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Abstract 

c-Met Initiates Epithelial Scattering through Transient Calcium Influxes 
and NFAT-dependent Gene Transcription 

 
Peter Ronald Langford 

Department of Physiology and Developmental Biology, BYU 
Doctor of Philosophy 

 
Hepatocyte growth factor (HGF) signaling drives epithelial cells to scatter by breaking 

cell-cell adhesions and migrating as solitary cells, a process that parallels epithelial-
mesenchymal transition. HGF binds and activates the c-Met receptor tyrosine kinase, but 
downstream signaling required for scattering remains poorly defined. This study addresses this 
shortcoming in a number of ways. 

A high-throughput in vitro drug screen was employed to identify proteins necessary in 
this HGF-induced signaling. Cells were tested for reactivity to HGF stimulation in a Boyden 
chamber assay. This tactic yielded several small molecules that block HGF-induced scattering, 
including a calcium channel blocker. 

Patch clamping was used to determine the precise effect of HGF stimulation on Ca2+ 
signaling in MDCK II cells. Cell-attached patch clamping was employed to detect Ca2+ signaling 
patterns, and channel blockers were used in various combinations to deduce the identity of Ca2+ 
channels involved in EMT. The results of these experiments show that HGF stimulation results 
in sudden and transient increases in calcium channel influxes. These increases occur at 
predictable intervals and rely on proper tubulin polymerization to appear, as determined through 
the use of a tubulin polymerization inhibitor. Though multiple channels occur in the membranes 
of MDCK II cells, noticeably TRPV4 and TrpC6, it is TrpC6 that is specifically required for 
HGF-induced scattering. 

These HGF-induced calcium influxes through TrpC6 channels drive a transient increase 
in NFAT-dependent gene transcription which is required for HGF-induced EMT. This was 
determined through the use of luciferase-based NFAT reporter assays and confirmed through 
confocal immunofluorescence. 

Using a small-molecule inhibitor of WNK kinase, it was determined that loss of WNK 
kinase function is sufficient to prevent HGF-induced EMT. Furthermore, patch-clamp analysis 
demonstrated that WNK kinase significantly increases channel opening at the surface of MDCK 
cells, indicating a possible mechanism of action for c-Met inhibition, but leaving doubt as to 
whether WNK kinase is in fact normally involved in c-Met signaling, or whether it is simply 
permissive. 

 

 

 

Keywords: cancer, c-Met, HGF, calcium, NFAT, tubulin, epithelial-mesenchymal transition, 
WNK kinase  
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Chapter 1: Introduction 
Epithelial-mesenchymal transition (EMT), where individual cells detach from epithelial 

tissues and migrate to distant sites, is an essential process in embryonic development. EMT 

occurs during cancer metastasis, and it is thought that inappropriate activation of signaling that 

drives EMT in development drives cancer progression in tumors (Thiery, 2003). Scatter 

factor/hepatocyte growth factor (HGF), which binds and activates the c-Met receptor tyrosine 

kinase, drives EMT during development (Sonnenberg et al., 1993), scattering of epithelial cells 

in culture (Weidner et al., 1990), and is implicated in cancer progression (Renzo et al., 1995). 

Overexpression or activating mutations of c-Met are observed in a number of tumor types and 

are associated with increased cell proliferation, survival, and cancer metastasis. 

Despite the clinical relevance of HGF signaling, it remains poorly defined at the 

molecular level. One reason is that approaches designed to dissect entire signaling networks have 

not been applied to HGF signaling. Signaling immediately downstream of the c-Met receptor has 

received a significant amount of research attention. A number of additional components have 

also been implicated in HGF signaling. However, their position in any c-Met “pathway” remains 

unclear and the relationship of specific signaling components with specific signaling outcomes 

(scattering, proliferation, and survival) also complicates understanding of this signaling network.  

This study employs an unbiased chemical screening approach to identify molecular 

components of HGF signaling. Identification of a neuronal calcium channel blocker as an 

inhibitor of HGF signaling led us to observe rapid, large, and transient increases in calcium 

influxes in MDCK cells stimulated with HGF. We show that NFAT-dependent gene 

transcription is triggered by calcium influxes and that NFAT is required for the HGF-induced 

cell scattering characteristic of EMT. 
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A review of c-Met signaling and other receptor tyrosine kinases 

Scatter factor or hepatocyte growth factor (HGF) triggers scattering of epithelial cells in 

culture. Cell treated with HGF undergo dramatic changes in cell morphology, including cell 

spreading, increased migration, and detachment of cell-cell adhesions. Cells tightly integrated 

into epithelial tissues instead become solitary, migratory, and invasive. This process mimics the 

early stages of EMT, a developmental program in which individual epithelial cells detach from 

tissues and migrate to distant sites as individual cells or groups of cells. In addition to triggering 

cellular events that strikingly resemble EMT, HGF also triggers increased cell proliferation and 

survival. In development, HGF triggers EMT in several instances, most notably the complete 

scattering cells of the dermamyotome (Dietrich et al., 1999). HGF signaling is also linked with 

cancer progression, driving changes in cell proliferation, survival, and the cellular events that 

drive metastasis. Cellular events associated with metastasis include breakdown of cell-cell 

adhesions, initiation of migration, invasion of surrounding tissues, and colonization of distant 

tissues with tumor cells, a strikingly similar series of events to developmental EMT programs. 

HGF is the growth factor ligand for the c-Met receptor tyrosine kinase (Naldini et al., 

1991). Receptor tyrosine kinases (RTKs) are typically activated through ligand-induced 

dimerization, and the c-Met receptor is no exception. In this article we explore the static structure 

of the c-Met signaling network in an effort to understand how the cell uses the c-Met signaling 

network to drive EMT. Since the static structure of c-Met signaling is closely related to receptor 

tyrosine kinase signaling generally, we will also consider how network dynamics and signaling 

context might allow cells to differentiate c-Met activation from activation of other RTKs. 

c-Met as a receptor tyrosine kinase 

C-met is one of a diverse array of receptor tyrosine kinases, which are involved both in 

normal homeostasis and in various disease states. There are 58 receptor tyrosine kinases 
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belonging to 20 families of between one and six members each. These receptors bear an 

extracellular ligand binding site and an intracellular tyrosine kinase domain. These two domains 

are separated by a single transmembrane domain. While each subfamily of receptor tyrosine 

kinases is activated by a different ligand, the mechanism of ligand-induced activation is largely 

conserved (Lemmon and Schlessinger, 2010). Receptor dimerization, driven by ligand binding, 

brings the tyrosine kinase domains of receptor tyrosine kinases into proximity to facilitate trans 

phosphorylation. Receptor phosphorylation is the initial event that then triggers downstream 

activation of a number of signaling modules. In fact, phosphorylated receptors act as a critical 

component in RTK signaling, allowing recruitment of a wide variety of SH2 domain-containing 

downstream effectors. Thus signal branching can occur at the level of the receptor, as multiple 

signaling modules headed by different SH2 domain containing proteins are activated following 

receptor phosphorylation. 

Proteins recruited to phosphorylated receptor tyrosine kinases have been extensively 

studied. One such protein is Grb2, which, besides being used by c-Met specifically, is also an 

important signaling node in networks downstream of most other receptor tyrosine kinases. Grb2 

is a critical component of an important signaling module in RTK signaling networks. It stands at 

the extreme upstream of the MAP/ERK kinase cascade, acting to recruit the Ras GEF SOS1 into 

an RTK/Grb2/SOS1 signaling complex and thus to the membrane, thereby initiating activation of 

Ras and of the downstream MAPK/ERK kinase cascade. In fact, SOS1 recruitment to the 

membrane and the subsequent activation of Ras is a major theme in RTK signaling and can occur 

through additional mechanisms. SOS1 can be recruited to the membrane by formation of several 

other signaling complexes, including c-Met/RanBP9/SOS1 (Graziani et al., 1991) and c-

Met/Grb2/Shc/SOS1 (Mood et al., 2006b; Wang et al., 2002). In addition to direct recruitment of 
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SOS1 by activated c-Met receptors, activation of the oncogenic kinase Src by phosphorylated c-

Met receptors (Wada et al., 1998) can induce formation of a FAK/Grb2/SOS1 complex (Stefan et 

al., 2001), which then stimulates Ras nucleotide exchange and activation (Schlaepfer et al., 

1994). This indirect mechanism may allow for activation of the SOS1/Ras signaling module at 

different times following RTK activation. 

Other examples of important signaling nodes directly recruited and activated by 

phosphorylated receptors include phosphatidylinositol-3-kinase (PI3K), PLC, and the namesake 

of the SH2 domain, Src. Bearing SH2 domains, these proteins are activated downstream of a 

wide variety of RTKs. Activation of these proteins can be accomplished by direct activation 

through their SH2 domain-mediated recruitment into c-Met receptor tyrosine kinase complexes 

(Li et al., 2009). These proteins can also be activated downstream of RTKs indirectly, which can 

affect the timing of activation following receptor activation. For example, PI3K can also be 

activated downstream of c-Met indirectly, downstream of GTP-bound Ras (Fan et al., 2001; 

Graziani et al., 1993). Activation of PI3K downstream of Ras requires c-Met induction of Ras 

nucleotide exchange by the Ras GEF SOS1, an event that follows SOS1 recruitment to the 

membrane by the multiple possible mechanisms mentioned in the preceding paragraph. 

Activation of the above signaling components is highly conserved within diverse RTK 

signaling networks, as illustrated by reports where the activity of one RTK is able to compensate 

for the loss of function of another related RTK. For example, in colorectal cancer cells, 

expression of c-Met is sufficient to rescue an EMT phenotype when EGFR function is blocked 

(Liska et al., 2010). Despite similarities in usage of major signaling modules, different RTKs 

generate different cellular responses in the same cell type. MDCK cells are stimulated to undergo 

EMT when the c-Met RTK is activated, but not in response to activation of EGFR or VEGFR 
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receptor tyrosine kinase systems. This is also true in terms of molecular effects following 

activation of different RTK signaling networks; c-Met and EGFR have opposite effects on Gab1 

expression, for example, with c-Met upregulating protein activity and with EGF downregulating 

it (Maroun et al., 1999a).  

The striking conservation of signaling mechanisms between c-Met and other RTK 

signaling networks begs the question of how the cell differentiates between c-Met activation and 

activation of other RTK systems in order to generate the molecular and phenotypic responses 

that drive EMT. Some RTKs employ a greater number of proteins to control signal transduction 

through the same signaling modules (an example is FGF receptor tyrosine kinase, which has a 

larger number of regulatory proteins than the closely related EGF receptor tyrosine kinase 

(Kiyatkin et al., 2006)), which might account for differences in RTK signaling outcomes. This is 

important since it can affect the relative timing or intensity of shared signaling module activation 

between otherwise similar RTK signaling network systems, thus generating different cellular 

signaling outcomes. In fact the timing of signaling seems to alter the outcome of a signaling 

network significantly. It has been observed that alterations in the timing of MAPK/ERK 

signaling are associated with distinct signaling outcomes, namely proliferation versus apoptosis, 

of TGFα signaling in intestinal epithelial cells (Lau et al., 2011). Thus, it is likely more than the 

static architecture of a signaling network that provides information to the cell in determining 

cellular responses to network activation. 

Feedback loops within signaling modules are also a common feature within receptor 

tyrosine kinase signaling networks, affecting the intensity of signaling module activation. 

Generally, negative feedback loops provide stability to signaling networks, while positive 

feedback loops provide exponential signal amplification or suppression. Examples of feedback 
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loops in c-Met signaling affect the MAPK/ERK signaling module. In addition to the Ras-

dependent activation discussed earlier, the MAPK/ERK signaling module can also be activated 

by c-Met/Gab1/Shp2 (Lamorte et al., 2003) or c-Met/Grb2/Gab1/Shp2 complexes (Grotegut et 

al., 2006). These Shp2-containing complexes are affected by positive and negative feedback 

loops. First, the MAPK/ERK module increases activity of PI3K activity, which increase Gab1 

activity, which increases activation of the MAPK/ERK module and yet more PI3K activity. 

Thus, activation of MAPK/ERK module signaling creates a positive feedback circuit through 

PI3K and Gab1 to exponentially increase signal output (Maroun et al., 1999b; Schaeper et al., 

2007; Weidner et al., 1996). In contrast, a negative feedback loop that reduces late signaling 

intensity occurs when prolonged activation of c-Met induces degradation of Gab1 through 

targeted ubiquitylation, though this circuit remains more poorly defined at the molecular level 

(Yu et al., 2001). Importantly, arrangement of multiple feedback loops within a single signaling 

module can generate complex effects on overall signaling output, particularly as a function of 

time (e.g. oscillatory signaling). 

