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ABSTRACT 

The Effects of Aging on Skeletal Muscle AMPK Activation and an Analysis 
of Chronic AICAR Treatment on the Aging Phenotype 

 
Shalene E. Hardman 

Department of Physiology and Developmental Biology, BYU 
Doctor of Philosophy 

 
AMP-activated protein kinase (AMPK), a metabolic regulator, acts in opposition to many 

of the effects of aging and may provide insights into the development of sarcopenia. However, 
the effect of aging on AMPK activation is unclear. The purpose of this dissertation was to: 1) 
clarify the controversy concerning the activation of AMPK in response to endurance-like 
exercise in aged skeletal muscle; 2) address mechanisms for the age-associated alterations in 
AMPK activation; and 3) address the known benefits of chronic AICAR treatment in aged 
skeletal muscle. 

 
First, to clarify the effect of age on AMPK activation, young adult (YA) (8 mo.) and old 

(O) (30 mo.) male Fischer344 x Brown Norway F1 hybrid rats received an in situ bout of 
endurance-type contractions produced via electrical stimulation of the sciatic nerve (STIM). 
AMPK activation was attenuated in aging muscle as demonstrated by decreased AMPKα 
phosphorylation and AMPKα2 protein content and activity in O vs. YA muscle after STIM. In 
contrast, AMPKα1 content was greater in O vs. YA muscle, and α1 activity increased with STIM 
in O but not YA muscles.  

 
Second, the effect of age on the AMPK heterotrimer composition and nuclear localization 

was assessed as mechanisms for the altered AMPK activation. The AMPK heterotrimer 
composition was altered in aging skeletal muscle with lower AMPKγ2 and γ3 content and 
decreased association of AMPKγ3 with AMPKα1 and α2. Furthermore, activation of AMPK is 
known to increase translocation of AMPK to the nucleus in YA muscle; however, translocation 
of phosphorylated AMPK, AMPKα2, and AMPKγ3 were impaired in the aging rat muscle after 
STIM.  

 
Finally, chronic activation of AMPK with 5’-aminoimidazole-4-carboxamide-1-β-D-

ribofuranoside (AICAR) is known to increase mitochondrial content, activate autophagy, and 
repress protein synthesis; pathways that are altered with aging. The known benefits of chronic 
AICAR treatment were assessed in YA (5 mo.) and O (23 mo.) male C57Bl/6 mice. Mice were 
treadmill tested prior to and after one month of AICAR treatment. In vitro muscle contractions 
were performed following AICAR treatment. AICAR treatment improved the O mice treadmill 
endurance and the YA mice rate of fatigue and recovery. Additionally, AICAR increased citrate 
synthase activity, decreased SQSTM1/p62 protein content , and decreased Myf6 protein content 
in both the YA and O mice suggesting increased mitochondrial activity, autophagy, and 
decreased muscle regeneration. Therefore, chronic AICAR treatment may alter metabolic 
pathways to improve the exercise response in both YA and O mice.  

 
Keywords: AMPK, aging, skeletal muscle, heterotrimer, AICAR, metabolism 
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CHAPTER 1:  Review of the Literature 

Metabolic Pathways are Altered with Sarcopenia 

Sarcopenia, or age-related skeletal muscle atrophy, affects 20-50% of adults over the age 

of 60 years (Berger & Doherty, 2010b) and contributes to the decline of muscle mass and 

strength that leads to frailty with aging (Thompson, 1994; Verdijk et al., 2010a). Age-related 

alterations in muscle fibers lead to decreased maximal isometric force during contraction and 

result in muscle weakness and frailty (Thompson, 1994). Sarcopenia and frailty significantly 

impact the quality of life of elderly individuals. Furthermore, frailty in the elderly is an indicator 

of an increased risk for disease, functional dependency, and/or death (Evans et al., 2010). The 

increased risks associated with sarcopenia may be attributed to alterations in skeletal muscle 

metabolism and function as a result of aging.  

Impaired skeletal muscle metabolism associated with aging has been linked to an 

increased number of dysfunctional mitochondria.  As a result of aging, mitochondria become 

enlarged with structural deterioration of the inner membrane along with an increased lack of 

polarity (Terman et al., 2006a). These alterations in the mitochondrial structure result in 

decreased functionality of the mitochondria. Additionally, the mitochondrial electron transport 

chain complexes show decreased activity with age, limiting the amount of adenosine 

triphosphate (ATP) generation (Kumaran et al., 2004b).  Generation of ATP is further 

diminished through an overall decrease in the mRNA transcripts that encode mitochondrial 

proteins, further suppressing the oxidative capacity of the mitochondria (Short et al., 2005; 

Menshikova et al., 2006). The decreased oxidative capacity of the mitochondria decreases 

skeletal muscle metabolism and function, contributing to the muscle wasting associated with 

sarcopenia.  
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The mitochondrial impairment in aged tissue leads to decreased rates of fatty acid 

oxidation. Elderly individuals show a 25-35% decrease in fatty acid oxidation following exercise 

in comparison to young adults (Coggan et al., 1992b; Sial et al., 1996). Inversely correlated to 

the decrease in fatty acid oxidation, elderly individuals have increased triglyceride levels (Park et 

al., 2006). As a result, the elderly show increased deposition of fatty acids in the liver, skeletal 

muscle, and pancreas (Slawik & Vidal-Puig, 2006) which often coincides with a change of body 

composition leading to increased body fat mass or obesity (Calles-Escandón & Poehlman, 1997).  

 The increased number of dysfunctional mitochondria may further be amplified by the 

decreased rate of autophagy associated with aging. Autophagic vacuoles regulate the turnover 

rate of mitochondria and other organelles thereby slowing the accumulation of damaged cellular 

components (Pfeifer, 1978). Increasing age is associated with fewer and smaller autophagic 

vacuoles with decreased lysosome interaction (Del Roso et al., 2003). The inefficiency of 

autophagic vacuoles with age results in an increased accumulation of damaged organelles. 

Furthermore, the age-related decrease and delay in autophagic vacuoles results in decreased 

binding of substrate proteins along with decreased lysosomal degradation rates (Cuervo & Dice, 

2000). Therefore, old age results in an accumulation of damaged organelles and oxidative stress 

along with alterations in protein turnover, further contributing to the effects of sarcopenia 

(Combaret et al., 2009).  

Age further results in deregulation of protein homeostasis by not only altering protein 

degradation but also protein synthesis. Total body protein decreases in elderly individuals by 

14% with the majority of the protein loss being attributed to a decrease in muscle protein content 

(Cohn et al., 1980). The decrease in muscle protein content is correlated to a 45% decrease in 

skeletal muscle mass with sarcopenia (Cohn et al., 1980). Skeletal muscle contraction and amino 
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acid supplementation, both known to increase protein synthesis, have a reduced effect in the 

elderly compared to younger individuals (Dardevet et al., 2000; Fry et al., 2011). Therefore, 

elderly individuals have an impaired response to stimuli known to increase the rate of protein 

synthesis, which may contribute to the symptoms of sarcopenia. 

AMPK is a Metabolic Regulator 

Adenosine monophosphate (AMP) -activated protein kinase (AMPK), a metabolic 

regulator, acts in opposition to many of the effects of aging and may provide insight into the 

effects of aging. AMPK is a heterotrimeric protein composed of a catalytic α subunit along with 

regulatory β and γ subunits (Davies et al., 1994; Woods et al., 1996a; Cheung et al., 2000). The 

α and β subunits each have two distinct isoforms referred to as α1 and α2 or β1 and β2 

respectively (Salt et al., 1998b). The γ subunit has three distinct isoforms referred to as γ1, γ2, 

and γ3 (Thornton et al., 1998). In rat skeletal muscle, the α2 and β2 isoforms are most commonly 

expressed; however, both the β1 and β2 isoforms play a role in AMPK α2 activation (Thornton 

et al., 1998).  Liver kinase B1 (LKB1), a serine /threonine kinase, phosphorylates the α subunit 

on the threonine 172 residue of AMPK to activate AMPK in skeletal muscle in response to 

endurance exercise (Hawley et al., 1996; Winder & Thomson, 2007). In addition, endurance 

exercise creates an energy-challenged state, which increases the amount of AMP in comparison 

to ATP (Sakamoto et al., 2005; Winder et al., 2006). AMP binds to the gamma subunit of 

AMPK to make AMPK a better substrate for LKB1 (Hawley et al., 1995; Hawley et al., 1996; 

Scott et al., 2007) and a worse substrate for Protein phosphatase 2C (PP2C), an AMPK 

phosphatase (Davies et al., 1995a; Marley et al., 1996).  AMP additionally induces a 

conformational change in AMPK to further induce allosteric activation of AMPK (Hawley et al., 

1995; Scott et al., 2004; Witczak et al., 2008b). The γ subunits regulate the AMP dependence of 
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the AMPK heterotrimer. γ2 complexes have a higher AMP dependence than γ1 subunits, which 

have a higher AMP dependence than γ3 subunits (Cheung et al., 2000).  

 Increased activation of AMPK is associated with increased translocation of AMPK to the 

nucleus. AMP-regulated allosteric activation of AMPK increases nuclear localization of the 

AMPKα2 isoform (Salt et al., 1998b; McGee et al., 2003).  Translocation of AMPKα2 from the 

cytosol to the nucleus allows AMPK to regulate gene expression (Witczak et al., 2008b).  The β1 

isoform is also localized to the nucleus through myristoylation and phosphorylation (Warden et 

al., 2001a). The γ1 isoform further demonstrates preferential nuclear localization compared to 

the other two isoforms (Turnley et al., 1999b). Thus, when localized to the nucleus, AMPK may 

regulate cell function by altering gene expression, but when localized to the cytoplasm it may 

have direct effects on metabolism (e.g. by directly promoting fatty acid oxidation (Foretz et al., 

1998b), increasing glucose transport (Foretz et al., 1998b), autophagy (Meley et al., 2006) and 

inhibiting processes that consume ATP such as lipogenesis (Foretz et al., 1998b), protein 

synthesis (Bolster et al., 2002; Reiter et al., 2005) and cholesterol synthesis (Henin et al., 1995)). 

AICAR is a Pharmacological Activator of AMPK 

AICAR, or 5’-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside, is a 

pharmacological activator of AMPK. AICAR increases the accumulation of 5-amino-4-

imidazole-carboxamide ribotide (ZMP) in the cell in a dose-dependent manner (Sabina et al., 

1985; Sullivan et al., 1994). ZMP mimics 5’-AMP to increase AMPK activation through both 

allosteric activation and promotion of phosphorylation of AMPK (Sullivan et al., 1994; Corton et 

al., 1995).  

AICAR is sufficient to activate AMPK in skeletal muscle similar to the activation 

response of exercise and muscle contraction (Merrill et al., 1997). Acute AICAR treatment in 
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skeletal muscle increases fatty acid oxidation (Merrill et al., 1997), glucose uptake (Merrill et al., 

1997) autophagy (Sanchez et al., 2012) and protein synthesis(Bolster et al., 2002). Furthermore, 

chronic AICAR treatment increases mitochondrial gene expression and enzyme activity (Holmes 

et al., 1999; Winder et al., 2000; Zhou et al., 2000; Narkar et al., 2008) and increases running 

endurance (Narkar et al., 2008).  Therefore, it has been proposed that AICAR treatment may be 

sufficient to both enhance and/or compensate for the exercise training response (Narkar et al., 

2008). 

The Effect of Age on AMPK Activation is Controversial 

The effect of aging on AMPK activation and composition is not well understood. Some 

studies have supported the hypothesis that AMPK is hyperactivated in aging skeletal muscle. 

Aging is associated with decreased mitochondrial function, which will limit the availability of 

ATP and increase the ratio of AMP to ATP under cell stress conditions such as exercise. An 

increased ratio of AMP to ATP suggests that aging would result in increased activation levels of 

AMPK in response to exercise. Muscle wasting is increased in old age, which may be correlated 

to a decrease in muscle fibers and protein synthesis (Thompson, 1994; D'Antona & Nisoli, 

2010). Activation of AMPK down regulates protein synthesis by inhibiting activation of the 

mTOR pathway (Bolster et al., 2002). Additionally, activation of the mTOR pathway after in situ 

muscle contraction is attenuated more in aged rats compared to young rats (Parkington et al., 

2004), resulting in a greater inhibition of protein synthesis. Since AMPK inhibits protein 

synthesis through inhibiting the mTOR pathway, the muscle wasting that occurs in response to 

aging further supports a possible increase in the activation levels of AMPK.  

The hypothesis that AMPK activation levels increase in correlation with the aging 

process has been supported in studies that analyzed AMPK levels in response to resistance-type 
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training. Thomson et al. (Thomson & Gordon, 2005) showed that in response to overload-

induced hypertrophy, aged skeletal muscle show a decreased percent hypertrophy in fast-twitch 

muscle but higher activation levels of AMPK than young skeletal muscle. Increased levels of 

AMPK activation in aged skeletal muscle was further shown by Thomson et al. (Thomson et al., 

2009) using high-frequency electrical stimulation (HFES) of the sciatic nerve to mimic 

resistance-type muscle contractions. HFES in aged skeletal muscle resulted in hyperactivation of 

AMPK in aged fast-twitch muscle along with increased AMPKα2 activity. Thomson et al. 

further showed that pharmacological activation of AMPK using AICAR increased AMPK 

activation but showed no significant difference in activation with age. The increased levels of 

AMPK activation in response to resistance exercise as a result of aging in rats observed by 

Thomson et al. are similar to results observed in humans by Drummond et al. (Drummond et al., 

2008). In response to resistance exercise, elderly individuals showed increased AMPKα 

phosphorylation of Thr172 in contrast to younger individuals. Therefore, resistance exercise 

appears to result in a greater increase in AMPK activation in aged skeletal muscle in comparison 

to young skeletal muscle. 

The effects of aging on metabolic pathways acts in opposition to AMPK activation; 

therefore, it may alternatively be hypothesized that decreased AMPK activity might contribute to 

age-related muscle metabolic dysfunction. In skeletal muscle, AMPK promotes the formation of 

oxidative fibers by increasing the transformation of type IIb to type IIa/x muscle fibers (Röckl et 

al., 2007). In contrast, older individuals show increased amounts of type I slow-twitch muscle 

fibers as opposed to type IIa fast twitch muscle fibers (Thompson, 1994).  AMPK also promotes 

mitochondrial biogenesis to increase muscle mitochondria density (Bergeron et al., 2001b) and 

therefore ATP production. AMPK activation results in an increased expression of peroxisome 
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proliferator-activated receptor-gamma coactivator-1alpha (PGC-1α) (Garcia-Roves et al., 2008) 

which regulates the expression of mitochondrial proteins through peroxisome proliferator-

activated receptor alpha (PPARα) (Vega et al., 2000), increasing mitochondrial biogenesis. 

AMPK activation further increases mitochondrial turnover rate by allowing the induction of 

autophagy (Pfeifer, 1978; Sanchez et al., 2012). Age alters expression of proteins that regulate 

autophagy and proteosomal degradation, namely a decrease in autophagy-related gene 7 (Atg7) 

expression and an increase in p62/SQSTM1 expression (Cui et al., 2012). AMPK acts in 

opposition to aging by increasing autophagy. AMPK binds to ULK1 (UNC-51-like kinase) (the 

mammalian homologue of yeast Atg1 that works concertedly with Atg7) to block the inhibition 

of ULK1 by mTOR (Lee et al., 2010; Sanchez et al., 2012). Binding of AMPK to ULK1 allows 

the induction of autophagy in skeletal muscle. The role AMPK plays in opposition to the effects 

of aging suggests that there is a decrease in AMPK activity as a result of aging. 

 In support of this hypothesis, Reznick et al. (Reznick et al., 2007b) demonstrated that at 

rest, phosphorylated AMPK was not different between young adult and old rats. However, rats 

given AICAR, a pharmacologic AMPK activator, or rats exercise trained for 5 days on a 

treadmill showed a 55% increase in phosphorylation of Thr172 of AMPKα in the young adult 

rats (3 mo.) in comparison to the old rats (28 mo.). These results were further supported by 

Qiang et al. (Qiang et al., 2007). At rest, phosphorylated AMPK was actually lower in the old 

rats compared to young rats. AICAR was administered subcutaneously for one week to young 

and old rats. The old rats showed a 63% impairment in phosphorylated AMPK levels with 

AICAR, meaning there was a drastic impairment in AMPK activation in old rats compared to 

young rats. More recently it was supported that in both male, and more significantly in female, 

aged rats show a marked attenuation in the levels of phosphorylated AMPK in contrast to young 
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rats at rest (Paturi et al., 2010). However, no form of exercise was implemented to activate 

AMPK and may need to be accounted for. Therefore, endurance exercise or pharmacological 

activation of AMPK may result in impaired levels of phosphorylated active AMPK in older rats 

in comparison to younger rats, contradictory to the results seen in response to resistance and 

overload exercise discussed earlier.  

Addressing the Conflict of AMPK Activation in Aging Muscle 

The research performed prior to this study shows conflicting results in AMPK activity 

levels in aged rats versus young adult rats depending on the experimental procedure performed. 

The current literature suggests that resistance exercise results in increased AMPK activation 

levels in aged rats whereas endurance exercise results in decreased AMPK activation levels in 

aged rats. A possible explanation for the discrepancy may be differences in the testing 

procedures used to test AMPK activation levels or comparison between resistance versus 

endurance exercise. One such example may be seen in the study performed by Reznick et al. 

(Reznick et al., 2007b). Older rats run on the treadmill were run at a much lower speed for the    

5 days in comparison to the young rats. This decreased intensity of endurance bout in the aged 

rats may account for decreased AMPK activation levels. Therefore, a more standardized testing 

procedure was needed to validate the results in response to endurance exercise.  

