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ABSTRACT
Targeting of Receptors for Advanced Glycation End-Products (RAGE) Diminishes Acute
Secondhand Smoke-Induced Inflammation in Mice

Tyler Thomas Wood
Department of Physiology and Developmental Biology, BYU
Master of Science

The receptor for advanced glycation end-products (RAGE) has increasingly been
demonstrated to be an important modulator of inflammation in cases of pulmonary disease.
Published reports involving tobacco smoke exposure have demonstrated increased expression
of RAGE, its participation in pro-inflammatory signaling and its role in irreversible pulmonary
remodeling. The current research evaluated for the first time the in vivo effects of short-term
tobacco smoke exposure in RAGE null and control mice compared to identical animals exposed
to room air only. Quantitative real time PCR, immunoblotting, and immunohistochemistry
revealed elevated RAGE expression in controls after four weeks of exposure and an anticipated
absence of RAGE expression in RAGE null mice regardless of smoke exposure. Inflammatory cell
behaviors were confirmed by measuring active Ras, NF-kB, and cytokine synthesis and
secretion. Furthermore, bronchoalveolar lavage fluid (BALF) was procured from RAGE null and
control animals after exposure for the assessment of total protein in order to indirectly
measure vascular permeability, inflammatory cells and chemoattractant molecules involved in
the inflammatory response. As a general theme, inflammation induced by tobacco smoke
exposure was influenced by the availability of RAGE. These data reveal captivating information
suggesting a role for RAGE signaling in lungs exposed to tobacco smoke. Furthermore, research
may demonstrate RAGE signaling as an important therapeutic target capable of ameliorating
cell level inflammation in those coping with exposure.

Keywords: RAGE, lung, tobacco smoke
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CHAPTER 1: A Brief Introduction

Receptor for Advanced Glycation End-Products (RAGE)

RAGE is a member of the immunoglobulin superfamily of cell surface receptors
expressed in many cell types including endothelial and vascular smooth muscle cells,
fibroblasts, neurons and macrophages/monocytes. RAGE contains an extracellular ligand-
engaging V-region-like domain and two C-region-like domains, a single transmembrane domain,
and a short, highly charged cytoplasmic domain essential for signal transduction. RAGE
expression is most abundant in the lungs where it was initially isolated, and identified to be
selectively localized to the basolateral membranes of well-differentiated alveolar type | (ATI)
cells. RAGE interacts with a spectrum of ligands, and is named for its ability to bind advanced
glycation end-products (AGEs) that accumulate in hyperglycemia and oxidant stress. As a
pattern recognition receptor (PRR), RAGE also binds S100/calgranulins, amyloid-B-peptide, and
HMGB-1 to influence gene expression via activated signal transduction pathways (Stern, 2002).
RAGE activation tends to be ligand-specific in that it generates programmed outputs controlled
by various transcription factors according to specific ligand input (Sukkar, 2012), (Figure 1.1).
As a dynamic cell-surface receptor, RAGE utilizes diffuse signaling pathways to influence the
progression of many inflammatory conditions. In fact, recent genome-wide association studies
have linked RAGE polymorphisms with pathophysiology of the lung and several additional
targeted organs.

Further complicating the dynamics of RAGE activation is the presence of several
isoforms. In addition to full-length membrane-bound RAGE (mRAGE), proteolytic cleavage and

differential splicing lead to the derivation of soluble RAGE (sRAGE) that lacks transmembrane



and cytosolic domains. Alternative splicing can also result in endogenous secretory RAGE
(esRAGE). Both sRAGE and esRAGE are capable of binding ligands, presenting the possibility
that they act as a means of sequestering otherwise deleterious ligand accumulation (Buckley,

2010), (Figure 1.2).

Downstream Targets of RAGE Influenced by Tobacco Smoke

Our laboratory has demonstrated that cigarette smoke acts through Ras to induce the
nuclear translocation and activation of NF-kB, leading to an increase in pro-inflammatory
cytokines such as TNFa, IL-1B, and IL-8 in rat alveolar epithelial cells and human macrophages
(Kasteler, 2008). These effects were successfully counteracted by pre-treatment with siRNA for
RAGE that blocks its expression (Reynolds, 2010). NF-kB controls several genes involved with
inflammation. The inflammatory effects associated with diabetes, Alzheimers Disease, and
cancer are orchestrated to a large degree by NF-kB and the signaling axis implicates RAGE at
the point of cellular activation. These diseases create conditions necessary for the derivation
and elaboration of several RAGE ligands (AGEs in diabetes, amyloid-p in Alzheimer’s), which
results in a positive feedback cycle, leading to chronic inflammation (Yan, 2009; Yan, 1996;
Sparvero 2009). RAGE exacerbates NF-kB-mediated inflammatory loops due to the perpetual
elaboration of exogenous ligands released following various forms of stress (ischemic,
immune/inflammatory stimuli, physical stress), and the synthesis of new RAGE ligands.
Furthermore, NF-kB activation causes de novo synthesis of NF-kBp65 leading to elevated

signaling potency (Sparvero 2009, Schmidt, 2001).



Assessment of RAGE Biology in Tobacco Smoke-Exposed Mice

We sought to assess the biology of RAGE because of its clear implication in the
inflammatory response and its effects in relation to smoke exposure. We tested the hypothesis
that RAGE, at least in part, mediates the inflammatory phenotype observed in lungs
involuntarily exposed to tobacco smoke. What follows is a description of RAGE in the context
of smoke exposure and the first study that involves precious RAGE knock out animals and
normal controls exposed to secondhand smoke. Our discoveries provide an important first step
in the identification of molecular targets potentially effective in anti-inflammatory therapeutic

modalities for those that are unable or unwilling to eradicate smoke exposure.
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Figure 1.1: Schematic Depicting RAGE, RAGE Ligands and Down-Stream Signalling Molecules. RAGE is a
pattern-recognition receptor involved in mediating cellular responses to soluble and cell-associated
molecules involved in the host response to tissue injury, infection and inflammation. RAGE ligands
identified to date include HMGB1, SAA, AB, C3a, HSP70, the injury-related glycoprotein SPARC, several
members of the S100 protein family, the B2-integrin Mac-1 (CD11b), phosphatidylserine (PS), double-
stranded DNA (dsDNA), double stranded RNA (dsRNA) and LPS. The RAGE cytoplasmic domain interacts
with a number of intracellular adaptor proteins including diaphanous-1, ERK1/2 and TIRAP. Ligation of
RAGE induces the activation of multiple signaling pathways that may vary depending on the ligand, cell
and tissue microenvironment. Signaling molecules activated down-stream of RAGE include NADPH
oxidase, Ras, Src kinase, Ras- ERK1/2, SAPK/INK and p38 MAPK pathways, PI3K/Akt, small GTPase
Cdc42/Rac, ROCK, PKC BIl and GSK-3pB, resulting in the activation of a number of transcription factors
including NF-kB, AP-1, CREB protein, STAT3 and egr-1. Image regenerated from Sukkar et al. (2012).
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Figure 1.2: Schematic Representation of RAGE and the Generation of Some of its Isoforms Commonly
Found in the Lung. In addition to its full-length form (mMRAGE), RAGE also exists in a soluble form (sRAGE)
which lacks the transmembrane and cytosolic domains found in mRAGE. Production of sSRAGE isoforms
is via either proteolytic cleavage, which gives rise to cleaved RAGE (cRAGE) or alternative splicing at
exon 9 resulting in a C-truncated form termed endogenous secretory RAGE (esRAGE). Image
regenerated from Buckley et al. (2010).
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Abstract