Perhaps a more obvious mechanism for generating distinct responses from highly similar 

RTK systems is to alter the context of signaling by forcing crosstalk of specific RTKs with other 

signaling networks. Association of RTK with other signaling receptor systems at the cell surface 

allows for such crosstalk. c-Met signaling has been found to be highly dependent on CD44, as 

deletion of the CD44 gene renders c-Met haploinsufficiency lethal, demonstrating collaboration 

between CD44 and c-Met (Matzke et al., 2007), though other receptor systems, most notably 

ICAM-1, appear to be able to compensate for loss of CD44 in some instances (Olaku et al., 

2011). CD44 is a receptor that drives increased migration during wound healing and, like c-Met 

itself, is tightly associated with cancer progression (Zöller, 2011). CD44, and particularly splice 
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variant 6, plays a critical role in the c-Met signaling transduction network, where it functions in 

multiple steps (Orian-Rousseau et al., 2002). Interestingly, in order for CD44 to facilitate Ras 

signaling downstream of c-Met receptors, it must associate with actin filaments via 

ezrin/radixin/moesin proteins (Orian-Rousseau et al., 2007), suggesting that c-Met, CD44, and 

ezrin scaffold the formation of a large signaling particle. Unlike the SH2 interaction with 

phosphorylated receptors, these lateral associations vary within RTK systems. Since c-Met 

signaling is dependent on the lateral association of c-Met receptor tyrosine kinases with other 

plasma membrane receptors, a highly conserved and otherwise undifferentiated RTK signaling 

network may operate distinctly from other RTK networks simply from alterations of the context 

in which RTK signaling occurs. In other words, activation of a generic RTK network in 

combination with different accessory signaling receptors could allow the cell to differentiate its 

cellular response. 

Additional signaling nodes and modules have been implicated in modulating c-Met 

signaling, also perhaps providing specific context to RTK signaling. Recently an increasing 

number of studies have recognized the importance of Ca2+ fluxes in RTK signaling (Fukumoto et 

al., 2000; Lewis and Spandau, 2008), particularly in the case of c-Met (Chapuis et al., 2009; 

Gerber et al., 1998; Hayashi et al., 2000). In EGFR signaling, these Ca2+ influxes result from 

microtubule-dependent vesicular trafficking of Ca2+ channels to the plasma membrane (Chen et 

al., 2007). The potential role of Ca2+ influxes in the c-Met signaling network illustrates how 

activation of signaling within context might also relate to timing of signaling events, as the 

precise pattern of Ca2+ influx periodicity plays a critical role in cellular interpretation of calcium 

signaling. Perhaps different patterns of Ca2+ influxes combined with the same RTK signaling 

network could elicit different cellular responses. 
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HGF-induced epithelial-mesenchymal transition 
Epithelial-mesenchymal transition is a higher order process that involves many 

complicated changes in cellular behavior. Activation of EMT by a single cellular signaling 

network requires the coordinated control of many cell biological processes. The main signaling 

modules that lead from c-Met receptor activation that initiate EMT drive the cellular processes of 

actin rearrangement, cell spreading, detachment of cadherin-based cell-cell adhesions, 

accelerated cell migration, and invasion through extracellular matrices. Spatiotemporally 

coordinated induction of the correct modules thus drives the larger EMT process. c-Met also 

activates additional signaling modules not directly tied to EMT and is responsible for EMT-

independent cellular behavior changes, including inhibition of apoptosis and increased 

proliferation that will be discussed in another section. Here, we will address the individual signal 

transduction modules that lead from the c-Met receptor to specific changes in cellular behavior. 

It is important to consider where cytosolic signaling alone, without changes in gene transcription, 

could account for cellular responses to HGF stimulation. When localization and activity of 

proteins are altered by signaling, as might drive actin dynamics or changes in cadherin 

internalization, cytosolic signaling may account for the entire specific cellular response. 

Conversely, events relying on changes in gene transcription and altered levels of protein 

production, such as in expression of surface proteases required for invasion, gene transcription is 

clearly fundamental. There are thus likely branch points in the overall c-Met signaling network 

that depend on whether cellular effects are controlled at the pre- or post-transcriptional levels. 

Here we will examine the connection of signaling nodes with specific cellular responses to c-Met 

activation, providing a picture of the overall c-Met signaling network structure. 

Induction of actin rearrangement 
Morphological changes in cells are driven by actin dynamics and HGF-induced EMT is 
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no exception. HGF stimulation results in dramatic reorganization of the actin cytoskeleton 

(Sperry et al., 2010). Actin rearrangements are an essential first step required for nearly every 

other cell biological process that underlies EMT (Syed et al., 2009). Actin rearrangements are 

driven by altering the activity or abundance of numerous actin regulatory proteins (Figure 1). 

Given the large number of proteins that participate in actin dynamics, it is likely that multiple 

signaling proteins and their regulatory circuits provide the interface between the HGF signaling 

network and changes in actin organization. Central players in this interface appear to be small 

GTPases of the Rho family, which act as master regulators of actin dynamics in a number of 

cellular processes, as well as phosphatidylinositol-3-kinase (PI3K) (Reisinger et al., 2003; Royal 

et al., 2000). 

Induction of cell spreading 
Cell spreading is an early event in HGF-induced epithelial-mesenchymal transition. 

Epithelial cells stimulated with HGF roughly double the area of cell-substrate adhesion, an event 

that occurs prior to disruption of cell-cell adhesions. Cell spreading results from coordination of 

actin rearrangements (Bristow et al., 2009) and modulation of integrin-based adhesion with the 

cell substratum. On certain substrates, cell spreading does not occur effectively (Wang et al., 

2010a), perhaps accounting for why the robustness of epithelial-mesenchymal transitions varies 

greatly depending on the matrix type (Clark, 1994a). Cell spreading, like actin rearrangements 

generally, relies extensively on Rho GTPases, particularly Rac1. In this pathway, Rac1 activation 

relies heavily on the Rac1 GEF, βPIX (Cheresh et al., 1999), which is in turn activated by the 

focal adhesion kinase (FAK)/Src-Yes-Fyn complexes (Lai et al., 2000; Posern et al., 1998; Ruest 

et al., 2001). FAK/Src-Yes-Fyn complexes assemble in response to Src-dependent 

phosphorylation of FAK and have been shown to play a critical role in numerous events during 
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EMT (Klinghoffer et al., 1999) (Figure 2). 

Induction of cell-cell detachment 

In order for cells to complete scattering during epithelial-mesenchymal transition, 

epithelial cell-cell adhesions must be disassembled. Detachment of epithelial junctions occurs 

late in the process of EMT, once cell spreading and initiation of cell migration have been 

completed. Disassembly of cadherin-based adhesions appears to occur in a series of events. 

Disruption of cell-cell contacts occurs shortly after spreading and initiation of cell migration. 

Cadherin switching, meaning altering cadherin family member expression is thought to occur 

early in EMT. Typically cells switch expression of the epithelial E-cadherin for that of N-

cadherin. Interestingly, each cadherin is associated with different actin structures, namely E-

cadherin with the actin organization that is observed in epithelial cells and N-cadherin with the 

actin organization of more mesenchymal cells. It remains unclear whether cadherin switching is 

a result of changes at the transcriptional levels, or whether this switch is a post-translational 

event with cells altering the preferential endocytosis of cadherin family members (Christofori, 

2006; Wells et al., 2008). Application of tension forces to sites of cell-cell adhesion also appear 

to play a prominent role in detachment of cell-cell junctions, perhaps allowing detachment of 

cells from epithelial tissues before cadherin switching has been accomplished. Whatever the 

combination of mechanisms that reduce cell-cell adhesion, the c-Met signaling network must 

interface with the cell biological machinery that control the mechanism. Not surprisingly, Rho 

GTPases occupy a central position here.  

Disruption of the tight junction system relies on increased Rac1 activity. Maintenance of 

the tight junction in the absence of c-Met signaling is thought to rely on Par3 recruitment into 

aPKC/Par3/Par6 complexes, where it serves to locally depress Rac1 activity. Upon c-Met 
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activation, Src activity increases and phosphorylates E-cadherin, causing release of Numb. Numb 

binds phosphorylated aPKC/Par3/Par6 complexes, displacing Par3 and allowing it to translocate 

to the nucleus (Kallergi et al., 2007). Without Par3 at the tight junction, local Rac1 activity 

increases and tight junctions are disassembled (Wang et al., 2009). Interestingly, it has been 

shown that HGF can induce Rac1 disassembly of adherens junctions in a Crk-dependent manner 

(Kamei et al., 1999), which promotes redistribution of paxillin to focal adhesions. The result is 

the formation of a Crk/Paxillin/GIT2/βPIX complex, which may then activate Rac1, generating a 

potential positive feedback loop that exacerbates cell-cell junction disassembly (Kimura et al., 

2006). 

c-Met also appears to alter the function of cadherin adhesion receptors at cell-cell 

adhesions, primarily changing the retention of this protein at the cell surface. E-cadherin has 

been observed to enter endocytic vesicles concurrently with the c-Met receptor (Rooij et al., 

2005). Phosphorylation of E-cadherin by Src has been proposed to alter cadherin complex 

formation and, thus, cadherin function and distribution at the cells surface (Kallergi et al., 2007). 

c-Met signaling also can affect cadherin trafficking by Ras-dependent activation of Rin2, which 

stimulated Rab5-dependent vesicle trafficking to endosomes (Chen and Macara, 2005).  

Another mechanism for abrogating cell-cell adhesion is by downregulation of E-cadherin 

transcription. Snail expression is increased in response to the nuclear translocation of 

transcriptional regulator EGR1, which is activated by the MAPK/ERK signaling module 

(Lamorte et al., 2002).  

Physical rupture of cell-cell adhesion may also play a role in cell-cell detachment, 

especially during early EMT. This process relies on gaining a sufficiently strong grip on the cell 

substrate to pull apart cell-cell junctions as the cell contracts (Hiscox and Jiang, 1999). Tyrosine 
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kinase-induced cell contractility relies on the Rho-ROCK-myosin pathway, which generates 

actomyosin-based contractile forces on cell-cell contacts (Felici et al., 2010). Here c-Met 

receptors activate p120-4A, which activates the RhoA signaling module (Goormachtigh et al., 

2011) (Figure 3).  

Induction of increased cell migration 

Cells responding to c-Met stimulation increase cell motility, increasing their rate of 

migration by as much as 2 fold. Migration is driven largely by changes in actin organization and 

dynamics, further demonstrating the central role of actin reorganization in EMT. Actin drives 

cellular protrusions at the leading edge that are required for cell translocation across a substrate, 

while remodeling of cell-substrate adhesions is also required for translocation. Rho GTPases are 

known to be central players in cell migration, both in regulating actin dynamics at cell 

protrusions and actin connections to cell-substrate adhesions. Like many essential processes in 

EMT, there are multiple, partially redundant circuits present in c-Met signaling for inducing cell 

migration. Like many of the circuits discussed above, c-Met-induced cell migration relies on 

several parallel circuits, each able to partially compensate for loss of function in its neighboring 

circuits. 

Essential to c-Met-induced cell migration is focal adhesion kinase (FAK), which is 

required to drive enhanced migration (Zhao et al., 2000). Studies have shown that FAK is 

activated by phosphorylation by several kinases, including Src, c-Met (Zandy et al., 2007), and 

the MAPK/ERK module (Yanagisawa et al., 2008). Phosphorylated FAK increases migration by 

altering membrane protrusion formation at the leading edge. Here FAK acts to facilitate the 

activation of actin regulatory proteins, including N-WASP (Chen and Chen, 2006). At the 

trailing edge of the cells, FAK facilitates activation of the RhoA/myosin contractility pathway by 
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forming a complex with PDZRhoGEF and cooperating in RhoA nucleotide exchange. FAK can 

also induce migration through activation of Arf6, which stimulates vesicle trafficking pathways 

that alter Rho GTPase activity, actin dynamics, and cell migration (Wu et al., 2004). FAK/Src-

Yes-Fyn complexes, described previously, also facilitate migration, acting via BMX (Iwanicki et 

al., 2008), Grb7 (Palacios et al., 2001), Rac1 (Chen et al., 2001; Herrera, 1998; Iwanicki et al., 

2008; Palacios et al., 2001; Reiske et al., 2000) and focal adhesion disassembly at the trailing 

edge (Dolfi et al., 1998; Grimsley et al., 2004) (Figure 4). 

Induction of cell invasion 
Individual, solitary cells resulting from EMT acquire the ability to penetrate connective 

tissues by remodeling or degrading extracellular matrix. In the context of EMT in development, 

this allows individual cells to transit through tissues to their final target destination. In the 

context of metastatic cancer cells from epithelial tumors, this allows cancer cells to invade 

through surrounding tissues and colonize distant sites. Surface proteases are the primary 

mediators of cells’ ability to invade through connective tissues and cells undergoing EMT are no 

exception. Tumor invasion relies on the activity of surface matrix metalloproteinase 9 (MMP9) 

to degrade extracellular matrix proteins, a protein that is also expressed in response to HGF 

signaling (Graauw et al., 2008). HGF-induced transcription of MMP proteins is mediated E1AF, 

an Ets family transcription factor (Tague et al., 2004). Ets is activated through nuclear 

localization caused by signaling through the MAPK/ERK module (Webb et al., 2004). Moreover, 

Ets-1 has also been shown to take part in an important feedback loop in c-Met signaling, namely 

driving HGF-induced activation of c-Met transcription (Sridhar and Miranti, 2006) (Figure 5). 

c-Met signaling in processes independent of EMT 

Though EMT is a major cellular response to c-Met signaling network activation in 
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epithelial cells, other cellular responses to c-Met signaling are also observed. These are 

inhibition of apoptosis and increased cell proliferation. HGF-induced inhibition of apoptosis 

results from inhibition of Bad, a pro-apoptotic member of the Bcl-2 family. This is accomplished 

by activating PI3K, which in turn generates survival signaling by acting on PDK1 and then AKT 

(McCawley et al., 1998). Inhibition of apoptosis can also result from upregulation of signaling 

through the NF-κB module and a downstream increase in Bcl-2 expression (Higashino et al., 

2010). Additionally, it has also been shown that HGF induces improved cell survival through 

phosphorylation of GATA-4 in a MAPK/ERK signaling module-dependent manner (Guo et al., 

2011) (Figure 6). 