In addition, AMPK activation is regulated by the localization and heterotrimeric 

composition of the subunits. Prior to this study little research has been performed in analyzing 

the differences in the localization and heterotrimeric composition of AMPK in skeletal muscle in 

aged versus young adult rats. Current research has indicated that aged muscle exhibits a decrease 

in AMPKα2 content but an increase in AMPKα1 content (Thomson et al., 2009; Rivas et al., 

2011). However, no current research has addressed the overall heterotrimer composition of 
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AMPK and localization of AMPK in aging muscle. Localization and heterotrimeric composition 

were therefore evaluated to further understand the differences reported in AMPK activation in 

young adult versus old rats in response to an endurance-type exercise electrical stimulation. 

Furthermore, current research on the response to AICAR treatment in aged skeletal 

muscle did not address the effects of chronic AICAR treatment on endurance exercise 

performance and age-related signaling pathways. We proposed that the decreased mitochondrial 

biogenesis, autophagy, and fatty acid oxidation seen with aging is linked to impaired activation 

of AMPK. This study addresses the effects of chronic AICAR treatment in old and young mice 

following treadmill running and in vitro muscle contractions. Treadmill endurance, rate of 

muscle fatigue, AMPK activation, mitochondria function, autophagy, and protein synthesis were 

compared between old and young mice that receive AICAR versus a saline control treatment. 

Increasing understanding of the effects of AMPK activation on the aging phenotype will further 

aid in the understanding and treatment of sarcopenia to increase the quality of life of elderly 

individuals. 
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Objectives 

The purpose of this dissertation was to clarify the controversy in the current literature 

concerning the activation of AMPK in response to endurance-like exercise in aged skeletal 

muscle. In addition, the following study is the first to address the nuclear localization of AMPK 

after endurance-like exercise and the heterotrimer composition of AMPK in aged skeletal muscle 

to understand how age-associated alterations in AMPK activation may contribute to the 

misregulation of metabolic pathways seen with sarcopenia. Additionally, this dissertation 

addresses the known beneficial effects that have been observed with chronic AICAR treatment in 

aged skeletal muscle and how activation of AMPK may improve the aging phenotype. 

The specific purpose in Chapter 2 was to determine the effect of aging on the level of 

AMPK activation and heterotrimer composition in skeletal muscle after an endurance-like 

muscle contraction using electrical stimulation in rats. We hypothesized: 

1) AMPK activation levels would be attenuated in the aged skeletal muscle in 

contrast to the young adult skeletal muscle in response to endurance-like 

muscle contractions 

2) Aged skeletal muscle would have decreased levels of the α2, β1, and γ1 

isoforms and increased levels of γ2 and γ3 compared to young skeletal muscle.  

 In Chapter 3 the purpose was to determine the effect of aging on AMPK localization in 

skeletal muscle after an endurance-like muscle contraction using electrical stimulation in rats. 

We hypothesized that nuclear localization of AMPK would decrease in aged skeletal muscle 

after endurance-like muscle contractions.  

The specific purpose in Chapter 4 was to determine the effect of chronic AICAR 

treatment on contractile performance and age-related signaling pathways. This was examined in 
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young adult and old mice given four weeks of AICAR treatment followed by treadmill testing 

and in vitro muscle contractions. We hypothesized: 

1) AMPK activation, treadmill endurance, and muscle rate of recovery would improve 

and muscle fatigue would decrease with chronic AICAR treatment in aged mice in 

comparison to saline treated mice. 

2) Chronic AICAR treatment would increase mitochondrial gene expression and 

enzyme activity, increase the expression of autophagic markers, and decrease mTOR 

activation in aged mice. 

Impact 

This dissertation is the first to address the nuclear localization and heterotrimeric 

composition of AMPK in aged skeletal muscle to understand age-related alterations of AMPK 

activation in response to endurance-type muscle contractions. Furthermore, this dissertation is 

the first to address the effect of chronic AICAR treatment in aged skeletal muscle. 

Understanding age-associated alterations in AMPK activation and how chronic AMPK activation 

through AICAR affects the aging phenotype will open new doors to understanding sarcopenia 

and how to improve the metabolic misregulations associated with sarcopenia. 
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CHAPTER 2:  The Effects of Age and Muscle Contraction on AMPK Activity and Heterotrimer 
Composition 

Shalene E. Hardman, Derrick E. Hall, Alyssa J. Cabrera, Chad R. Hancock, and  
David M. Thomson 

Department of Physiology and Developmental Biology, Brigham Young University, Provo, 
Utah, 84602 

Abstract 

Sarcopenia is characterized by increased skeletal muscle atrophy due in part to alterations 

in muscle metabolism. AMP-activated protein kinase (AMPK) is a master regulator of skeletal 

muscle metabolic pathways. Functional AMPK is a heterotrimer composed of alpha, beta and 

gamma subunits. Each subunit can be represented by one of two (α1/α2, β1/β2) or three 

(γ1/γ2/γ3) isoforms. Previous work has shown that overall AMPK activation with endurance-

type exercise is blunted in old vs. young skeletal muscle. However, details regarding the 

activation of the specific isoforms of AMPK, as well as the heterotrimeric composition of 

AMPK in old skeletal muscle are unknown. Our purpose here, therefore, was to determine the 

effect of old-age on 1) the activation of the α1 and α2 catalytic subunits of AMPK in skeletal 

muscle by a continuous contraction bout, and 2) the heterotrimeric composition of skeletal 

muscle AMPK. We studied gastrocnemius (GAST) and tibialis anterior (TA) muscles from 

young adult (YA; 8 mo old) and old (O; 30 mo old) male Fischer344 x Brown Norway F1 hybrid 

rats after an in situ bout of endurance-type contractions produced via electrical stimulation of the 

sciatic nerve (STIM). AMPKα phosphorylation and AMPKα1 and α2 activities were unaffected 

by age at rest. However, AMPKα phosphorylation and AMPKα2 protein content and activity 

were lower in O vs. YA after STIM. Conversely, AMPKα1 content was greater in O vs. YA 

muscle, and α1 activity increased with STIM in O but not YA muscles. AMPKγ3 concentration 

and its association with AMPKα1 and α2 was lower in O vs. YA GAST. We conclude that 
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activation of AMPKα1 is enhanced, while activation of α2 is suppressed immediately after 

repeated skeletal muscle contractions in O vs. YA skeletal muscle. These changes are associated 

with changes in the AMPK heterotrimer composition. Given the known roles of AMPK α1, α2 

and γ3, this likely contributes to sarcopenia and associated muscle metabolic dysfunction. 

Introduction 

Sarcopenia, or age-related skeletal muscle atrophy, affects 20-50% of adults over the age 

of 60 years (Berger & Doherty, 2010a) and is defined by a decline of muscle mass and strength 

that leads to frailty with aging (Thompson, 1994; Janssen et al., 2002; Verdijk et al., 2010b). 

Sarcopenia is associated with many alterations in skeletal muscle metabolism such as decreased 

insulin sensitivity (Goodman & Ruderman, 1979), decreased fatty acid oxidation (Sial et al., 

1996; Calles-Escandón & Poehlman, 1997; Park et al., 2006), decreased muscle protein content 

(Dardevet et al., 2000; Fry et al., 2011), and an increase in dysfunctional mitochondria 

(Kumaran et al., 2004b; Terman et al., 2010). These metabolic disruptions may contribute to the 

decreased fiber size and contractility seen with aging muscle (Lexell et al., 1988; Evans & 

Campbell, 1993; Larsson et al., 1997).  

 AMP-activated protein kinase (AMPK) is a cellular energy sensor that acts as a master 

regulator of skeletal muscle metabolic pathways including many that are affected by aging. 

AMPK is activated as it becomes phosphorylated at Thr172 by the upstream kinase LKB1. 

AMPK phosphorylation and activation is dependent upon an increased cellular AMP/ATP ratio. 

Both nucleotides, as well as ADP, compete for binding to AMPK. AMP binding leads to AMPK 

phosphorylation through a conformational shift that makes AMPK a better substrate for LKB1 

(Hawley et al., 1995; Hawley et al., 1996; Scott et al., 2007; Gowans et al., 2013) and a worse 

substrate for dephosphorylation by protein phosphatase 2C (Davies et al., 1995b; Marley et al., 
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1996). Binding of AMP also allosterically activates AMPK in addition to its effect on 

phosphorylation (Hawley et al., 1995; Scott et al., 2004; Witczak et al., 2008a; Gowans et al., 

2013).   

   AMPK is a heterotrimeric protein composed of α, β, and γ subunits (Stapleton et al., 

1996; Woods et al., 1996a). The subunits of AMPK all have multiple isoforms and differences in 

isoform composition affects AMPK localization and function. The α subunit contains the 

catalytic domain and the site of Thr172 phosphorylation. The α subunit has two different 

isoforms, α1 or α2. The β subunit serves as a scaffolding or regulatory subunit and also has two 

isoforms, β1 and β2.  The γ subunit contains nucleotide binding sites and determines the degree 

of AMP dependence of the AMPK heterotrimer.  γ2 complexes have a higher AMP sensitivity 

than γ1 subunits, which have a higher AMP sensitivity than γ3 subunits (Cheung et al., 2000).  

During exercise, the AMP to ATP ratio increases by way of the adenylate kinase reaction, 

thereby potently activating AMPK (Hawley et al., 1995; Winder & Hardie, 1996; Hawley et al., 

2003; Dreyer et al., 2006; Jensen et al., 2007). In both mice and humans, the α2/β2/γ1 AMPK 

complex is predominant. However, exercise and muscle contraction appear to primarily activate 

complexes containing α2 and γ3 isoforms, although γ1 can be activated as well (Birk & 

Wojtaszewski, 2006; Treebak et al., 2007). The two catalytic α isoforms have different substrate 

specificity leading to regulation of different metabolic pathways (Stapleton et al., 1996). While 

some redundancy between isoforms certainly exists, the α1 subunit is particularly important in 

negatively regulating muscle cell size through regulation of the mTOR pathway (Mounier et al., 

2009), while the α2 subunit appears more able to localize to the nucleus than α1, presumably to 

control gene transcription (Salt et al., 1998b). 
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Activation of AMPK in response to endurance exercise appears to be blunted in old 

skeletal muscle (Reznick et al., 2007b; Ljubicic & Hood, 2009). However, the effect of old-age 

on isoform-specific activation of the catalytic α subunit (i.e. α1 vs. α2) after exercise is unknown. 

Likewise, it is not known how old-age affects the heterotrimer composition of AMPK, and how 

this might relate to the effect of aging on AMPK activation. Since the effects of both exercise 

and AMPK activation (e.g. increased fatty acid oxidation, glucose transport, and mitochondrial 

capacity) are in opposition to many effects of aging (Foretz et al., 1998b; Bergeron et al., 2001b; 

Zong et al., 2002), understanding how the AMPK system is altered in aged muscle may lead to 

improved strategies for combatting age-related dysfunction. 

Accordingly, this study has two purposes: 1) to evaluate catalytic isoform-specific 

AMPK activation in young adult and old skeletal muscle after an electrically stimulated in situ 

endurance-type contraction bout, and 2) to determine whether differences in AMPK activation 

could be accounted for by alterations in AMPK subunit isoform composition.  

Materials and Methods 

Animal Care 

Experimental procedures were approved by the Institutional Animal Care and Use 

Committee of Brigham Young University. All animals were housed in a temperature controlled 

(20-21°C) environment with a 12hr: 12hr light-dark cycle and fed standard chow and water ad 

libitum. Young adult (YA) (8 mo.; n=8) and old (O) (30 mo.; n=8) male Fischer344 x Brown 

Norway (FBN) hybrid rats were used as recommended by the National Institute of Aging for 

age-related research based on studies indicating that this strain has fewer detrimental pathologies 

than inbred strains and 50% mortality at about 32 months of age (Lipman et al., 1996; Lushaj et 

al., 2008).  
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Electrical Stimulation of the Sciatic Nerve 

Rats were anesthetized using vaporized isoflurane (2–3%) in supplemental oxygen 

sufficient to achieve surgical anesthetic depth. Twenty minutes after anesthetization, the sciatic 

nerve of the left hindlimb was isolated just proximal to the point of trifurcation. Contraction of 

the hindlimb musculature was elicited by stimulating the sciatic nerve at 100 Hz for 10 min at 

one 10 msec pulse per sec and 15 volts (Grass Model S48 Stimulator, Quincy, MA). During the 

contraction bout, the foot was held at approximately 90°. Sciatic nerve stimulation activates both 

the chronically weight-bearing plantarflexors as well as the dorsiflexors of the hindlimb, 

including the gastrocnemius (GAST) and tibialis anterior (TA) muscles. GAST and TA were 

removed immediately after contraction and frozen at the temperature of liquid nitrogen. Both 

muscles were analyzed to allow assessment of the AMPK system in two distinct muscles with 

different ambulatory functions, with the gastrocnemius being a weight-bearing muscle, while the 

TA only stabilizes and dorsiflexes the ankle during ambulation. The right hindlimb was not 

subjected to electrical stimulation and was removed prior to stimulation of the left hindlimb and 

served as a resting control. All tissue samples were frozen between metal tongs cooled to the 

temperature of liquid nitrogen and then frozen at -95°C until further analysis.  

Homogenization 

Muscles were pulverized on liquid nitrogen then glass-ground homogenized in 19-

volumes of homogenization buffer (50 mM Tris-HCl, pH 7.4; 250 mM mannitol; 50 mM NaF;   

5 mM Sodium Pyrophosphate; 1 mM EDTA; 1 mM EGTA; 1% Triton X-100; 50 mM B-

glycerophosphate; 1 mM sodium orthovanadate; 1 mM DTT; 1 mM benzamidine; 0.1 mM 

phenylmethane sulfonyl fluoride; 5 ug/ml soybean trypsin inhibitor). The raw homogenate was 

freeze- thawed three times to ensure disruption of intracellular membranes and then centrifuged 
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at 10,000 x g for 10 min. Supernatants were analyzed for protein content using the DC Protein 

Assay (Biorad Laboratories, Hercules, CA, USA). Supernatants were stored in microcentrifuge 

tubes at -95°C until further analysis. 

Western Blot and Immunodetection 

Homogenates were diluted in sample loading buffer (125 mM Tris HCl, pH 6.8, 20% 

glycerol, 4% SDS, 5% β-mercaptoethanol, and 0.01% bromophenol blue) and then loaded on 5% 

[phosphorylated ACC (pACC), total ACC (tACC)], 7.5% [phosphorylated AKT (pAKT), 

phosphorylated AMPK (pAMPK), total AMPK (tAMPK), LKB1, AMPKγ3], and 10% 

[AMPKα1, AMPKα2, AMPKβ1, AMPKβ2, AMPKγ1, AMPKγ2, phosphorylated ERK (pERK), 

and phosphorylated p38 MAPK (p-p38)] Tris·HCl gels (Bio-Rad Criterion System, Hercules, 

CA). After electrophoresis, proteins were transferred to polyvinylidene difluoride (PVDF) 

membranes. Membranes were stained with Ponceau S and visually inspected for equal protein 

loading. Membranes were then washed with Tris-buffered saline plus 0.1% Tween-20 (TBST), 

blocked with 5% non-fat dry milk in TBST for 1 hour, and probed overnight at 4°C with primary 

antibody diluted in 1% bovine serum albumin (BSA) dissolved in TBST, pH 7.6. 

Primary antibody manufacturers and dilutions were as follows: pAMPK (Thr172) 

(#4188/#2535, 1:5000), tAMPK (#2532, 1:2000), pACC (Ser79) (#3661, 1:5000), AMPKβ1 

(#4182, 1: 2000), AMPKβ2 (#4148, 1:2000), AMPKγ1 (#4187, 1:4000), pERK (Thr202/Tyr204) 

(#4370, 1:2000), p-p38 (Thr180/Tyr182) (#4511, 1:2000), and pAKT (Ser473) (#4060, 1:2000) 

from Cell Signaling Technology (Beverly, MA, USA); AMPKα1 (A300-507A, 1:4000), 

AMPKα2 (A300-508A, 1:20000) from Bethyl Laboratories, Inc. (Montgomery, TX, USA); 

AMPKγ2 (sc-20165, 1:2000) from Santa Cruz Biotechnology (Santa Cruz, CA, USA); AMPKγ3 

(custom made as described previously (Durante et al., 2002), 1:2000) from Affinity Bioreagents 
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(Golden, CO, USA); tACC (streptavidin-horseradish peroxidase, RPN1231V, 1:2000) from GE 

Healthcare Biosciences (Pittsburgh, PA, USA); and LKB1 (#07-694, 1:5000) from Upstate (Lake 

Placid, NY, USA). 

Membranes were probed with the HRP-conjugated mouse anti-rabbit secondary antibody 

(#211-032-171) from Jackson Immunoresearch Laboratories, Inc. (West Grove, PA, USA) or 

HRP-conjugated goat anti-mouse secondary antibody (sc-2314) from Santa Cruz Biotechnology 

(Santa Cruz, CA, USA) for 1 hour at room temperature. Membranes were washed 4 x 5 min with 

TBST. ECL Plus Western Blotting Detecting Solution (GE Healthcare Bio-Sciences, Piscataway, 

NJ) was applied for 2 min. Chemiluminescent signals were detected with autoradiography film 

and quantified using Gel-Pro Analyzer 6.0 (Media Cybernetics, Inc. Bethesda, MD) or 

AlphaEase FC software (Alpha Innotech Corp., San Leandro, CA). 