Chronic obstructive pulmonary disease (COPD) is a progressive condition characterized
by chronic airway inflammation and airspace remodeling, leading to airflow limitation that is
not completely reversible. Smoking is the leading risk factor for compromised lung function
stemming from COPD pathogenesis. First- and second-hand cigarette smoke contain thousands
of constituents, including several carcinogens and cytotoxic chemicals that orchestrate chronic
lung inflammation and destructive alveolar remodeling. Receptors for advanced glycation end-
products (RAGE) are multi-ligand cell surface receptors primarily expressed by diverse lung
cells. RAGE expression increases following cigarette smoke exposure and expression is elevated
in the lungs of patients with COPD. RAGE is responsible in part for inducing pro-inflammatory
signaling pathways that culminate in expression and secretion of several cytokines,
chemokines, enzymes, and other mediators. In the current review, new transgenic mouse
models that conditionally over-express RAGE in pulmonary epithelium are discussed. When
RAGE is over-expressed throughout embryogenesis, apoptosis in the peripheral lung causes
severe lung hypoplasia. Interestingly, apoptosis in RAGE transgenic mice occurs via conserved
apoptotic pathways also known to function in advanced stages of COPD. RAGE over-expression
in the adult lung models features of COPD including pronounced inflammation and loss of
parenchymal tissue. Understanding the biological contributions of RAGE during cigarette
smoke-induced inflammation may provide critically important insight into the pathology of
COPD.

Keywords: RAGE, COPD, tobacco, mouse model, lung
Running title: RAGE and COPD



Introduction

Chronic obstructive pulmonary disease (COPD) is defined by airflow obstruction that is
not fully reversible (Carp and Janoff, 1978). In particular, COPD involves chronic airway
inflammation and pulmonary emphysema, which is defined anatomically via pathology samples
as an abnormal permanent enlargement of airspaces distal to the terminal bronchioles
accompanied by destruction of their walls without obvious fibrosis (Pauwels et al., 2001). COPD
morbidity and mortality continue to rise as physician diagnoses of COPD increased from
approximately 7 million in 1980 to approximately 13.1 million in 2004 (Adams and Barnes,
2006). COPD was responsible for 8 million outpatient visits, 1.5 million emergency room visits,
and 672,000 hospitalizations in the U.S. in 2006 (US Department of Health and Human Services,
2009) and compared to 1980, deaths in 2007 increased 74% to over 124,000 people (American
Lung Association COPD Fact Sheet, 2011). While as recent as 2010 the cost associated with
COPD was $49.9 billion (Dalal et al., 2010), the precise pathobiochemical basis of COPD
exacerbated by voluntary or involuntary tobacco smoke exposure remains enigmatic.

Cigarette smoking is currently the most considerable risk factor for the development of
COPD, consisting of emphysema and chronic obstructive bronchitis (Anderson et al., 1964;
Fletcher and Peto, 1977; Thun et al., 2000; Hogg, 2004). Notwithstanding, only one quarter of
cigarette smokers develop clinically detectible airflow limitation and other symptoms of COPD,
suggesting an important role for genetic susceptibility (Sethi and Rochester, 2000; Stockley et
al., 2009). Although most people that develop COPD currently smoke cigarettes or have smoked
in the past, COPD also develops in individuals that have never smoked (Higgins, 1991). This

harmful outcome is due in part to exposure to second-hand smoke (Janson, 2004; Wakefield et



al., 2005; Eisner et al., 2006). Furthermore, because some former smokers still live with active
smokers and are observed to develop COPD later in life, passive smoke exposure is likely to
contribute to disease progression.

First- and second-hand smokers diagnosed with moderate COPD have altered
expression of several genes, including transcription factors, growth factors, and extracellular
matrix proteins (Ning et al., 2004). These and other gene products likely function to stimulate
the recruitment of inflammatory cells, cytokine secretion, cell death, and elevated protease
production observed after prolonged cigarette smoke exposure (Carp and Janoff, 1978; Wright
and Churg, 1990; Kuschner et al., 1996; Hautamaki et al., 1997; Sopori, 2002). As such, it is
critical to examine how genes influence disease presentation so that precise mechanisms
through which passive and active cigarette smoke contribute to COPD/emphysema can be

identified.

General Mechanisms of COPD Pathogenesis

Numerous reviews that address COPD pathogenesis, its impact, and plausible therapies
have been composed (Bridevaux and Rochat, 2011; Budinger and Mutlu, 2011; Caramori et al.,
2011; Lugade et al., 2011; Rooney and Sethi, 2011). The intent of the current work is to
concisely provide a foundational summary of conserved COPD modalities and discuss the
plausible influence of receptors for advanced glycation end-products (RAGE) signaling. The
prevailing pathogenic concept states that COPD is associated with chronic inflammation,
imbalances between proteases/antiproteases, oxidative stress, and an elevated apoptotic
index. Inflammation arising predominantly from neutrophilic contributions has been proposed

due to enhanced neutrophil abundance in bronchoalveolar lavage (BAL) and sputum from COPD