Increased cell proliferation is also mediated by NF-κB signaling module (Guo and 

Sharrocks, 2009) or alternately, through the MAPK/ERK module and PI3K node. It is interesting 

to note that cell proliferation negatively correlates with EMT. It has been demonstrated that in 

proliferating cells, HGF stimulation induces TIMP-2 to inhibit the cell surface protease MMP2, 

leading to increased matrix deposition and a reduction in invasion. In contrast, HGF stimulation 

induces quiescent cells to increase matrix degradation through inhibition of TIMP-1 (Esposito et 

al., 2009) (Figure 7). Clearly proliferative states play a major role in determining the outcome of 

c-Met signaling, suggesting another instance of crosstalk between cellular processes and the c-

Met signaling network that provides context to signaling. 

Overall network structure 
Regardless of whether the most downstream molecular targets of c-Met signaling are 

cytosolic or transcriptional, the activation of distinct cellular responses following c-Met 

activation is branched. Further, that initiation of signaling results in a final phenotypic outcome, 

transition of cells from epithelial to mesenchymal, suggests at the outset that the overall structure 

of the c-Met signaling network is linear, rather than cyclical. Activation of the receptor is 
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transmitted through multiple nodes to a large variety of downstream events, including changes in 

the regulation of specific genes and proteins. Given the large number of target proteins and 

genes, it is not surprising that the linear c-Met architecture must be branched, though this does 

not rule out interconnections between distinct branches. While consideration of the c-Met 

network as a branched linear network is appealing, there is also evidence that the network is 

cyclical. c-Met activation does result in a transcriptional increase in production of c-Met 

receptors (Gambarotta et al., 1996; Paumelle et al., 2002). This could act as a large positive 

feedback loop system that perpetuates c-Met signaling as a cyclical network. 

Summary 

Cellular signaling in response to c-Met activation is highly relevant to a number of 

disease processes, including fibrosis, wound healing, cancer progression, and angiogenesis. A 

complete map of individual interactions and components in the c-Met signaling network (the 

static network structure), however, is unlikely to provide a complete understanding of the 

connection between c-Met signaling and normal cellular processes. Dissection of the c-Met 

signaling network as an adaptable network system, where temporal dynamics of signaling and 

cellular context (crosstalk) are considered to be as important as network structure, will be critical 

to defining how c-Met activation drives normal cellular processes and disease progression.  

Established methods for identifying key components of signal transduction pathways in 
cancer 

For many years, one of the challenges in cancer research has been identification of 

proteins involved in cancer progression. A variety of approaches have been taken to identify 

these proteins and their respective roles in tumorigenesis. Early approaches involved 

identification of transcriptional changes in unstimulated versus stimulated tumor cells 

(Masiakowski et al., 1982), classification of activated cytosolic T lympohcytes in the tumor 
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environment (Wölfel et al., 1987) and identification of antigens in the serum to which the tumor 

is exposed (Sahin et al., 1995). More recent approaches have included 2D gel electrophoresis 

(Zhou et al., 2002), high-throughput retroviral tagging (Mikkers et al., 2002), microarray 

analysis, which is essentially an improvement on the original technique (Balkovetz et al., 2004) 

and multidimensional protein identification technology (Mauri et al., 2005). Indeed, high-

throughput drug screening is not a new approach and has successfully been used to identify 

proteins involved in other signaling pathways (Balis, 2002), nor is the concept of using such 

techniques to block c-Met signaling a new one (Shoemaker et al., 2002). 

Nevertheless, to this point, screens for drugs effective at blocking the c-Met pathway 

have only targeted the regulation and expression of the receptor itself. There is no published 

evidence of a non-biased drug screen with the intent of identifying essential downstream 

components of the c-Met pathway. This lack represents a significant gap in the current literature, 

for, while there is undoubtedly a great benefit to identifying blockers of the c-Met receptor itself, 

any mutation or dysregulation of the c-Met receptor or, worse yet, a component immediately 

downstream of the c-Met receptor, can completely negate drugs that target the c-Met receptor 

specifically. In this study, a transwell migration assay broadens the search for inhibitors to 

include any compound capable of blocking any essential component of the c-Met signaling 

pathway. By employing a large chemical library consisting of small, drug-like molecules, the 

probability of locating several compounds capable of this inhibition is relatively high. 

By thereafter identifying the function of the effective drugs, it thus becomes possible to 

use this technique not only to find potential treatments, but also to identify previously unknown 

components of the c-Met pathway. This is accomplished in a number of ways, including running 

functional kinase screens for the compounds that tested effective, structure similarity searches 
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for analogous compounds with similar function, and bioinformatics-aided identification of drug 

targets. Compounds of known function are then tested to confirm that drugs with targets similar 

to those predicted for the unknown compounds are indeed capable of inhibiting HGF-induced 

transwell migration. 

In addition to simply determining whether a specific protein is necessary for HGF-

induced EMT-like behavior in general, however, this study goes one step further. By testing the 

ability of known compounds to inhibit HGF-induced cell proliferation or lateral cell migration, it 

is then possible to approximate the location of the target protein in the c-Met signal transduction 

pathway, whether it occurs near the beginning of the pathway and so can inhibit both migration 

and proliferation, or whether it occurs nearer to the end of the pathway and so affects only cell 

proliferation or lateral migration, but not both. Thus, through a series of simple high-throughput 

assays, it is possible to test the ability of a drug to prevent HGF-induced EMT-like scattering in 

general, as well as migration or proliferation specifically. 

Background of calcium signaling 
Calcium signaling has long been known to be involved in intracellular signaling. Calcium 

signaling was first described over 60 years ago as playing a role in muscle contraction 

(Heilbrunn and Wiercinski, 1947). Over the following decades, calcium was found to interact 

with a variety of calcium binding proteins, particularly calmodulin, and by 1980 calcium had 

risen in status to become one of three major cellular regulators, in company with hormones and 

cyclic nucleotide monophosphates (Cheung, 1980). Expanding on existing knowledge of 

calcium-induced calcium release mediated by ryanodine receptors in excitable cells, such as 

muscle, calcium signaling was shown to rely on IP3 to induce calcium release in inexcitable 

cells, that is, cells without ryanodine receptors (Putney et al., 1989). By the early 1990s, 

however, it had become evident that this division between calcium signaling in excitable cells 
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and inexcitable cells was more perceived than real, as researchers demonstrated the remarkable 

similarities between ryanodine receptors and IP3 receptors, which had strikingly similar 

mechanisms of action, differing only in their methods of activation (Putney, 1993). At about the 

same time, researchers described how cells, whether excitable or inexcitable, communicated with 

one another by activating calcium signaling in adjacent cells via gap junctions, IP3 and ATP 

signaling, further confirming this unity in calcium signaling (Berridge, 1993). 

These first decades of dedicated calcium research provided the foundation for a multitude 

of recent advances in understanding not only the mechanism of calcium signaling, but 

identification and classification of a large number of calcium channels, each capable of 

regulating calcium conductance in diverse and unique ways. In fact, it had become apparent as 

early as 1975 that there were multiple types of voltage-gated Ca2+ channels (Hagiwara et al., 

1975). Following this initial discovery, the number of identified voltage-gated Ca2+ channels 

exploded, with each new classification identifying the role of a new subunit, responsiveness to a 

new drug or inhibitor, or a distinct role in calcium signaling (Catterall, 2000; Clapham and 

Garbers, 2005). 

Concurrent with this identification of voltage-gated Ca2+ channels, researchers were also 

classifying non-voltage-gated channels that, while not necessarily as selective for Ca2+ ions as 

are their voltage-gated counterparts, still play a major role in Ca2+ conductance. These non-

voltage gated channels fall into a number of categories, including cyclic nucleotide-gated 

channels, IP3 receptor channels, and transient receptor potential (TRP) channels. Cyclic 

nucleotide-gated channels were first described in 1985 in retinal photoreceptor cells (Fesenko et 

al., 1985), which was followed only two years later by discovery of these cells in the cilia of 

olfactory neurons and four years later in the pineal gland (Alexander et al., 2008). IP3 receptor 
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channels were first hinted at as early as 1981, when it became evident that hydrolysis of 

phosphatidylinositol was associated with activation of calcium signaling (Berridge, 1981), and in 

the decades following, knowledge of these channels expanded to encompass several different 

subtypes, each with distinct characteristics (Alexander et al., 2008). TRP channels are ironic in 

that they are the most recent addition to the ranks of non-voltage gated channels, and yet TRP 

channels are more numerous by far than any other channel type discussed to this point. TRP 

channels fall into several subfamilies, each with a different number of members: canonical 

(TRPC), melastatin (TRPM), vanilloid (TRPV), polycystic (TRPP), ankyrin (TRPA), and 

mucolipin (TRPML). TRP channels vary from strongly Ca2+ selective to nonselective to 

selective for some other cation. TRP channels are found throughout the body and play a wide 

variety of functions, from sensory input to cell cycle regulation, with each of the more than 25 

subtypes playing a distinct role in physiological function (Alexander et al., 2008; Nilius et al., 

2007). 

The role of calcium conductance in cancer progression 
Over the past ten years, studies examining the relation of calcium signaling to cancer 

progression have gained prominence in the scientific literature, and, with few exceptions, the 

past eighteen years have seen a steady increase in yearly publications relating signaling from Trp 

channels to cancer. Many of these studies relate intracellular Ca2+ concentrations or Ca2+-

mediated protein activation to cancer prognosis (Al-Bahlani et al., 2011; Gerhardt et al., 2011; 

Naik et al., 2011), while a smaller number address the function of a specific calcium channel in 

cancer progression (Hiani et al., 2009; Lehen'Kyi et al., 2007; Wondergem et al., 2008). From 

these and other studies, a tapestry of calcium signaling has begun to take shape, with specific 

channels being revealed essential to specific processes in a multitude of cancer types 

(Prevarskaya et al., 2010). These studies and many others have contributed greatly to our current 
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understanding of the roles of Ca2+ current in cancer models. 

Primarily, however, each of these studies has either taken a single channel and examined 

its effects on metastasis (Wang et al., 2010b; Wondergem et al., 2008), or else shown that a 

number of channels cooperate to accomplish a single effect (Rampino et al., 2007). Only a select 

few studies have addressed the possibility of two different calcium channels functioning in the 

same pathway with distinct and non-redundant effects (Waning et al., 2007). This study further 

contributes to this third area of research by demonstrating that not only is inhibition of a single 

calcium channel sufficient to prevent HGF-induced cell scattering but also that two differentially 

selective calcium channel blockers capable of preventing transwell migration have distinct 

effects on other aspects of EMT-like cell scattering. 

My experimental strategy combines combinations of inhibitors and patch clamping to 

determine the identity and activity level of multiple channels and define the function of these 

channels in the c-Met signal transduction pathway. By testing an inhibitor of unknown 

specificity in combination with drug concentrations specific to various channels, it becomes 

possible to identify the target of the novel inhibitor. Following this identification, it is then 

possible to determine which channels are responsible for specific aspects of HGF-induced 

scattering. 

Tubulin as a mediator of ion channel function 
Tubulin, in addition to its cytoskeletal role, is an important mediator of vesicular 

transport, allowing membrane localization of signaling proteins and channels to be dynamically 

controlled by the cell. Recent studies have shown that plasma membrane localization of TrpC5 

and TrpC6 channels can be included among the many things that tubulin carries via vesicular 

transport (Greka et al., 2003; Kennedy et al., 2010). This provides an alternate method of 

regulation for these channels besides the standard diacylglycerol-mediated activation (Hofmann 
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et al., 1998). Furthermore, recent data confirm a role for vesicular transport in HGF signaling 

(Kermorgant et al., 2004), and even a role for vesicular transport of ion channels (Steffan et al., 

2010). In this study, I use electrophysiological recordings to address the question of whether 

tubulin is required for vesicular transport of ion channels during HGF signal transduction. 

NFAT involvement in cancer signaling 
 Nuclear factor of activated T-cells (NFAT) is a family of transcription factors first found 

to function in the immune system (Shaw et al., 1988). In the years since, the members of the 

NFAT family have been shown to be expressed throughout the body in most cell types and to 

have a wide variety of functions (Crabtree and Olson, 2002). Among these functions are 

significant roles in cancer progression, with evidence supporting roles for NFAT in prostate 

cancer (Lehen'Kyi et al., 2007), breast cancer (Yiu and Toker, 2006), colon cancer (Duque et al., 

2005), and glioblastomas (Chigurupati et al., 2010). 