AMPK Activity Assay 

AMPK activity of α1 and α2 subunits immunoprecipitated from GAST and TA 

homogenates was measured by the incorporation of radiolabeled phosphate from ATP into 

SAMS (HHMRSAMSGLHLVKRR-OH) peptide. Activity was assessed and expressed as 

picomoles per gram tissue per minute, as described previously (Park et al., 2002). 

Co-Immunoprecipitation 

To determine the effect aging has on the heterotrimer subunit composition, 15 µg of α1 or 

α2 antibody and 1ml ice cold TBS were added to about 80 µl (packed volume) of Exactacruz IP 

matrix (Santa Cruz no. sc-45039) and rotated for 1 hour at 4°C. The IP matrix was pelleted by 

centrifuging for 60 sec. at 13,000 x g, then washed three times with 1 ml ice cold TBS and 

resuspended in 420 µl ice cold TBS. 50 µl aliquots of the resuspended matrix were transferred to 

centrifuge tubes and centrifuged. After removal of the supernatant, 400 µg of GAST homogenate 
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was added to the matrix-antibody pellet which then was brought up to 500 µl total volume with 

ice cold homogenization buffer. Samples were rotated end-over-end overnight at 4°C. After 

rotation, samples were centrifuged for 30 sec. at 10,000 x g. The supernatant was transferred to a 

fresh tube and saved. The pellet was washed three times with ice cold homogenization buffer and 

then resuspended in 80 µl of loading buffer and boiled for 3 min at 100°C. Samples were then 

loaded onto 10% gels for western blotting and immunodetection as described previously.  

Glycogen Concentration Assay 

GAST tissue samples were ground into powder under liquid nitrogen. 0.5 mL cold 30% 

KOH was added to 50 mg of sample and placed in a boiling water bath for 30 min. Samples were 

then neutralized with 10.7 M acetic acid. 0.1 ml of sample was transferred to a 12 x 75 mm tube 

containing 0.9 ml amyloglucosidase buffer (amyloglucosidase, 50 mM acetate buffer               

(50 mM acetic acid, 50 mM sodium acetate), pH 4.7). Samples were incubated at 55°C for 1 

hour, vortexed, and centrifuged for 10 min. 0.1 ml of sample was transferred to a cuvette 

containing 0.88 ml reaction buffer (25.4 mg MgCl2, 0.4 mg dithiothreitol (DTT), 6.9 mg ATP, 

7.7 mg NADP, 25 ml 100 mM Tris buffer, pH 8.8). Initial read was set at 340 nm. G6PDH/ HK 

enzyme mixture (100 units GSPDH, Sigma G-6378, 50 mM Tris, 80 units/mg solid Hexokinase, 

Sigma H5375, pH 7.6) was then added to each cuvette, mixed and then read for final O.D. after 

15 min.  

High Performance Liquid Chromatography (HPLC) 

High-energy phosphate concentrations were determined by HPLC. Muscles were 

pulverized at the temperature of liquid nitrogen and then homogenized in 6% perchloric acid. 

Homogenates were then centrifuged at 800 rpm for 5 min to remove protein. This was followed 

by neutralization of the supernatant with neutralization solution (2 N potassium hydroxide, 0.4 M 
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potassium chloride, 0.4 M imidazole) to pH 7.0. Homogenates were then vortexed and 

centrifuged at 800 rpm for 5 min. 120 µl of the supernatant was placed in a fresh tube, 

dehydrated, and stored at −80°C. Just prior to HPLC, samples were rehydrated in 120 µl ddH2O. 

Adenine nucleotides (ATP, ADP, AMP) and IMP were quantified by reverse-phase HPLC, as 

described by Tullson et al. (1990) (Tullson et al., 1990). Phosphocreatine (PCr) concentrations 

were measured by ion exchange HPLC as described by Wiseman et al. (1992)(Wiseman et al., 

1992). Metabolites were expressed as micromoles per gram wet weight and corrected to the total 

adenine nucleotide content plus IMP of rested muscle (6.7 μmol/g wet wt) to account for fluid 

shifts that occur in response to muscle contractions as previously described (Hancock et al., 

2005; Thomson et al., 2010). 

Statistics 

Statistical comparisons using Microsoft Excel or GraphPad Prism statistical analysis 

software (GraphPad Software Inc., La Jolla, CA) were made using a student t test or repeated 

measures ANOVA to determine statistical significance (p≤0.05) with Fisher’s LSD post-hoc 

analysis employed where appropriate. Values are reported as means ± SE. 

Results 

Effects of Age on AMPK Activation and Phosphorylation 

The energetic response to the contraction bout was assessed by measuring the 

concentration of glycogen and high-energy phosphate metabolites in the gastrocnemius (Table 

2.1). IMP and AMP were elevated at rest in O vs. YA muscles. Following STIM, there was a 

significant reduction in glycogen, PCr, and ATP for both the YA and O rats. This corresponded 

to an accumulation of IMP in both the YA and O rats. (O rats had a greater drop in ATP as well 
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as a greater increase in IMP than YA rats.) Response to the contraction bout was further 

confirmed by measuring phosphorylation of energetic stress-related mitogenic and metabolic 

proteins. STIM increased phosphorylation of ERK, AKT, and p38 similarly in both the YA and 

O rats (Fig. 2.1), further verifying the effectiveness of the stimulus to elicit a similar energetic 

response in both age groups by the contraction bout.  

AMPK activity was next assessed by determining pAMPK protein content and AMPKα1 

and α2 activity. pAMPK content increased with STIM in both O and YA rats; however, the 

increase in pAMPK was significantly attenuated by 63% and 75% respectively in the GAST and 

TA after STIM in O rats compared to YA suggesting impaired overall activation of AMPK in O 

rats in response to STIM (Figure 2.2A).  The overall protein content level of total AMPK was 

decreased in O vs. YA muscle (Figure 2.2B). AMPKα2 activity followed the same trend as seen 

with pAMPK with increased activity after STIM in both O and YA rats; however, that increase 

was attenuated by 19% and 23% respectively in the GAST and TA in O versus YA rats  

(Figure 2.2D). In contrast, AMPKα1 activity increased by 30% and 38% in the GAST and TA 

respectively after STIM in O rats while α1 activity was unaffected by STIM in YA rats  

(Figure 2.2C).  

Effects of Age on LKB1 and ACC 

Protein content of LKB1 was unaffected by age (Figure 2.3A). Total protein content of 

Acetyl CoA Carboxylase (ACC), a known downstream target of AMPK, was greater in aged fast 

twitch muscle in comparison to YA rats (Figure 2.3C) but pACC significantly increased with 

STIM in both O and YA rats (Figure 2.3B).  
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Effects of Age on AMPK Subunit Isoform Protein Content  

The effect of age on the AMPK system was further addressed by measuring the protein 

content levels of the AMPK isoforms. AMPKα1 protein content in O versus YA muscle was 

45% and 59% higher in the GAST and TA respectively (Figure 2.4A). In contrast, AMPKα2 

content was attenuated by 18% in the GAST in O versus YA rats (Figure 2.4B), but not 

significantly different for the TA. Protein content levels of AMPKβ1, β2, and γ1 were not 

significantly different between age groups (Figure 2.5A, 2.5B, 2.6A).  AMPKγ2 content in O 

versus YA rats was 75% and 49% lower in the GAST and TA respectively (Figure 2.6B). 

AMPKγ3 subunit isoform content in O versus YA rats was also 85% and 78% lower in the 

GAST and TA respectively (Figure 2.6C).  

Effects of Age on AMPK Subunit Heterotrimer Composition 

Immunoprecipitation of the catalytic isoforms AMPKα1 and α2 was followed by western 

blotting to detect content of the β1, β2, γ1, γ2, or γ3 subunits associated with the two alpha 

subunits in the GAST homogenates. After immunoprecipitation using the AMPKα1 and α2 

antibodies, the entire western blot signal for the respective alpha subunits was contained in the 

pellets and not in the supernatants, indicating that the respective alpha subunits were pulled 

down completely from the homogenates (data not shown). The immunoprecipitated AMPKα1 

content increased by 128% in O versus YA rats, and immunoprecipitated α2 content decreased 

by 33% in O vs. YA rats (Figure 2.7), consistent with AMPK content in the whole homogenates 

shown in Figure 2.4. 

 The amount of γ1 that co-immunoprecipitated with α1 increased similarly (130%) in O 

muscle, while the amount of coimmunoprecipitated γ2 was unchanged and the amount of 

coimmunoprecipitated γ3 was decreased by 82% (Figure 2.7A). Decreased association of 
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AMPKα1 with γ3 was verified by immunoprecipitating γ3 and then western blotting for α2 (data 

not shown). This suggests a shift from α1: γ3 complexes to α1: γ1 complexes in old vs. young 

muscle. The amount of β1 and β2 subunits coimmunoprecipitated with α1 did not change 

significantly (Figure 2.7A). Since α1 content increased without a change in associated β subunit 

content, this suggests that at least part of the increase in α1 content is not associated in the typical 

heterotrimeric complex with AMPKβ subunits, which may limit the effect this has on overall 

AMPKα1 activity. 

The 33% drop in immunoprecipitated α2 isoform in O muscle was associated with a 

similar but non-significant drop in coimmunoprecipitated γ1 content, an even greater and 

significant 83% drop in coimmunoprecipitated γ3 content, and a non-significant increase in 

coimmunoprecipitated γ2 content (Figure 2.7B). Taken together the disproportionate drop in γ3 

vs. α2 in this case suggests a shift away from α2: γ3 complexes, likely toward α2: γ2complexes 

with old age. The decline in β1 and β2 content that coimmunoprecipitated with α2 in O muscle 

was similar to the decline in immunoprecipitated α2, suggesting that interaction between α2 and 

the β subunits is not altered with aging (Figure 2.7B).   

Discussion 

The purposes of this study were to: 1) evaluate catalytic isoform-specific AMPK 

activation in young adult and old skeletal muscle after an electrically stimulated in situ 

endurance-type contraction bout, and 2) determine whether differences in AMPK activation 

could be accounted for by alterations in AMPK subunit isoform composition. Our findings 

support the results by Reznick et al. (Reznick et al., 2007a) indicating that overall AMPKα 

phosphorylation and in vitro activity of AMPKα2 is attenuated with age in response to 

endurance-type muscle contraction. However, we also found that AMPKα1 protein content and 
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contraction-induced activity increases with age, and aging results in decreased association of the 

AMPKα1 and α2 subunits with the γ3 isoform, and increased association of α1 with γ1 and α2 

with γ2. 

The endurance-type in situ muscle stimulation procedure for contraction of the hindlimb 

musculature was identical for both the YA and O rats. The contraction bout used here was 

selected because it strongly activates AMPK in healthy young muscle (Winder & Hardie, 1996). 

Similar type stimulation has been shown to lead to endurance-type adaptations when performed 

chronically in rabbits (Patel et al., 1998). The energetic and signaling stress elicited by the 

contraction protocol used here (Table 1 and Figure 1) suggest that it is a suitable endurance 

exercise model. Although we did not measure muscle force production during the stimulation 

bout, ERK, Akt, and p38 phosphorylation were similar between ages, glycogen and PCr 

depletion was not significantly altered by aging, and ATP depletion and IMP accumulation were 

increased in the aged muscle. This strongly indicates that the impaired AMPK activation cannot 

be accounted for by a decreased energetic or overall signaling stimulus in the aged muscle.  

Although AMPK phosphorylation and AMPKα2 activity increased with STIM in both 

YA and O rats, the increase in AMPK phosphorylation and AMPKα2 activity was attenuated in 

aged compared to YA rats in response to the endurance-type muscle contraction, consistent with 

findings observed after treadmill running (Reznick et al., 2007b; Ljubicic & Hood, 2009) and in 

situ contractions. This hypo-activation of AMPK was associated with lower AMPKα2 and total 

AMPKα protein expression. AMPKα2 is the predominant isoform expressed in skeletal muscle 

(Stapleton et al., 1996) and should therefore closely reflect the total AMPK protein content.  

Altered isoform expression of the regulatory γ subunit likely contributed as well to the 

impaired activation of AMPKα2 with contraction. While protein expression of the regulatory β 
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subunit isoforms was not altered with age, the γ2 and γ3 isoform protein content was decreased 

in O muscles, consistent with findings in aged human muscle (Mortensen et al., 2009). 

Furthermore, the association of AMPKα2 with AMPKγ2 increased while its association with 

AMPKγ3 decreased. Since AMPKγ3 is the predominant isoform activated in response to 

exercise, particularly as a α2β2γ3 heterotrimer (Yu et al., 2004; Birk & Wojtaszewski, 2006), 

this decreased α2/γ3 association in aged muscle likely contributed to the impaired activation of 

AMPK with contraction. The AMPKα2 and γ3 isoforms are predominantly expressed in fast-

twitch glycolytic muscle (Mahlapuu et al., 2004; Yu et al., 2004). Previous research has reported 

that aging muscle atrophy is primarily accounted for by a reduction in fast-twitch muscle (Lexell 

et al., 1983; Holloszy et al., 1991; Lexell, 1995). It is not surprising therefore that a reduction in 

fast-twitch muscle in aged muscle would result in decreased content of the AMPKγ3 and α2 

isoforms (Chen et al., 1999; Putman et al., 2007). 

Given AMPK’s well-defined roles in muscle, the decreased content and activity of 

AMPKα2 may contribute to many of the dysfunctional characteristics of aging skeletal muscle. 

Age-related muscle dysfunction is thought to result from many factors including impaired 

mitochondrial biogenesis and turnover, decreased autophagy, excessive inflammation and 

enhanced ROS production. AMPK, on the other hand, stimulates mitochondrial biogenesis  

(Winder et al., 2000; Bergeron et al., 2001a; Zong et al., 2002) and autophagy (Sanchez et al., 

2012), while it reduces pro-inflammatory signaling (Green et al., 2011) and ROS production 

(Irrcher et al., 2009).  

In contrast to the α2 isoform, we observed increased activation of AMPKα1 in O muscle 

after the contraction bout. Likewise, AMPKα1 content was higher in O vs. YA muscles, which is 

consistent with previous reports from our (Thomson et al., 2009) and other’s laboratories (Rivas 
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et al., 2011). Its hyperactivation by contraction was also likely mediated by a decrease in its 

association with the γ3 subunit, and an increase in its association with the γ1 subunit since α1 

heterotrimers containing γ2 or γ3 are not activated by muscle contraction (Treebak et al., 2014). 

We had not expected any association of the α1 isoform with γ3 based on previous data from mice 

showing that immunoprecipitated AMPKγ3 only associates with the α2 isoform (Mahlapuu et 

al., 2004; Treebak et al., 2009). We verified our results by immunoprecipitating AMPKγ3 and 

then western blotting for AMPKα1, which confirmed an association between those subunits in 

skeletal muscle. This discrepancy in results is likely due to species differences, since our 

experiment was performed in rat muscle, while the conflicting data was in mouse muscle. This is 

supported by the findings of Cheung et al (Cheung et al., 2000) who demonstrated that AMPKγ 

isolated from rat liver can associate with either α subunit.  

As was the case for the impaired activation of AMPKα2, the elevated AMPKα1 activity 

in old muscle after contraction may have important clinical significance. AMPKα1 has been 

shown to play an isoform-specific role in inhibiting the mTOR pathway and protein synthesis in 

skeletal muscle (Mounier et al., 2009; Mounier et al., 2011). Thus, this could contribute to the 

deficit in contraction-induced activation of mTOR and protein synthesis observed with old age 

(Parkington et al., 2004; Thomson & Gordon, 2006), and, over time, result in an imbalance in 

protein turnover that may contribute to sarcopenia.  

Although our findings clearly indicate that AMPK composition and activity are altered in 

aged sarcopenic muscle, the functional consequence of these alterations in the AMPK system 

remain unclear. The phosphorylation of ACC by AMPK is considered to be a reliable indicator 

of overall in vivo AMPK activity (Gowans et al., 2013) and is important because the 

phosphorylation of AMPK as measured by western blot and the AMPK activity assay do not 
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reflect the in vivo allosteric activation of AMPK by an increased ratio of AMP/ATP.  ACC 

phosphorylation after contractions was not subdued in aged muscle, as would be expected given 

the decreased AMPK phosphorylation and α2 activity, and in fact was slightly elevated in O vs. 

YA TA muscles. One possibility suggested by this finding is that the functional in vivo activity 

of AMPK toward ACC was not impaired in the aged muscle. This might be due, at least in part, 

to the fact that ATP content dropped more and IMP content (reflective of free AMP content) 

increased more in O vs. YA muscles after contractions, indicating that the AMP/ATP ratio was 

greater in the old muscles after contraction. This could result in greater allosteric activation of 

the phosphorylated AMPK in the old muscles, offsetting the decreased level of total 

phosphorylated AMPK. Alternatively, there is evidence that alternative exercise-inducible ACC 

kinases other than AMPK exist (Dzamko et al., 2008), which could likewise compensate for 

decreased AMPK activity. Furthermore, the increased amount of total ACC protein content in 

the O muscles may also have contributed as well by providing an increased mass of substrate for 

AMPK to act upon. Our results in this regard conflict with those of Reznick et al. who observed 

decreased phosphorylation of ACC in old muscles after treadmill exercise along with decreased 

AMPK phosphorylation. This difference is likely due to the differing contraction models used in 

the studies. Clearly, further work will need to be done to clarify the control of ACC 

phosphorylation by AMPK and perhaps other kinases during exercise. 

