2) Yes
oulu1 AR(1) Yes ARMA(1,2) No ARMA(1,2) Yes
oulu2 AR(1) No ARMA(0,0) No MA(3) No

Lahti lti AR(2) Yes AR(2) Yes ARMA(2,2) Yes
lti1 AR(1) Yes AR(2) No MA(3) Yes
lti2 AR(1) No ARMA(1,2) No ARMA(2,2) No

Jyväskylä jkla ARMA(1,1) Yes ARMA(2,2) Yes ARMA(1,2) Yes
jkla1 ARMA(1,1) Yes MA(3) Yes ARMA(2,2) Yes
jkla2 ARMA(0,0) Yes ARMA(1,2) Yes ARMA(1,2) Yes

Pori pori MA(1) Yes MA(3) Yes ARMA(2,2) No
pori1 AR(2) Yes MA(3) Yes MA(1) Yes
pori2 – – ARMA(2,2) Yes – –

Kuopio kuo ARMA(0,0) Yes AR(2) Yes ARMA(0,0) Yes
kuo1 MA(2) Yes ARMA(0,0) Yes MA(1) Yes
kuo2 ARMA(0,0) Yes AR(2) No ARMA(1,2) Yes

Joensuu jnsu MA(3) No AR(3) No AR(1) No
jnsu1 MA(3) Yes AR(3) Yes AR(1) No

Seinäjoki seoki – – AR(1) Yes MA(3) Yes
Vaasa vaasa MA(1) No ARMA(1,2) Yes ARMA(1,2) Yes

vaasa1 MA(1) No MA(2) No MA(1) Yes
vaasa2 – – – – ARMA(0,0) Yes

Kouvola kou AR(1) Yes ARMA(1,2) Yes MA(3) No
Lappeenranta lrta AR(1) Yes MA(3) Yes MA(3) Yes

lrta1 MA(1) Yes ARMA(2,2) Yes – –
lrta2 – – AR(1) No ARMA(0,0) Yes

Hämeenlinna hnlina MA(3) Yes ARMA(0,0) Yes MA(3) No
hnlina1 MA(3) No ARMA(1,2) Yes AR(1) Yes

Kotka kotka MA(1) Yes MA(3) No ARMA(2,2) Yes
kotka1 MA(3) No MA(2) Yes – –
kotka2 – – MA(2) No – –

Notes: This table reports, for each city and sub-area, the ARMA model and the outcomes of the two tests of ARCH effects. ”Yes” indicates that a city/sub-area 
exhibits ARCH effects, ”No” means that a city/sub-area does not.
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Vanilla SV model

Let yt denotes the demeaned return process yt ¼

logðSt=St� 1Þ � μt: A basic stochastic volatility 
model is of the following form: 

yt ¼ σt�t; t ¼ 1; 2; . . . :T;

where the log σ2
t follows an AR(1) process. To 

adopt the convention often used in literature, we 
write for ht ¼ log σ2

t ;

yt ¼ σt�t; t ¼ 1; 2; . . . :n
σ2

t ¼ expðhtÞ

ht ¼ μþ ϕht� 1 þ σηηt;

(1) 

where ht is the latent stochastic process (more 
precisely, the log-variance process), μ is 
a constant or the level of the log-variance process, 
ϕ is a parameter representing persistence in the 
log-variance process, ση is the volatility or the 
standard deviation of the log-variance process 
(also called volvol), and ηt is the random shocks 
in the log-variance process; a white noise uncorre-
lated with �t. θ ¼ ðμ;ϕ; σηÞ

T is referred to as the SV 
parameter vector.

Equation (1) can be expressed in hierarchical 
form. In its centred parameterization form, it is 
written as: 

ytjht,Nð0; expðhtÞÞ;

htjht� 1; θ,Nðμþ ϕðht� 1 � μÞ; σ2
ηÞ;

where Nðμ; σ2
ηÞ denotes the normal distribution 

with mean μ and variance σ2
η.

The SV model with additional AR(2) compo-
nent, which is referred to as the SV-2, is the 
model where the observation is the same as in 
Equation (1); however, the log-variance ht mimics 
a stationary AR(2) process.

SV with student’s t errors (SVt)

As discussed above, the non-normal conditional 
residual distributions are recommended when 
analysing asset returns. The proposed distribu-
tions include, for instance, the Student’s 
t distribution by Harvey, Ruiz, and Shephard 
(1994); the (semi-)parametric residuals by Jensen 
and Maheu (2010) and Delatola and Griffin 

(2011); the extended generalized Inverse 
Gaussian by (Silva, Lopes, and Migon 2006); and 
the generalized hyperbolic skew Student’s t errors 
by Nakajima and Omori (2012).

The SV model with Student’s t errors is 
described as: 

ytjht; ν,tνð0; expðht=2ÞÞ;
htjht� 1; θ,Nðμþ ϕðht� 1 � μÞ; σ2

ηÞ:
(2) 

The observations now follow a conditionally 
Student’s t distribution tνða; bÞ with ν degrees of 
freedom, mean a and scale b. The parameter vector 
of the SVt model is θ ¼ ðμ;ϕ; ση; νÞT .

SV with leverage effects (SVl)

It has been argued that the returns of financial 
variables have three major distribution character-
istics. Those are heavy-tailedness, skewness and 
volatility clustering with leverage effects. The 
leverage effect emerged from Black’s (1976) and 
Christie’s (1982) studies outcome that a drop in 
return (a negative chock) has more impact on 
asset price volatility increase than a rise in return 
(a positive chock). Various extensions of the 
vanilla SV model with normal errors have been 
proposed to model this effect. The proposed 
asymmetric innovations include, for instance, the 
distributions featuring correlation and variance 
by Harvey and Shephard (1996), and Jaquier, 
Polson, and Rossi (2004); the skewed distributions 
by Nakajima and Omori (2012) and the non- 
parametric distributions by Jensen and Maheu 
(2014).