NFAT family members NFATc1-c4 are all activated through Ca2+-dependent activation 

of calcineurin (Clipstone and Crabtree, 1992). This activation is accomplished through nuclear 

transport of dephosphorylated NFAT proteins when periodic Ca2+ influxes occur at sufficient 

frequencies that the rapid calcium-dependent dephosphorylation of NFAT can no longer be 

counterbalanced by the slower rephosphorylation of NFAT (Tomida et al., 2003). Thus, in order 

for NFAT to be activated in cancer pathways, these pathways must first upregulate the rate of 

Ca2+ influx (Thebault et al., 2006). 

Numerous studies have tied NFAT activation to cancer progression. Two of the important 

channels involved in this oncogenic role are TrpV6 in prostate cancer (Lehen'Kyi et al., 2007) 

and TrpC6 in prostate cancer (Thebault et al., 2006) and glioblastomas (Chigurupati et al., 2010). 

Remarkably, not only does TrpC6 upregulate NFAT activity, but NFAT has also been shown to 

increase expression of TrpC6, thus generating a positive feedback circuit (Kuwahara et al., 
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2006), which is very characteristic of HGF signaling (Arlt and Stein, 2009; Rasola et al., 2007; 

Sam et al., 2007). 

Based on these data, it is surprising that there appear to be no studies specifically linking 

HGF signaling to NFAT activation, despite clear suspicions in the scientific community that such 

might be the case (Gkika and Prevarskaya, 2009). This study also addresses this suspected 

connection and not only tests the connection to the NFAT protein family in general, but the 

specific NFAT subtype involved in HGF-induced EMT. 

The role of WNK kinase in cancer and cation channel regulation 
The with no lysine (WNK) kinase is a unique kinase subfamily in that its members do not 

contain the characteristic lysine found in subunit II of the catalytic domain, which is replaced 

with cysteine (Xu et al., 2000). There are four members of this subfamily expressed in humans: 

WNK1-4. WNK1 is expressed in nearly all tissues, WNK2 in the heart, brain and colon, but not 

in the kidney (Rinehart et al., 2011), WNK3 primarily in the brain, and WNK4 primarily in the 

colon (Veríssimo and Jordan, 2001). 

One common feature of these kinases is their role in cation transport. WNK1, WNK2 and 

WNK4 are all implicated in regulation of cation-chloride-coupled cotransporters (Moriguchi et 

al., 2005; Rinehart et al., 2011), while WNK3 regulates ROMK1, a K+ channel (Leng et al., 

2006). These functions control a variety of important physiological processes. WNK1, WNK3 

and WNK4, for example, regulate ion balance in multiple systems, including controlling blood 

Ca2+, K+ and hypertension (He et al., 2007; Wilson et al., 2003; Zhang et al., 2008). In addition 

to the distinct differences among the WNK kinases, there is also evidence of alternative splice 

variants mediating differential functions. For instance, WNK1 has a kidney-specific splice 

variant (KS-WNK1) with a distinct and opposing role to that of full length WNK1 (L-WNK1) in 

K+ channel regulation (Wade et al., 2006). Furthermore, kidney-specific and brain-specific 
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isoforms of WNK3 also have opposite effects on regulation of NCCT (Glover et al., 2009). 

In addition to these channels, members of the WNK subfamily have been shown to 

regulate Trp channels, with WNK1 and WNK4 downregulating TrpV4 through endocytosis, 

WNK1 apparently through kinase activity, and WNK4 more potently than WNK1, though it is 

unclear whether this effect is a result of kinase activity or an effect of some other domain of the 

WNK4 protein (Fu et al., 2006). Also, WNK1 and WNK4 activate a pathway that ultimately 

reduces membrane expression of the NKCC1, TrpC3 and TrpV4 ion channels at the membrane 

(Fu et al., 2006; Park et al., 2011; Vitari et al., 2005). WNK3, contrariwise, positively regulates 

TrpV5 and TrpV6 through its kinase domain (Zhang et al., 2008).  

In addition to the role of WNK kinases in regulation of cation transport, it is important to 

note that WNK kinase expression has been linked to cancer prognosis in many cases. WNK1, for 

example, has been tied to breast, lung and ovarian cancers; WNK2 to colorectal, gastric, lung 

and ovarian cancers; WNK3 to gliomas and lung and renal cancers; and WNK4 to melanomas 

and gastric and ovarian cancers (Greenman et al., 2007). 

Together, these data indicate a potential role for WNK kinase in the HGF cancer 

signaling pathway. This study asks whether WNK plays a role in HGF-induced cell scattering 

and so in the c-Met cancer metastasis pathway. This is important, as no study has previously 

addressed the connection of HGF signaling and WNK kinase activity. Furthermore, connections 

between WNK kinase activity and cancer progression have not yet led to the examination of the 

possibility that specific WNK kinases may regulate cancer progression via their roles as 

mediators of ion signaling. This is surprising considering the many other ways in which WNK 

kinase mediation ion balance in tumors has been considered (Moniz and Jordan, 2010).  
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MDCK as a model system 
It was observed over 25 years ago that MDCK cells scatter in response to a factor 

secreted by fibroblasts (Stoker and Perryman, 1985). In the years since, MDCK has become a 

well-recognized model system for mimicking the EMT-inducing effects of HGF in vitro 

(Cozzolino et al., 2003; Date et al., 1997; Hellman et al., 2005; Khoury et al., 2005). When 

MDCK is stimulated by HGF, it undergoes extensive remodeling of the cytoskeleton, flattens, 

separates from other cells, and increases in motility and invasiveness, which mirrors the behavior 

of cells undergoing EMT in vivo.  

MDCK as a model system in the high-throughput drug screen 
By using MDCK as a model system in the drug screen, this study loses a few benefits that 

it would have in vivo. The primary benefit lost in vitro is that drugs discovered in vitro may not 

be viable for use in vivo, either because of toxicity or metabolism where an initial animal test 

would automatically rule out such drugs. However, these losses are minimal when compared 

with the benefits of an in vitro study. First, particularly toxic compounds are easily observed in 

vitro, as there will be no cells left when it comes time to test. Second, it is possible to test several 

thousands of drugs per week with greatly reduced expense. Third, it avoids unnecessary animal 

experimentation where less than 0.1% of the animals tested would be more informative than an 

in vitro study. Finally, because I am studying metastasis, a comparable in vivo model would also 

require extensive dissection and close examination in order to determine the extent of metastasis 

for each drug treatment, which would greatly increase the amount of labor required, the cost and 

the probability of a false positive result. 

MDCK as a model system to determine upstream regulators of Ca2+ influx in HGF 
signaling 

In this experimental approach, MDCK is an optimal system. A similar experiment in vivo 
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would be immensely complicated by ubiquitous signaling factors. By limiting the experiment to 

only one signaling factor, HGF, the situation is simplified. Admittedly, an in vitro system does 

fail to take into consideration a fair number of factors relevant in disease treatment, toxicology, 

etc. However, the goal of this study is to dissect a specific step from a specific signal 

transduction pathway, which is greatly facilitated through the increased control permitted by an 

in vitro approach. 

MDCK as a model system for calcium channel classification and NFAT testing 
An in vitro model for calcium channel identification also has a few setbacks. First, when 

patch clamping cells, the cells are in an artificial environment, and second, past studies show that 

tumor environment plays an important role in how chemical signals are interpreted (Chung et al., 

2011; Clark, 1994b). Thus, in vitro studies may not perfectly reflect how the cells would behave 

in vivo. However, as with the drug screen, the advantages bestowed by an in vitro setup far 

outweigh the disadvantages. First, though possible, it is far more difficult and expensive to patch 

cells in living organisms, particularly mammals. Second, it is more difficult to be certain of 

patching the same cell type, where a single cell line guarantees minimal variation between 

individual assays. Finally, because the original drug screen was performed on MDCK cells, 

patching the same cell type is essential for maintaining consistency. 

MDCK as a model for WNK kinase signaling 
In this particular aspect, there are significant advantages and equally significant 

disadvantages to an in vitro approach. One main advantage, as mentioned in the reasoning for 

MDCK in studying regulation of Ca2+ signaling, is the reduction of complicating factors. Given 

the fact that WNK kinase may very easily play a permissive role, it is sufficiently difficult to 

identify its role in HGF signaling without the complexities of an in vivo system. The main 

inherent disadvantage in an in vitro system is that because it may be permissive, the slightest 
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modification of WNK kinase activity or expression in vivo would be nearly impossible to predict 

and replicate in vitro. Therefore, these assays are performed with the understanding that the 

results will not necessarily translate into an in vivo system. However, if the function of WNK 

kinases is essential in vitro, it is very likely that the same is true in vivo. 

Summary of literature review and my specific aims 
In a tumor environment, HGF causes cells to undergo EMT. This reaction is caused by a 

complex signaling pathway that induces affected cells to flatten, detach, migrate, invade 

surrounding tissues, and resist apoptosis. Each of these segments of EMT relies on specific 

signals in the cell. While many of these signals have been identified, it is clear that a large 

amount still remains unknown. 

Specific proteins involved in this signal transduction pathway are gradually being 

revealed, but frequently it is difficult to identify their precise function and location in the overall 

sequence, particularly when the experimental setup is competent only to answer the question of 

its function in the most general sense. This is the case for such techniques as microarray analysis, 

classification of activated cytosolic T lymphocytes in the tumor environment and 2D 

electrophoresis. These techniques allow a researcher to determine the expression levels of a large 

collection of proteins and differentiate between stimulated and unstimulated cells or regions. 

Though expression levels and phosphorylation states can indicate an important protein in the 

target pathway, there are many proteins that are upregulated without necessarily playing an 

essential role in the EMT-inducing pathway. 

Over the past few years, it has become increasingly clear that calcium channel regulation 

is essential for cancer metastasis in multiple tumor types, and that specific calcium channels are 

indispensible for signal transduction in select cancer types (Hiani et al., 2009; Lehen'Kyi et al., 

2007; Wondergem et al., 2008). Moreover, emerging studies have begun to demonstrate not only 
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the necessity of specific ion channels, but also of specific and consistent patterns of activation 

(Liu et al., 1998). 

Though at first identified as a Ca2+-inducible transcription factor in the immune system, 

NFAT is widely distributed and has a large number of targets (Crabtree and Olson, 2002). Past 

studies have tied NFAT function to cancer progression, among other things, and have shown that 

inhibition of NFAT is sufficient in some cases to restore a more non-malignant phenotype 

(Duque et al., 2005; Yiu and Toker, 2006). 

Specific aim 1: Identify proteins essential to HGF signal transduction and classify them 
according to function 

The high-throughput transwell migration drug screen employed in this study, though 

unable to identify the specific function of a protein in HGF-induced cell scattering, is superior to 

most previous methods in that it identifies proteins required for HGF signaling, rather than all the 

proteins changed during HGF signal transduction. Following this assay and identifying the 

function of each identified compound as well as possible, these and analogous drugs of known 

function are employed in assays testing HGF-induced proliferation rate and lateral migration 

rate. These assays facilitate further classification of proteins as being essential to proliferation, 

migration, and/or some other aspect of HGF-induced cell scattering. Thus, through a limited 

number of assays it is possible not only to identify, but to categorize proteins according to their 

function and placement in the HGF signal transduction pathway. 

This study shows that drugs impeding cytoskeletal rearrangement, integrin function, and 

calcium conductance all effectively prevent HGF-induced cell scattering in MDCK. In addition, 

further assays with inhibitors of known function show calcium influx, microtubule dynamics and 

NFAT signaling to be essential for and to have comparable effects on cell proliferation and 

lateral migration. However, other inhibitors exhibited significant effects only on one of those 
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two, suggesting that their protein targets may be farther downstream in the pathway. 

Specific aim 2: Determine the mechanism of Ca2+ signaling in HGF signal transduction  
Based on the literature, it is evident that ion conductance plays a role in cell signaling. 

This conclusion is supported in MDCK cells by the results of the drug screen, as well as the 

ability of two promiscuous Ca2+ channel inhibitors to significantly reduce levels of HGF-induced 

transwell migration. Interestingly, the two differentially selective promiscuous Ca2+ channel 

inhibitors exhibit different effects on proliferation and lateral migration, though both test positive 

in inhibition of transwell migration. Together, these data strongly suggest that HGF activates 

Ca2+ signaling in MDCK and that, without this activation, most of the ability of HGF to induce 

cell scattering is lost, indicating that at least Ca2+ influx event is likely near the beginning of the 

signal transduction pathway. The inability of the second Ca2+ channel blocker to significantly 

inhibit either proliferation or lateral migration suggests the possibility that there may be another 

instance of Ca2+ signaling farther downstream, though this study does not address that possibility 

in any detail, focusing instead on the initial Ca2+ influx. 

In order to demonstrate early Ca2+ influx, I employ cell-attached patch clamping and 

examine channel events before and after addition of HGF. Through this, I show that HGF-

induced signal transduction upregulates the frequency with which Ca2+ channels open at specific 

times following HGF stimulation. I then determine whether the similar effects shown by the Ca2+ 

channel blocker and the tubulin polymerization inhibitor used in the follow-up drug screen 

indicate some relation. In order to do this, I perform a patch-clamp assay in which I use HGF to 

induce cells to scatter, just as before, except that prior to HGF treatment, I administer a 

functional concentration of the tubulin polymerization inhibitor, which completely eliminates the 

Ca2+ channel surges while leaving the baseline frequency unchanged. This is a strong indication 

of the importance of tubulin dynamics in HGF-induced Ca2+ channel upregulation. 
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Following this, I use a whole-cell patch to show the ability of La3+, a promiscuous Ca2+ 

channel inhibitor with widely varying IC50 values depending on the channel, to block the 

observed channels one type at a time as concentrations increase. Based on the effective 

concentrations of La3+ and the published sensitivities of various channels to La3+, I identify the 

channels expressed most abundantly in the plasma membrane. 