10



patients (Thompson et al., 1989; Stanescu et al., 1996; O'Donnell et al., 2004). Levels of
chemoattractants that recruit neutrophils and other potent inflammatory mediators are also
elevated in COPD, including leukotriene B4 (Beeh et al., 2003), CXCL2 and 8 (Keatings et al.,
1996; Tanino et al., 2002; Beeh et al., 2003), CXCL1 (Keatings et al., 1996), CXCL5 (Tanino et al.,
2002), IFN-y (Hodge et al., 2007), IL-1B (Thacker, 2006; Churg et al., 2009), and TNF-a (Barnes
and Karin, 1997). Matrix metalloproteinases (MMPs) produced by macrophages and
neutrophils are also misregulated in COPD (Shapiro, 1994). In particular, levels of MMP-1,
MMP-2, MMP-7, MMP-9, and MMP-12 are all up-regulated in pulmonary tissue, BAL, and/or
sputum of patients with COPD (Shapiro et al., 1993; Hautamaki et al., 1997; Ohnishi et al., 1998;
Pratico et al., 1998; Shaykhiev et al., 2009), however because smoke exposed MMP-9 knock out
mice are protected from emphysema, MMP-9 may require cooperation with other proteases
during adverse lung remodeling (Atkinson et al., 2011) The chemical assessment of tobacco
smoke reveals that it contains high levels of reactive oxygen species (ROS) that are in excess of
intrinsic antioxidant defense mechanisms (Pauwels et al., 2001; Barnes et al., 2003). Generated
in the airways, oxidants lead to cell dysfunction and/or death and also influence inflammatory
signaling and protease augmentation via NF-kB-mediated mechanisms (Moodie et al., 2004).
During the last decade, enhanced apoptosis stemming from diverse signaling pathways has also
been implicated in alveolar septal cell loss observed in COPD patients (Kasahara et al., 2000,
2001; Tuder et al., 2003; Petrache et al., 2006). As a programmed event of removing unwanted
cells and debris, apoptosis occurs via extrinsic signaling processes (Degterev et al., 2003), and

intrinsic mitochondria or endoplasmic reticulum-mediated processes (Darmon et al., 1995; Slee

11



et al., 1999). In summary, COPD is characterized by progressive destruction of the distal lung

and small airway obstruction resulting from chronic inflammation and elevated cell death.

Constituents of Tobacco Smoke

Tobacco smoke is a toxic and carcinogenic mixture of more than 5000 chemicals
(Talhout et al., 2011). Of these, around 400 have been quantified, at least 200 are toxic to
humans and/or experimental animals, and over 50 have been identified as known, probable, or
possible human carcinogens (Kirsti, 2004). Studies indicate that compared with mainstream
smoke collected under standard FTC/ISO smoking parameters, sidestream smoke has higher
levels of PAHs (Grimmer et al., 1987; Evans et al., 1993), nitrosamines (Brunnemann et al.,
1977, 1980; Hoffmann et al., 1979a; Ruhl et al., 1980), aza-arenes (Dong et al., 1978; Grimmer
et al., 1987), aromatic amines (Patrianakos and Hoffmann, 1979), carbon monoxide (Hoffmann
et al., 1979b; Rickert et al., 1984), nicotine (Rickert et al., 1984; Pakhale and Maru, 1998),
ammonia (Brunnemann and Hoffmann, 1975), pyridine (Johnson et al., 1973; Brunnemann and
Hoffmann, 1978), and the gas phase components 1,3-butadiene, acrolein, isoprene, benzene,
and toluene (Brunnemann et al., 1990). In addition to these deleterious compounds, other
factors such as the type of tobacco, the chemicals added to the tobacco, the way the tobacco
product is smoked, and, for cigarettes and cigars, the material in which the tobacco is wrapped
can also affect second-hand smoke chemical composition (International Agency for Research on
Cancer, 2002; National Toxicology Program, 2005; US Department of Health and Human
Services, 2006).

Cigarette smoke is also an important exogenous source of reactive glycation products

capable of promoting formation of AGEs, advanced glycation end-products, which are

12



irreversibly glycated proteins that efficiently bind RAGE (Cerami et al., 1997). Studies have
shown that both aqueous extracts of tobacco and cigarette smoke contain glycotoxins, highly
reactive glycation products that can rapidly induce AGE formation on proteins in vitro and in
vivo (Nicholl and Bucala, 1998; Nicholl et al., 1998). These activities can be eliminated by
passing the samples through a dry packed column of aminoguanidine, a potent and specific
inhibitor of AGE formation. Additional studies have shown that serum AGEs and apolipoprotein
B-linked AGE levels are significantly elevated in cigarette smokers relative to non-smokers and
AGEs or immunochemically related molecules are present at higher levels in the tissues of
smokers compared to non-smokers, regardless of the presence of diabetes (Nicholl et al.,

1998).

Receptor for Advanced Glycation End Products

RAGE are cell-surface receptors of the immunoglobulin superfamily expressed in many
cell types including endothelial and vascular smooth muscle cells, fibroblasts,
macrophages/monocytes, and epithelium (Brett et al., 1993). RAGE expression is most
abundant in the lung, from which it was initially isolated, and is selectively localized to well-
differentiated alveolar type | (ATI) epithelial cells (Schmidt, 2001). Identification in respiratory
epithelium (Dahlin et al., 2004; Koslowski et al., 2004) and studies that document RAGE-
mediated adherence to collagen IV (Demling et al., 2006) have led to the implication of RAGE in
important developmental processes such as the spreading, thinning, and adherence that
characterize the transitioning of ATl cells to squamous ATI cells. RAGE was first described as a
progression factor in cellular responses induced by AGEs that accumulate in hyperglycemia and

oxidant stress. Subsequent studies have distinguished RAGE as a pattern recognition receptor
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that also binds S100/calgranulins, amyloid-B-peptide, and HMGB-1 (or amphoterin), to
influence gene expression via divergent signal transduction pathways (Reddy et al., 2006;
Hudson et al., 2008; Kim et al., 2008; Toure et al., 2008). Because RAGE expression can also
increase when ligands accumulate (Schmidt, 2001), RAGE-ligand interaction may contribute to
chronic pathological states where ligands are common including diabetic complications,
neurodegenerative disorders, atherosclerosis, and inflammation (Hofmann et al., 1999; Taguchi
et al., 2000). Specifically, a host of pro-inflammatory responses such as those coordinated by
MAP kinases (ERK, JNK, and p38), NF-kB, ROS, and other pro-inflammatory mediators such as
TNF and IL-1 (Bianchi et al., 2010) result from RAGE-ligand interactions (Figure 2.1). In contrast
to short-lived cellular activation mediated by LPS, engagement of RAGE by its ligands results in
prolonged inflammation (Lin et al., 2009). If left unchecked, such chronic inflammation results
in severe tissue injury.

The full length membrane bound form of RAGE (MRAGE) contains an extracellular
variable V-region-like immunoglobulin domain crucial for ligand binding and two constant C-
region-like immunoglobulin domains, a single-pass hydrophobic transmembrane domain and a
short, 43 amino acid, highly charged cytoplasmic domain essential for intracellular signaling
(Buckley and Ehrhardt, 2010). The cytoplasmic domain of RAGE contains four possible
phosphorylation sites, $S391, S399, S400, and T401, of which only $S391 is conserved among
humans, mice, guinea pigs, rats, rabbits, dogs, and cats (Sakaguchi et al., 2011). Replacement of
S391 to alanine was sufficient to abrogate PKC{-dependent phosphorylation and subsequent
signal transduction in vitro (Sakaguchi et al., 2011). Although not explicitly stated, RAGE

behaves similarly to a receptor tyrosine kinase (RTK) cell surface receptor, requiring
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homodimerization to effectively potentiate intracellular signaling cascades (Zong et al., 2010).
Distinct alternative isoforms also exist for the receptor due to differential splicing variants of
the RAGE message. Dominant negative RAGE (dn-RAGE) is a membrane anchored splice variant
of RAGE capable of ligand binding but lacking the intracellular domain necessary for signal
transduction. Endogenous secreted RAGE (esRAGE) is generated via alternative splicing at exon
9 yielding the same V and C-regions of the full length-RAGE but lacks both the hydrophobic
transmembrane and the intracellular domains (Buckley and Ehrhardt, 2010). Additionally, full-
length RAGE can be cleaved by MMPs to render sSRAGE, a non-splice variant of RAGE closely
resembling esRAGE in structure and function (Yamakawa et al., 2011). These altered variants of
RAGE incapable of transducing signals are thought to function as decoy receptors that prevent
the interaction of mMRAGE with its ligands.