Despite the differences in AMPK subunit expression and heterotrimer composition in the 

aged muscle, no differences were found in AMPK activity between YA and O resting, 

unstimulated muscles. This is consistent with previous findings in rodent (Ljubicic & Hood, 

2009; Thomson et al., 2009)and human (Drummond et al., 2008) muscle, and makes sense given 

the broad view of AMPK as a stress-sensing system. The differences in AMPK activation that 
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we observed occurred after relatively intense contractions. This begs the question, then, of how 

altered AMPK signaling might play a role in age-related muscle dysfunction in individuals who 

spend little to no time engaged in intense physical activity. We propose that the altered AMPK 

signaling that we observe in aged muscle may contribute to sarcopenia and its associated 

metabolic disruption in the following manner. As an individual engages in activities of daily 

living, an energetic stress is applied to the activated muscle fibers. In old fibers, AMPKα1 is 

activated earlier and to a greater degree than in young muscle, leading to impaired anabolic 

signaling consistent with the findings of Mounier et al. (Mounier et al., 2009) described above. 

At the same time, AMPKα2 activation is suppressed, contributing to the many metabolic 

disruptions associated with sarcopenia. Validation of this hypothesis will require continued 

research. 

In conclusion, we found that 1) activation of AMPKα2 immediately after a continuous 

bout of muscle contractions is attenuated but AMPKα1 activation is enhanced in aged skeletal 

muscle, and 2) AMPK γ subunit isoform expression and association with the α subunits is altered 

in a manner consistent with both the decreased activation of AMPKα2 and α1 with stimulation. 

Based on current understanding of AMPK actions in skeletal muscle, these alterations in AMPK 

activity in old muscle may contribute to muscle dysfunction in sarcopenia, and therapies 

designed to reverse these changes would be expected to improve the aging skeletal muscle 

phenotype. 
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Table 2.1: High Energy Phosphate Concentrations in Gastrocnemius Muscles 

 _________YA_________ __________O__________ 
 REST STIM REST STIM 
Glycogen 8.87 ± 0.41 4.28 ± 0.64a 8.80 ± 0.54 6.54 ± 0.66a 
ATP 5.37 ± 0.03 4.22 ± 0.17a 4.63 ± 0.33b 3.69 ± 0.25ab 
ADP 0.57 ± 0.01 0.57 ± 0.09 0.55 ± 0.01 0.44 ± 0.02 
AMP 0.023 ± 0.002 0.029 ± 0.005 0.048 ± 0.009b 0.030 ± 0.003 
IMP 0.72 ± 0.03 2.02 ± 0.22a 1.45 ± 0.33b 2.51 ± 0.27ab 
PCr 25.04 ± 1.10 13.32 ± 2.48a 22.46 ± 0.82 12.27 ± 1.52a 
High-energy phosphates (µ mol/g wet wt) n=5-8. Glycogen (mg glycogen/ g tissue wt) n=8.  
a = significant difference from corresponding REST muscle; b = significant difference from 
corresponding condition in the YA muscle (p < 0.05).  
  



 

30 

Table 2.2: Summary of AMPK Heterotrimer Modifications in Aging Skeletal Muscle 

Isoform Protein 
Content 

Association with 
AMPKα1 

Association with 
AMPKα2 

α1 ↑ N/A N/A 
α2 ↓ N/A N/A 
β1 - - ↓ 
β2 - - - 
γ1 - ↑ - 
γ2 ↓ - - 
γ3 ↓ ↓ ↓ 

Symbols indicate the change in content in comparison to the YA rats. (↑) indicates an increase; 
(↓) indicates a decrease; (-) indicates no change; (N/A) not applicable.  
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Figure 2.1: Phosphorylation of Mitogen and Metabolic Proteins Increases after an Electrically 
Stimulated Endurance-Type In Situ Contraction Bout (STIM) in YA and O Rats. Gastrocnemius 
(GAST) muscles from young adult (YA) (8 mo.) and old (O) (30 mo.) Fisher Brown Norway 
male rats were stimulated for 10 min. (1 pulse per second, 15V, 10 msec. duration) and removed 
immediately after the contraction bout. Western blot analysis of GAST for (A) phosphorylated 
ERK, (B) phosphorylated AKT, and (C) phosphorylated p38. N=7-8 / group. YR= YA at REST; 
YS= YA with STIM; OR= O at REST; OS= O with STIM. Values are means ± SEM. a = 
significant difference from corresponding REST muscle; b = significant difference from 
corresponding condition in the YA muscle (p < 0.05). 
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Figure 2.2: AMPK Phosphorylation and AMPKα2 Activity Are Attenuated While AMPKα1 
Activity is Increased in O vs. YA Fast-Twitched Muscles. Western blotting analysis of GAST 
and tibialis anterior (TA) for (A) phosphorylated AMPK and (B) total AMPK. Activity assay of 
(C) AMPKα1 and (D) AMPKα2. N=8 / group. YR= YA at REST; YS= YA with STIM; OR= O 
at REST; OS= O with STIM. Values are means ± SEM. a = significant difference from 
corresponding REST muscle; b = significant difference from corresponding condition in the YA 
muscle (p < 0.05). 
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Figure 2.3: LKB1 Content and ACC Response to STIM are Unaffected by Age. Western blotting 
analysis of GAST and TA for (A) LKB1, (B) phosphorylated ACC, (C) total ACC. N=7-8 / 
group. YR= YA at REST; YS= YA with STIM; OR= O at REST; OS= O with STIM. Values are 
means ± SEM. a = significant difference from corresponding REST muscle; b = significant 
difference from corresponding condition in the YA muscle (p < 0.05).  
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Figure 2.4: AMPKα1 Protein Content is Increased in O vs. YA Fast Twitch Muscle while 
AMPKα2 Content is Decreased. Western blotting analysis of GAST and TA for (A) AMPKα1 
and (B) AMPKα2. N=8 / group. YR= YA at REST; YS= YA with STIM; OR= O at REST; OS= 
O with STIM. Values are means ± SEM. a = significant difference from YA (p < 0.05).  
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Figure 2.5: AMPKβ1 and β2 Protein Content are Unchanged in O vs. YA Fast Twitch Muscle. 
Western blotting analysis of GAST and TA for (A) AMPKβ1 and (B) AMPKβ2. N=8 / group. 
YR= YA at REST; YS= YA with STIM; OR= O at REST; OS= O with STIM. Values are means 
± SEM.  
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Figure 2.6: AMPKγ2 and γ3 Protein Content are Decreased in O vs. YA Rats. Western blotting 
analysis of GAST and TA for (A) AMPKγ1, (B) AMPKγ2 and (C) AMPKγ3. N=8 / group. YR= 
YA at REST; YS= YA with STIM; OR= O at REST; OS= O with STIM. Values are means ± 
SEM. a = significant difference from YA (p < 0.05).  
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Figure 2.7: Association of the AMPKα1 and α2 Isoform with the Regulatory Isoforms is Altered 
in Aged Rats. Immunoprecipitation (IP) of the catalytic AMPKα1 or α2 isoform from GAST was 
followed by western blotting of the non-catalytic subunits to determine content. (A) IP of 
AMPKα1 followed by western blotting for AMPKα1, AMPKβ1, AMPKβ2, AMPKγ1, AMPKγ2, 
and AMPKγ3. (B) IP of AMPKα2 followed by western blotting for AMPKα2, AMPKβ1, 
AMPKβ2, AMPKγ1, AMPKγ2, and AMPKγ3. N=7-8/group. Values are means ± SEM. a = 
significant difference from YA (p < 0.05). 
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CHAPTER 3:  The Effects of Age and Muscle Contraction on AMPK Nuclear Localization 

Shalene E. Hardman and David. M. Thomson 

Department of Physiology and Developmental Biology, Brigham Young University, Provo, 
Utah, 84602 

Abstract 

Sarcopenia is the gradual degeneration of skeletal muscle mass due to alterations in 

skeletal muscle metabolism. AMP-activated protein kinase (AMPK) is a master regulator of 

skeletal muscle metabolic pathways and regulates many metabolic pathways that are disrupted 

with aging. AMPK regulates different metabolic pathways depending on its localization in the 

cytosol or nucleus. Exercise activates AMPK and increases translocation of AMPK to the 

nucleus. However, the effect that aging has on AMPK translocation is unknown. To study the 

effect of age on AMPK cellular localization, we studied gastrocnemius (GAST) and tibialis 

anterior (TA) muscles from YA (8 mo old) and O (30 mo old) male Fischer344 x Brown Norway 

F1 hybrid rats after an in situ bout of endurance-type contractions produced via electrical 

stimulation of the sciatic nerve (STIM). Muscles from the resting contralateral leg served as 

controls (REST). Nuclear localization of phosphorylated AMPK was impaired in aging muscle 

after STIM. Additionally, nuclear localization of AMPKα2 and AMPKγ3 were impaired in aging 

muscle in response to STIM. Furthermore, AMPK and the heterotrimer isoform protein contents 

were also altered in aging muscle, independent of cellular localization, with an overall decrease 

in LKB1, total AMPK, phosphorylated AMPK, AMPKα2, AMPKβ2, and AMPKγ2 and an 

increase in AMPKα1 and AMPKγ1. The impaired translocation of activated AMPK to the 

nucleus, along with the altered content of the AMPK isoforms, may provide a mechanism for 

altered regulation of AMPK-regulated metabolic pathways in aging skeletal muscle.   
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Introduction 

AMP-activated protein kinase (AMPK), a metabolic regulator protein, acts in opposition 

to many of the effects of aging and may provide insight into the effects of aging. AMPK is a 

heterotrimeric protein composed of a catalytic α subunit along with regulatory β and γ subunits 

(Davies et al., 1994; Woods et al., 1996a; Cheung et al., 2000). The α and β subunits have two 

distinct isoforms referred to as α1 and α2 or β1 and β2 respectively (Salt et al., 1998b). The γ 

subunit has three isoforms referred to as γ1, γ2, and γ3 (Thornton et al., 1998). 

AMPK is activated in response to cellular stressors, such as exercise, which increase the 

ratio of AMP (adenosine monophosphate) to ATP (adenosine triphosphate) (Winder & Hardie, 

1996; Sakamoto et al., 2005; Winder et al., 2006). Increased AMP-regulated allosteric activation 

of AMPK increases the nuclear localization of the AMPKα2 isoform (Salt et al., 1998a; McGee 

et al., 2003).  Translocation of AMPKα2 from the cytosol to the nucleus allows AMPK to 

regulate gene expression (Witczak et al., 2008a).  The β1 isoform is also localized to the nucleus 

through myristoylation and phosphorylation (Warden et al., 2001b). The γ1 isoform further 

demonstrates preferential nuclear localization compared to the other two γ isoforms (Turnley et 

al., 1999a).  

The exact mechanism that drives AMPK into the nucleus remains unknown. However, 

the nuclear localization of Snf1, the yeast analog of AMPK, has been shown to be glucose-

regulated (Vincent et al., 2001) while in mammals, AMPK localization is regulated by the MEK-

signaling pathway in response to cellular stress (Kodiha et al., 2007). Additionally, the catalytic 

subunit of AMPK contains highly conserved carboxy-terminal hydrophobic amino acids that 

function as a nuclear export signal back into the cytoplasm (Kazgan et al., 2010). Thus, when 

localized to the nucleus, AMPK may regulate cell function by altering gene expression through 
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phosphorylation of transcriptional regulators such as PGC1α (Jäger et al., 2007) and PPARα/γ/δ 

(Leff, 2003; Bronner et al., 2004; Narkar et al., 2008). Alternatively, when AMPK is localized to 

the cytoplasm it may have direct effects on metabolism (e.g. by directly promoting fatty acid 

oxidation (Foretz et al., 1998a), increasing glucose transport (Foretz et al., 1998a), autophagy 

(Meley et al., 2006) and inhibiting processes that consume ATP such as lipogenesis (Foretz et 

al., 1998a), protein synthesis (Bolster et al., 2002; Reiter et al., 2005) and cholesterol synthesis 

(Henin et al., 1995)). 

Many AMPK regulated metabolic pathways, particularly fatty acid oxidation (Coggan et 

al., 1992b; Sial et al., 1996), lipogenesis (Park et al., 2006), protein synthesis (Cohn et al., 1980; 

Dardevet et al., 2000), autophagy (Cuervo & Dice, 2000; Del Roso et al., 2003), and Glut4 

expression (Houmard et al., 1995) (Lin et al., 1991), are altered in aged skeletal muscle. Changes 

in the cellular localization of AMPK may contribute to the alterations in AMPK activation and 

regulation of metabolic pathways seen in aging skeletal muscle. Accordingly, the purpose of this 

study was to evaluate the cellular localization of AMPK in young adult and old skeletal muscle 

after an electrically stimulated endurance-type contraction bout.  

Materials and Methods 

Animal Care 

Experimental procedures were approved by the Institutional Animal Care and Use 

Committee of Brigham Young University. All animals were housed in a temperature controlled 

(20-21°C) environment with a 12h: 12h light-dark cycle and fed standard chow and water ad 

libitum. Young adult (YA) (8 mo.; n=8) and old (O) (30 mo.; n=8) male Fischer344 x Brown 

Norway (FBN) hybrid rats were used as recommended by the National Institute of Aging for 

age-related research based on studies indicating that this strain has fewer detrimental pathologies 
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than inbred strains and 50% mortality at about 32 months of age (Lipman et al., 1996; Lushaj et 

al., 2008).  

Electrical Stimulation of the Sciatic Nerve 

Rats were anesthetized using vaporized isoflurane (2–3%) in supplemental oxygen 

sufficient to achieve surgical anesthetic depth. Twenty minutes after anesthetization, the sciatic 

nerve of the left hindlimb was isolated just proximal to the point of trifurcation. Contraction of 

the hindlimb musculature was elicited by stimulating the sciatic nerve using HFES (100 Hz; 

Grass Model S48 Stimulator, Quincy, MA) for 10 min at one 10 msec pulse per second at 15 

volts (STIM). During the contraction bout, the left foot was held at approximately 90° to the 

tibia. The right hindlimb was not subjected to electrical stimulation and was removed prior to 

stimulation of the left hindlimb and served as a resting control (REST).  

The gastrocnemius (GAST), tibialis anterior (TA), and extensor digitorum longus (EDL) 

were removed immediately after contraction. The GAST was frozen between metal tongs cooled 

to the temperature of liquid nitrogen and then frozen at -95ºC until further analysis. The EDL 

was frozen in isopentane at the temperature of liquid nitrogen and then frozen at -95ºC until 

further analysis.  

Nuclear Isolation 

To measure nuclear localization of AMPK, the nuclear fraction (NUC) of the right and 

left GAST and TA tissue samples from FBN rats were separated from the cytosolic fraction 

(CYT). Tissue samples were homogenized on a glass-on-glass homogenizer in 10 µl of lysis 

buffer (10 mM NaCl, pH 7.4; 1.5 mM MgCl; 20 mM HEPES; 20% glycerol; 0.1% triton X-100; 

1 mM sodium orthovanadate; 1 mM DTT; 1 mM benzamidine; 200 mM phenylmethane sulfonyl 

fluoride; 5 ug/µl soybean trypsin inhibitor) per mg of tissue and placed in microcentrifuge tubes. 
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Samples were then centrifuged at 5000 x g for 5 min. The supernatant was collected in a separate 

tube and cleared by centrifuging at 6000 x g for 3 x 5 min and then stored at -95°C for further 

testing. The pellet was washed and suspended 3 times in 500 µl lysis buffer and centrifuged at 

5000 x g between each wash. The pellet was then resuspended in 3µl of lysis buffer plus NaCl 

(360µl stock lysis buffer plus 49.8µl of 5 M NaCl) per mg of tissue. The pellet samples were 

rotated for 2 hours at 4°C to lyse the nuclei and then centrifuged at 15,000 x g for 15 min at 4°C. 

The supernatant was collected and stored at -95°C for further testing.  

Western Blot and Immunodetection 

Homogenates were diluted in sample loading buffer (125 mM Tris HCl, pH 6.8, 20% 

glycerol, 4% SDS, 5% β-mercaptoethanol, and 0.01% bromophenol blue) and then loaded on 

7.5% [phosphorylated AMPK (pAMPK), total AMPK (tAMPK), LKB1, AMPKγ3], and 10% 

[Lamin B, GAPDH, AMPKα1, AMPKα2, AMPKβ1, AMPKβ2, AMPKγ1, AMPKγ2] Tris·HCl 

gels (Bio-Rad Criterion System, Hercules, CA). After electrophoresis, proteins were transferred 

to polyvinylidene difluoride (PVDF) membranes. Membranes were stained with Ponceau S and 

visually inspected for equal protein loading. Membranes were then washed with Tris-buffered 

saline plus 0.1% Tween-20 (TBST), blocked with 5% non-fat dry milk in TBST for 1 hour, and 

probed overnight at 4°C with primary antibody diluted in 1% bovine serum albumin (BSA) 

dissolved in TBST, pH 7.6. 

Primary antibody manufacturers and dilutions were as follows: pAMPK (Thr172) 

(#4188/#2535, 1:5000), tAMPK (#2532, 1:2000), AMPKβ1 (#4182, 1: 2000), AMPKβ2 (#4148, 

1:2000), and AMPKγ1 (#4187, 1:4000) from Cell Signaling Technology (Beverly, MA, USA); 

AMPKα1 (A300-507A, 1:4000), AMPKα2 (A300-508A, 1:20000) from Bethyl Laboratories, 

Inc. (Montgomery, TX, USA); AMPKγ2 (sc-20165, 1:2000), and Lamin B (M-20) (sc-6217, 
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1:1000) from Santa Cruz Biotechnology (Santa Cruz, CA, USA); AMPKγ3 (custom made as 

described previously (Durante et al., 2002), 1:2000) from Affinity Bioreagents (Golden, CO, 

USA); LKB1 (#07-694, 1:5000) from Upstate (Lake Placid, NY, USA); and GAPDH (MAB374, 

1:200,000) from EMD Millipore (Billerica, MA, USA).  