Finally, I use varying concentrations of La3+, Gd3+ (which has similar effects but different 

IC50 values from La3+) and the Ca2+ channel blocker identified from our initial drug screen to 

determine the identity of the Ca2+ channel essential for HGF signal transduction. In this assay, I 

show that TrpC6 is essential for HGF signal transduction in MDCK cells despite the continued 

function of TrpV4. 

Specific aim 3: Characterize the interaction between HGF-induced Ca2+ influx and NFAT 
activation 

NFATc1-c4 are transcription factors that are activated through calcineurin in response to 

Ca2+ influx into the cytoplasm (Clipstone and Crabtree, 1992). NFAT-mediated transcription has 

been proven essential in a wide variety of processes throughout the body (Crabtree and Olson, 

2002). It has been implicated in numerous cancer types (Chigurupati et al., 2010; Lehen'Kyi et 

al., 2007; Thebault et al., 2006; Yiu and Toker, 2006) and has been shown to directly contribute 

to malignant phenotypes (Duque et al., 2005; Yiu and Toker, 2006). Furthermore, in my own 

transwell migration experiments, I show that NFAT is essential for HGF signal transduction and 

that inhibition of NFAT expression shows very similar phenotypes to inhibition of Ca2+ influx or 

tubulin polymerization. This suggests that all three of these proteins may perform a similar 

function in HGF signaling. 

In view of this evidence, I employ reporter assays to determine the pattern of NFAT 

activation following HGF stimulation. Following this, I combine reverse transcriptase PCR with 
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immunofluorescent imaging to determine the NFAT subtype influenced by HGF induction. 

Through the use of reporter assays I demonstrate that the observed large surge of Ca2+ influx 

triggered by HGF signaling is followed by a corresponding surge in NFAT signaling with the 

precise delay agreeing with a former study on NFAT activation (Tomida et al., 2003), and that in 

the presence of the Ca2+ channel blocker discovered in the drug screen, NFAT activity is reduced 

to near unstimulated levels. Thereafter, I use immunofluorescence to show that NFATc4 

localization is mediated by HGF stimulation, and that low concentrations of Gd3+ sufficient only 

to block TrpC6 are sufficient to significantly reduce this nuclear localization. Thus, I 

demonstrate the downstream component affected by microtubule-facilitated TrpC6 

hyperactivation. 

Specific aim 4: Identify the role for WNK kinase in HGF-induced EMT 
Members of the WNK kinase subfamily have been shown to be involved in regulation of 

cation transport through the cell membrane, whether by regulation of cotransporters (Moriguchi 

et al., 2005; Rinehart et al., 2011) or of ion channels (Fu et al., 2006; Leng et al., 2006; Zhang et 

al., 2008). Also, mutations in each of these kinases have been shown to be linked to cancer 

development (Greenman et al., 2007). In addition, initial drug screens show that a small-

molecule inhibitor that targets WNK2 and WNK3 is sufficient to prevent HGF-induced cell 

scattering at concentrations that are not toxic to cells. Also, electrophysiological evidence 

demonstrates that a WNK kinase inhibitor significantly increases ion flux through the cell 

membrane, suggesting that the observed effect of WNK kinase inhibitor on EMT may relate to 

dysregulation of ion signaling. These data suggest that one or more members of the WNK kinase 

subfamily are either modulated by HGF signaling or else play a permissive role in signal 

transduction.  
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Chapter 2: High-Throughput Drug Screen 

Design, validation and application of a small-molecule screen for inhibitors of HGF-
induced cell scattering 
 We sought to develop a screening assay that measures HGF-induced EMT. The response 

of MDCK cells to HGF stimulation has been well documented; treatment of MDCK cells with 

HGF results in detachment of cell-cell junctions and initiation of cell migration and invasion 

(Weidner et al., 1990). HGF-induced migration across a transwell filter has been used to monitor 

EMT-like scattering of MDCK and other cell lines in response to HGF and other stimuli. To 

validate this assay for screening, MDCK cells were seeded onto transwell filters, allowed to form 

a monolayer for 24 hours, and then treated with increasing amounts of HGF. A dose-dependent 

response to HGF is clearly observed (Figure 8A). In control assays, few cells are detected on the 

underside of the filter. Increasing numbers of cells correlates with HGF addition, but rapidly 

reaches maximum. To determine the statistical limitations of this screening assay, a series of 

eight positive (HGF treated) and negative (untreated) control assays were run and quantified, 

generating a Z prime value of 0.48 for the assay. This indicates that the assay is not quite ideal, 

but should allow detection of compounds that moderately or strongly inhibit HGF-induced cell 

scattering. 

In validate this assay for small molecule screening, we next tested the assay system 

against the known c-Met inhibitor SU11274 (Sattler et al., 2003). Importantly, DMSO has no 

effect on HGF-induced cell scattering in this assay below 2% final concentration (data not 

shown) and we performed all drug dilutions such that the final DMSO concentration in each 

assay did not exceed 1%. SU11274 treatment prevented cells from responding to HGF 

stimulation as measured using the cell scattering assay (Figure 8B). Further, quantitation of the 

concentration dependence of SU11274 resulted in a calculated EC50 value (17.6nM) that is very 
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close to the published ID50 for SU11274 (20nM).  

Given that our cell scattering assay successfully detects small molecule inhibitors of HGF 

signaling, library screening was performed on a panel of 50,000 drug-like compounds. To 

facilitate rapid screening and reduce the number of plates to be analyzed, individual assays were 

treated with a mixture of 3 distinct compounds, each at 5µM final concentration. Of 16,667 

individual assays containing screening compounds, 38 individual assays showed inhibition of 

HGF-induced scattering. Cytotoxicity, detected when both the upper and lower surfaces of the 

transwell filter were devoid of crystal violet staining, was observed in only 5 individual assays. 

Compounds in individual assays demonstrating reduced scattering or cytotoxicity were re-tested 

as single compounds in subsequent assays. 38 individual compounds that inhibit HGF-induced 

scattering were validated individually, an initial hit rate of 0.076%, while only 5 individual 

compounds (0.01%) are cytotoxic. Chemical structure analysis of the 38 compounds identified in 

the original screen revealed 22 structurally distinct compound families. A single compound that 

was predicted to be reactive was discarded from analysis at this stage. The average family size 

was 1.8 compounds, with most families (11 of 22) represented by single chemical structures.  

Physicochemical properties of the 37 hit compounds were compared to those of the entire 

chemical library. While the chemical library contained compounds with a wide molecular weight 

range (from under 200 to over 500 Daltons), hit compounds were restricted to a narrower 

molecular weight range, namely 205-413 Daltons (Figure 8C). That the distribution of molecular 

weights of hit compounds did not appear bell-shaped suggests that there are minimum and 

maximum size restrictions for compounds in our cell-based assay. Distributions of 

hydrophobicity, as calculated by clogP, and polar surface area, as calculated by tPSA, properties 

of hit compounds did not differ significantly from the distribution of the library as a whole 
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(Figure 8D-E). However, the distribution of solubility properties, as determined by logSw scores, 

is slightly more negative for hit compounds than for the entire library (Figure 8F). While the 

reason for this is uncertain it likely reflects solubility and membrane permeability constraints on 

successful compounds in high content, cell-based assays. Refining criteria used to select 

compounds for libraries might be expected to increase the hit rate in such screens. 

Compounds reveal the cell biology of HGF-induced scattering 
 Biological activities and molecular mechanisms of hit compounds are expected to reveal 

molecular componentry required for HGF-induced scattering. Compounds identified in screening 

can be separated into three groups: 15 compounds work via an unknown molecular target, 4 

compounds target microtubules, and 3 work by targeting non-cytoskeletal systems. The first 

group of compounds shed little light on HGF signaling. Molecular target identification, whether 

by screening for inhibitory activity in high-throughput biochemical assays or by identifying 

binding proteins, is required to reveal how HGF signaling is perturbed by the presence of these 

small molecules.  

The second group of small molecules identified in screening share reported activity as 

microtubule poisons. This includes the largest family of compounds that share significant 

structural similarity, with 7 piperazine-based derivatives within the cluster (Figure 9A). Three 

unrelated structure families bearing 1-2 members each are also reported to have activity in 

preventing microtubule polymerization or in causing depolymerization of existing microtubules 

(Figure 9B-D) (Gelvan et al., 2003; Kim et al., 2009; Morgan et al., 2008). Microtubules play a 

fundamental role in a number of cellular processes, including vesicle trafficking and cell 

polarity. Thus, though it is possible that perturbation of microtubule-based processes exert a 

direct effect on HGF-induced scattering, it is unsurprising that perturbation of the microtubule 

cytoskeleton prevents dramatic cellular morphology changes initiated by HGF stimulation.  
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The third group of small molecules identified in the HGF screen includes those with reported 

mechanisms of biological activity against specific target proteins, thus revealing the most about 

molecular events triggered during HGF-induced scattering. One compound affects protein 

folding by targeting HSP90 (Foley and Ying, 2008) (Figure 9E). Inhibition of protein folding 

could decrease the levels of components required for HGF signaling, perhaps most importantly 

the c-Met receptor (Webb et al., 2000). Since drug treatment immediately preceded HGF 

stimulation, it is unlikely that HSP90 client protein levels would be reduced except in cases of 

exceptionally high turnover. However, HGF stimulation does require a downstream increase in 

c-Met expression (Boccaccio et al., 1994). It is our hypothesis that HSP90 inhibitors prevent 

cells from responding to HGF by reducing the production of available functional c-Met receptors 

following initial receptor stimulation. A second compound belongs to a class of small molecules 

that inhibit function of αVβ3integrins (Dayam et al., 2006) (Figure 9F). During EMT, cells alter 

integrin expression and localization in a manner that is thought to enhance cell migration and 

reduce cell-cell adhesion (Clark, 1994b). Both of these inhibitors affect targets with obvious 

connections to HGF signaling. More surprising was the identification of N-allyl-4-(4-

morpholinylcarbonyl)benzenesulfonamide, a known neuronal calcium channel blocker 

(Milutinovic et al., 1999), as an inhibitor of HGF-induced scattering (Figure 9G). 

Chapter 3: The Behavior and Control of Calcium Ion Signaling in Hgf-Induced Cell 
Scattering 

HGF stimulation activates microtubule-dependent calcium influxes at the plasma 
membrane 

Since a neuronal calcium channel blocker inhibits HGF-induced cell scattering, we 

sought to confirm the role of calcium currents in HGF-induced scattering by assessing the effect 

of two generic calcium channel blockers, econazole and ruthenium red, in our original screening 
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assay. Both significantly reduce scattering (Figure 10A), confirming that calcium influxes are 

required for HGF-induced scattering. We then sought to determine whether calcium influxes are 

required for HGF-induced increases in cell migration and proliferation. Remarkably, only 

econazole reduced lateral migration and proliferation of HGF-stimulated cells (Figure 10B). 

In order to measure changes in calcium influxes following HGF stimulation, we next 

employed electrophysiological methods to record calcium currents at the plasma membranes of 

MDCK cells following HGF treatment. Calcium influxes were recorded for 10 minutes prior to 

HGF addition, revealing a low frequency of channel opening events. These calcium influxes 

occur as high or low conductance events, allowing us to resolve at least two distinct channels in 

the plasma membrane of MDCK cells. Though no change in channel opening frequency is 

observed immediately after HGF treatment, transient and significant increases in channel 

opening frequency are observed 8.2 (±2.7 = 95% C.I., n=5) and 30.4 (±3.5 = 95% C.I., n=5) 

minutes after administration of HGF (Figure 10C-F). The first increase is both smaller, at 16 

(±9.40 = 95% C.I., n=5) fold above baseline, and shorter in duration, at 2.0 (±0.800 = 95% C.I., 

n=4) minutes, than the latter increase, which reaches 37 (±26.7 = 95% C.I. n=5) fold above 

baseline and lasts 7.5 (±3.35 = 95% C.I., n=4) minutes. While the size and duration of these 

surges are highly variable from experiment to experiment, without exception, the second surge is 

always higher (2.5 (±0.942 = 95% C.I., n=5) fold above the first peak) and longer in duration 

(3.7 (±0.611 = 95% C.I. n=4) minutes) than the first. Channel opening frequency returns to near 

baseline levels between high frequency influx events. Though there was some variability in the 

amount of time between HGF treatment and the appearance of the first pulse of high frequency 

calcium influxes (Figure 10C), the amount of time between pulses (23.6 (±3.1 = 95% C.I., n=5) 

min) was highly reproducible from experiment to experiment (Figure 10D). Channel 
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conductance and current durations are not significantly affected by HGF treatment, even during 

high frequency influx events (Figure 10F). This demonstrates that HGF stimulates increased 

calcium influxes through multiple channel types. Importantly, this result was obtained whether 

recording were made with cell-attached patches or with whole-cell clamps.  