The pro-inflammatory role of RAGE in cardiovascular diseases is well documented (Yan
et al., 2009). Furthermore, several studies strongly suggest that RAGE signaling is a key
regulator of inflammation in major pulmonary diseases. A study demonstrated that abrogation
of RAGE signaling (using RAGE null mice) attenuated pulmonary ischemia and reperfusion injury
associated with decreased NF-kB activation and IL-8 production (Sternberg et al., 2008).
Another important role for RAGE signaling in lung disease shows that RAGE-deficient mice
under hyperoxic conditions survived longer than wild type controls and the mice had less
airway cellularity and diminished alveolar damage compared to wild type controls (Reynolds et
al., 2010). RAGE has been implicated in the fibrotic process in a number of tissues, including the
peritoneum, kidney, and liver (Li et al., 2004; De Vriese et al., 2006; Xia et al., 2008), where it

has been shown to promote fibrosis. In the lung, evidence continues to accumulate suggesting
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an important role for RAGE in pulmonary fibrosis, yet conflicting data portray RAGE as having
both protective and destabilizing functions. Acute lung injury (ALI) and a more severe condition
known as acute respiratory distress syndrome (ARDS) are characterized by deterioration of the
alveolar-capillary barrier and impaired alveolar fluid clearance (Lucas et al., 2009). ALl and ARDS
are associated with damage to ATl cells, a population of cells with significant RAGE expression,
and several different animal models of ALl express increased RAGE levels in BALF (Uchida et al.,
2006; Su et al., 2007, 2009; Zhang et al., 2008). A published study from our laboratory
considered the effects of smoke exposure on RAGE expression both in lung cells and mice
(Reynolds et al., 2008). The research revealed that RAGE and its ligands were up-regulated in
lung epithelial cells cultured with cigarette smoke extract (CSE) and that mice exposed to
cigarette smoke for 6 months had elevated RAGE expression in pulmonary epithelium (Reynolds
et al., 2008). While the full extent of RAGE function in smoke-induced COPD has not been
sufficiently examined, these studies demonstrate that RAGE may play a role in COPD

pathogenesis.

Contributions of RAGE to COPD Progression

RAGE and two of its ligands S100A12 and HMGB-1 were up-regulated in a rat alveolar
type I-like cell line (R3/1), a human alveolar type 1l-like epithelial cell line (A549), and a
macrophage-like murine cell line (RAW 264.7) following exposure to CSE (Reynolds et al., 2008).
S100A12 is a calcium-binding pro-inflammatory modulator and HMGB-1 is a non-histone
nuclear protein that acts as a potent pro-inflammatory mediator when secreted. In human
lungs with smoke-related lesions, widespread RAGE expression has been documented in

bronchiolar epithelia, small respiratory airways, reactive ATl cells, and alveolar macrophages
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(AMs; Morbini et al., 2006). The same study identified elevated S100A12 in polymorphonuclear
granulocytes and in extracellular fluid and the number and intensity of carboxymethyl-lysine
positive cells (cells that stain for AGEs) were measurably enhanced in epithelial and
inflammatory cells of the lungs of smokers (Morbini et al., 2006).

Another factor highly expressed in the lungs of smokers with COPD is early growth
response gene 1 (Egr-1), a zinc finger-containing, hypoxia-inducible transcription factor (Ning et
al., 2004). Egr-1 expression significantly increased in lung cell lines following CSE exposure in
vitro and it activated the RAGE promoter (Reynolds et al., 2006, 2008). Because the RAGE gene
also contains NF-kB and SP-1 promoter response elements (Li and Schmidt, 1997) and is
transcriptionally regulated by cis-acting Egr-1 (Reynolds et al., 2006), a possible auto-
inflammatory loop may be triggered suggesting cooperation between Egr-1 and RAGE in
chronic smoke-related inflammatory disease states. More recently, it was discovered that Ras, a
small GTPase that functions as a molecular switch in the control of diverse signaling cascades,
was induced in R3/1 cells following exposure to CSE, resulting in up-regulation of NF-«kB-
mediated secretion of TNF-q, IL-1B, and IL-8 (Figure 2.1; Reynolds et al., 2011a).

Our lab has recently expanded research into the biology of smoke-exposed primary
mouse AMs also known to express RAGE. Studies document that low levels of RAGE are
expressed by mouse primary macrophages during normal conditions and that RAGE
overexpression by these primary macrophages is associated with inflammation and the
coordination of lung damage (Morbini et al., 2006). Our studies indicate that acute exposure of
mice to CSE via nasal instillation resulted in diminished BAL cellularity and fewer AMs in RAGE

null mice compared to controls. Additionally, AMs isolated from wild type mice exposed to CSE
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significantly increased RAGE expression (Robinson et al., 2012). This recently published work
also demonstrated for the first time that RAGE null AMs exposed to CSE experienced reduced
Ras and p38 MAPK activation, less NF-kB translocation, and diminished expression of TNF-a and
IL-1B when compared to CSE exposed wild type AMs (Figure 2.1). Evidence suggests that
primary AMs coordinate CSE-induced inflammation, at least in part, via RAGE-mediated
mechanisms and that cooperation with alveolar epithelium in coordinated inflammatory

responses is likely.

Use of RAGE Transgenic Mice in Modeling Characteristics of COPD

Several animal models that seek to recapitulate various aspects of COPD have been
presented within the past decade. These models include mouse IL-1B over-expressers
(Lappalainen et al., 2005), rat VEGF signaling nulls (VEGF or VEGFR2 blockers: Kasahara et al.,
2000), intratracheal administration of active caspase-3 (Aoshiba et al., 2003) and several others
that aim to elucidate inflammatory and other destructive mechanisms during smoke-less and
smoke-exposed disease progression (Petrache et al., 2005; Giordano et al., 2008; Kang et al.,
2012). The vast majority of these models present emphysema-like anatomical characteristics
and inflammatory indexes in the presence of room-air and notable exacerbation in the
presence of cigarette smoke. Although RAGE has been shown to be a marker for many
inflammatory diseases including COPD, a genetic mouse model for COPD had not been
previously examined.