The SV model with leverage effects is 
described as: 

ytjht; θ,Nð0;�Þ;
htjht� 1; θ,Nðμþ ϕðht� 1 � μÞ;�Þ;

� ¼
expðhtÞ ρση expðht=2Þ

ρση expðht=2Þ σ2
η

� �

:

(3) 

The vector θ ¼ ðμ;ϕ; ση; ρÞT collects the SVl para-
meters. The parameter ρ measures the correlation 
between the residuals of the observations (�t) and 
the innovations of the log-variance process (ηt). 
Leverage effects exist when ρ< 0.
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Model comparison

As the latent volatility process (ht) enters the mod-
els in a non-linear fashion, the maximum likeli-
hood estimation framework is not 
a straightforward task as in the GARCH-type mod-
els’ case. The reason being that for the SV models, 
the likelihood function does not have a closed form 
(Gysels, Harvey, and Renault 1996). Hence, the 
estimation of the SV models is done through 
Bayesian parameter estimation technique via 
Markov Chain Monte Carlo (MCMC) methods 
(Kim et al., 1998). The estimation of the four SV 
models was performed by following Chan and 
Grant’s approach, which is outlined in Chan and 
Grant (2016b, Appendix A). In estimating the SV 
models, the vital step is the joint sampling of the 
log volatilities. The novelty of Chan and Grant’s 
approach is that instead of using the conventional 
Kalman Filter to achieve this key step; the algo-
rithm employs the fast band matrix routines (Chan 
and Jeliazkov 2009; Chan 2013).

The four models performances are compared 
using two popular Bayesian model comparison cri-
teria, namely, deviance information criterion 
(DIC) and Bayes factor. The deviance information 
criterion (DIC) proposed by Spiegelhalter et al. 
(2002) is a trade-off between the model’s goodness 
of fit and its corresponding complexity. The fit is 
measured by the deviance, defined as 

DðθÞ ¼ � 2 logLðyjθÞ;

where LðyjθÞ is the likelihood function. The com-
plexity is measured by an estimate of the effective 
number of parameters pD, defined as 

pD ¼ D � Dð�θÞ:

That is, the difference between the posterior mean 
deviance and the deviance evaluated at the poster-
ior mean of parameters. Thus, the DIC is the sum 
between the Monte Carlo estimated posterior mean 
deviance and the effective number of parameters: 

DIC ¼ Dþ pD:

The smaller the DIC, the better the model supports 
the data. The widely used version of DIC is the one 
obtained by conditioning on the latent variables, 
that is, the DIC based on conditional likelihood. 
However, studies such as Li, Zeng, and Yu (2012) 

have warned against using this DIC version on the 
grounds of being non-regular and thus invalidates 
the needed justification of DIC – the standard 
asymptotic arguments. Moreover, Millar (2009) 
and Chan and Grant (2016a) provided Monte 
Carlo evidence that this DIC version always favours 
the most complex and overfitted model. To over-
come this issue, Chan and Grant (2016a) proposed 
importance sampling algorithms to compute DIC 
by integrating out the latent variables; that is, the 
DIC based on the observed data likelihood. The 
authors showed in a Monte Carlo study that indeed 
the observed data DIC was able to select the correct 
model. Following Chan and Grant (2016a) 
approach, this article carries out the four models 
comparison exercise using the observed data DICs.

Another popular metric for Bayesian model 
comparison is the Bayes factor; it is defined as 
a ratio of marginal likelihoods. That is, given the 
likelihood function Lðyjθk;MkÞ of a model Mk and 
its prior density LðθkjMkÞ, the Bayes factor in 
favour of Model Mi against Mj is 

BFij ¼
LðyjMiÞ

LðyjMjÞ
> 1; where 

LðyjMkÞ ¼

ð

Lðyjθk;MkÞLðθkjMkÞdθk (4) 

is the marginal likelihood under model Mk, k ¼ i; j.
The interpretation of the marginal likelihood is 

that of the density forecast of the data under model 
Mk evaluated at the actual observed data y. 
Therefore, the more likely the observed data are 
to be under the model, the ‘larger’ the correspond-
ing marginal likelihood would be. Furthermore, the 
Bayes factor is a consistent model selection crea-
tion (Kass and Raftery 1995). However, one poten-
tial drawback of the marginal likelihoods is that 
they are relatively sensitive to the prior distribu-
tion. In addition, their computation is non-trivial; 
the integral in Equation (4) does not have an ana-
lytical solution as it is often high-dimensional. 
Chan and Grant (2016b) provided an improved 
approach to compute the marginal likelihoods 
using an adaptive importance sampling method 
called the cross-entropy method. It is an impor-
tance sampling estimator based on independent 
draws from convenient distributions. This article 
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employs Chan and Grant (2016b) approach; the 
model selection criterion results are available 
from the author upon request.

Out-of-sample volatility forecasting
For the out-of-sample forecasting performance 
comparison of the four used models, the data is 
split into two parts: the training set which includes 
25-year sample data (estimation sample: 1988: 
Q1–2013:Q4) and 5-year sample data for the test 
set or validation test (5-year forecast: 2014: 
Q1–2018:Q4). The prediction procedure starts 
with the estimation of each model using the train-
ing data set. Next, the estimated models are used to 
build the one-step-ahead (quarter) volatility fore-
casts. Finally, the predicted volatility (σ̂2) is com-
pared to the proxy of the true volatility (σ2).

By nature, true volatility is unobserved, and its 
appropriate proxy to use in the evaluation of the 
forecasting performance of different models 
remains the centre of active ongoing debate. 
Although most studies such as Brailsford and Faff 
(1996), Brooks and Persands (2002), and Sadorsky 
(2006) have employed the squared return as 
a proxy of σ2, the realized volatility (RV) has been 
recognized as the natural benchmark against which 
to quantify volatility forecasts since it provides 
a consistent non-parametric estimate of the varia-
bility of the asset price over a given discrete period. 
The point which was first pointed out by Andersen 
and Bollerslev, in their (1998a)’s work which was 
further developed by Andersen, Bollerslev, and 
Lange (1999); (2003); 2004) and Patton (2007). 
Recently, in the stock market, the use of available 
intraday data and realized daily volatility had been 
praised for providing better forecast accuracy 
(Xingyi and Zakamulin 2018). In the housing mar-
ket, σ2 is also proxied by realized volatility calcu-
lated from the asset returns, as employed by Zhou 
and Kang (2011). Following this study, a proxy of 
the true volatility used in this article is the released 
volatility constructed as a rolling sample. 
Moreover, following other studies on conditional 
volatility forecasting, the forecasting accuracy of 
the studied models is measured using two popular 
measures; the Root Mean Squared Error (RMSE) 
and the Mean Absolute Error (MAE). The two 
criteria are defined as follows: 

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

XN

i¼1
ðσ̂2

i � σ2
i Þ

2

v
u
u
t and MAE

¼
1
N

XN

i¼1
σ̂2

i � σ2
i

�
�

�
�;

where N is the number of forecasts, σ̂2 is the fore-
cast volatility, and σ2 is the true volatility.