Since HGF alters the frequency of calcium influxes, but not the magnitude or duration of 

their conductivity, we reasoned that cells are regulating the number of channels, rather than the 

properties of channels already in the membrane. We propose that the dramatic increase in 

calcium influx observed following HGF stimulation are a result of mobilization of calcium 

channels maintained in an internal vesicle population. The requirement of the microtubule 

cytoskeleton for HGF-induced cell scattering supports this, since previously published data show 

that Trp channels can be activated via microtubule-dependent vesicle transport (Kennedy et al., 

2010). We therefore sought to determine whether perturbation of the microtubule cytoskeleton 

prevents transient pulses of high frequency calcium influxes in response to HGF stimulation 

when MDCK cells were treated with a commercial microtubule polymerization inhibitor and 

subjected to electrophysiological recording, effectively preventing vesicular transport of new ion 

channels, but not disturbing those already in the membrane. Prior to and immediately after 

treatment with HGF, cells exhibit a low frequency of calcium influxes through low- and high-

conductance channels, as before (Figure 11A). Following HGF stimulation, no increase in 

frequency of calcium influxes is observed, even after 30 minutes (Figure 11B) and for up to 50 

minutes of recording (a 42-minute average of two assays is shown in Figure 11C). Importantly, 

microtubule polymerization inhibitor did not alter channel conductivity or current duration (data 

not shown). This result clearly shows that an intact microtubule cytoskeleton is required for 

HGF-induced pulses of high frequency calcium influxes at the plasma membrane. 
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We then used electrophysiological recording to examine the effect of N-allyl-4-(4-

morpholinylcarbonyl)benzenesulfonamide (NA(4MC)BS) on calcium influxes. MDCK cells 

were treated with HGF and NA(4MC)BS was applied during the second, longer high-frequency 

calcium influx event. Within two minutes of neuronal calcium channel blocker addition, 

conductance through a subset of high-conductance channels began to diminish; after an 

additional 2 minutes, conductance through these channels was nearly undetectable above 

background noise (Figure 12A). The low conductance channel was resistant to the calcium 

channel blocker, as were the remaining high-conductance channels. An analysis of high-

conductance channel properties reveals that channels that are sensitive to the calcium channel 

blocker support a slightly higher current than resistant channels (Figure 12B-C). Taken together, 

these data show that MDCK cells express at least three calcium channels at the plasma 

membrane, including a low conductance channel and two high-conductance channels. Though 

HGF stimulation results in transient pulses of high frequency influxes through all three channels 

types, the neuronal calcium channel blocker identified as an inhibitor of HGF-induced scattering 

is highly selective for a single high-conductance channel. 

Identification of calcium channels required for HGF-induced scattering 
Our next goal was to identify the specific channel required for HGF-induced scattering. 

Our first step was to establish an expression profile for known calcium channels in MDCK cells 

by reverse-transcriptase PCR. Since c-Met activation triggers dramatic changes in gene 

expression in MDCK cells (Balkovetz et al., 2004), calcium channel expression was determined 

before and after HGF treatment. We found detectable levels of expression of a number of Trp 

calcium channels, including TrpC 1, 4, 6, and 7, TrpV 1-4, TrpM 3-8, and PKD 1-2 (Figure 

13A). Importantly, failure to generate a PCR product may indicate a failed reaction, rather than 

that this channel is not expressed. Several channels showing no expression were tested with 
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additional primer pairs to confirm negative results. RT-PCR of several channels yielded more or 

less product in samples derived from HGF-treated MDCK cells, indicating that HGF stimulation 

could affect expression patterns of calcium channels in MDCK cells. Further, RT-PCR of TrpM3 

before and after HGF stimulation yields different sized products that correspond to different 

splice variants of this transcript, suggesting that HGF stimulation might also alter splicing of 

calcium channel mRNA.  

In order to quickly determine the identity of calcium channels in the plasma membrane, 

we examined the differential effects of well-characterized calcium channel agonists and 

antagonists on channel conductivity in MDCK cells. Initial experiments were performed using 

the trivalent cation La3+, which inhibits a subset of Trp channels with IC50 profiles that can vary 

more than 200-fold (Beech et al., 2003; Campo et al., 2003; Clapham, 2009; Leffler et al., 2007). 

MDCK cells were subjected to whole-cell patch clamping and calcium influxes recorded for 

several minutes in the absence of lanthanum ions and then for several minutes in stepwise 

concentration increases in lanthanum ions (Figure 13B). Analysis of calcium channel currents 

reveals sudden drops in average conductance at two points, demonstrating that both high-

conductance channels are sensitive to lanthanum ions. Before La3+ treatment, channels with a 

conductance greater than 2pA represent over 50% of all channel events, at 1.7mM La3+, these 

large channels represent less than 3% of detectable channel events. One high-conductance 

channel is highly sensitive to lanthanum ions, as a subset of high-conductance channel current is 

blocked when the La3+ concentration is raised from 0 to 50μM. The other high-conductance 

channel is less sensitive, as it is blocked only when the concentration is raised to 500μM. 

Importantly, the low conductance channel is not affected by lanthanum ions, as low conductance 

calcium currents are observed even at the highest lanthanum ion concentration tested. Only 
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TrpC1 and TrpC6 are detected by RT-PCR in MDCK cells and have a La3+ sensitivity at or 

below 50μM, while only TrpV4 has a reported La3+ sensitivity near 500μM (Beech et al., 2003; 

Campo et al., 2003; Clapham, 2009; Leffler et al., 2007). The few lanthanum ion-insensitive 

high-conductance influxes may be accounted for by TrpM6 channels, which have no published 

sensitivity to La3+, have a high conductance, and are known to be expressed at the MDCK 

plasma membrane (Thebault et al., 2009; Topala et al., 2007).  

TrpV4-dependent calcium influxes are activated by HGF stimulation of HepG2 cells 

(Vriens et al., 2004), making it a potential candidate for the NA(4MC)BS-sensitive channel in 

MDCK cells. Similarly, TrpC6 has been implicated in HGF-induced proliferation in prostate 

cancer cell lines (Wang et al., 2010b). We next sought to identify whether either channel was the 

molecular target of NA(4MC)BS. In order to do this, we measured the effect of NA(4MC)BS in 

MDCK cells recorded in the presence of 10μM La3+ or 5µM Gd3+, concentrations sufficient to 

inhibit TrpC6, but not TrpV4 (Beech et al., 2003; Clapham, 2009). Thus, high-conductance 

calcium influxes observed under these conditions are accounted for by TrpV4; NA(4MC)BS 

sensitivity would indicate that TrpV4 is blocked by this drug, while insensitivity would indicate 

that TrpV4 is resistant to NA(4MC)BS. We recorded baseline channel activity for 5-10 minutes, 

then added 10μM NA(4MC)BS and continued recording for 10-25 minutes. In five experiments, 

NA(4MC)BS had little effect on total calcium current compared to MDCK cells recorded 

without trivalent ion treatment. The average channel current is reduced by only 0.21 (±0.32 = 

95% C.I., n=5) pA in the presence of low lanthanum ion concentrations or 0.14 (±0.62 = 95% 

C.I., n=5) pA in the presence of low gadolinium ion concentrations, compared to 1.49 (±0.92 = 

95% C.I., n=5) pA for untreated MDCK cells (Figure 13C). The channel blocked by 

NA(4MC)BS is clearly sensitive to low concentrations of lanthanum and gadolinium ions, 
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suggesting that the molecular target of NA(4MC)BS is TrpC6, and not TrpV4. Thus, since 

NA(4MC)BS blocks HGF-induced scattering in our original screening assay, we conclude that 

TrpC6 is specifically required for HGF-induced scattering. 

To further confirm that TrpV4 and TrpC6 are present in MDCK cell membranes, we 

measured the effect of channel-specific agonists on calcium currents by electrophysiological 

recording. Two minutes after the TrpV4-specific agonist 4αPDD (4α-phorbol 12,13-didecanoate) 

is added to MDCK cells, high-conductance channel opening frequency increases substantially. 

Analysis revealed that both channel frequency and average channel conductance increases 

significantly (Figure 13D-E), which is characteristic of the TrpV4 response to 4αPDD (Benfenati 

et al., 2007). When MDCK cells are treated with the TrpC6-specific agonist hyperforin, the 

channel opening rate rises from a few events per minute to a nearly uninterrupted stream of 

channel openings (Figure 13F-G). This confirms the presence of both TrpV4 and TrpC6 at the 

MDCK plasma membrane. 

Chapter 4: The Effect of Calcium Signaling on NFAT Function 

HGF stimulation induces NFAT activation through TrpC6-mediated Ca2+ influxes 
Calcium influxes have been shown to activate NFAT-dependent gene transcription. We 

reasoned that HGF-induced increases in calcium influxes might increase NFAT-mediated gene 

transcription and, further, that NFAT is required for HGF-induced EMT. We first tested this by 

measuring the effect of a commercial inhibitor of NFAT on HGF-induced scattering in our 

original screening assay. This inhibitor prevents cell scattering following HGF stimulation 

(reduced to 46.4% (±30.4% = 95% C.I., n=10) of normal level, where 0%=the average untreated 

control value and 100%=the average HGF-treated control value), demonstrating a role for 

NFAT. We then sought to determine whether HGF stimulation increases NFAT-dependent gene 

transcription. We generated a stable MDCK cell line bearing a luciferase-based NFAT reporter 
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construct and measured the effect of HGF stimulation on luciferase expression. Luciferase 

activity is transiently and significantly increased 40 minutes after HGF stimulation (Figure 14A), 

a timing that precisely follows the pulse in high frequency calcium influxes observed 25-30 

minutes following HGF stimulation. This suggests a strong connection between calcium influxes 

and NFAT mediated gene transcription. We sought to further solidify this connection by 

determining the role of TrpC6 in NFAT activation. We tested whether NA(4MC)BS prevents 

HGF-induced increases in NFAT-dependent gene transcription. MDCK cells bearing the NFAT 

reporter system were treated with or without NA(4MC)BS, stimulated with HGF for 40 minutes, 

and used to generate extracts in which luciferase activity was measured. Luciferase activity in 

HGF-stimulated cells treated with NA(4MC)BS is reduced compared to untreated control cells, 

reaching levels comparable to cells that had not received HGF stimulation (Figure 14B). This 

shows that TrpC6-mediated calcium influxes are required for NFAT-mediated transcription after 

HGF stimulation, even though calcium influxes through other channels are still increased. 

We also examined the effect of HGF stimulation on the nuclear localization of NFAT 

proteins. In order to first determine the identity of the NFAT protein expressed in MDCK cells, 

we conducted a series of RT-PCR screens for each of the NFAT subtypes. These experiments 

revealed that MDCK cells express the c1 and c4 isoforms of NFAT and that HGF stimulation 

does not significantly affect the expression of these proteins (Figure 14C). Immunolocalization 

of NFATc4 in MDCK cells treated with HGF reveals that nuclear accumulation of NFATc4 

increases significantly 40 minutes after HGF treatment, but this accumulation is blocked by the 

presence of 5μM Gd3+ and 10 μM NA(4MC)BS (Figure 14D-G). This further demonstrates the 

importance of transient increases in calcium influxes through TrpC6 in NFAT activation. Unlike 

NFATc4, NFATc1 did not show any significant changes in localization following HGF 
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stimulation, though this could be a result of antibody incompatibility with canine NFATc1 

protein (data not shown). 

Chapter 5: The Role of Wnk Kinase in Hgf Signal Transduction 
In our initial drug screen, 8-methoxy-2-[2-(3,4,5-trimethoxyphenyl)vinyl]quinolone 

(8M2[2(345TMP)V]Q), one of the inhibitors that also tested highly effective at preventing HGF-

induced cell scattering proved upon closer examination to inhibit WNK2 and WNK3 from the 

WNK kinase subfamily (Figure 15A-B). It is unknown whether the drug also inhibits WNK1 and 

WNK4, as it was not tested for inhibition of these proteins. As demonstrated above, HGF 

signaling relies on very precise Ca2+ signaling patterns. Based on this information and on 

published roles of WNK kinases as mediators of Ca2+ influx, we suspected that a member of the 

WNK subfamily is involved in HGF signaling either in a permissive or an active role, and that it 

functions by mediating Ca2+ signaling. 

Inhibition of WNK kinase increases Ca2+ influx through the cell membrane 
Based on our previous observation of Ca2+ signaling at the membrane and the known 

effect of WNK kinases as regulators of ion signaling (Leng et al., 2006; Moriguchi et al., 2005; 

Rinehart et al., 2011), we hypothesized that an essential protein for HGF signaling that functions 

by regulating Ca2+ channel function would likely exert a visible effect on Ca2+ conductance 

through the plasma membrane. 

In order to test whether calcium signaling at the plasma membrane is mediated by WNK 

kinase in MDCK cells, we established a series of cell-attached patches on MDCK cells and 

recorded the basal level of Ca2+ channel opening for five minutes each time. Once we had 

established a baseline, we added our WNK kinase blocker and continued recording a further 

fifteen minutes to determine its effect on the number, size, and frequency of membrane-bound 

channel openings. 
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Repeated assays consistently show that our WNK kinase inhibitor is capable of 

significantly increasing the frequency of Ca2+ channel openings (Figure 16A-B). This is 

consistent with published data indicating an inhibitory role for WNK1 and WNK4 on TrpV4 and 

TrpC3 (Fu et al., 2006; Park et al., 2011). Of these, TrpV4 is of particular interest, as MDCK 

cells express TrpV4 channels in high numbers at the plasma membrane. This suggests that 

dysregulation of WNK1 or WNK4 could potentially account for the increase in channel opening 

frequency observed when the inhibitor is added. 