We generated a bi-transgenic in vivo mouse model that utilizes two transgenes to
conditionally up-regulate RAGE (Figure 2.2). One transgenic mouse line employs surfactant

protein C (SP-C) to drive expression of rtTA (reverse tetracycline transactivator) and another
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transgenic line contains binding sites for a complex between rtTA and doxycycline (dox;
Reynolds et al., 2011b). Although COPD is an adult lung disease, we initially sought to
characterize RAGE bi-transgenic mice during development with the realization that aspects of
COPD may be detected during organogenesis. Our model was thought to compliment research
that centers on bronchopulmonary dysplasia (BPD), an embryonic disease highly correlated
with emphysema in terms of oxidative stress, pulmonary inflammation, increased apoptosis,
protease/antiprotease imbalance and altered microvasculature (Hargitai et al., 2001; Danan et
al., 2002; Saugstad, 2003; Ekekezie et al., 2004; Speer, 2006). While COPD is characterized by
sustained inflammation and alveolar destruction, remarkably similar mechanisms are
implicated in the altered branching and impaired alveolarization observed in BPD (Bourbon et

al., 2009).

Embryonic RAGE Bi-Transgenic Mice Have Perturbed Distal Epithelium

Complete perinatal lethality was observed when dox was supplied to RAGE bi-transgenic
mice throughout embryogenesis. At embryonic day (E) 18.5, pulmonary tissues were severely
hypoplastic and only minimal respiratory surface area near the visceral pleura remained.
Several immunohistochemical and flow cytometric experiments demonstrated diminished
abundance of differentiated distal lung cell types, most notably ATl and ATII cells (Reynolds et
al., 2011b).

Altered cellular differentiation has not sufficiently been characterized in the distal lung
of COPD patients; however, new research has emerged demonstrating that human ciliated cells
can respond to cigarette smoke by promoting GDF15, a factor capable of driving Muc5A

expression in goblet cells (Wu et al., 2011). RAGE and RAGE ligands have been implicated in
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altered cellular differentiation of several cell types including smooth muscle cells, skeletal
myocytes and developing neural tissue (Suga et al., 2011; Kim et al., 2012; Riuzzi et al., 2012).
Thyroid transcription factor 1 (TTF-1; also known as Nkx2.1) is a key regulator of pulmonary
development and present in distal lung epithelium that can negatively regulate RAGE
expression (Reynolds et al., 2008) and SP-1 positively regulates the active promoter region of
TTF-1 in surfactant producing cells (Das et al., 2011). Because NF-kB (a crucial intermediate of
RAGE signaling) can interfere with SP-1 binding (Benjamin et al., 2010), RAGE may play a role in

inhibited surfactant synthesis observed when ATII cells are abnormally regulated.

Embryonic RAGE Bi-Transgenic Mice Have Abnormal Distal Pulmonary Endothelial Cell Growth
In addition to the decreased cellularity of the lungs, RAGE over-production disturbed
capillary growth and maintenance through the inhibition of FoxM1 (a critical transcription
factor necessary for endothelial expansion) and PECAM (a marker for endothelial cells)
expression (Geyer et al., 2011). Endothelial cell apoptosis has been observed in COPD patients
using TUNEL, immunohistochemistry and DNA ligation techniques that coincided with the
reduction of endothelial markers including VEGF and VEGFR2 (Kasahara et al., 2001).
Additionally Dinh-Xuan et al. and Peinado et al. both showed that resected lung samples from
COPD patients had extensive endothelial dysfunction, which they proposed to contribute to
hypertension (Dinh-Xuan et al., 1991; Peinado et al., 1998). It is hypothesized that vascular tone
in the lung can be regulated by direct stimulation of the vascular compartment by cigarette
smoke and indirect stimulation stemming from smoke-exposed epithelial cells. Our discoveries
relating to pulmonary endothelium in the RAGE bi-transgenic mouse correlate with numerous

studies that demonstrate RAGE signaling in cases of depressed endothelial function and
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increased barrier disruption (Sun et al., 2009; Pollreisz et al., 2010; Wolfson et al., 2011; Chen et

al., 2012; Huang et al., 2012).

Embryonic RAGE Bi-Transgenic Mice Have Extracellular Matrix Abnormalities

We also demonstrated that MMP-9 secretion is increased, coincident with diminished
collagen IV (a principle component of the alveolar basement membrane) deposition and
production (Bukey et al., 2011). COPD is characterized by an increase in several MMPs including
MMP-1, 2, 9, and 12 (Ohnishi et al., 1998; Geraghty et al., 2011). Other research groups have
also demonstrated AGE-RAGE dependent mechanisms in MMP-9 production (Ishibashi et al.,
2010; Zhang et al., 2010; Zhu et al., 2012). While not yet evaluated in our embryonic RAGE bi-
transgenic mouse model, MMPs 1 and 2 have been implicated as RAGE targets (Kamioka et al.,
2011; Du et al., 2012; Yu et al., 2012). Interestingly, MMP-1 has been shown to be up-regulated
not only in the lungs of COPD patients but in osteoarthritis as well, a chronic inflammatory
disease affecting articular cartilage (Steenvoorden et al., 2006). Ongoing research seeks to test
hypotheses related to matrix-targeting protease imbalances such as those that involve al-

antitrypsin.

Embryonic RAGE Bi-Transgenic Mice Have Elevated Parenchymal Cell Apoptosis

Thorough evaluations of apoptosis were performed in order to ascertain causes for the
hypoplastic lung phenotype in the embryonic RAGE bi-transgenic mouse. RAGE over-expressing
lungs detrimentally declined during the canalicular phase, a period identified by terminal
bronchiole branching, initial alveolarization, and microvascular organization. The abrupt loss of

tissue was observed in tandem with a significant increase in pro-apoptotic Fas ligand (FasL), a
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decrease in the anti-apoptotic factor Bcl-2, elevated cleaved active caspase-3 (a critical
mediator of cell death), and quantifiable apoptosis by TUNEL assessment (Stogsdill et al., 2012).
Electron microscopy also confirmed apoptosis via the detection of numerous bleb-like
structures within cells that were physically separated from the underlying basement
membrane. Importantly, cellular proliferation was not changed, suggesting there was no
feedback mechanism to compensate for elevated cell death. Evidence is mounting that
demonstrates active apoptosis of epithelial and endothelial cells in human COPD patients
(Segura-Valdez et al., 2000; Kasahara et al., 2001; Majo et al., 2001; Yokohori et al., 2004;
Hodge et al., 2005; Imai et al., 2005). Lending support for FasL-mediated apoptosis observed in
RAGE bi-transgenic mice was research by Mahali et al. that demonstrated FasL elaboration is a
direct product of AGE-RAGE ligation (Mahali et al., 2011). Furthermore, RAGE and its ligands
have been shown to promote apoptosis in other tissue types, including myocytes (Tsoporis et
al., 2010), endothelial cells (Chen et al., 2010), neuronal cells (Kim et al., 2011), epithelial cells
(Jin et al., 2011), and pancreatic B-cells (Lee et al., 2010). Our studies have shown for the first
time that increased expression of RAGE using transgenic mouse technology directly activates
apoptosis in lung parenchyma. In fact, sustained RAGE expression during development is
capable of modeling disorders characterized by cell loss including BPD. Furthermore, these data
reveal important RAGE-mediated mechanisms that control cell quantity possibly introduced at

the initiation of smoke-induced COPD pathogenesis.