III. Results and discussions

In-sample fit analysis

For cities and sub-areas with significant clustering 
effects in each apartment category, all four stochas-
tic models are estimated using the Bayesian 
approach. The estimated observed data DICs and 
their standard errors are reported in Table 2–4. 
Various conclusions can be drawn from this 
model comparison exercise.

Overall, in all three apartment types, the SVl 
model ranks as the best model for modelling the 
Finnish house price volatility. In the one–room 
flats category, out of 28 cities/sub-areas exhibiting 
ARCH effects, SVl model comes on top in 19. In 
two–room flats category, SVl model leads in 24 
cities/sub–areas out of 27;, and in the more than 
three rooms flats category, SVl comes on top in 20 
cities/sub–areas out of 31. These results are in line 
with the general finding that asymmetric volatility 
(leverage effect and volatility feedback effect) is 
a crucial component in modelling assets returns. 
The results are also consistent with the findings of 
Dufitinema (2020) who documented, using the 
GARCH-type framework, the evidence of leverage 
effects in the price volatility of the studied types of 
apartment.

Next, the SV-2 model interchanges with the SVl 
and takes the first place. This pattern is observed in 
eight cities/sub-areas in the one-room flats cate-
gory, in three cities/sub-areas in the two-room 
flats category, and in nine cities/sub-areas in the 
more than three rooms flats category. The excep-
tions of this general pattern are Oulu-area1 in the 
one-room apartments, Helsinki-city and Vassa- 
area1 in the more than three rooms apartments. 
In both sub–areas (Oulu and Vassa), the heavy- 
tailed model (SVt) performs better, followed by 
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Table 2. Estimated DICs – One room flats.
One room flats

Regions Cities/Sub-areas SV SV-2 SVt SVl The best model

Helsinki hki 602.6 (0.94) 603.9 (0.57) 601.6 (0.16) 600.6 (0.19) SVl
hki1 687.5 (0.09) 686.0 (0.49) 688.0 (0.30) 685.3 (0.25) SVl
hki2 627.7 (0.73) 628.5 (0.53) 627.1 (0.12) 626.0 (0.32) SVl
hki4 697.7 (0.23) 700.8 (0.59) 697.9 (0.16) 693.7 (0.27) SVl

Tampere tre1 735.6 (0.39) 736.0 (0.75) 734.9 (0.13) 728.3 (0.29) SVl
tre3 726.1 (0.82) 718.8 (1.16) 725.7 (0.30) 722.5 (1.27) SV-2

Turku tku 711.5 (0.25) 705.3 (1.05) 711.7 (0.12) 708.1 (0.38) SV-2
tku1 764.7 (0.29) 764.8 (1.59) 764.9 (0.23) 757.1 (0.44) SVl
tku2 728.1 (0.32) 717.6 (2.42) 727.6 (0.21) 724.2 (0.43) SV-2
tku3 749.5 (0.38) 742.3 (1.35) 749.3 (0.71) 741.1 (0.52) SVl

Oulu oulu 699.8 (0.57) 705.2 (0.19) 702.5 (0.46) 698.4 (0.69) SVl
oulu1 748.9 (0.37) 749.2 (0.10) 747.1 (0.86) 759.2 (11.19) SVt

Lahti lti 757.9 (0.64) 760.4 (0.26) 757.0 (0.36) 750.0 (0.76) SVl
lti1 720.2 (0.20) 717.4 (1.47) 719.8 (0.19) 719.9 (0.37) SV-2

Jyväskylä jkla 730.1 (0.24) 729.4 (1.77) 731.9 (0.91) 724.7 (0.17) SVl
jkla1 753.6 (0.70) 748.5 (0.71) 753.0 (0.20) 750.4 (0.51) SV-2
jkla2 614.9 (0.40) 599.5 (1.02) 614.6 (0.44) 607.5 (0.41) SV-2

Pori pori 853.9 (0.39) 851.9 (0.16) 852.8 (0.71) 845.2 (0.54) SVl
pori1 717.8 (1.74) 711.2 (0.21) 716.1 (0.72) 710.3 (0.49) SVl

Kuopio kuo 695.3 (0.20) 691.7 (0.79) 695.5 (0.09) 687.7 (0.55) SVl
kuo1 689.0 (0.07) 682.7 (0.71) 689.3 (0.32) 686.2 (0.25) SV-2
kuo2 573.7 (0.25) 570.2 (0.86) 573.6 (0.10) 571.1 (0.54) SV-2

Joensuu jnsu1 724.4 (0.94) 722.5 (0.27) 723.7 (0.27) 719.3 (0.73) SVl
Kouvola kou 777.3 (0.44) 774.3 (0.52) 778.7 (0.72) 764.4 (0.49) SVl
Lappeenranta lrta 725.0 (0.30) 722.0 (0.89) 724.2 (0.41) 718.8 (0.31) SVl

lrta1 635.5 (0.59) 632.0 (1.43) 635.8 (0.30) 631.1 (0.27) SVl
Hämeenlinna hnlina 787.1 (0.21) 786.4 (0.40) 788.0 (0.64) 780.1 (0.52) SVl
Kotka kotka 756.7 (1.29) 755.3 (1.54) 755.8 (0.83) 748.6 (0.60) SVl

Notes: This table reports, for each city and sub-area, the estimated observed data DICs – the information criterion for model comparison. The preferred model 
is the one with the minimum DIC value. The standard errors are in parentheses.