Membranes were probed with the appropriate secondary antibody [HRP-conjugated 

mouse anti-rabbit (#211-032-171) from Jackson Immunoresearch Laboratories, Inc. (West 

Grove, PA, USA); HRP-conjugated donkey anti-goat (sc-2020) or HRP-conjugated donkey anti-

mouse (sc-2314) from Santa Cruz Technology] for 1 hour at room temperature. Membranes were 

washed 4 x 5 min with TBST. ECL Plus Western Blotting Detecting Solution (GE Healthcare 

Bio-Sciences, Piscataway, NJ) was applied for 2 min. Chemiluminescent signals were detected 

with autoradiography film and quantified using Gel-Pro Analyzer 6.0 (Media Cybernetics, Inc. 

Bethesda, MD) or AlphaEase FC software (Alpha Innotech Corp., San Leandro, CA). 

Tissue Sectioning/Immunohistochemistry 

EDL muscle samples from FBN rats frozen in isopentane following electrical stimulation 

extracted during tissue harvesting were placed in a mold containing Tissue Tek® O.C.T. 

compound (Ted Pella Inc., Redding, CA), covered, and then flash frozen in isopentane for  

30 sec. Tissue samples were placed in aluminum foil and stored at -95°C until ready to be 

sectioned. Tissues were prepared for sectioning by placing in the cryostat microtome at -21°C for 

30 min prior to cutting to allow the sample to equilibrate. The tissue sample was then mounted 

using O.C.T. compound and cut into 10 µm muscle sections at -21°C in cryostat microtome, 

placed on glass slides, and allowed to air dry. Glass slides with samples were fixed using 

acetone. 
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Cellular Localization 

5% Normal Goat Serum (NGS) blocking solution was applied to the FBN EDL muscle 

slide samples for 30 min at room temperature and then removed. The primary antibodies 

pAMPKα (Cell Signaling Technology no. 4188) and caveolin (Santa Cruz Technology no. sc-

5310) were diluted 1:250 (0.4 µl antibody in 100 µl 5% NGS-PBS) and then applied to the 

respective slide for 60 min at room temperature and washed 3 x 5 min in 1% PBS. The 

secondary antibodies Alexa Fluor® 546 goat anti-rabbit IgG (Invitrogen) and goat anti-mouse 

IgA-FITC (Santa Cruz Technology no. sc-3692) were diluted 1:500 (0.2 µl antibody in 100 µl 

5% NGS-PBS) and applied for 30 min in the dark at room temperature and then washed  

3 x 5 min in 1% PBS. The nuclei were stained with the DAPI stain for 2 min and washed  

5-10 min with PBS. A coverslip was then mounted with Fluoromount-G to capture the images 

using a fluorescent microscope filter set.  

Statistics 

Statistical comparisons using Microsoft Excel or GraphPad Prism statistical analysis 

software (GraphPad Software Inc., La Jolla, CA) were made using a student t test or repeated 

measures ANOVA to determine statistical significance (p≤0.05) with Fisher’s LSD post-hoc 

analysis employed where appropriate. Values are reported as means ± SE. 

Results 

Effect of Age on AMPK Cellular Localization 

Cellular localization (CYT vs. NUC) was determined by comparing the protein content 

between age (YA vs. O) and condition (REST vs. STIM). GAPDH and Lamin B were detected 

to verify the enrichment of the CYT and NUC fractions (Figure 3.1).  Overall, the total protein 
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content of AMPK in both the CYT and NUC fractions was significantly lower in O rats 

compared to YA rats (Figure 3.2B). LKB1 protein content also tended to be lower in the O 

versus YA rats but results were not significant (Figure 3.2A). Additionally, for both AMPK and 

LKB1, protein content was not significantly different between the CYT and NUC fractions or 

with STIM in both the YA and O rats (Figure 3.2A,B).  

On the other hand, phosphorylated AMPK (pAMPK) protein content was not overall 

significantly different between age or condition in the GAST CYT fraction and the TA CYT and 

NUC fractions. However, in the GAST NUC fraction, STIM significantly increased pAMPK 

protein content in the YA and O but the increase was significantly attenuated in the aging muscle 

(Figure 3.2C).  

Immunohistochemistry of the EDL indicated an overall decrease in colocalization of 

pAMPK with both the nuclei and muscle fibers in the O versus YA rats, indicating an overall 

decrease in pAMPK in aging rats. Additionally, we were unable to detect any significant 

difference in pAMPK with STIM in either the YA or O rats (Figure 3.3).  

Effect of Age on the Cellular Localization of the AMPKα Catalytic Isoforms 

 AMPKα1 protein content in the GAST was greater in the O rats than the YA rats. 

However, cellular localization was not affected by age or STIM. There was no significant 

difference of AMPKα1 protein content in the TA (Figure 3.4A).  

 In contrast, AMPKα2 protein content in both the GAST and TA tended to be lower in the 

O versus YA rats. Additionally, AMPKα2 protein content was not affected by STIM in the O 

rats. However, in the TA NUC fraction of the YA rats, AMPKα2 increased significantly with 

STIM (Figure 3.4B).  
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Effect of Age on the Cellular Localization of the Regulatory AMPKβ Isoforms  

 Age and condition did not alter the CYT or NUC content of AMPKβ1 (Figure 3.5A). 

However, AMPKβ2 content was significantly lower in the O versus YA rats in the GAST CYT 

fraction and tended to be lower in the TA. However, in the NUC fractions of the GAST and TA, 

AMPKβ2 protein content was not different between age or condition (Figure 3.5B).  

Effect of Age on the Cellular Localization of the Regulatory AMPKγ Isoforms  

 AMPKγ1 protein content in the O rats was greater than the YA rats for the GAST CYT 

fraction. Additionally, with STIM, AMPKγ1 significantly increased in the YA GAST CYT 

fraction to match levels found in the O rats. However, in the CYT and NUC fractions of the TA 

and the NUC fraction of the GAST, AMPKγ1 was not affected by age or condition (Figure 

3.6A).  

 On the other hand, AMPKγ2 was significantly lower in the CYT fraction of the O rats 

compared to the YA rats in both the GAST and TA but was not affected by STIM. In the NUC 

fractions, age and condition did not significantly change the content of AMPKγ2 (Figure 3.6B).  

 Lastly, AMPKγ3 was not affected by age or condition in the CYT fraction of the GAST 

or in the CYT and NUC fraction of the TA. However, in the GAST NUC fraction, AMPKγ3 

significantly increased with STIM in the YA rats but not the O rats (Figure 3.6C).  

Discussion 

 This study found that the nuclear localization of phosphorylated AMPK is attenuated in 

aging rats after an electrically stimulated endurance-type contraction bout. More specifically, the 

nuclear localization of AMPKα2 and AMPKγ3 are attenuated in aging muscle in response to 

STIM. Furthermore, this study supports previous findings from Chapter 2 that AMPK and the 

heterotrimer isoform protein content are altered in aging muscle with a decrease in protein 
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content of LKB1, total AMPK, pAMPK, AMPKα2, AMPKβ2, and AMPKγ2 and an increase in 

AMPKα1 and AMPKγ1.  

The nuclear isolation procedure was sufficient to isolate the cytosolic and nuclear 

fractions as verified by the presence of Lamin B restricted mainly to the NUC fraction and 

GAPDH restricted to the CYT fraction. The predominant AMPK heterotrimeric subunit 

composition activated during exercise in murine and human skeletal muscle is α2β2γ3 (Cheung 

et al., 2000; Durante et al., 2002; Mahlapuu et al., 2004; Yu et al., 2004; Birk & Wojtaszewski, 

2006; Steinberg et al., 2010). Activation of AMPK was previously shown to result in increased 

nuclear localization of the AMPKα2 isoform (Salt et al., 1998a; McGee et al., 2003). 

Furthermore, AMPKα2 is the predominant isoform expressed in skeletal muscle (Stapleton et al., 

1996) and should therefore closely reflect the phosphorylated AMPK protein content. 

Consistently, we found that the nuclear protein content of pAMPK and AMPKα2 in the TA 

increased in response to STIM compared to REST in the YA rats. Additionally, nuclear protein 

content of AMPKγ3 in the GAST increased in response to STIM in the YA rats. The disparate 

response seen between the GAST and the TA may be due to the anatomical positioning of the 

two muscles along with the load naturally placed on the muscle throughout the lifespan of the 

rat.   

Conversely, in the O rats the nuclear protein content of pAMPK also increased in 

response to STIM but was significantly attenuated in the aging muscle. However, AMPKα2 and 

AMPKγ3 did not increase in response to STIM in the NUC fraction of the aging muscle. The 

decreased nuclear localization of activated AMPK may contribute to many of the dysfunctional 

characteristics of aging skeletal muscle. One example is through the regulation of GLUT4 by 

AMPK. Activation of AMPK and translocation to the nucleus regulates the expression of 
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GLUT4 (glucose transporter type 4) (Holmes et al., 1999; Holmes et al., 2005), which in turn 

regulates glucose uptake. Age is associated with decreased GLUT4 expression and basal glucose 

uptake (dos Santos et al., 2012). Therefore, it is likely that the decreased nuclear localization of 

AMPK in aging muscle may affect the gene expression of other genes to contribute to the aging 

phenotype.   

We additionally found that aging skeletal muscle was associated with an altered protein 

content of LKB1, AMPK, and the AMPK heterotrimer isoforms. We found an overall decrease 

in the protein content of LKB1, total AMPK, pAMPK, AMPKα2, AMPKβ2, and AMPKγ2. As 

stated previously, AMPKα2 is the predominant isoform expressed in skeletal muscle (Stapleton 

et al., 1996). Additionally, AMPKγ2 is the predominant isoform expressed in all tissues 

(Mahlapuu et al., 2004). The decrease protein content of AMPKα2 and AMPKγ2 in aging 

muscle further supports the overall decrease in total AMPK and pAMPK content. This overall 

decrease in content of AMPK in aging muscle may further contribute to the aging phenotype by 

limiting the availability of AMPK in aging muscle to regulate metabolic pathways. 

Interestingly, we also saw an increase in the cytosolic concentration of AMPKα1 and 

AMPKγ1. AMPKα1 has been shown to play an isoform-specific role in inhibiting the mTOR 

pathway and therefore protein synthesis in skeletal muscle (Mounier et al., 2009; Mounier et al., 

2011). The increase in content of AMPKα1 in the cytosol could contribute to the deficit in 

contraction-induced activation of mTOR and protein synthesis observed with old age 

(Parkington et al., 2004; Thomson & Gordon, 2006). Previously in Chapter 2 we found that in 

aging muscle, AMPKα1 has an increased association with AMPKγ1. Therefore, the increased 

availability and interaction between AMPKα1 and AMPKγ1 in aging muscle may compensate 

for the decrease in the predominant α2β2γ3 heterotrimer composition. This change in the AMPK 
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heterotrimer composition along with decreased nuclear localization may contribute to the aging 

phenotype by increasing the inhibition of protein synthesis.  

In conclusion, the nuclear localization of phosphorylated AMPK after an electrically 

stimulated endurance-type contraction bout is attenuated in aging rat skeletal muscle. This is 

correlated with an overall decrease in the protein content of LKB1, total AMPK, pAMPK, 

AMPKα2, AMPKβ2, and AMPKγ2 in aging muscle.  The decreases in the AMPK heterotrimer 

isoforms are accompanied by an increase in the protein content of AMPKα1 and AMPKγ1 in the 

aging rat muscle. These alterations in the composition and localization of AMPK in aging 

muscle in response to muscle contraction may contribute to the aging phenotype by changing the 

localization and therefore regulation of downstream metabolic pathways.  
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Figure 3.1: Purification of the Cytosolic and Nuclear Fractions from YA and O Rat Skeletal 
Muscle. Gastrocnemius (GAST) and tibialis anterior (TA) muscles from YA (8 mo.) and O (30 
mo.) Fisher Brown Norway male rats were stimulated for 10 min (1 pulse per second, 15V, 10 
msec duration) and removed immediately after the contraction bout. Nuclear isolation was 
performed to separate the cytosolic (CYT) and nuclear (NUC) fractions. Western blot images for 
GAPDH and Lamin B. N=8 / group. YR= YA at REST; YS= YA with STIM; OR= O at REST; 
OS= O with STIM.   
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Figure 3.2: Nuclear Localization of pAMPK in Response to STIM in the GAST is Attenuated in 
Aging Rat Skeletal Muscle. Western blot analysis of GAST and TA for (A) LKB1, (B) total 
AMPK (C) pAMPK. N=8 / group. CYT = cytosolic fraction; NUC = nuclear fraction; YR= YA 
at REST; YS= YA with STIM; OR= O at REST; OS= O with STIM. Values are means ± SEM. a 
= significant difference from corresponding REST muscle; b = significant difference from 
corresponding condition in the YA muscle (p < 0.05). 
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Figure 3.3: Colocalization of pAMPK in the Muscle Nuclei and Fibers is Decreased in Aging Rat 
Skeletal Muscle. (A) Immunohistochemistry of the extensor digitorum longus (EDL) muscle for 
pAMPK, (B) Quantitative analysis of the percent of muscle nuclei colocalized with pAMPK, (C) 
Quantitative analysis of the percent of muscle fibers colocalized with pAMPK,. N=7-8 / group. 
CYT = cytosolic fraction; NUC = nuclear fraction; YR= YA at REST; YS= YA with STIM; 
OR= O at REST; OS= O with STIM. Values are means ± SEM. a = significant difference from 
corresponding REST muscle; b = significant difference from corresponding condition in the YA 
muscle (p < 0.05). 
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Figure 3.4: Nuclear Localization of AMPKα2 in Response to STIM in the TA is Attenuated in 
Aging Rat Skeletal Muscle. Western blotting analysis of GAST and TA for (A) AMPKα1 and 
(B) AMPKα2. N=8 / group. CYT = cytosolic fraction; NUC = nuclear fraction; YR= YA at 
REST; YS= YA with STIM; OR= O at REST; OS= O with STIM. Values are means ± SEM. a = 
significant difference from corresponding REST muscle; b = significant difference from 
corresponding condition in the YA muscle (p < 0.05). 

 
 
 
 
 
 
 

A

B

~ 63 kD

~ 63 kD

YR YS OR OSYR YS OR OS YR YS OR OS YR YS OR OS

YR YS OR OSYR YS OR OS YR YS OR OS YR YS OR OS



 

54 

 
 
 

 
 
 

Figure 3.5: Nuclear Localization of AMPKβ1 and β2 are Unaffected in Aging Rat Skeletal 
Muscle. Western blotting analysis of GAST and TA for (A) AMPKβ1 and (B) AMPKβ2. N=8 / 
group. CYT = cytosolic fraction; NUC = nuclear fraction; YR= YA at REST; YS= YA with 
STIM; OR= O at REST; OS= O with STIM. Values are means ± SEM. a = significant difference 
from corresponding REST muscle; b = significant difference from corresponding condition in the 
YA muscle (p < 0.05). 
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Figure 3.6: Nuclear Localization of AMPKγ3 in Response to STIM in the GAST is Attenuated in 
Aging Rat Skeletal Muscle. Western blotting analysis of GAST and TA for (A) AMPKγ1, (B) 
AMPKγ2 and (C) AMPKγ3. N=8 / group. CYT = cytosolic fraction; NUC = nuclear fraction; 
YR= YA at REST; YS= YA with STIM; OR= O at REST; OS= O with STIM. Values are means 
± SEM. a = significant difference from corresponding REST muscle; b = significant difference 
from corresponding condition in the YA muscle (p < 0.05).  
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CHAPTER 4:  The Effect of Chronic AICAR Treatment on the Aging Phenotype 
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Utah, 84602 

 

Abstract 

Sarcopenia is characterized by alterations in many metabolic pathways. AMP-activated 

protein kinase (AMPK), a metabolic regulator, acts in opposition to many of the effects of aging 

and may serve as a potential therapeutic target. Acute activation of AMPK has been shown to 

increase mitochondrial content, activate autophagy, and repress protein synthesis in normal 

skeletal muscle; pathways that are altered with aging. However, the effect of chronic activation 

of AMPK on metabolic pathways in aging skeletal muscle has yet to be addressed. Therefore, the 

purpose of this study was to assess the effect of chronic activation of AMPK in aging skeletal 

muscle by administering 5’-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) 

injections for one month in YA (5 mo old) and O (23 mo old) male C57Bl/6 mice. Mice were 

treadmill tested prior to and after one month of AICAR treatment. Following treatment, in vitro 

muscle contractions were performed on the right extensor digitorum longus (EDL) muscle. 

Chronic AICAR treatment improved the treadmill endurance in O mice and the rate of fatigue 

and recovery in response to in vitro muscle contractions in YA mice. Additionally, chronic 

AICAR increased citrate synthase activity, decreased SQSTM1/p62 protein content, and 

decreased Myf6 protein content in both the YA and O mice. Therefore, chronic AICAR 

treatment alters downstream metabolic pathways in skeletal muscle to improve the exercise 

response in both YA and O mice.  
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Introduction 

The increased risks associated with sarcopenia, or age-related skeletal muscle atrophy, 

may be attributed to alterations in skeletal muscle metabolism and function. Age-associated 

impairments in skeletal muscle metabolism include an increased number of dysfunctional 

mitochondria (Kumaran et al., 2004a; Terman et al., 2006b), increased fat deposition due to 

decreased fat oxidation (Coggan et al., 1992a; Sial et al., 1996; Calles-Escandon & Poehlman, 

1997; Park et al., 2006; Slawik & Vidal-Puig, 2006), accumulation of damaged organelles 

through decreased autophagy (Pfeifer, 1978; Cuervo & Dice, 2000; Del Roso et al., 2003; 

Combaret et al., 2009), and a decrease in muscle protein content (Cohn et al., 1980; Dardevet et 

al., 2000; Fry et al., 2011).  