Adult RAGE Over-Expression Yields an Emphysematous Lung
Conditional up-regulation of RAGE for 2 to 3 months in the adult bi-transgenic mouse

lung lead to incremental dilation of alveolar spaces, assessed by standard H&E staining
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(Stogsdill et al., 2011). Quantification of the mean chord length of the airspace revealed
progressive dilation of alveolar spaces as RAGE over-expression persisted (unpublished data).
The adult RAGE bi-transgenic mice had increased MMP-9 and decreased elastin expression
consistent with other COPD models. Furthermore, RAGE bi-transgenic mice manifested
significant inflammation measured by elevated BALF protein, leukocyte infiltration, and
secreted cytokines (MIP-2, IFN-y; Stogsdill et al., 2011). These data support the concept that
innovative transgenic mice that over-express RAGE may model pulmonary inflammation and
alveolar destabilization independent of tobacco smoke. Furthermore, it validates RAGE
signaling as a target pathway in the prevention or attenuation of smoke-related inflammatory

lung diseases.

Conclusions

Despite the progression in the field of RAGE biology in the context of lung disease, the
full extent of RAGE localization, the molecular mechanisms that control its expression and its
downstream effects should remain topics of focused investigation. While a great deal is known
about COPD, relatively little is known about factors that perpetuate inflammation or modalities
that sustain them. Our research has shown that mechanisms of COPD progression including
chronic inflammation, imbalances involving proteases, oxidative stress, and elevated apoptosis
may be mediated by RAGE. Several endogenous (5100/calgranulins, HMGB-1, AGEs) and
exogenous ligands (cigarette smoke) may be responsible for the sustained activation of RAGE
leading to disease progression (Figure 2.1). As such, it remains possible that targeting RAGE
may, at least in part, provide successful opportunities in the therapeutic alleviation of

debilitating inflammatory lung disease exacerbated by tobacco smoke.
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Figure 2.1: RAGE Signaling Pathways. Deleterious effects characteristic of COPD are elicited via several
pro-inflammatory signaling pathways observed in RAGE-expressing alveolar epithelial cells and resident
alveolar macrophages (*). Direct stimulation of RAGE by tobacco smoke, de novo AGE generation in a
tobacco smoke environment, or genetic up-regulation of RAGE in the lungs of conditional bi-transgenic
mice results in characteristics of COPD including inflammation, matrix destabilization, and apoptosis.
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obtaining progeny from two transgenic lines of mice. The reverse tetracycline transactivator (rtTA) was
produced under the control of the human surfactant protein C (hSP-C) promoter in distal respiratory
epithelium. Following the administration of doxycycline (dox), a dox-rtTA complex activates the TetO

promoter, thereby expressing RAGE.
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Abstract

The receptor for advanced glycation end-products (RAGE) has increasingly been
demonstrated to be an important modulator of inflammation in cases of pulmonary disease.
Published reports involving tobacco smoke exposure have demonstrated increased expression
of RAGE, its participation in pro-inflammatory signaling and its role in irreversible pulmonary
remodeling. The current research evaluated the in vivo effects of short-term secondhand
smoke exposure in RAGE knock out and control mice compared to identical animals exposed to
room air only. Quantitative PCR, immunoblotting, and immunohistochemistry revealed
elevated RAGE expression in controls after four weeks of exposure and an anticipated absence
of RAGE expression in RAGE knock out mice regardless of smoke exposure. Inflammatory cell
behaviors were assessed by measuring Ras activation, NF-kB activity, and cytokine elaboration.
Furthermore, bronchoalveolar lavage fluid (BALF) was procured from RAGE knock out and
control animals prior to assessment of inflammatory cells and molecules. As a general theme,
inflammation induced by tobacco smoke exposure was influenced by the availability of RAGE.
These data reveal captivating information suggesting a role for RAGE signaling in lungs exposed
to tobacco smoke and further research is necessary in order to fully explain roles for receptors
such as RAGE in cells coping with exposure.

Keywords: RAGE, tobacco, lung,

Running Title: RAGE protects from tobacco-induced inflammation
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Introduction

Current trends indicate that by 2030, tobacco use will kill an estimated 9 million people
annually (Xie, 2008). The link between tobacco smoke and COPD is well established. Several
factors contribute to the progression of COPD, including chronic inflammation, oxidative stress,
protease/antiprotease imbalance, and apoptosis (MacNee, 2005). In cases of COPD, chronic
inflammation results from tobacco smoke exposure in 80-90% of cases and oxidative stress
resultant from smoking delineates COPD pathogenesis (Moussa, 2014). While it has been
observed, the relationship between secondhand smoke (SHS) and COPD has only recently been
contemplated (Leberl, 2013). COPD presents a significant burden internationally, costing $49
billion in the United States alone. It is currently the third most prevalent cause of death in the
United States and the fourth worldwide (Pauwels 2001, Minino 2010), and is projected to
become the third leading cause of death worldwide by 2020 (Vijayan, 2013). A recent review of
114 publications containing 155 studies concluded that animals exposed to SHS and
mainstream exposure noted that it was highly evident that SHS has many of the same
mechanisms and detrimental effects that mainstream smoke does, as indicated by increase

expression cytokine/chemokine levels including TNF-o. and IL-8 (Leberl, 2013).

Of particular interest to our lab is the participation of RAGE in pulmonary inflammation.
As a cell-surface membrane protein of the immunoglobulin superfamily, RAGE plays an
important role in intracellular signaling, including developmental tasks including cell spreading
and adherence (Winden, 2013). Following organogenesis, RAGE is localized to the basolateral
membrane of differentiated human alveolar epithelial cells, where it influences interactions

with the extracellular matrix and may contribute to structural and apoptotic changes associated
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with maintenance of alveoli (Demling, 2006, Stogsdill, 2012). RAGE also has a well-known
inflammatory role in cardiovascular and pulmonary diseases, among others (Robinson, 2012).
Due to its importance in several inflammatory conditions, RAGE abrogation has been suggested
as a possible therapeutic intervention for COPD (Chen, 2013).