Table 3. Estimated DICs – Two-room flats.
Two rooms flats

Regions Cities/Sub-areas SV SV-2 SVt SVl The best model

Helsinki hki 583.5 (0.47) 585.7 (1.06) 583.4 (0.42) 581.8 (0.45) SVl
hki1 698.8 (0.35) 697.4 (1.05) 698.5 (0.10) 697.9 (0.28) SV-2
hki2 601.1 (0.07) 604.3 (1.12) 602.3 (0.13) 599.9 (0.36) SVl
hki3 645.7 (0.23) 644.3 (0.43) 646.0 (0.12) 638.1 (0.28) SVl
hki4 643.7 (0.27) 645.4 (1.48) 643.9 (0.17) 636.0 (0.36) SVl

Tampere tre1 637.0 (0.21) 635.8 (0.70) 637.2 (0.43) 631.2 (0.30) SVl
tre2 712.1 (0.58) 710.7 (1.98) 711.0 (0.37) 708.5 (0.30) SVl

Turku tku 629.3 (0.43) 630.8 (1.69) 628.6 (0.24) 627.0 (0.18) SVl
tku2 713.9 (0.29) 714.7 (1.53) 714.6 (0.30) 710.8 (0.35) SVl

Lahti lti 638.8 (0.29) 640.4 (1.36) 639.5 (0.23) 631.4 (0.44) SVl
Jyväskylä jkla 630.5 (0.72) 631.4 (1.01) 629.2 (0.30) 622.3 (0.42) SVl

jkla1 661.7 (0.25) 661.5 (1.71) 662.7 (0.32) 655.2 (0.30) SVl
jkla2 704.6 (0.41) 701.7 (0.42) 703.3 (0.28) 693.5 (0.50) SVl

Pori pori 743.2 (0.57) 739.2 (2.03) 743.0 (0.19) 733.8 (0.50) SVl
pori1 802.4 (0.43) 801.2 (2.28) 802.8 (0.43) 789.1 (0.35) SVl
pori2 787.1 (0.45) 785.8 (0.24) 786.9 (0.31) 780.2 (0.75) SVl

Kuopio kuo 640.1 (0.23) 641.4 (1.98) 640.3 (0.40) 638.0 (0.60) SVl
kuo1 722.4 (0.14) 719.1 (0.92) 722.4 (0.12) 716.6 (0.46) SVl

Joensuu jnsu1 761.2 (0.16) 758.5 (2.15) 761.5 (0.27) 757.7 (0.10) SVl
Seinäjoki seoki 750.8 (0.39) 743.0 (1.22) 751.0 (0.40) 746.9 (0.54) SV-2
Vaasa vaasa 689.0 (0.34) 689.7 (0.52) 690.5 (0.57) 685.4 (0.25) SVl
Kouvola kou 767.6 (0.29) 761.7 (1.93) 765.7 (0.36) 759.8 (0.57) SVl
Lappeenranta lrta 680.1 (0.43) 680.6 (0.22) 679.4 (0.59) 677.1 (0.20) SVl

lrta1 756.4 (0.33) 753.5 (0.15) 756.2 (1.05) 750.9 (0.34) SVl
Hämeenlinna hnlina 714.3 (0.26) 709.1 (1.07) 715.1 (0.22) 709.2 (0.39) SV-2

hnlina1 745.2 (0.91) 741.1 (1.32) 744.1 (0.35) 739.1 (0.36) SVl
Kotka kotka1 786.6 (0.88) 784.0 (2.77) 786.9 (0.35) 778.1 (0.16) SVl

Notes: This table reports, for each city and sub-area, the estimated observed data DICs – the information criterion for model comparison. The preferred model 
is the one with the minimum DIC value. The standard errors are in parentheses.
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the Vanilla SV; whereas in the Helsinki–city the 
model performance rank is the other way around.

Finally, to further investigate the features that 
are vital in modelling the Finnish house price 
volatility dynamics; the vanilla SV and SV-2 
model are compared. In doing so, the question 
of whether the AR(2) component is a useful addi-
tion to the vanilla SV model is also answered. As it 
can be observed in the one–room flats category 
where the SV-2 model outperforms the vanilla SV 
in 20 out 28 cities/sub–areas; the richer AR(2) 
volatility process provides significant benefits. In 
the two–room flats category, the SV-2 performs 
better than SV in 17 cities/sub-areas out of 27, and 
in 22 out of 31 in the more than three rooms flats 
category. Although the SV-2 general excel in com-
parison to the vanilla SV, cautions should be taken 
when modelling house prices volatility of indivi-
dual regions. As it can be noted, the performance 
of the two models differs across cities and sub- 
areas, and by apartment types – no geographical 
pattern is observed. Therefore, retaining the 

standard specification of an AR(1) volatility pro-
cess or adding a component depends on the house 
price dataset under study.

In summary, the stochastic volatility model 
with leverage effect is the best model for model-
ling the house prices volatility of most of the 
Finnish cities and sub-areas. In the rest of the 
regions, the SVl swaps places with the SV model 
where the latent volatility follows a stationary AR 
(2) process. In a few cases, the second place is less 
clear-cut; the vanilla and the heavy-tailed SV 
models share the ranking. However, again as 
above, the model performance differs from region 
to region. Therefore, when modelling house price, 
even by employing the SV framework, one has to 
enable different house price dynamics across cities 
and sub-areas; rather than imposing one SV 
model on the whole dataset. As it has been 
stressed in various studies, such as Milles 
(2011b) and Begiazi and Katsiampa (2019) that 
house prices present a heterogeneous dynamics 
across different areas and property types.