Adenosine monophosphate (AMP) -activated protein kinase (AMPK), a metabolic 

regulator, acts in opposition to many of the age-associated impairments in skeletal muscle 

metabolism. AMPK is a heterotrimeric protein composed of a catalytic α subunit along with 

regulatory β and γ subunits (Davies et al., 1994; Woods et al., 1996b; Cheung et al., 2000). Liver 

kinase B1 (LKB1), a serine /threonine kinase, phosphorylates the α subunit on the threonine 

(Thr) 172 residue of AMPK to activate AMPK in skeletal muscle in response to endurance 

exercise (Hawley et al., 1996; Winder & Thomson, 2007). In addition, endurance exercise 

creates an energy deficient state, which increases the amount of AMP in comparison to 

adenosine triphosphate (ATP) (Sakamoto et al., 2005; Winder et al., 2006). AMP binds to the γ 

subunit of AMPK to make AMPK a better substrate for LKB1 (Hawley et al., 1995; Hawley et 

al., 1996; Scott et al., 2007) and a worse substrate for Protein phosphatase 2C (PP2C), an AMPK 

phosphatase (Davies et al., 1995b; Marley et al., 1996).  AMP additionally induces a 

conformational change in AMPK to further induce allosteric activation of AMPK (Hawley et al., 
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1995; Scott et al., 2004; Witczak et al., 2008a). Activation of AMPK regulates metabolic 

pathways to stimulate processes that produce ATP such as fatty acid oxidation (Foretz et al., 

1998a), glucose uptake (Foretz et al., 1998a), and autophagy (Meley et al., 2006) and inhibits 

processes that consume ATP such as lipogenesis (Foretz et al., 1998a), protein synthesis (Bolster 

et al., 2002; Reiter et al., 2005) and cholesterol synthesis (Henin et al., 1995). 

AICAR, or 5’-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside, is a 

pharmacological activator of AMPK. AICAR increases the accumulation of 5-amino-4-

imidazole-carboxamide ribotide (ZMP) in the cell in a dose-dependent manner (Sabina et al., 

1985; Sullivan et al., 1994). ZMP mimics AMP to increase AMPK activation through allosteric 

activation and promotion of phosphorylation (Sullivan et al., 1994; Corton et al., 1995). AICAR 

is sufficient to activate AMPK in skeletal muscle similar to activation by exercise and muscle 

contraction (Merrill et al., 1997). Acute AICAR treatment in skeletal muscle increases fatty acid 

oxidation (Merrill et al., 1997), glucose uptake (Merrill et al., 1997) autophagy (Sanchez et al., 

2012) and protein synthesis (Bolster et al., 2002). Furthermore, chronic AICAR treatment 

increases mitochondrial gene expression and enzyme activity (Holmes et al., 1999; Winder et al., 

2000; Zhou et al., 2000; Narkar et al., 2008) and increases running endurance in young, healthy 

animals (Narkar et al., 2008).  Therefore, chronic AICAR treatment may be sufficient to enhance 

and/or compensate for the age-related changes in metabolic regulation. 

Our lab has previously addressed the effect of acute AICAR treatment on AMPK 

activation in aged muscle. Acute AICAR treatment increased phosphorylation of Thr172 of 

AMPK and activity of AMPKα2 one hour post-treatment in both young adult and old rat muscle 

tissue (Thomson et al., 2009). However, although results were not significant, there appeared to 

be a blunted response to the AICAR treatment in the old rats compared to the young adult rats. 
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Reznick et al. also demonstrated that rats infused with AICAR for one hour showed an increase 

in phosphorylation of AMPK and increased activity of AMPKα2 in the young adult rats (3 mo.); 

whereas AMPK activity in the old rats (28 mo.) was blunted (Reznick et al., 2007b). These 

findings were further supported by Qiang et al (Qiang et al., 2007). Qiang et al administered 

AICAR subcutaneously for one week to young and old rats. The old rats showed a 63% 

impairment in phosphorylated AMPK levels with AICAR, signifying a drastic impairment in 

AMPK activation in old rats compared to young rats. Therefore, although the response is blunted 

in aged muscle, AICAR treatment is sufficient to activate AMPK. However, the known effects of 

chronic AICAR treatment on metabolic pathways have yet to be addressed in aging muscle. We 

hypothesized that one month chronic AICAR treatment would sufficiently activate AMPK to 

improve the regulation of mitochondrial biogenesis, autophagy, and protein synthesis in aged 

skeletal muscle.  

Materials and Methods 

Animal Care 

Experimental procedures were approved by the Institutional Animal Care and Use 

Committee of Brigham Young University. All animals were housed in a temperature controlled 

(20-21°C) environment with a 12h: 12h light-dark cycle and fed standard chow and water ad 

libitum. YA (5 mo.; n=24) and O (23 mo.; n=27) male C57Bl/6 mice were used as recommended 

by the National Institute of Aging for age-related research. 
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AICAR injections  

Acute AICAR mice were subcutaneously injected with AICAR dissolved in saline  

(0.5 mg/g body weight, 50 mg AICAR/ml saline) or with an equivalent volume of saline without 

AICAR. Mice were anesthetized by isoflurane inhalation (2-4% with nitrous oxide in 

supplemental oxygen) sufficient to achieve surgical anesthetic depth forty minutes after the 

AICAR injection. Muscle tissue samples were removed 1 hour post-injection and frozen to the 

temperature of liquid nitrogen and stored at -95°C until further analysis. 

Chronic AICAR mice were subcutaneously injected with AICAR dissolved in saline (up 

to 0.5 mg/g body weight, 50 mg AICAR/ml saline) or with an equivalent volume of saline 

without AICAR daily for 31 days. (Mice were gradually brought up to the full dosage by 

injecting 0.3 mg/g body weight, 50 mg AICAR/ml saline for one week; 0.4 mg/g body weight, 

50 mg AICAR/ml saline for one week; and 0.5 mg/g body weight, 50 mg AICAR/ml saline for 

the remaining two weeks.) 

Treadmill Test 

 Mice were run on a rodent treadmill prior to the start of chronic injections and one week 

prior to harvest. Mice were run at a temperature of 60°F on a 7% grade at for 12 m/min for  

3 min, followed by 16 m/min for 3 min, and then 20m/min until exhaustion (defined as 

remaining unresponsive to prodding with a brush at the back of the treadmill for 5 consecutive 

seconds). Results were compared between pre and post-injections treadmill testing.  

Measurement of In Vitro Contractile Properties of the EDL 

After chronic AICAR injections, mice were anesthetized by isoflurane inhalation (2-4% 

with nitrous oxide in supplemental oxygen) sufficient to achieve surgical anesthetic depth. The 

right EDL was removed and attached to a servomotor (300B Dual-Mode Lever System; Aurora 
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Scientific, Aurora, Canada) using a 4-0 silk suture and clamp-secured to a stationary platform in 

a jacketed tissue bath filled with Ringer’s solution (137 mM NaCl, 24 mM NaHCO3, 11 mM D-

glucose, 5 mM KCl, 2 mM CaCl2, 1 mM NaH2PO4.H2O, 1 mM MgSO4, pH 7.4; aerated with 

95% O2/CO2 at 37°C). The muscle was allowed to equilibrate to the bath for 10 min. The optimal 

length was determined from a resting tension of 0.2-0.5 mN at 100 volts. Force frequency 

relationship was determined using a train duration of 500 msec at 10, 20, 40, 80, 100, 150, 200, 

and 250 Hz (S88X Grass Stimulator; Astro-Med, Inc., West Warwick, RI, USA) after which the 

muscle was stimulated for 5 min at 150 Hz with a train frequency of 0.2/sec with a train duration 

of 150 msec to determine the rate of fatigue. Acute muscle recovery was determined by five 

additional stimulations after resting 5 min. Following stimulation, the EDL was frozen to the 

temperature of liquid nitrogen and stored at -95°C until further analysis. The white quadricep 

tissues samples were removed and frozen to the temperature of liquid nitrogen and stored at -

95°C until further analysis. 

Homogenization 

White quadricep muscles were pulverized on liquid nitrogen then glass-ground 

homogenized in 19-volumes of homogenization buffer (50 mM Tris-HCl, pH 7.4; 250 mM 

mannitol; 50 mM NaF; 5 mM Sodium Pyrophosphate; 1 mM EDTA; 1 mM EGTA; 1% Triton 

X-100; 50 mM B-glycerophosphate; 1 mM sodium orthovanadate; 1 mM DTT; 1 mM 

benzamidine; 0.1 mM phenylmethane sulfonyl fluoride; 5 ug/ml soybean trypsin inhibitor). The 

raw homogenate was freeze- thawed three times to ensure disruption of intracellular membranes 

and then centrifuged at 10,000 x g for 10 min. Supernatants were analyzed for protein content 

using the DC Protein Assay (Biorad Laboratories, Hercules, CA, USA). Supernatants were 

stored in microcentrifuge tubes at -95°C until further analysis. 
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AMPK Activity Assay 

AMPK activity of the α1 and α2 subunits immunoprecipitated from acute AICAR white 

quadricep homogenates was measured by the incorporation of radiolabeled phosphate from ATP 

into the SAMS peptide using a scintillation counter. Immunoprecipitates were prepared by 

adding rabbit anti-AMPKα1 or α2 antibody to a microcentrifuge tubes containing protein G 

sepharose. 40µl of spun homogenate samples were added to the rabbit antibody and protein G 

sepharose pellet, mixed overnight at 4°C and washed with ice-cold IP buffer (50 mM Tris-HCl, 

150 mM NaCl, 50 mM NaF, 5 mM sodium pyrophosphate, 1 mM EDTA, 1mM EGTA, 1mM 

DTT, 1 mM benzamidine, 0.1 nN PMSF, 5 µg/ml soybean trypsin inhibitor, pH 7.4) and 1 M 

NaCl. The pellet was then washed with lysate assay buffer (62.5 mM Na HEPES, 62.5 mM 

NaCl, 62.5 mM NaF, 6.25 mM sodium pyrophosphate, 1.25 mM EDTA, 1.25 mM EGTA, 1 mM 

DTT, 1 mM benzamidine, 0.1 mM PMSF, 5 µg/ml soybean trypsin inhibitor, pH 7.4), 

centrifuged, and the supernatant aspirated. The pellet was resuspended in HEPES-Brij (HB) 

buffer (25 mM HEPES, 0.02% Brij, 1 mM DTT, pH 7.4) and transferred to microcentrifuge 

tubes. The reaction was started by adding 15 µl of the working assay cocktail (40 mM HEPES, 

0.2 mM SAMS peptide (HHMRSAMSGLHLVKRR-OH), 0.2 mM AMP, 80 mM NaCl, 8% 

glycerol, 0.8 mM EDTA, 0.8 mM DTT, 5 mM MgCl2, 0.2 mM ATP, pH 7.0) at timed intervals 

of 30 sec. Samples were incubated at 150 rpm in a thermomixer at 30°C for 10 min. 15 µl of 

reaction mix was transferred to a quarter circle of P81 filter paper, washed five times in 1% 

phosphoric acid, and then washed with ddH20 and acetone and allowed to dry. The filter paper 

was then added to a vial and placed in the scintillation counter along with a blank control vial 

and a positive control hot assay cocktail vial to calculate the specific activity. Activity was 
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assessed and expressed as picomoles phosphate incorporated into SAMS peptide per gram tissue 

per minute. 

Western Blot and Immunodetection 

White quadricep homogenates were diluted in sample loading buffer (125 mM Tris HCl, 

pH 6.8, 20% glycerol, 4% SDS, 5% β-mercaptoethanol, and 0.01% bromophenol blue) to load 

onto Tris·HCl gels (Bio-Rad Criterion System, Hercules, CA). Electrophoresis was applied for 

45-55 min at 200 volts. The proteins were transferred to polyvinylidene difluoride (PVDF) 

membranes, which were then probed for specific proteins via immunodetection.  The antibodies 

used were as follows: pACC (Ser79) (#3661), Akt (#9272), pAkt (Ser473) (#4060), AMPKα 

(#2532), pAMPKα (Thr172) (#4188), Atg5 (#8540), Atg7 (#8558), Atg12 (#4180), Beclin1 

(#3738), 4EB-P1 (#9644), p4EB-P1 (Thr37/46) (#2855), eEF2 (#2332), peEF2 (Thr56) (#2331), 

eIF2α (#9722), peIF2α (Ser51) (#9721), LC3A (#4599), LC3B (#2775), mTOR (#2983), pRaptor 

(Ser792) (#2083), S6 (#2217), pS6 (Ser235/236) (#4858), p70 S6K (#2708), p-p70 S6K 

(Thr389) (#9234), STAT3 (#9139), pSTAT3 (Tyr705) (#9145), SQSTM1/p62 (#5114), Ulk1 

(#4773), pUlk1 (ser555) (#5869), and pUlk1 (ser757) (#6888)  from Cell Signaling Technology 

(Beverly, MA, USA); LKB1 (#07-694) from Upstate (Lake Placid, NY, USA); PGC1α 

(#AB3242), UCP-3 (#PA1-055) from Affinity Bioreagents (Rockford, IL, USA); Cytochrome C 

(#13156), Hexokinase II (#6521), MAFbx (#33782), Myf5 (#302), Myf6 (#301), MyoD (#304) 

from Santa Cruz Biotechnology (Dallas, TX, USA); Cox4 (#A6403) and Oxphos (#457999) 

from Invitrogen Life Technology (Grand Island, NY, USA); and ACC (streptavidin-horseradish 

peroxidase, RPN1231V) from GE Healthcare Biosciences (Pittsburgh, PA, USA). 

Chemiluminescent signals from blots were analyzed using AlphaEase FC software (Alpha 

Innotech Corp., San Leandro, CA) to determine relative protein levels. 
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Tissue Sectioning/Immunohistochemistry 

Tibialis anterior (TA) muscle samples from the chronically treated mice were extracted 

during tissue harvesting and placed in a mold containing Tissue Tek® O.C.T. compound (Ted 

Pella Inc., Redding, CA), covered, and then flash frozen in isopentane for 30 sec. Tissue samples 

were placed in aluminum foil and stored at -95°C until ready to be sectioned. Prior to sectioning, 

the samples were placed in the cryostat microtome at -21°C for 30 min to allow the samples to 

equilibrate. The tissue samples were mounted using O.C.T. compound and then cut into 8 µm 

muscle sections at -21°C, placed on glass slides, and allowed to air dry.  

CD31 Immunofluorescence 

Skeletal muscle capillarity was assessed by determining the capillary to fiber ratio on 

chronically-treated muscle samples. Sectioned samples were fixed in acetone and washed in 

PBS, permeabilized in 0.3% Triton X-100 in PBS for 10 min at 4°C, and blocked in 5% Normal 

Goat Serum (NGS) in PBS for 30 min at room temperature (RT). After blocking, samples were 

incubated for at least 1 hour at RT (or overnight at 4°C) in 1:50 dilution of CD31 primary 

antibody (AbD Serotec, no. MCA2388, Raleigh, NC, USA) in 5% NGS in PBS and then washed 

3 X 5 min with PBS. Samples were incubated for 30 min at RT in 1:100 dilution of secondary 

antibody (cy3-conjugated goat anti-rat IgG) in the dark or an opaque plastic jar. Samples were 

then washed 3 X 5 min in PBS in an opaque plastic jar. Coverslips were applied using 

Fluormount and images were captured using fluorescent microscopy with the TRITC filter set 

and the 20X objective.  To analyze, the total number of capillaries per field were counted and 

expressed as a ratio to the total number of muscle fibers per field. 
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Succinate Dehydrogenase Staining 

Sectioned samples from the chronically-treated mice were placed in a pre-warmed 

substrate solution [sodium succinate (Sigma S2378) and nitrotetrazolium blue (Sigma N6639) in 

0.2 M phosphate buffer] in a 37°C water bath. Slides were washed in distilled water 3 X 1 min, 

dried and mounted with a coverslip using mounting medium. Images were captured using light 

microscopy. Purple formazan precipitate is deposited at sites of mitochondria. Oxidative fibers 

are darker than glycolytic to allow for the percentage of cells that are SDH-positive to be 

determined. 

Myosin Heavy Chain (MHC) Expression 

Sectioned slides were blocked in 10% normal goat serum (NGS) (Jackson 

Immunoresearch, no. 005-000-121, West Grove, PA, USA) for 60 min. A primary antibody 

cocktail [MHC I (Dev. Studies Hybridoma Bank, no. BA-F8, Iowa City, Iowa, USA), MHC IIa 

(Dev. Studies Hybridoma Bank, no. SC-71), and MHC IIb (Dev. Studies Hybridoma Bank, no. 

BF-F3) in 10% NGS] was applied to each section for 120 min. Slides were washed in PBS 3 x 5 

min. A secondary antibody cocktail [AlexaFluor 350 IgG2b (Invitrogen, no. A21140, Grand 

Island, New York, USA), AlexaFluor 488 IgG1 (Invitrogen, no. A21121), and AlexaFluor 555 

IgM (Invitrogen, no. A21426) in 10% NGS] was applied to each section for 60 min. Slides were 

washed in PBS 3 x 5 min and visualized using a fluorescent microscope.  