While RAGE has been for the focus of several studies, even specifically in the context of
tobacco smoke exposure, the current undertaking is the first study to our knowledge that
presents data detailing inflammation in the context of RAGE availability after acute SHS
exposure. This work confirms in vitro studies from our laboratory showing inflammatory
abrogation after siRNA knockdown of RAGE in human cells (Reynolds, 2010). General
assessments included histological evaluations and the characterization of bronchoalveolar
lavage fluid. To assess molecular markers of inflammation, immunoblotting, quantitative PCR,

and IHC analysis of RAGE were conducted.

Evaluating SHS and not primary smoking provides additional impact in the context of
respiratory disease. Many studies have proposed a correlation between tobacco smoke
exposure (mainstream or secondhand), and Acute eosinophilic pneumonia (AEP) (Philit, 2002;
Uchiyama, 2008; Shorr, 2004). A recent study from Kyung Chung et al. demonstrated the
development of AEP after only 4 weeks of secondhand smoke exposure (Kyung Chung, 2014).
To increase the realism of involuntary smoke exposure, we used nose-only exposure of SHS
(InExpose System, Scireq). Traditionally, tobacco smoke studies have utilized the particulate
fraction of cigarette smoke, and not the complete aerosol. More than 6000 chemicals have

been identified in tobacco smoke aerosol and recent emphasis on direct exposure to the full
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makeup of primary and SHS (Okuwa, 2010; Aufderheide, 2003; Scian, 2009; Phillips, 2005)

presents a more realistic approach for comparison to human tobacco use (Thorne, 2014).

Materials and Methods

Mice: Wild type mice of C57BI/6 background were obtained from Jackson Laboratories (Bar
Harbor, ME). RAGE knock out mice were generated on a C57BL/6 background. Mice were
housed in a conventional animal facility, supplied with food and water ad libitum, and kept on a

12-hour light—dark cycle.

Cigarette Smoke Exposure: Mice were exposed to SHS generated from 3R4F research cigarettes
from Kentucky Tobacco Research and Development Center, University of Kentucky in nose-only
exposure system (InExpose System, Scireq). Mice were individually placed in soft restraints and
connected to an exposure tower, wherein a puff of smoke generated every minute results in 10
seconds of CS exposure followed by 50 seconds of fresh air. 5 mice in each group were exposed
to smoke from two cigarettes over 10 minutes, then allowed to breathe room air for 10
minutes, then exposed to smoke from one cigarette over an additional 10 minutes. This
procedure was repeated daily for 4 weeks and compared to similar groups of mice (n=5 per
group) restrained and exposed to room air for the same duration over the same period of time.
The SHS challenge was determined to be at an acceptable level of particulate density
concentration according to previously published reports (Rinaldi et al., 2012; Vlahos et al.,
2010). Animal use was in accordance with IACUC protocols approved by Brigham Young

University.
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Anesthesia: Avertin was freshly prepared before the mouse sacrifices by dissolving 10g of
tribromoethyl alcohol into tertiary amyl alcohol. This solution was vortexed to dissolve all
crystals, then portioned into aliquots of .25ml in 15ml tubes stored at 4°C and protected from
light. 9.75ml of ddH20 are added to an aliquot as needed for surgeries. The resultant 2.5%
avertin solution is used as needed for the surgeries, and not used more than 10 days from
dilution. The avertin was administered via a 29.5 gauge needle and syringe into the lower
abdomen. About .30 ml was given to each mouse. Full anesthesia was ensured prior to surgical

exsanguination.

Bronchoalveolar Lavage: Immediately after euthanasia, the trachea was exposed and
cannulated with a 20-gauge catheter. PBS was lavaged according to the weight of the mouse
prior to surgery, and removed. Lavage fluid was then centrifuged at 4°C, following which total
cells were counted via hematocytometer. An aliquot of cells was used for a differential count

using a Wright stain.

Histology and Immunohistochemistry: After euthanasia, one lung from animals exposed to
smoke or room air was inflation-fixed at 25 cm of water pressure with 4% paraformaldehyde in
PBS for 1 minute, processed, and sectioned to 5 microns. The other lung was split in two and
frozen in liquid nitrogen for RNA and protein isolation. Sections were stained with antibodies

against RAGE and the appropriate biotinylated secondary antibodies (Winden et al., 2013).

Protein and RNA Characterization: Total protein from whole lung was obtained after tissue
homogenization with RIPA buffer supplemented with protease inhibitors (Fisher Scientific).

Following centrifugation, the supernatant was analyzed with BCA Protein Assay Kit (Thermo
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Scientific) for quantification. RNA was isolated using TRIZOL reagent (Invitrogen). Optical
density was employed to determine RNA concentration following isolation. Immunoblotting for
RAGE protein and quantitative PCR for RAGE mRNA were completed as already outlined
(Stogsdill 2013). Concentrations of IL-8 were obtained using a molecule-specific ELISA kit used

as directed in the manufacturer’s instructions (RnD Systems, Minneapolis, MN).

Results

Mice Exposed to Acute SHS Up-Regulate RAGE Expression

Mice were exposed to 4 weeks of SHS as outlined and control mice exposed to room air were
maintained for comparison. Quantitative RT-PCR demonstrated that acute SHS lead to a
significant increase in the transcription of RAGE mRNA in wild type mice when compared to
room air exposed controls (Figure 3.1A). As expected, RAGE was not detected in RAGE knock
out mice regardless of smoke exposure (Figure 3.1A). Immunoblotting was completed In order
to correlate RAGE protein expression with mRNA levels. Blotting for RAGE revealed that SHS
was sufficient to increase RAGE levels when compared to room air controls (Figure 3.1B). As
was the case with the mRNA assessments, no RAGE protein was detected in RAGE knock out
animals (not shown). We next completed a qualitative evaluation of RAGE expression in the
SHS-exposed lung. Immunohistochemistry revealed that RAGE expression increased in the lung
parenchyma following SHS exposure (Figure 3.2) when compared to basal RAGE expression

observed in the room air-exposed wild type animals (Figure 3.2).
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RAGE Mediates the Activation of SHS-Induced Ras and NF-«xB

In order to identify downstream molecules that participate in RAGE signaling during short-term
inflammatory response to SHS, quantitative assessments of active Ras and NF-kB were
evaluated. Lungs from SHS-exposed wild type mice presented significantly increased levels of
active Ras when compared to room air controls (Figure 3.3). However, Ras activation was not
significantly different in RAGE knock out animals notwithstanding smoke exposure.
Furthermore, Ras activity was significantly decreased in SHS-exposed RAGE knock out animals
compared to SHS-exposed wild type animals (Figure 3.3).