Table 4. Estimated DICs – More than three rooms flats.
Three rooms flats

Regions Cities/Sub-areas SV SV-2 SVt SVl The best model

Helsinki hki 627.4 (0.15) 631.2 (0.84) 628.0 (0.28) 628.2 (0.79) SV
hki1 728.5 (0.14) 728.9 (0.73) 729.2 (0.19) 727.7 (0.55) SVl
hki3 649.8 (0.14) 648.3 (0.63) 649.9 (0.12) 646.9 (0.50) SVl
hki4 665.4 (0.43) 661.6 (1.81) 664.6 (0.11) 661.2 (0.38) SVl

Tampere tre 629.9 (0.65) 631.7 (0.81) 630.1 (0.22) 628.2 (0.20) SVl
tre1 713.2 (0.15) 713.2 (1.25) 713.4 (0.17) 710.5 (0.44) SVl
tre2 721.9 (0.60) 714.8 (1.93) 722.8 (0.49) 717.5 (0.52) SV-2
tre3 617.4 (0.18) 619.4 (1.09) 617.3 (0.42) 614.2 (0.26) SVl

Turku tku 676.3 (0.12) 673.7 (1.12) 676.6 (0.34) 671.0 (0.34) SVl
tku1 757.3 (0.15) 756.1 (2.07) 757.7 (0.23) 753.3 (0.52) SVl
tku2 725.3 (0.40) 725.9 (2.41) 724.3 (0.39) 722.2 (0.43) SVl
tku3 706.1 (0.25) 706.6 (0.90) 706.9 (0.21) 702.3 (0.74) SVl

Oulu oulu 658.7 (0.17) 658.0 (1.00) 659.8 (0.15) 656.0 (0.31) SVl
oulu1 716.9 (0.20) 715.0 (1.18) 717.7 (0.23) 713.8 (0.62) SVl

Lahti lti 710.3 (0.16) 711.7 (0.16) 710.6 (0.72) 701.8 (0.51) SVl
lti1 769.6 (0.40) 767.7 (0.12) 770.8 (0.23) 762.2 (0.58) SVl

Jyväskylä jkla 709.5 (0.59) 703.8 (0.25) 710.5 (0.20) 706.2 (0.26) SV-2
jkla1 730.1 (0.40) 725.4 (2.05) 730.7 (0.45) 725.0 (0.63) SVl
jkla2 787.1 (0.44) 785.2 (0.11) 787.2 (0.35) 781.6 (0.28) SVl

Pori pori1 768.6 (0.94) 762.1 (2.18) 769.9 (0.64) 761.1 (0.41) SVl
Kuopio kuo 703.2 (0.08) 700.0 (0.42) 703.4 (0.16) 701.1 (0.34) SV-2

kuo1 754.2 (0.22) 746.2 (0.83) 754.9 (0.39) 751.1 (0.49) SV-2
kuo2 719.2 (0.33) 714.7 (1.32) 717.8 (0.17) 716.5 (0.22) SV-2

Seinäjoki seoki 697.2 (0.31) 686.6 (0.19) 697.1 (0.52) 691.0 (0.48) SV-2
Vaasa vaasa 744.2 (0.55) 743.5 (0.20) 744.9 (0.39) 737.9 (0.30) SVl

vaasa1 737.3 (1.04) 737.6 (0.13) 737.2 (0.90) 740.2 (0.41) SVt
vaasa2 544.1 (0.26) 536.9 (1.88) 544.7 (0.25) 542.8 (0.25) SV-2

Lappeenranta lrta 749.5 (0.38) 747.8 (0.10) 749.7 (0.33) 743.3 (0.29) SVl
lrta2 511.7 (0.19) 500.1 (1.20) 511.0 (0.10) 510.8 (0.12) SV-2

Hämeenlinna hnlina1 727.9 (0.51) 718.5 (0.15) 727.7 (0.20) 720.8 (0.49) SV-2
Kotka kotka 778.1 (0.14) 773.0 (1.03) 778.9 (0.33) 770.9 (0.38) SVl

Notes: This table reports, for each city and sub-area, the estimated observed data DICs – the information criterion for model comparison. The preferred model 
is the one with the minimum DIC value. The standard errors are in parentheses.
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Out-of-sample volatility forecasting

Since the model that performs better in-sample 
does not necessarily imply that it will provide accu-
rate forecasts, the out-of-sample forecast perfor-
mance of the four competing models is 
investigated. The procedure starts by estimating 
the models using the training dataset, build 5-year 
volatility forecasts in terms of one step ahead, and 
validate the constructed predictions using the test 
dataset. For each city and sub-area in each apart-
ment category, Tables 5–7 report the Root Mean 
Squared Error (RMSE) and the Mean Absolute 
Error (MAE); the measures used in assessing the 
forecasting accuracy for each model. The lower the 
value of the two criteria, the better the model’s 
forecasting performance.

Overall, in all three apartment types, both eva-
luation criteria rank the heavy-tailed stochastic 
volatility model (SVt) as the best model. 
Especially in the two rooms and more than three 
rooms flats categories, where the SVt model pro-
vides the best forecasts in, respectively, 17 out on 
27 and 18 out of 31 cities/sub-areas. In the one- 
room flats category, the SVt and SVl models are 
neck and neck; they forecast best in, respectively, 9 
and 10 out of 28 cities/sub-areas. These results 
confirm again, the importance of the heavy-tailed 
distributions not only in modelling but also in 
forecasting assets volatility. Moreover, as it has 
been found in other assets such as stocks 
(Nakajima and Omori 2009; Chan and Grant 
2016a), even in the SV framework, when the heavy- 
tailed distribution is employed, it provides the 
model with extra flexibility against misspecification 
and outlier. The same conclusion can also be drawn 
in the case of house prices, where the SVt outper-
forms the SV model with standard errors.

A geographical pattern is observed in some regions 
where, in all three apartment types, the same model 
performs well in producing accurate forecasts. In 
Helsinki-city, Helsinki- 
area1 and Kuopio-city, the SVt is the first–ranked 
model across all apartment types, whereas the SVl 
comes on top in Pori-area1. These results imply that, 
in addition to the volatility clustering, the returns 
distributions of the former regions in all three apart-
ments types are characterized by skewness and heavy- 
tailedness. While in the latter area, the returns’ major 

characteristic is leverage effect; a drop in apartment 
price causes an increase in house price volatility.

Regarding, the forecasting performance of the 
vanilla SV in comparison to the SV-2 model, 
unlike in the in-sample fit analysis where the 
SV-2 general excel; for the out-of-sample forecast-
ing assessment, the vanilla SV model outperforms 
the SV-2 in most of the regions. Plus precisely, the 
vanilla SV does better in approximately 64% (18 
out of 28) in the one-room apartments category; 
in 59% (16 out of 27) in the two-room apartments 
category; and in 52% (16 out of 31) in the more 
than three rooms apartments category. Thus, for 
forecasting the house prices at least, one can feel 
comfortable retaining the standard specification of 
an AR(1) volatility process. However, as there is 
no geographical pattern observed, the same as 
discussed above, cautions should be taken when 
forecasting house prices volatility of individual 
regions.