Citrate Synthase Activity Assay 

Mitochondrial function was further assessed by performing a citrate synthase activity 

assay. 0.025 ml of chronic AICAR homogenates were diluted into 1.225 ml of 100 mM Tris, pH 

8.0 and vortexed gently. The following reagents were added to a 1 ml quartz cuvette: 0.60 ml of 

100 mM Tris, pH 8.0; 0.10 ml of 3.0 mM Acetyl-CoA; 0.10 ml of 1.0 mM DTNB, and 0.10 ml 
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of the diluted homogenate. The cuvette was mixed by inversion and placed in a 

spectrophotometer at 30°C for 7 min. The change in optical density (O.D.) for 3 min at 1 min 

intervals (4 readings) at 412 nm was recorded. The reaction was started by adding 0.10 ml of  

5 mM oxaloacetate and mixed by inversion several times. The change in O.D. for 3 min at  

1 min intervals (4 readings) was recorded. Calculations were determined by the change in O.D. 

per minute and the amount of tissue in the reaction cuvette.  

Statistics 

Statistical comparisons using Microsoft Excel or GraphPad Prism statistical analysis 

software (GraphPad Software Inc., La Jolla, CA) were made using a student t test or repeated 

measures ANOVA to determine statistical significance (p≤0.05) with Fisher’s LSD post-hoc 

analysis employed where appropriate. Values are reported as means ± SE. 

Results 

Acute AICAR Treatment Increases AMPK Activity in YA and O Mice 

 Acute AICAR treatment was administered to verify the activation of AMPK with the 

specified AICAR dosage. Phosphorylation of AMPK (pAMPK) was increased in both the YA 

and O mice compared to saline treated mice one-hour post AICAR injection (Figure 4.1A). 

However, pAMPK increased by 467% in the O mice whereas the YA mice only increased by 

159%. Interestingly, acute AICAR treatment increased phosphorylated Acetyl Co-A Carboxylase 

(pACC) in both the YA and O mice to the same extent (Figure 4.1C). Acute AICAR did not alter 

total AMPK or ACC protein content (Figure 4.1B, D).  

Activation of AMPK in response to acute AICAR treatment was further assessed by 

determining the activity of the catalytic subunits. AMPKα1 activity did not increase with AICAR 
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treatment but AMPKα2 activity increased to a similar extent in both the YA and O mice with 

AICAR compared to saline treated mice (Figure 4.2). 

Chronic AICAR Treatment Alters the Body Weight of YA and O Mice, Improves the Rate of 
Fatigue in YA mice, and Improves Treadmill Endurance in O Mice 

 Prior to AICAR treatment, YA and O mice had similar body weights (Figure 4.3A). 

However, the muscle weight per body weight of the O mice was significantly less than the YA 

mice (Figure 4.3B). One month chronic AICAR treatment in the YA mice increased the average 

body weights compared to the saline treated YA mice by about 5% (Figure 4.3A). AICAR 

treatment did not affect the O mice body weight. Therefore, the O AICAR mice weighed about 

4.5% less than the YA AICAR treated mice after one month (Figure 4.3A).  

Mice were treadmill tested pre- and post-treatment with AICAR or saline. YA mice 

treadmill endurance time was unaffected by AICAR treatment. However, in the O mice, running 

performance decreased with saline treatment but AICAR prevented the drop in performance 

between pre and post treadmill running (Figure 4.3C). In vitro muscle contractions were 

additionally performed to assess the rate of fatigue and recovery with AICAR treatment. AICAR 

treatment increased the initial force production in both the YA and O mice (Figure 4.3D). 

However, AICAR treatment did not improve the rate of fatigue or recovery of the O mice. On 

the other hand, YA mice fatigued at a slower rate within 2-3 min of contraction and recovered 

quicker with AICAR than their saline treated counterparts (Figure 4.3E). 

Chronic AICAR Treatment does not Change AMPK Protein Content in YA and O Mice 

 AMPK and pAMPK protein content were assessed to determine the effect of chronic 

activation of AMPK by AICAR. pAMPK and total AMPK content were not significantly 

different between saline and AICAR treated YA and O mice (Figure 4.4A, B). pACC and LKB1 

also were unaffected by AICAR in YA and O mice (Figure 4.4C, E). However, the protein 
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content of pACC was on average about 49% greater in O mice versus YA mice regardless of 

treatment (Figure 4.4C). Alternatively, AICAR treated O mice had greater total ACC protein 

content than both the O saline treated mice and the YA AICAR and saline treated mice (Figure 

4.4D). 

Chronic AICAR Treatment Increases Citrate Synthase Activity in YA and O Mice  

 Mitochondrial enzyme activity and gene content was measured to assess the downstream 

effects of chronic AICAR treatment in aged muscle. Citrate synthase activity significantly 

increased with AICAR in both the YA and O mice (Figure 4.5A) but succinate dehydrogenase 

expression was unaffected by AICAR in YA and O mice (Figure 4.5B, C). PGC1α and UCP3 

protein content were also unaffected by AICAR treatment in both the YA and O mice  

(Figure 4.6A, D). Cytochrome C, Cox4, and oxphos complexes I, II, III, and IV all tended to 

increase with AICAR treatment in YA mice, but were not significant (Figure 4.6B, C, E).  

Mitochondrial protein content was not affected by AICAR in the O mice.  

Chronic AICAR Treatment does not Overall Inhibit the mTOR Pathway 

 The effect of chronic AICAR treatment on protein synthesis in YA and O mice was 

determined by assessing the regulation of the mTOR pathway. Akt, pAkt, S6K, pS6K, pS6, 4EB-

P1, p4EB-P1, eIF2α, eEF2, and peEF2 were all unaffected by AICAR treatment in both the YA 

and O mice (Figure 4.7A-D, F-I, K-L). However, the O mice had greater protein contents of 

pAkt, pS6, p4EB-P1, and eEF2 than the YA mice (Figure 4.7B, F, H, K). On the other hand, S6 

content was significantly greater with AICAR treatment than saline in both the YA and O mice 

(Figure 4.7E). The protein content of S6 was also significantly greater in O mice than YA mice 

for both the saline and AICAR treatments. Additionally, peIF2α content was significantly lower 

in both the YA and O AICAR treated mice (Figure 4.7J).  
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Chronic AICAR Treatment Decreases SQSTM1/p62 Content as an Indicator of Autophagic Flux   

 Autophagic proteins were measured to determine the effect chronic AICAR treatment has 

on the recycling of cellular components to maintain cell survival. AICAR treatment did not 

significantly alter the protein content of Beclin1, Atg5, Atg12, Atg7, MAFbx, LC3A, ULK1, 

pULK1 (ser555 or ser757) (Figure 4.8A-D, F, G, J-L). However, both YA and O mice had lower 

SQSTM1/p62 content with AICAR treatment than saline treated mice. Additionally, 

SQSTM1/p62 protein content was lower in O versus YA saline-treated mice (Figure 4.8E). 

LC3B I and II content were greater in O versus YA saline treated mice (Figure 4.8H, I). AICAR 

treatment in the O mice decreased the protein content of LC3B I and II but had no effect in the 

YA mice (Figure 4.8H, I). However, there was no significant difference in the ratio between LC3 

II and I with AICAR versus saline in the YA and O mice (data not shown).  

Chronic AICAR Treatment Decreases Myf6 but does not Alter Skeletal Muscle Fiber Type 
Composition or Capillarity  

 The effect of chronic AICAR treatment on myogenic regulating factors was assessed by 

western blotting. AICAR treatment did not alter Myf5 and MyoD protein contents, but both were 

significantly greater in aged muscle than YA muscle (Figure 4.9A, C). Myf6 was also greater in 

the O saline versus YA saline treated mice; however, with AICAR treatment, both the YA and O 

mice had significantly less Myf6 protein content (Figure 4.9B).  

 Fiber type composition was determined by MHC staining of the TA muscles in both YA 

and O mice. There was no significant difference in fiber type composition between YA and O 

mice treated with saline or AICAR; however, AICAR treatment did tend to increase type I fiber 

expression in both YA and O mice, but results were not significant (Figure 4.10).  
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 An increase in capillarity was assessed as a potential mechanism for the improvement in 

run time and rate of fatigue. However, chronic AICAR treatment did not increase the number of 

capillaries found associated with each fiber in either the YA or O muscle (Figure 4.11).  

Discussion 

 This study supports previous results by Pagala et al. (1998) that saline treated O mice 

have reduced treadmill endurance but greater resistance to fatigue with in vitro muscle 

contractions than YA saline treated mice (Pagala et al., 1998). Furthermore, we found that 

chronic AICAR treatment prevented a reduction in run time in aged mice to match the YA 

endurance levels. Chronic AICAR treatment also improved the rate of fatigue and recovery in 

YA mice to match that of the O mice. These differences may be attributed to differences between 

an isolated muscle and whole body interactions (i.e. an increase in the heart size or blood flow to 

increase oxygen supply to the muscle).  

 Verification that the AICAR dosage was effective in both the YA and O mice was 

demonstrated by assessing the activation of AMPK one-hour post injection. Similar to previous 

research, the acute AICAR dosage was sufficient to activate AMPK in the YA and O skeletal 

muscle (Merrill et al., 1997). Additionally, AICAR treatment preferentially activated the 

AMPKα2 isoform in comparison to the AMPKα1 isoform (Qiang et al., 2007; Reznick et al., 

2007b; Thomson et al., 2009). However, in contrast to previous research performed in rats 

(Qiang et al., 2007; Reznick et al., 2007b; Thomson et al., 2009), we found that acute AICAR 

treatment increased pAMPK content to a greater extent in the O mice compared to the YA mice. 

The use of mice instead of rats in this study may account for the difference seen with AICAR as 

has been reported in vasculature from mice by Lesniewski et al. (Lesniewski et al., 2012).  
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 Alternatively, chronic AICAR injections did not alter the pAMPK or total AMPK protein 

content in either the YA or O mice. AICAR injections were stopped one day prior to post-

treadmill testing; therefore, pAMPK were expected to return to baseline levels. In contrast to 

previous studies performed where pACC was lower in O rats (Qiang et al., 2007), we found that 

pACC protein content was higher in O saline treated mice compared to YA saline treated mice. 

Previous research has also indicated that chronic AICAR treatment decreases ACC activity 

(Winder et al., 2000) but in the current study western blotting indicated no difference in the 

protein content of pACC between saline and AICAR treated YA and O mice. Similar to previous 

research, total ACC content was not different between YA and O saline treated mice (Qiang et 

al., 2007).  Unexpectedly, chronic AICAR treatment significantly increased the protein content 

of total ACC in aged mice but not YA mice. Acute AICAR promotes fatty acid oxidation 

(Merrill et al., 1997) but the increase in total ACC without the increase in phosphorylated ACC 

with chronic AICAR treatment may actually suggest an increase in fatty acid biosynthesis in the 

aged mice (Davis et al., 2000). The increase in total ACC with chronic AICAR further suggests 

that AICAR regulates the transcription of ACC in skeletal muscle, similar to that seen in cardiac 

muscle (Adam et al., 2010).  

 As noted previously, chronic AICAR treatment prevented a reduction in overall run time 

in aged mice compared to their saline-treated counterparts to match the YA endurance levels. 

Additionally, AICAR treatment improved the maximum force per muscle mass generated with in 

vitro muscle contractions in both the YA and O mice. However, AICAR treatment only 

improved the rate of fatigue and recovery with in vitro contractions in the YA mice not the O 

mice. We hypothesized that the improvements seen between the YA and O mice may be due to 

alterations in metabolic pathways regulated by AMPK. 
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 It has previously been shown that chronic AICAR treatment increases mitochondrial 

enzyme content and activity (Winder et al., 2000; Bergeron et al., 2001b; Suwa et al., 2003). In 

contrast, aging is associated with impaired mitochondrial function (Kumaran et al., 2004a; 

Terman et al., 2010). Therefore, it was hypothesized that chronic AICAR treatment would 

improve mitochondrial activity and therefore contribute to the improved treadmill endurance and 

rate of fatigue in the YA and O mice. As expected, chronic AICAR treatment increased citrate 

synthase activity in both the YA and O mice, suggesting improved mitochondrial activity with 

AICAR treatment. Conversely, succinate dehydrogenase expression was unaffected by AICAR 

treatment or age. Additionally, the protein content of PGC1α, cytochrome C, Cox4, UCP3, and 

the oxidative phosphorylation proteins were not significantly increased with AICAR treatment. 

However, there was an increasing trend in cytochrome C, Cox4, and complex II, III, and IV of 

the oxidative phosphorylation proteins with AICAR treatment in the YA mice but not the O 

mice. Therefore, chronic AICAR increased citrate synthase activity in both the YA and O mice 

and may tend to increase other mitochondrial enzymes in the YA mice but not the O mice. These 

differences in the mitochondria of YA mice but not the O mice may contribute to the improved 

rate of fatigue and recovery of the isolated YA EDL muscle that was not seen in the O mice. 

However, these results do not explain the overall improvement in treadmill endurance seen with 

the O mice.  

 One proposed mechanism for the differences was that while AICAR may not increase 

mitochondrial content and activity in the aging skeletal muscle, it may increase the rate of 

turnover of dysfunctional mitochondria to improve treadmill endurance. The impaired 

mitochondrial function seen with aging may be attributed to a reduction in autophagy and 

therefore a reduction in the removal of damaged organelles (Pfeifer, 1978; Cuervo & Dice, 2000; 
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Del Roso et al., 2003; Combaret et al., 2009). Alternatively, activation of AMPK is known to 

increase the rate of autophagy in skeletal muscle cells (Meley et al., 2006; Sanchez et al., 2012). 

Therefore, we hypothesized that chronic AICAR activation would increase the rate of autophagy 

and improve endurance by removing dysfunctional mitochondria. Contrary to our hypothesis, 

average autophagy levels in the O mice were not significantly lower in the YA mice. In fact, 

LC3BI and II, two of the primary markers of autophagosome formation (Karim et al., 2007; 

Tanida et al., 2008), were actually greater in the aged mice than the YA mice with saline 

treatment. Chronic AICAR treatment in the aged mice instead lowered the levels of both LC3BI 

and II to match those found in the YA mice. A decrease in LC3BI should indicate an increase in 

autophagy but a decrease in LC3BII should be indicative of decreased autophagy (Kabeya et al., 

2000; Tanida et al., 2008; Barth et al., 2010). These results are therefore conflicting concerning 

the rate of autophagy with chronic AICAR treatment in the aged rats. However, LC3BII is also 

degraded by the lysosome, making LC3BII a difficult marker to interpret and not always the best 

indicator of autophagy (Mizushima & Yoshimori, 2007). Therefore, LC3BII and LC3BI may not 

be the best indicators of autophagy.  

Another common marker used to measure autophagy is SQSTM1/p62.  Protein content of 

SQSTM1/p62 decreased with chronic AICAR treatment in both the YA and O rats. 

SQSTM1/p62 interacts with ubiquitin to tag the autophagic vesicle for degradation. Increased 

rates of autophagy result in a decrease in content of SQSTM1/p62 due to degradation of the 

autophagic vesicle (Mizushima & Yoshimori, 2007). Therefore, although the other measured 

proteins involved in autophagy were not affected, there does appear to be an increase in 

autophagic vesicle degradation in YA and O mice which would indicate an increase in 

autophagic flux with chronic AICAR treatment. Therefore, the effect of chronic AICAR 



 

74 

treatment on autophagic flux and the removal of damaged organelles to improve cellular 

metabolism and efficiency are inconclusive, but suggests a possible increase in autophagy.  

 Chronic activation of AMPK with AICAR may further contribute to the changes seen in 

YA and O mice through the regulation of protein synthesis and muscle hypertrophy by the 

mTOR pathway. Previous research has indicated that the mTOR pathway is upregulated in aged 

skeletal muscle as an attempt to maintain the loss of muscle mass associated with sarcopenia 

(Kimball et al., 2004). Inhibition of mTOR in aging muscle has been shown to improve the age-

related decline in spontaneous activity levels and the aging phenotype (Harrison et al., 2009; 

Wilkinson et al., 2012). AICAR is a known inhibitor of the mTOR pathway in skeletal muscle 

(Bolster et al., 2002). Therefore, we hypothesized that chronic AICAR treatment may improve 

the aged mice endurance activity levels through inhibition of the mTOR pathway. In support of 

this, the current study supports previous findings that some proteins involved in the mTOR 

pathway are upregulated in the O saline mice compared to the YA saline mice (Kimball et al., 

2004; Parkington et al., 2004). Namely, pAKT, S6, pS6, p4EB-P1, and eEF2, had a higher 

protein content in the O versus YA mice. This increase in the protein content of some proteins 

involved in the mTOR pathway may serve as a compensatory mechanism to counterbalance the 

skeletal muscle atrophy associated with aging. In addition to the mTOR pathway proteins and in 

support of previous research (Musarò et al., 1995), we further found that the myogenic factors 

myf5, myf6, and myoD were elevated in the aged muscle compared to the YA muscle, again 

suggesting a compensatory mechanism to counteract the increasing cell death in aging muscle.  

However, contrary to our hypothesis, there was no overall inhibition of the mTOR 

pathway as would have been expected with chronic AICAR treatment in either the YA or the O 

mice. In contrast, chronic AICAR treatment increased the protein content of S6 in the YA and O 
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mice, which would suggest greater regulation of protein translation and cell growth; however, 

AICAR did not change the levels of pS6. Additionally, chronic AICAR treatment decreased the 

protein content of peIF2α, suggesting a potential increase in translation initiation in both the YA 

and O mice. The small effect that chronic AICAR treatment has on the mTOR pathway may be 

due to the short-term effect of AMPK activation on mTOR. Many studies have shown that 

AICAR inhibits the mTOR pathway for about 20-30 min but within 40-60 min mTOR signaling 

is no longer affected (Thomson & Gordon, 2006; Williamson et al., 2006). Therefore, chronic 

AICAR may not inhibit the mTOR pathway but may instead lead to activation of mTOR-related 

proteins and protein synthesis. Alternatively, chronic AICAR decreased the protein content of 

Myf6, which may suggest a decrease in muscle regeneration with AICAR treatment (Braun et 

al., 1990).  