Expression patterns of WNK kinase subfamily members in MDCK 
Once we had determined the role of WNK kinase in Ca2+ channel regulation, we used 

reverse-transcriptase PCR to determine the expression patterns of each member of the WNK 

subfamily, including kidney-specific WNK1 and full-length WNK1, which have distinct 

regulatory properties (Wade et al., 2006), as well as WNK2, WNK3 and WNK4. We tested 

transcription both in cells treated with HGF for 16 hours and in untreated cells. The results show 

clear transcription of full length WNK1 and WNK3. WNK2 was not detected for either treatment 

in either of two PCR assays though it is possible that this denotes a failed experiment rather than 

the absence of WNK2 mRNA, however, our results agree with previous evidence that WNK2 is 

not expressed in the kidney (Rinehart et al., 2011) (Figure 17A). There is no observable 

difference in expression between untreated and HGF-treated cells for any of the members of the 

WNK subfamily. 

Chapter 6: Discussion 
HGF signaling plays a critical role in development and in cancer progression, but remains 

poorly characterized at the molecular level. Application of small molecule screening approaches 

to dissection of complex signaling networks allows identification of novel signaling components 

and helps elucidate their role in signaling. Here we show that development of a simple cell-based 
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assay with a moderate z’ score can be successfully used to identify small molecules that target 

molecular components required for signaling, in this case HGF signaling that drives cell 

scattering. Our small molecule screening approach specifically implicates microtubule dynamics 

and calcium signaling in this signaling. We report the occurrence of bursts of high frequency 

calcium influxes following induction of HGF signaling and demonstrate that such bursts are 

microtubule dependent, occur through multiple calcium channels, require TrpC6 channels 

specifically, and affect NFAT-mediated gene transcription in a TrpC6-dependent manner. 

Finally, we show that an inhibitor of WNK kinase is capable of significantly reducing cell 

scattering in response to HGF signaling. 

  Identification of a neuronal calcium channel blocker in our original screen strongly 

suggests that calcium signaling is required for HGF-induced EMT. Increased calcium signaling 

downstream of HGF has been observed in a number of systems and occurs through a variety of 

calcium channels, including TrpC6 (Jin et al., 2002; Wang et al., 2010b; Waning et al., 2007; 

Wondergem et al., 2008). In HepG2 cells treated with HGF, increased cytosolic calcium results 

from influxes from the plasma membrane and from intracellular stores, both through TrpV1 and 

TrpV4 channels (Vriens et al., 2004; Wang et al., 2010b). In glioblastoma, it is TrpM8 that 

increases cytosolic calcium concentration in response to HGF treatment (Wondergem et al., 

2008). In HK2 cells, a renal tubular epithelial cell line, TrpC6 is required for HGF-induced 

proliferation, migration, and actin rearrangements (Rampino et al., 2007). Further, exogenous 

overexpression of the calcium channel polycystin-1 in MDCK cells drives scattering (Boca et al., 

2007), suggesting that calcium influxes play a role in EMT. Our results confirm that calcium 

influxes at the plasma membrane occur through multiple channels, including TrpV4 and TrpC6 

in MDCK cells. Interestingly, HGF stimulation results in highly reproducible periodic increases 
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in high frequency calcium influxes. Several lines of evidence suggest that calcium signaling 

downstream of HGF stimulation occurs as a result of vesicle deposition in the plasma membrane. 

First, calcium signaling occurs as a result of changes in opening frequency, rather than increases 

in the duration or magnitude of current. This suggests that the number of channels in the plasma 

membrane increases, rather than that existing channels alter their conductance properties. 

Second, high frequency influx events occur through all channel subtypes in the membranes of 

MDCK cells, consistent with the observation that HGF signaling has been shown to trigger ion 

channel fluxes generally, including through TrpC6, and a number of ion channel blockers have 

been shown to block HGF signaling (Jin et al., 2002; Rampino et al., 2007; Wang et al., 2010b). 

This indicates that regulation of calcium channels is non-specific, as would be expected in the 

case of vesicle delivery. Third is the observation that microtubule polymerization inhibitors 

prevent pulses of high frequency calcium influxes in response to HGF. This suggests that 

microtubule-based vesicle mobilization is required for observed pulses of increased calcium 

influxes. How HGF might alter vesicle trafficking is unclear, as is how oscillations in frequency 

of calcium influxes are generated by vesicle trafficking. An alternative hypothesis is that calcium 

influxes are driven by cell morphology changes that occur in pulses during early EMT. Trp 

channels are stretch-gated and it is likely that activation of such channels in response to physical 

forces would impact multiple channel types, though we would expect changes in conductance 

properties if such was the case.  

While an important role for calcium in HGF signaling has been emerging in the literature, 

less clear has been whether individual channel types make specific, non-redundant contributions 

to signaling. Our results highlight that TrpC6, among several channels expressed at the plasma 

membrane, plays a non-redundant and specific role in HGF signaling. In MDCK cells, selective 
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blockade of TrpC6 prevents EMT-like cell scattering and downstream activation of NFAT-

dependent gene transcription, even though calcium influxes through other channels still occur. 

Importantly, that TrpC6 is required for HGF-induced scattering does not preclude other channels 

from also being required for EMT, though perhaps in different branches of the HGF signaling 

network. Though there is evidence that ion channels play a general role in cellular processes 

downstream of HGF (Jin et al., 2002; Rampino et al., 2007), we propose that calcium influxes 

through specific channels are connected to specific downstream signaling events. Activation of 

multiple calcium channels, each tied to distinct downstream signaling events, could facilitate 

selective and independent activation of multiple downstream effectors. Previously published 

evidence supports this ideas, as it links TrpV6- to Ca2+ signaling and NFAT activation that are 

required for cell proliferation in prostate cancer (Lehen'Kyi et al., 2007). This idea is further 

supported by the observation that econazole and ruthenium red have unique effects on HGF 

signaling; though both reduce HGF-induced cell scattering, their effects on HGF-induced 

proliferation and migration are distinct. This is likely a result of differential sensitivity of 

calcium channels to these agents and their coupling with distinct downstream effectors.  

A key question is how calcium influxes alter cellular behavior that results in EMT or 

other responses to HGF signaling. Our identification of NFAT-dependent gene transcription as 

being required for cell scattering shows that calcium can operate by changing gene expression 

profiles in HGF-stimulated cells. There is also published evidence that calcium-dependent 

kinases mediate effects of HGF signaling (Tyndall et al., 2007) . Calcium influxes also impact 

conductance through other channel types, such as calcium-dependent potassium channels, which 

have been implicated in mediating HGF signaling, particularly as it affects cell migration (Liu et 

al., 1998; Rampino et al., 2007). Interestingly, calcium-dependent potassium currents occur with 
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periodic oscillations that begin minutes after HGF stimulation of SC-M1 cells (Liu et al., 1998). 

The cell morphology changes of HGF-induced EMT are associated with dramatic 

rearrangements of the actin cytoskeleton, and it is interesting that many actin regulatory systems 

are impacted by calcium, either directly or indirectly. 

Our results implicating WNK kinase in HGF signaling via modulation of ion transport 

join together two bodies of evidence: first that members of the WNK kinase subfamily frequently 

act via regulation of cation transport (Leng et al., 2006; Moriguchi et al., 2005; Rinehart et al., 

2011; Wade et al., 2006) and second that mutations in these same proteins are implicated in 

cancer progression (Greenman et al., 2007). We link these by showing that dysregulation of 

WNK kinases is sufficient to prevent effective HGF signaling in MDCK. However, it is 

important to note here that the ability of WNK kinase inhibitors to prevent c-Met-induced EMT 

does not necessarily mean that c-Met modulates WNK kinase in any way during signaling, only 

that properly functioning WNK kinase is essential for signal transduction. It is quite possible that 

this permissive nature of WNK kinase is simply because, in its absence, ion signaling becomes 

severely dysregulated, and c-Met signaling, which relies on precise Ca2+ pulses, is unable to 

properly regulate these pulses without the normal inhibitory function of WNK kinase. 

Our library screen highlights the central role of calcium in HGF signaling and provides 

molecular details into how calcium influxes are controlled and how calcium influxes exert 

downstream effects, thus providing a picture of an important biological circuit within the HGF 

signaling network. Results presented here highlight how an unbiased small molecule screening 

approach can be applied to dissect complex signaling networks. 

Chapter 7: Materials and Methods 

Cell culture and assays 
MDCK II cells were cultured in DMEM + 10% FBS at 37°C in 5% CO2. HGF-
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conditioned media was generated by MRC-5 cells cultured in DMEM + 10% FBS. Transwell 

migration assays were performed in Corning plates with an 8μm pore size (Corning). Cells were 

plated at 75,000 per well on the top of the filter and incubated for 20-24 hours. Where applicable, 

HGF-conditioned media was added to the lower compartment at the same time as the 

experimental compound. Cells were incubated a further 20-24 hours and then rinsed with ice-

cold PBS, fixed on ice for 15 minutes with 4% paraformaldehyde, and stained with crystal violet. 

Cells that had not penetrated the filter were swabbed from the top of the filter and plates were 

scanned for color intensity by a FluorChem photometer (Cell Biosciences). Migration assays 

were performed using Oris Cell Migration Assays (Platypus Technologies). 75,000 cells were 

seeded into each well, and plates were incubated 24 hours. Treatments were added to each well 

and the stoppers were removed. After 18 hours of further incubation, cells were rinsed with ice-

cold PBS, fixed on ice for 15 minutes with 4% PFA, and stained with crystal violet. Each well 

was photographed and cell migration was analyzed using SlideBook software. For proliferation 

assays, 10,000 cells were seeded into each well of a standard flat-bottomed 96-well tissue culture 

plate and incubated for 24 hours. Treatments were added and cells were incubated a further 12, 

24, 36, or 48 hours before being fixed with 4% PFA and stained with crystal violet. Cell density 

was then determined using a FluorChem photometer. Unclassified compounds were obtained 

from ChemBridge. 

Gene reporter assay 
MDCK cells were infected with a viral vector containing an NFAT Reporter 

(SABiosciences). Cells were selected with G418 for 14 days to generate a stable polyclonal cell 

line. Cells from this line were plated at a density of 250,000 cells/well on 24-well plates. Cells 

were incubated for about 48 hours. The cell media was then treated with 20% HGF-conditioned 

media with or without drug NA(4MC)BS or left untreated as a control. Cells were harvested 
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using the Promega luciferase assay kit according to the product instructions. Luciferase intensity 

was determined with a TD-20/20 luminometer (Turner Designs). 

Patch clamping 
Before patching, cells were rinsed twice in room temperature Ringer’s solution. Bath 

solution: ddH2O with 129mM NaCl, 11mM KCl, 1mM MgCl2, 1mM CaCl2, 10mM HEPES, 

10mM Glucose, brought to a pH of 7.4 with HCl or NaOH. Electrode solution: ddH2O with 

137mM potassium gluconate, 9mM KCl, 1mM MgCl2, 0.1mM EGTA, 10mM HEPES, brought 

to a pH of 7.4 with HCl or NaOH. LaCl3 and Gd2(SO4)3 were dissolved in ddH2O and other 

drugs were dissolved in DMSO. For NA(4MC)BS+La3+ or Gd3+, LaCl3 or Gd2(SO4)3 was added 

to the electrode solution used for patching. All cell-attached patching was performed at -80mV 

holding potential and whole-cell patching was performed at -40mV holding potential. All patch 

clamping was done using an Axopatch 200A amplifier (Molecular Devices), and electrodes were 

pulled from thin-wall borosilicate glass (GC150TF-10, OD = 1.5 mm with a filament, Warner 

Instruments). 

Reverse-transcriptase PCR 
MDCK II cells were cultured as indicated above and were either left untreated or cultured 

in the presence of 5% HGF-conditioned media for 16 hours. mRNA was harvested and reverse 

transcribed using the ImProm-IITM Reverse Transcription System (Promega) according to the 

manufacturer’s instructions. Primers are listed in Supplemental Tables 1 and 2. 

Immunofluorescence 
MDCK cells were cultured on collagen-coated glass coverslips overnight. 10% HGF-

conditioned media was then added to each well at 10-minute increments for 70 minutes with an 

additional well treated with Gd2(SO4)3 and 10% HGF simultaneously and allowed to respond for 

40 minutes, rinsed in PBS, and then fixed for 15 minutes on ice with 4% paraformaldehyde in 



50 
 
 

PBS. Cells were blocked in PBS supplemented with 0.2% bovine serum albumin, 50mM NH4Cl, 

and 0.5% Triton X overnight. Cells were then stained with primary antibodies against NFATc1 

and NFATc4 (Santa Cruz), followed by secondary antibody treatment with goat anti-rabbit or 

goat anti-mouse antibodies (Invitrogen) conjugated to Alexa-fluor 594 or 488. Coverslips were 

mounted in VectaShield (Vector Labs) and viewed under an Olympus BX41 phase contrast 

microscope with a 100x/1.30 oil objective lens. Images were acquired with a Hamamatsu Orca-

ER digital camera and analyzed using SlideBook software. 