NF-kB is a central intermediate in RAGE signaling that bridges the gulf between intracellular
signal transduction and a programmed nuclear response. We observed that NF-kB activity was
significantly increased in the lungs of wild type animals exposed to SHS when compared to
room air controls (Figure 3.4). We also discovered that NF-kB activity was significantly
decreased in SHS-exposed lungs that lack RAGE expression when compared to RAGE-expressing
lungs following SHS exposure (Figure 3.4). These results reveal that SHS exposure correlated
with increased levels of these important inflammatory perpetuation markers, while protection

from activation was afforded by absence of RAGE.

RAGE Ablation Diminishes SHS-Induced Pulmonary Inflammation

To further characterize SHS-mediated inflammatory responses, markers of pulmonary
inflammation were assessed in bronchoalveolar lavage fluid (BALF) obtained from each
experimental group. Because cells respond to stresses by secreting into and altering BALF, its
classification is an excellent measure to evaluate organ-level responses. BALF from wild type
mice exposed to SHS had significantly more protein compared to room air controls (Figure
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3.5A), suggesting elevated vascular permeability coincident with extravasation observed in
inflammation. Conversely, protein levels were not different in RAGE knock out lungs in either
the presence or absence of SHS exposure (Figure 3.5A). BALF also showed a SHS-mediated
increase in total BALF cells (Figure 3.5B). While total cells were elevated in RAGE knock out
lungs with and without SHS, there was no SHS-mediated increase when compared to controls
(Figure 3.5B). An evaluation of the cells observed in BALF led to the discovery that
polymorphonuclear cells (PMNs) were significantly increased in wild type BALF after SHS
exposure; however, RAGE knock out lungs did not induce PMN extravasation during SHS
exposure (Figure 3.5C). Lastly, IL-8, a potent chemoattractant that functions as a pro-
inflammatory cytokine, was quantified in BALF. There was a significant increase in secreted IL-8
in wild type BALF after SHS exposure when compared to BALF from room air exposed controls
(Figure 3.6). RAGE abrogation in knock out lungs was sufficient to significantly inhibit SHS-

induced IL-8 secretion (Figure 3.6).

Discussion

Though often overlooked, the interaction between lungs and the atmospheric air
accounts for a significant portion of the exogenous materials humans encounter. Historical
records indicate inhaled agents for medicinal purposes have been in use for more than 4000
years (Rau, 2005). Under normal circumstances, the lung uses cytokines, resident
macrophages, and other typical immune response factors to respond to exogenous pathogens
(Laskin, 2009). In the case of tobacco smoke exposure, persistence of these inflammatory
mediators may account for the exaggerated inflammatory response that leads to the COPD

phenotype (Robinson, 2012). Our discovery that RAGE is increased in the lungs of mice
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exposed to SHS demonstrates that this effective modulator of inflammation functions when
lungs are involuntarily exposed to side stream smoke. In fact, the observation that RAGE is
elevated in the lungs of SHS-exposed mice opens a new area of RAGE research; further
implicating RAGE as a dynamic, multi-functional mediator of lung disease.

To our knowledge this is the first study to investigate the inflammatory impact of the
absence of RAGE via RAGE knock out animals in the context of SHS exposure. Our lab has
provided unequivocal evidence for RAGE-mediated inflammation due to tobacco smoke
(Reynolds, 2010; Reynolds, 2006; Reynolds, 2011; Robinson, 2012, Winden, 2012). That
inflammation was seen after only 4 weeks of acute SHS exposure confirms the harmfulness of
SHS as an agent that exacerbates lung disease complications. Secondly, protection in RAGE
knock out animals from enhanced activation of pro-inflammatory signaling intermediates such
as Ras and NF-kB further clarify a central role or RAGE in inflammation. However, additional
research is still necessary because of the incomplete protection from SHS exposure in RAGE null
animals that indicates other parallel pathways through which inflammatory signals are

conveyed.

Relevance of Research

This research is medically relevant because it provides a clear snapshot of the potential
initial triggers of inflammation that can lead to prolonged COPD diagnoses. It is well
understood that smoking is harmful to health, however debate continues regarding the status
of SHS and disease progression. This research helps mechanistically clarify the initiation of
inflammation, and indicates how genetic factors may contribute to individual susceptibility to

COPD. Physicians have begun to recognize the importance of cytokines in COPD patients as

50



evidenced by current studies on the use of blocking antibodies for TNFa and IL-8 and planned
studies employing antibodies against IL-17, IL-18, IL-1B, and TSLP (Caramori, 2014). Though
these studies have yet to unlock the key to reversing COPD, the prominent reduction of the
inflammatory response in RAGE knock out animals indicates the possibility of finding successful
therapeutic targets (cytokines, receptors, transcription factors, or intermediates) in the

inflammatory cascade.
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Figure 3.1: RAGE Quantification. A, There was a significant increase in the expression of RAGE mRNA by
wild type mice exposed to secondhand smoke (SHS) compared to animals exposed to room air (RA).
Transcripts were normalized to GAPDH and representative data from experiments performed in

triplicate are shown. *p <0.05. B, Immunoblotting revealed that RAGE was increased in WT + SHS
animals compared to WT + RA.
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Figure 3.2: RAGE Immunohistochemistry. Immunohistochemical stalnlng for RAGE demonstrated
increased expression in the lung parenchyma following SHS exposure for 4 weeks compared to RA
controls.
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Figure 3.3: Ras Elisa. Active Ras was significantly elevated in wild type animals following SHS exposure
compared to RA controls and active Ras was significantly decreased in RKO + SHS compared to WT +
SHS. Assessments of Ras activity included positive (+) and negative controls (-). Data are representative
of triplicate experiments and *p < 0.05.
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Figure 3.4: NF-kB Elisa. Active NF-kB was significantly increased after exposure of WT mice to SHS. NF-
kB was still elevated in RKO + SHS; however, WT + SHS mice had significantly more active NF-kB when
compared to RKO + SHS mice. Data are representative of triplicate experiments and *p < 0.05.
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Figure 3.5: BALF Total Protein and Cells. A,
Total BALF protein was assayed using the BCA
technique to demonstrate vascular
permeability. Protein was significantly elevated
in WT + SHS animals compared to WT + RA.
There was no change in RKO animals. Data are
representative of triplicate experiments and *p
<0.05. B, Total BALF cells were significantly
increased in WT + SHS animals compared to WT
+ RA. There was no change in total cells in the
RKO animals. Data are representative of
triplicate experiments and *p < 0.05. C, The
percentage of PMNs was significantly higher in
WT + SHS compared to WT + RA animals. There
was no change in % PMNs in RKO + SHS mice.
Data are representative of triplicate
experiments and *p < 0.05.
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Figure 3.6: IL-8 Elisa. Secreted IL-8 was assessed by ELISA and there was a significant increase in BALF
from WT + SHS compared to WT + RA. RKO + SHS was significantly lower compared to WT + SHS. Data
are representative of triplicate experiments and *p < 0.05.
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