In addition to muscle growth and differentiation, we addressed the effect of chronic 

AICAR treatment on fiber-type composition. Previous research has indicated that chronic 

AICAR treatment has no effect on muscle fiber-type composition (Bamford et al., 2003; Putman 

et al., 2007). Likewise, we found that chronic AICAR treatment did not alter the muscle fiber 

type composition or capillarity. However previous studies have also indicated that in mouse EDL 

muscles, aged mice have a preferential reduction in type II fibers (Lexell et al., 1983) and 

therefore an increased percentage of slow oxidative fibers (Alnaqeeb & Goldspink, 1987). Suwa 

et al. (1985) also found that chronic AICAR treatment decreased the amount of type IIB 

glycolytic fibers and therefore increased the percentage of IIX oxidative fibers in rat EDL 

muscles (Suwa et al., 2003). Likewise, we found that there did appear to be an increasing trend 

in the oxidative type I fibers with AICAR treatment compared to saline treatment, although the 

results were not significant. An increase in slow oxidative fibers in the aged mice may improve 
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the response to AICAR. Slow oxidative fibers have a higher percentage of the AMPKα2 subunit 

than the AMPKα1 subunit (Putman et al., 2007). As discussed previously, AICAR preferentially 

activates the AMPKα2 subunit. The increase in the AMPKα2 with AICAR in aged muscle with 

the change in fiber type composition may contribute to the increased endurance with treadmill 

running in the aged mice but cannot completely account for the overall improvements seen in the 

aging muscle.  

Future Directions 

 Although chronic AICAR slightly changed the protein content of a few metabolic 

proteins, we cannot conclusively say that chronic AICAR treatment significantly impacted the 

age-related signaling pathways of mitochondrial biogenesis, autophagy, or protein synthesis. 

However, the YA mice did have a decrease in the rate of fatigue and improved recovery with 

AICAR treatment and the O mice had improved treadmill endurance. Therefore, other metabolic 

pathways not assessed in this study may be influencing the improved endurance. In addition, 

differences in the YA and O mice with AICAR treatment may be due to the difference between 

evaluating the endurance of a single muscle versus whole body interactions. Chronic AICAR 

treatments had a more robust improvement in mitochondrial activity and gene expression in the 

YA mice that may have improved the rate of fatigue and recovery of a single muscle in isolation. 

However, the improvement in treadmill endurance in the O mice may be regulated by 

interactions between many factors. Although improvements in mitochondrial biogenesis, 

autophagy, and protein synthesis were not overall significantly affected by chronic AICAR 

treatment, there may be other tissues or factors affected besides skeletal muscle (i.e. an increase 

in the heart size or blood flow to increase oxygen supply to the muscle) to improve the treadmill 

endurance in the aged muscle.  
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Additionally, other signaling pathways may be affected by the chronic AICAR treatment. 

One potential target is hexokinase II to increase the glycolytic potential of the YA and O mice 

muscles.  Previous research has indicated that AICAR treatment increases the protein content of 

Hexokinase II (Holmes et al., 1999; Ojuka et al., 2000; Winder et al., 2000). Similarly, we found 

that Hexokinase II protein content increased with AICAR treatment in both the YA and O mice 

(See Supplemental Figure 4.1A). The combination of increased glycolytic potential and 

mitochondrial activity may decrease the rate of fatigue and improve endurance capabilities.  

 Another potential pathway that may contribute to the improved endurance to in vitro 

muscle contractions and treadmill running may be through inflammatory pathways. Aged muscle 

has an increase in low-grade inflammation (Salminen et al., 2008; de Magalhães et al., 2009). 

Alternatively, we found that chronic AICAR treatment significantly decreased phosphorylated 

STAT3 protein content in both the YA and O mice without changing the total STAT3 protein 

content (See Supplemental Figure 4.1B, C). This may indicate a decrease in inflammation with 

chronic AICAR treatment but will require further investigation.  

 In conclusion, chronic AICAR treatment improved the treadmill endurance in O mice and 

the rate of fatigue and recovery in response to in vitro muscle contractions in YA mice. 

However, the exact mechanism for the improvements remain unknown. Chronic AICAR 

increased citrate synthase activity in both the YA and O mice and tended to increase 

mitochondrial gene content in the YA mice. Additionally, chronic AICAR treatment decreased 

SQSTM1/p62 and Myf6 protein content in both the YA and O mice, suggesting increased 

autophagy and decreased muscle regeneration with treatment. However, the differences seen 

with AICAR treatment on treadmill endurance and rate of fatigue cannot conclusively be 

attributed to changes in protein synthesis, autophagy, fiber type distribution, or muscle 
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differentiation. Therefore, the improvements in endurance may be due to improvements in 

factors other than skeletal muscle energetics (e.g. cardiac function, blood supply, etc.). Aging 

muscle may have been impacted more by the chronic AICAR treatment than YA muscle due to 

greater deterioration in whole body energetics allowing for a greater range of improvement with 

treadmill endurance. Alternatively, improvements in isolated skeletal muscle energetics 

improved the rate of fatigue and recovery in the YA skeletal muscle but not aged muscle. This 

may primarily be due to the improvements in mitochondrial protein expression and activity that 

was seen in the YA muscle versus the O muscle with chronic AICAR treatment. Therefore, 

chronic AICAR treatment can regulate metabolic pathways that are altered as a result of aging to 

improve the exercise capacity in response to treadmill running and in vitro muscle contractions.  
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Figure 4.1: Acute AICAR Injections Increase Phosphorylation of AMPK and ACC. White 
quadricep (WQ) muscles from YA (5 mo.) and O (23 mo.) male C57Bl/6 mice were 
subcutaneously injected with AICAR dissolved in saline (0.5 mg/g body weight, 50 mg 
AICAR/ml saline) or with an equivalent volume of saline without AICAR. Western blot analysis 
of WQ for (A) pAMPK, (B) total AMPK, (C) pACC, and (D) total ACC. N=4 / group. YS= YA 
saline treated; YA= YA AICAR treated; OS= O saline treated; OA= O AICAR treated.  Values 
are means ± SEM. a = significant difference from corresponding saline treated muscle;  
b = significant difference from corresponding condition in the YA muscle (p < 0.05). 
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Figure 4.2: Acute AICAR Injections Increase AMPKα2 Activity but not AMPKα1. Activity 
assay of the WQ for (A) AMPKα1 and (B) AMPKα2. N=4 / group. Values are means ± SEM.  
a = significant difference from corresponding saline treated muscle (p < 0.05). 
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Figure 4.3: Chronic AICAR Injections Increase Body Weight in YA and O Mice, Improve 
Treadmill Endurance in O Mice, and Improve the Rate of Fatigue and Recovery in YA Mice. YA 
and O mice were subcutaneously injected with AICAR dissolved in saline (0.5 mg/g body 
weight, 50 mg AICAR/ml saline) or with an equivalent volume of saline without AICAR for 31 
days. Mice were weighed and treadmill tested prior to and following injections. (A) Total body 
weights, (B) muscle weight per body weight for tibialis anterior (TA) and gastrocnemius 
(GAST), (C) change in run time. After injections the right extensor digitorum longus (EDL) 
muscle was removed and stimulated for 5 min at 150 Hz with a train frequency of 0.2/sec with a 
train duration of 150 msec to determine the rate of fatigue. (D) initial force per EDL muscle 
weight. Acute muscle recovery was then determined by 5 additional stimulations after 5 min. (E) 
rate of fatigue and recovery. N=9-13 / group. Values are means ± SEM. a = significant difference 
from corresponding saline treated muscle; b = significant difference from corresponding 
condition in the YA muscle (p < 0.05). 
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Figure 4.4: Chronic AICAR Injections Increase the Protein Content of Total ACC in O Mice but 
do not Alter pAMPK, Total AMPK, pACC, and LKB1 Content. Western blotting analysis of 
WQ for (A) pAMPK, (B) total AMPK, (C) pACC, (D) total ACC, and (E) LKB1.  N=9-13 / 
group. YS= YA saline treated; YA= YA AICAR treated; OS= O saline treated; OA= O AICAR 
treated. Values are means ± SEM. a = significant difference from corresponding saline treated 
muscle; b = significant difference from corresponding condition in the YA muscle (p < 0.05). 
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Figure 4.5: Chronic AICAR Injections Increase Citrate Synthase Activity but not SDH 
Expression. Activity assay of the WQ for (A) Citrate synthase. Immunohistochemistry of the 
tibialis anterior (TA) for (B) Succinate dehydrogenase (SDH) quantification and (C) SDH 
images. N=9-13 / group. Values are means ± SEM. a = significant difference from corresponding 
saline treated muscle (p < 0.05). 
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Figure 4.6: Chronic AICAR Injections Tend to Increase Mitochondrial Protein Content in YA 
but not O Mice. Western blotting analysis of WQ for (A) PGC1α, (B) Cytochrome C, (C) Cox4, 
(D) UCP3, and (E) Oxphos proteins. N=9-13/ group. YS= YA saline treated; YA= YA AICAR 
treated; OS= O saline treated; OA= O AICAR treated.  Values are means ± SEM. (p < 0.05).  
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Figure 4.7: Chronic AICAR Injections Increase S6 but Decrease peIF2α Protein Content. 
Western blotting analysis of WQ for (A) Akt, (B) pAkt, (C) S6K, (D) pS6K, (E) S6, (F) pS6, (G) 
4EB-P1, (H) p4EB-P1, (I) eIF2α, (J) peIF2α, (K) eEF2, and (L) peEF2. N=9-13/group. YS= YA 
saline treated; YA= YA AICAR treated; OS= O saline treated; OA= O AICAR treated.  Values 
are means ± SEM. a = significant difference from corresponding saline treated muscle;  
b = significant difference from corresponding condition in the YA muscle (p < 0.05). 
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Figure 4.8: Chronic AICAR Injections Decrease SQSTM1/p62 Protein Content. Western blotting 
analysis of WQ for (A) Beclin1 (B) Atg5, (C) Atg12, (D) Atg7, (E) SQSTM1/p62, (F) MAFbx, 
(G) LC3A, (H) LC3BI, (I) LC3BII, (J) Ulk1, (K) pUlk1 (ser555), and (L) pUlk1 (ser757). N=9-
13/group. YS= YA saline treated; YA= YA AICAR treated; OS= O saline treated; OA= O 
AICAR treated. Values are means ± SEM. a = significant difference from corresponding saline 
treated muscle; b = significant difference from corresponding condition in the YA muscle  
(p < 0.05).  
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Figure 4.9: Chronic AICAR Injections Decrease Myf6 Protein Content. Western blotting 
analysis of WQ for (A) Myf5, (B) Myf6, and (C) MyoD. N=9-13/group. YS= YA saline treated; 
YA= YA AICAR treated; OS= O saline treated; OA= O AICAR treated. Values are means ± 
SEM. a = significant difference from corresponding saline treated muscle; b = significant 
difference from corresponding condition in the YA muscle (p < 0.05).  
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Figure 4.10: Chronic AICAR Injections do not Alter Myosin Heavy Chain Content. 
Immunohistochemistry for myosin heavy chain (MHC) fiber type composition. N=9-13/group. 
Values are means ± SEM. 
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Figure 4.11: Chronic AICAR Injections do not Increase Capillarity. Immunohistochemistry for 
CD31 as a marker of capillaries. N=9-13/group. Values are means ± SEM. 
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Supplemental Figure 4.1: Chronic AICAR Injections Increase Hexokinase II but Decrease 
pSTAT3 Protein Content. Western blot analysis in WQ for (A) Hexokinase II (B) STAT3, and 
(C) pSTAT3. N=9-13/group. YS= YA saline treated; YA= YA AICAR treated; OS= O saline 
treated; OA= O AICAR treated. Values are means ± SEM. a = significant difference from 
corresponding saline treated muscle (p < 0.05).  
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CHAPTER 5:  Summary 
 

 The overall purpose of the studies described in chapters 2-4 was to better understand the 

age-associated alterations in AMPK in skeletal muscle and chronic activation of AMPK as it 

relates to the development of sarcopenia. Specifically, the following questions were addressed: 

1) Is AMPK activation in response to endurance-like exercise attenuated in aged 

skeletal muscle? 

2)  Does the AMPK heterotrimer composition change in aged skeletal muscle? 

3) Does the nuclear localization of AMPK after endurance-like exercise change in aging 

skeletal muscle? 

4) Does chronic activation of AMPK improve the aging phenotype in response to 

endurance-type exercise? 

5) Are the known beneficial effects that have been observed with chronic AICAR 

treatment on metabolic pathways found in aged skeletal muscle?  

We had hypothesized that AMPK activation after endurance-like muscle contractions 

would be impaired in aged skeletal muscle as a result of altered changes in the AMPK 

heterotrimer composition and localization. Therefore, we further hypothesized that chronic 

activation of AMPK with AICAR treatment would improve the aging phenotype. This study 

found the following answers to the above-mentioned questions: 

AMPK Activation is Attenuated with Endurance-Like Exercise in Aged Skeletal Muscle. 

In support of our hypothesis, we found that AMPKα phosphorylation was lower in O vs. 

YA rat muscles after STIM. This suggests an attenuated activation of AMPK in response to 

electrical stimulation. More specifically, AMPKα2, the predominant catalytic subunit activated 
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in response to endurance-type exercise, was also lower in O vs. YA muscles with STIM. 

However, AMPKα1 activity was greater in O vs. YA muscle with STIM.  

Furthermore, ACC, ERK, AKT, and p38 phosphorylation increased with STIM. However, 

phosphorylation, particularly ACC phosphorylation, was not lower after contractions in O vs. 

YA muscles. These results suggest that while in situ AMPK activity is suppressed, in vivo 

AMPK activity may not be suppressed by old-age in rat skeletal muscle. 

 The AMPK Heterotrimer Composition is Altered in Aging Skeletal Muscle 

In support of the change in catalytic subunit activity, AMPKα2 protein content was lower 

and AMPKα1 protein content was greater in O vs. YA rats after STIM. Additionally, AMPKγ2 

and γ3 protein contents were lower in O vs. YA muscle. However, AMPKβ1, β2, and γ1 protein 

contents were unaffected by age.  

The changes in the individual isoform protein contents suggest a change in the 

availability of the AMPK isoforms and therefore alterations in the AMPK heterotrimer 

composition in aging skeletal muscle. In support of this, we found that association of AMPKα2 

with AMPKγ2 increased while association with AMPKγ3 decreased. We also observed 

decreased association of AMPKα1 with the γ3 isoform in O vs. YA muscles. However, there was 

not a comparable increase in coimmunoprecipitated β1 or β2 subunits with the increase in 

AMPKα1 in aging rat skeletal muscle.  

AMPK Nuclear Localization after Endurance-Like Exercise is Impaired in Aging Skeletal 
Muscle 

In support of our hypothesis, nuclear localization of phosphorylated AMPK was impaired 

in aging muscle after STIM. Additionally, nuclear localization of AMPKα2 and AMPKγ3 were 

also impaired in aging muscle in response to STIM. Results also reconfirmed the alteration of the 
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AMPK heterotrimer isoform protein content. Specifically, LKB1, total AMPK, phosphorylated 

AMPK, AMPKα2, AMPKβ2, and AMPKγ2 protein content decreased and AMPKα1 and 

AMPKγ1 protein content increased. Consequently, aging not only alters the composition and 

activity of AMPK, but also the availability of AMPK to either regulate gene transcription in the 

nucleus or directly interact with cytosolic targets to regulate metabolic pathways.   

Chronic Activation of AMPK Improved Treadmill Endurance in Aging Skeletal Muscle and In 
Vitro Muscle Contraction Endurance in Young Adult Skeletal Muscle 

 As we hypothesized, one month of chronic activation of AMPK with AICAR treatment 

improved the treadmill endurance of O mice. Interestingly, chronic AICAR treatment did not 

improve the treadmill endurance of YA mice. Conversely, chronic AICAR treatment improved 

the rate of fatigue and recovery with in vitro muscle contractions in YA mice but not O mice. 

Chronic AICAR Treatment does not Conclusively Alter Mitochondrial Biogenesis, Protein 
Synthesis, or Autophagy in Aged Skeletal Muscle  

The improvements in endurance-type exercise with chronic AICAR treatment suggest 

changes in metabolic pathways. However, the improvements we saw in both the YA and O mice 

cannot conclusively be attributed to changes in protein synthesis, autophagy, fiber type 

distribution, or muscle differentiation. Therefore, the improvements in endurance may be due to 

improvements in factors other than skeletal muscle energetics (e.g. cardiac function, blood 

supply, etc.). Aging muscle may have been impacted more by the chronic AICAR treatment than 

YA muscle due to greater deterioration in whole body energetics allowing for a greater range of 

improvement. Alternatively, improvements in isolated skeletal muscle energetics improved the 

rate of fatigue and recovery in the YA skeletal muscle but not aged muscle. This may primarily 

be due to the improvements in mitochondrial protein expression and activity that was seen in the 

YA muscle versus the O muscle with chronic AICAR treatment.  
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Conclusion 

 In conclusion, the AMPK heterotrimer composition and activity is altered in aging 

muscle. Additionally, chronic activation of AMPK by AICAR treatment can improve the 

treadmill endurance of aging mice. These improvements with chronic AICAR suggest that the 

alteration in AMPK heterotrimer composition and activation in aging muscle may contribute to 

the aging phenotype by altering AMPK signaling. However, chronic AICAR treatment does not 

overall significantly impact mitochondrial, mTOR, or autophagy signaling proteins in aging 

muscle to account for the improvements in exercise endurance.  
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