In summary, indeed, a model that performs well 
in the in-sample analysis may not provide accurate 
out-of-sample forecasts. The heavy-tailed stochas-
tic volatility model is the best model for forecasting 
the house prices volatility of most of the Finnish 
cities and sub-areas. On the second place comes the 
stochastic volatility model with leverage effect, 
while the vanilla SV and SV-2 models share the 
last two rankings. Moreover, apart from a few areas 
(two cities and two sub–areas), no geographical 
pattern is observed in all three apartment types; 
the models’ forecasting performances vary across 
cities and sub-areas, and by apartment types.

IV. Conclusions, implications and further 
research

Volatility forecasting is one of the most fundamen-
tal methodologies in financial economics as it is 
a vital tool for asset allocation in general, and 
specifically for investors who implement volatility 
targeting. This article assesses the in-sample fit and 
the out-of-sample forecasting performance of four 
stochastic volatility models in the Finnish housing 
market. The competing models are the vanilla SV, 
the SV model where the latent volatility follows 
a stationary AR(2) process, the heavy-tailed SV 
and the SV with leverage effects. The study uses 
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Table 5. The results of RMSE and MAE – One room flats.
One room flats

Regions Cities/Sub-areas SV SV-2 SVt SVl

RMSE MAE RMSE MAE RMSE MAE RMSE MAE The best model
Helsinki hki 0.0152 0.0142 0.0167 0.0156 0.0148 0.0138 0.0157 0.0147 SVt

hki1 0.0228 0.0195 0.0232 0.0198 0.0218 0.0187 0.0227 0.0194 SVt
hki2 0.0169 0.0153 0.0178 0.0161 0.0166 0.0149 0.0173 0.0156 SVt
hki4 0.0186 0.0152 0.0189 0.0154 0.0182 0.0148 0.0191 0.0155 SVt

Tampere tre1 0.0351 0.0304 0.0351 0.0302 0.0352 0.0304 0.0350 0.0300 SVl
tre3 0.0580 0.0435 0.0570 0.0420 0.0583 0.0435 0.0572 0.0441 SV-2

Turku tku 0.0277 0.0249 0.0256 0.0231 0.0264 0.0238 0.0278 0.0249 SV-2
tku1 0.0384 0.0332 0.0385 0.0334 0.0381 0.0324 0.0384 0.0333 SVt
tku2 0.0338 0.0253 0.0335 0.0252 0.0333 0.0254 0.0332 0.0252 SVl
tku3 0.0412 0.0362 0.0418 0.0367 0.0411 0.0359 0.0417 0.0367 SVt

Oulu oulu 0.0357 0.0242 0.0360 0.0241 0.0359 0.0240 0.0357 0.0239 SVl
oulu1 0.0494 0.0359 0.0497 0.0360 0.0501 0.0362 0.0495 0.0359 SV

Lahti lti 0.0550 0.0394 0.0554 0.0394 0.0555 0.0394 0.0548 0.0393 SVl
lti1 0.1657 0.1277 0.1664 0.1281 0.1674 0.1288 0.1655 0.1275 SVl

Jyväskylä jkla 0.0337 0.0281 0.0332 0.0280 0.0339 0.0282 0.0337 0.0281 SV-2
jkla1 0.0372 0.0336 0.0372 0.0338 0.0369 0.0332 0.0373 0.0337 SVt
jkla2 0.0739 0.0579 0.0740 0.0580 0.0744 0.0581 0.0739 0.0578 SVl

Pori pori 0.0619 0.0527 0.0615 0.0524 0.0624 0.0529 0.0617 0.0526 SV-2
pori1 0.0484 0.0388 0.0483 0.0388 0.0497 0.0388 0.0481 0.0386 SVl

Kuopio kuo 0.0271 0.0201 0.0272 0.0203 0.0271 0.0198 0.0272 0.0198 SVt
kuo1 0.0672 0.0423 0.0691 0.0429 0.0693 0.0430 0.0673 0.0424 SV
kuo2 0.0927 0.0739 0.0929 0.0740 0.0943 0.0751 0.0924 0.0738 SVl

Joensuu jnsu1 0.0616 0.0372 0.0619 0.0373 0.0623 0.0374 0.0626 0.0379 SV
Kouvola kou 0.0549 0.0411 0.0549 0.0411 0.0549 0.0407 0.0552 0.0412 SVt
Lappeenranta lrta 0.0388 0.0316 0.0387 0.0314 0.0390 0.0315 0.0389 0.0319 SV-2

lrta1 0.0459 0.0397 0.0461 0.0398 0.0464 0.0398 0.0461 0.0399 SV
Hämeenlinna hnlina 0.0422 0.0311 0.0424 0.0312 0.0428 0.0313 0.0421 0.0310 SVl
Kotka kotka 0.0289 0.0240 0.0290 0.0241 0.0292 0.0243 0.0288 0.0240 SVl

Notes: This table reports the performance of the four competing models in forecasting the house price volatility. The training set is 1988:Q1–2013:Q4, while 
the test set is 2014:Q1–2018:Q4. 

RMSE is Root Mean Squared Error and MAE is the Mean Absolute Error.

Table 6. The results of RMSE and MAE – Two-room flats.
Two rooms flats

Regions Cities/Sub-areas SV SV-2 SVt SVl

RMSE MAE RMSE MAE RMSE MAE RMSE MAE The best model
Helsinki hki 0.0107 0.0091 0.0109 0.0093 0.0106 0.0090 0.0112 0.0096 SVt

hki1 0.0182 0.0144 0.0183 0.0145 0.0179 0.0142 0.0191 0.0151 SVt
hki2 0.0106 0.0093 0.0105 0.0092 0.0103 0.0090 0.0106 0.0092 SVt
hki3 0.0182 0.0156 0.0176 0.0153 0.0179 0.0155 0.0183 0.0156 SV-2
hki4 0.0227 0.0204 0.0222 0.0200 0.0220 0.0198 0.0223 0.0201 SVt

Tampere tre1 0.0227 0.0213 0.0233 0.0219 0.0224 0.0210 0.0219 0.0204 SVl
tre2 0.0247 0.0216 0.0241 0.0209 0.0239 0.0207 0.0252 0.0221 SVt

Turku tku 0.0144 0.0126 0.0145 0.0127 0.0136 0.0118 0.0147 0.0129 SVt
tku2 0.0309 0.0284 0.0308 0.0283 0.0302 0.0276 0.0306 0.0281 SVt

Lahti lti 0.0176 0.0153 0.0178 0.0153 0.0179 0.0153 0.0177 0.0153 SV
Jyväskylä jkla 0.0219 0.0146 0.0218 0.0146 0.0222 0.0148 0.0215 0.0143 SVl

jkla1 0.0210 0.0158 0.0208 0.0158 0.0209 0.0157 0.0211 0.0160 SV-2
jkla2 0.0648 0.0400 0.0653 0.0398 0.0652 0.0397 0.0647 0.0401 SVl

Pori pori 0.0443 0.0339 0.0444 0.0340 0.0444 0.0340 0.0442 0.0339 SVl
pori1 0.0572 0.0432 0.0574 0.0433 0.0578 0.0435 0.0569 0.0429 SVl
pori2 0.0396 0.0356 0.0398 0.0358 0.0383 0.0345 0.0399 0.0358 SVt

Kuopio kuo 0.0176 0.0151 0.0179 0.0154 0.0175 0.0151 0.0181 0.0155 SVt
kuo1 0.0224 0.0197 0.0226 0.0198 0.0222 0.0196 0.0225 0.0198 SVt

Joensuu jnsu1 0.0288 0.0256 0.0285 0.0253 0.0270 0.0239 0.0286 0.0255 SVt
Seinäjoki seoki 0.0376 0.0321 0.0374 0.0319 0.0373 0.0318 0.0375 0.0320 SVt
Vaasa vaasa 0.0192 0.0159 0.0199 0.0168 0.0188 0.0156 0.0194 0.0162 SVt
Kouvola kou 0.0802 0.0474 0.0802 0.0474 0.0807 0.0474 0.0801 0.0474 SVl
Lappeenranta lrta 0.0255 0.0223 0.0251 0.0220 0.0245 0.0214 0.0256 0.0224 SVt

lrta1 0.0301 0.0270 0.0300 0.0269 0.0295 0.0260 0.0302 0.0272 SVt
Hämeenlinna hnlina 0.0278 0.0246 0.0279 0.0247 0.0274 0.0237 0.0277 0.0244 SVt

hnlina1 0.0328 0.0284 0.0330 0.0288 0.0324 0.0277 0.0329 0.0285 SVt
Kotka kotka1 0.0698 0.0579 0.0699 0.0581 0.0705 0.0584 0.0702 0.0583 SV

Notes: This table reports the performance of the four competing models in forecasting the house price volatility. The training set is 1988:Q1–2013:Q4, while 
the test set is 2014:Q1–2018:Q4. 

RMSE is Root Mean Squared Error and MAE is the Mean Absolute Error.
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quarterly house price indices from 1988:Q1 to 
2018:Q4, for 15 main regions in Finland.

The study has various findings. First, in all three 
apartment types, the stochastic volatility model 
with leverage effect ranks as the best model for 
modelling the Finnish house price volatility; indi-
cating that leverage effect is a crucial component in 
modelling house price returns. Second, in most of 
the regions, the heavy-tailed stochastic volatility 
model excels in forecasting the house price volati-
lity of the studied types of apartments, indicating 
that the skewness and the heavy-tailedness charac-
teristics are vital components in forecasting house 
price volatility. Moreover, results suggest that the 
t innovations component is a useful addition to the 
vanilla SV model. Third, for the in-sample fit ana-
lysis, the AR(2) component is found to be 
a valuable addition to the vanilla SV, whereas, for 
the out-of-sample forecasting assessment, the 
vanilla SV model outperforms the SV-2 in most 

of the regions. Last, except for two cities and two 
sub-areas, no geographical pattern is observed for 
the models’ out-of-sample forecasting perfor-
mances in all three apartment types. Their perfor-
mances vary across cities and sub-areas, and by 
apartment types.

The findings have some housing investment 
implications. As housing investors, policy- 
makers and consumers are recommended to moni-
tor the asset volatility; accurate forecasts help to 
improve portfolio diversifications across Finland 
and by apartment type. In addition, in the view-
point of volatility as a measure of risk, precise 
predictions are the key to assessing investment 
risks; an essential decision-making factor for for-
eign as well as domestic investors who dominate 
the Finnish housing market.

In the standpoint of establishing suitable time- 
series volatility forecasting models of this housing 
market; these study findings – the performance of 

Table 7. The results of RMSE and MAE – More than three rooms flats.
Three rooms flats

Regions Cities/Sub-areas SV SV-2 SVt SVl

RMSE MAE RMSE MAE RMSE MAE RMSE MAE The best model
Helsinki hki 0.0205 0.0185 0.0206 0.0186 0.0199 0.0180 0.0207 0.0187 SVt

hki1 0.0243 0.0197 0.0241 0.0194 0.0237 0.0191 0.0247 0.0199 SVt
hki3 0.0178 0.0153 0.0181 0.0157 0.0176 0.0151 0.0183 0.0159 SVt
hki4 0.0201 0.0174 0.0194 0.0166 0.0196 0.0168 0.0204 0.0176 SV-2

Tampere tre 0.0216 0.0198 0.0213 0.0194 0.0208 0.0189 0.0217 0.0199 SVt
tre1 0.0251 0.0224 0.0255 0.0228 0.0241 0.0212 0.0253 0.0226 SVt
tre2 0.0506 0.0426 0.0504 0.0423 0.0503 0.0421 0.0505 0.0425 SVt
tre3 0.0186 0.0152 0.0182 0.0146 0.0181 0.0145 0.0191 0.0161 SVt

Turku tku 0.0194 0.0148 0.0195 0.0150 0.0195 0.0152 0.0196 0.0150 SV
tku1 0.0290 0.0257 0.0291 0.0258 0.0289 0.0256 0.0291 0.0259 SVt
tku2 0.0311 0.0263 0.0312 0.0263 0.0310 0.0261 0.0311 0.0264 SVt
tku3 0.0358 0.0279 0.0359 0.0282 0.0357 0.0277 0.0358 0.0279 SVt

Oulu oulu 0.0179 0.0157 0.0177 0.0155 0.0173 0.0152 0.0181 0.0159 SVt
oulu1 0.0255 0.0228 0.0255 0.0229 0.0247 0.0220 0.0262 0.0235 SVt

Lahti lti 0.0277 0.0237 0.0276 0.0236 0.0275 0.0234 0.0278 0.0238 SVt
lti1 0.0317 0.0270 0.0311 0.0263 0.0309 0.0261 0.0320 0.0273 SVt

Jyväskylä jkla 0.0212 0.0183 0.0218 0.0189 0.0210 0.0181 0.0213 0.0184 SVt
jkla1 0.0281 0.0238 0.0278 0.0235 0.0268 0.0227 0.0282 0.0238 SVt
jkla2 0.0526 0.0389 0.0522 0.0387 0.0536 0.0397 0.0524 0.0388 SV-2

Pori pori1 0.0766 0.0536 0.0767 0.0536 0.0772 0.0538 0.0765 0.0535 SVl
Kuopio kuo 0.0278 0.0246 0.0277 0.0246 0.0271 0.0237 0.0279 0.0247 SVt

kuo1 0.0358 0.0329 0.0353 0.0322 0.0354 0.0323 0.0355 0.0324 SV-2
kuo2 0.0514 0.0400 0.0512 0.0400 0.0521 0.0405 0.0513 0.0400 SV-2

Seinäjoki seoki 0.0425 0.0350 0.0435 0.0361 0.0438 0.0366 0.0423 0.0346 SVl
Vaasa vaasa 0.0341 0.0275 0.0339 0.0271 0.0340 0.0271 0.0341 0.0276 SV-2

vaasa1 0.0392 0.0299 0.0396 0.0300 0.0398 0.0301 0.0395 0.0301 SV
vaasa2 0.0300 0.0279 0.0301 0.0277 0.0301 0.0281 0.0299 0.0275 SVl

Lappeenranta lrta 0.0348 0.0296 0.0350 0.0297 0.0349 0.0297 0.0349 0.0297 SV
lrta2 0.0178 0.0157 0.0185 0.0164 0.0206 0.0189 0.0171 0.0150 SVl

Hämeenlinna hnlina1 0.0424 0.0370 0.0423 0.0370 0.0422 0.0368 0.0424 0.0371 SVt
Kotka kotka 0.0573 0.0387 0.0572 0.0386 0.0578 0.0391 0.0574 0.0386 SV-2

Notes: This table reports the performance of the four competing models in forecasting the house price volatility. The training set is 1988:Q1–2013:Q4, while 
the test set is 2014:Q1–2018:Q4. 

RMSE is Root Mean Squared Error and MAE is the Mean Absolute Error.
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the four stochastic models – will be weighed up to 
their GARCH models counterparts. One reason is 
that Dufitinema and Pynnönen (2020) have found, 
in all three apartment types, evidence of long-range 
dependence in the returns and volatility for the 
majority of cities and sub-areas. The long memory 
present in the housing market returns suggests that 
the asset is forecastable on a long horizon, whereas 
the evidence of long-range dependence in the hous-
ing market volatility is the key to establish suitable 
time-series volatility forecasting models for the mar-
ket. The other reason is that Dufitinema (2020) 
employed the Exponential GARCH (EGARCH) 
model to investigate whether the asymmetric effects 
of shocks are noted in the Finnish house price 
volatility. The author found that, indeed, these 
asymmetric impacts of shocks are observed in all 
three studied apartment types. Therefore, to assess 
whether the deterministic conditional variance 
under GARCH or the unobserved time-varying 
volatility under SV is more favoured by the house 
price data; these study outcomes will be compared 
to the performance of the short memory and long 
memory GARCH-type models. Namely, the 
EGARCH model, the Component GARCH 
(CGARCH) model and the Fractionally Integrated 
GARCH (FIGARCH) model. The aim is to provide 
to the investors, risk managers and consumers 
enlightenments with regards to which forecasting 
approach delivers accurate and superior volatility 
forecasts of the apartment types under study.

Moreover, it would also be of interest to incor-
porate, in a multivariate analysis, macroeconomic 
factors such as interest rates and unemployment 
rates; as the interaction between these variables and 
house prices is often of interest. Additionally, sev-
eral studies have referred to the importance of 
spatial dependence in regional housing markets 
known as ‘the ripple effect’. The phenomenon 
refers to the house prices’ tendency to rise first in 
the part of the country during an upswing and to 
gradually spread out or ‘ripple out’ across the coun-
try. Meen, 1999 was the fisrt to provide convincing 
economic explanations for the ripple effect, and by 
utilizing different approaches, many studies have 
contributed to the discussions of the spatial inter-
action of regional house prices. Among the meth-
ods used to detect the ripple effect includes tests of 
cointegration (Alexander and Barrow 1994), the 

concept of absolute and conditional convergence 
(Chow, Fung, and Cheng 2016), a measure of the 
regional–national return spillover indices through 
Vector Autoregressive (VAR) model (Tsai 2015), 
and use of time-series volatility models (Morley 
and Thomas 2011; Lin and Fuerst 2014). 
Therefore, following Morley and Thomas and Lin 
and Fuerst, and using the current study outcomes, 
the analysis of the spatial spillover in the Finnish 
housing market is also subjected to future research. 
That is, as the stochastic volatility model with 
leverage effect (SVl) has been ranked as the best 
model for modelling the Finnish house price vola-
tility of most of the regions. The ripple effects will 
be allowed in the model by incorporating house 
prices of the most populated area – the Helsinki 
region – as highlighted by the above-cited studies 
that the most populated area in a country may be 
a leading factor to influence the rest of the housing 
markets.

Furthermore, it would be worth investigating the 
structural breaks in the studied housing market. 
For instance, as discussed earlier, during the period 
of the end of 1980s to mid-1993, house prices in 
Finland experienced a structural break due to the 
financial market deregulation. By examining the 
occurrence of structural breakpoints, the full sam-
ple data can be divided into subsamples based on 
the estimated break dates, and hence improve fore-
cast accuracy.
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