Characterization of nuclear localization of NFATc4 
 NFATc4 was stained as described above, followed by staining with DAPI. SlideBook 

was then used to automatically define nuclei by a fixed intensity of DAPI stain. NFATc4 

fluorescent intensity was measured throughout the image and within the area identified as the 

nucleus. Intensity within the nucleus was then divided by total intensity to determine relative 

percent localization of NFATc4 to the nucleus. 

Statistical methods 
Unless otherwise noted, all p-values were determined by two-tailed, unpaired Student’s t-

tests. 
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Figure Legends 

Figure 1. Induction of actin rearrangement. 
Diagram outlining the major events required to induce actin rearrangement in response to HGF. 

(Al-Awar et al., 2000; Boshans et al., 2000; Bosse et al., 2007; Chen et al., 1998; Egan et al., 

1993; Fan et al., 2001; Graziani et al., 1991; Graziani et al., 1993; Kawasaki et al., 2009; 

Kiyokawa et al., 1998; Li et al., 2009; Mood et al., 2006b; Radhakrishna et al., 1999; Schlaepfer 

et al., 1994; Stefan et al., 2001; Wada et al., 1998) 

Figure 2. Induction of cell spreading. 
Diagram outlining the major events required to induce cell spreading in response to HGF. (Cary 

et al., 2002; Chang et al., 2007; Song et al., 1998; Takino et al., 2005; Wang and Ingber, 1994) 

Figure 3. Induction of cell detachment. 
Diagram outlining the major events required to induce cell detachment in response to HGF. 

(Grotegut et al., 2006; Ilic et al., 1995; Lamorte et al., 2003; Maroun et al., 1999a; Maroun et al., 

1999b; Schaeper et al., 2000; Schaeper et al., 2007; Stefan et al., 2001; Wang et al., 2009; 

Weidner et al., 1996; Yu et al., 2001) 

Figure 4. Induction of cell migration. 
Diagram outlining the major events required to induce cell migration in response to HGF. 

(Barberis et al., 2000; Carragher et al., 2003; Cuevas et al., 2003; Furuhjelm and Peranen, 2003; 

Ishibe et al., 2004; Kiyokawa et al., 1998; Klemke et al., 1997; Li et al., 1997; Sakkab et al., 

2000; Sawhney et al., 2006; Schlaepfer et al., 1997; Schlaepfer et al., 1994; Schlaepfer and 

Hunter, 1997; Shen and Guan, 2001; Totsukawa et al., 2004; Westhoff et al., 2004) 

Figure 5. Induction of cell invasion 
Diagram outlining the major events required to induce cell invasion in response to HGF. (Furlan 

et al., 2007; Guo and Sharrocks, 2009) 
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Figure 6. Inhibition of apoptosis. 
Diagram outlining the major events required inhibit apoptosis in response to HGF. (Kitta et al., 

2003; Liu, 1999; Ma et al., 2005; Müller et al., 2002; Zhou et al., 2006) 

Figure 7. Induction of proliferation. 
Diagram outlining the major events required to induce cell proliferation in response to HGF. 

(Finco and Albert S. Baldwin, 1993; Garcia-Guzman et al., 1999; Kermorgant et al., 2004; 

Lamorte et al., 2000; Mood et al., 2006a; Ramos-Nino et al., 2008) 

Figure 8. Design and application of an unbiased chemical screen against HGF-induced 
EMT.  
A. Concentration-dependent effect of HGF in the screening assay. B. Effect of SU11274 on 

HGF-induced cell scattering in the screening assays. C-E. Frequency distribution of library and 

hit compounds by physicochemical properties. 

Figure 9. Chemical structures of compounds identified in screening.  
Chemical structures of compounds families with reported activity targeting microtubules (A-D), 

HSP90 (E), integrins (F), or neuronal calcium channels (G). 

Figure 10. HGF-induced Ca2+ influxes are necessary for cell scattering.  
A. Effect of econazole and ruthenium red on HGF-induced cell transwell migration. B. Effect of 

econazole and ruthenium red on migration and proliferation, normalized against the HGF-treated 

controls. C-D. Normalized channel opening frequencies of 5 independent experiments aligned by 

time following HGF stimulation (C) or by occurrence of an initial peak in channel opening 

frequency (D). Black circles represent values from each experiment. The gray line represents the 

average fold increase in channel opening frequency over all 5 trials. E-F. Electrophysiology 

recordings at -80mV beginning (E) 10sec and (F) 30min35sec after HGF stimulation. 

Figure 11. HGF-induced Ca2+ surges require microtubules.  
A-B. Cell-attached electrophysiology recordings at -80mV holding potential in the presence of 
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0.5μM tubulin polymerization inhibitor at (A) 10sec and (B) 30min35sec after HGF stimulation. 

C. Fold change in channel opening frequency after HGF stimulation of cells treated with 0.5μM 

tubulin polymerization inhibitor (n=2, gray line) or of untreated cells (black line). 

Figure 12. NA(4MC)BS selectively inhibits a single high-conductance Ca2+ channel.  
A. Cell-attached electrophysiology recording at -80mV beginning 45 seconds after 10μM 

NA(4MC)BS treatment. Some NA(4MC)BS-sensitive (arrows) and -insensitive (arrowheads) 

high-conductance currents are noted. B. Frequency distribution of individual channel 

conductances by current. Gray vertical lines approximate the conductance range of the two high-

conductance channels. Note the reduction in frequency of channels with conductance in the 

upper range (arrow). C. Channel opening events beginning 45 seconds after addition of 10μM 

NA(4MC)BS. The graph is divided into four quadrants, with the upper and lower halves 

separating the two high-conductance channels shown in B, and the left and right halves 

representing channel conductance before and after onset of NA(4MC)BS, respectively. Percents 

represent the portion of total plotted channels located in each quadrant. 

Figure 13. Effect of NA(4MC)BS on TrpC6 and TrpV4 channels.  
A. RT-PCR amplification of Trp channel mRNA in untreated or HGF-treated MDCK cells. B. 

Average of individual channel currents of a whole-cell patched MDCK cell at a -40mV holding 

potential in the presence of increasing [La3+]o. C. Effect of NA(4MC)BS in the presence of 

10μM La3+ and 5μM Gd3+, as measured by average channel current. D. Electrophysiology 

recording beginning immediately after addition of 20μM 4αPDD. E. Channel currents following 

addition of 20μM 4αPDD. F. Electrophysiology recording beginning immediately after addition 

of 10μM hyperforin. G. Channel currents after addition of 10μM hyperforin. See also Table 1. 

Figure 14. HGF-induced NFAT activity requires TrpC6.  
A. Luciferase-based gene reporter assay for NFAT activity following administration HGF. B. 
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Effect of NA(4MC)BS on NFAT reporter gene transcription following HGF stimulation. C. RT-

PCR amplification of NFAT mRNA in untreated or HGF-treated MDCK cells. D-F. NFATc4 

localization in (D) untreated cells, (E) cells treated with HGF for 40 min, or (F) cells treated with 

HGF for 40 min in the presence of 5μM Gd3+. Arrowheads indicate cells with strong nuclear 

localization of NFATc4. G. Average percent of GFP intensity localized to the nucleus, where 

GFP indicates localization of NFATc4; error bars = S.E. among multiple capture fields, n=5 or 6 

for each condition. See also Table 2. 

Figure 15. 8M2[2(345TMP)V]Q inhibits WNK2 and WNK3 kinase activity. 
A. The chemical structure of 8-methoxy-2-[2-(3,4,5-trimethoxyphenyl)vinyl]quinolone 

(8M2[2(345TMP)V]Q). B. The ability of 8M2[2(345TMP)V]Q (B6000) to inhibit kinase 

activity. Compounds are listed by serial numbers assigned by our lab, and the effect of each drug 

on each kinase listed is indicated either by a green square to indicate a resultant increase in 

kinase activity or by a red square to indicate a resultant decrease in kinase activity. 

Figure 16. 8M2[2(345TMP)V]Q induces an increased frequency of Ca2+ channel openings. 
A-B. Electrophysiological readout of a cell-attached patch immediately prior to (A) and 

immediately following (B) addition of 10μM 8M2[2(345TMP)V]Q. 

Figure 17. Expression patterns of members of the WNK kinase subfamily in MDCK. 
A. Results of a reverse-transcriptase PCR series determining the expression levels of members of 

the WNK kinase subfamily in untreated cells or cells treated with 5% HGF for 16 hours. See also 

Table 3. 

Table 1. Primers used for detection of Trp channels in MDCK. 
List of primers used in reverse-transcriptase PCR experiments to detect the expression of Trp 

channels in MDCK. Forward and reverse primers are listed in order 5’ to 3’, and Length (bp) 

refers to the predicted length of the cDNA. In all cases, genomic DNA is significantly longer. 
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Table 2. Primers used for detection of NFAT in MDCK. 
List of primers used in reverse-transcriptase PCR experiments to detect the expression of NFAT 

subtypes in MDCK. Forward and reverse primers are listed in order 5’ to 3’, and Length (bp) 

refers to the predicted length of the cDNA. In all cases, genomic DNA is significantly longer. 

Table 3. Primers used for detection of WNK kinase in MDCK. 
List of primers used in reverse-transcriptase PCR experiments to detect the expression of WNK 

kinases in MDCK. Forward and reverse primers are listed in order 5’ to 3’, and Length (bp) 

refers to the predicted length of the cDNA. In all cases, genomic DNA is significantly longer.  
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Figure 1: Induction of actin rearrangement 
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Figure 2: Induction of cell spreading 
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Figure 3: Induction of cell detachment 
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Figure 4: Induction of cell migration 
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Figure 5: Induction of cell invasion 
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Figure 6: Inhibition of apoptosis 
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Figure 7: Induction of proliferation 
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Figure 8: Design and application of an unbiased chemical screen 
against HGF-induced EMT 
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Figure 9: Chemical structures of compounds identified in screening 
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Figure 10: HGF-induced Ca2+ influxes are necessary for cell scattering 
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Figure 11: HGF-induced Ca2+ surges require microtubules 
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Figure 12: NA(4MC)BS selectively inhibits a single high-conductance Ca2+ channel 
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Figure 13: Effect of NA(4MC)BS on TrpC6 and TrpV4 channels 
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Figure 14: HGF-induced NFAT activity requires TrpC6 
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Figure 15: 8M2[2(345TMP)V]Q inhibits WNK2 and WNK3 kinase activity 
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Figure 16: 8M2[2(345TMP)V]Q induces an increased frequency of Ca2+ channel 
openings 
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Figure 17: Expression patterns of members of the WNK kinase subfamily in MDCK 
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Table 1: Primers used for detection of Trp channels in MDCK 
TRPC Family Primers 

Primer Target:  Sequence Length (bp) 

TRPC1 
Forward 5’- CTCTACCCAAGCCCCATG -3’ 

121 
Reverse 5’- CTGGACTGGCCAAACAGC -3’ 

TRPC2 
Forward 5’- CTGTGAGGGCTCCCTCAG -3’ 

210 
Reverse 5’- GTTCAGCCCGCATGGTGC -3’ 

TRPC3 
Forward 5’- CTGGCCAAGCTGGCCAAC -3’ 

163 
Reverse 5’- CCTCTAGAGGCTCTGCGG -3’ 

TRPC4 
Forward 5’- GAGGAACCTGGTGAAGCG -3’ 

138 
Reverse 5’- CCTCGTAGTAAACCCAGG -3’ 

TRPC5 
Forward 5’- GCCATCCGCAAGGAGGTG -3’ 

149 
Reverse 5’- GTGTGGGCAGCCAGCATG -3’ 

TRPC6 

Forward 5’- CTGCTCCTGGACTCGGAG -3’ 
105 

Reverse 5’- GTGGGCCAGTCTGCTGTC -3’ 

Forward 5’- GTCGGATTGCCCTTCCTG -3’ 
135 

Reverse 5’- CATGACCAGCAGTCCCAG -3’ 

Forward 5’- CTGGCAGTGCTGGCCAAC -3’ 
172 

Reverse 5’- GACCGTGATCTCCGCCAC -3’ 

Forward 5’- CAGGAGGATGCAGAGATG -3’ 
240 

Reverse 5’- CTCCTTATCTACCTGGGC -3’ 

TRPC7 
Forward 5’- GAAGACCCTGTCCTCACC -3’ 

144 
Reverse 5’- GTCTCGGCATAGGTCCAG -3’ 
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TRPM Family Primers 

Primer Target:   Sequence  Length (bp) 

TRPM1 
Forward 5’- GACCCCTCAGCTGGACAG -3’ 

148 
Reverse 5’- GCCCCGAAGTGGTGGAAG -3’ 

TRPM2 
Forward 5’- CGAGAGCAGAGTGGACTG -3’ 

111 
Reverse 5’- CACTGGTCCAGGCTGAAG -3’ 

TRPM3 
Forward 5’- GCTGACAATGGGACCACC -3’ 

134 
Reverse 5’- CCTTCCACAATGAGCGCC -3’ 

TRPM4 
Forward 5’- GAACAGGGCTCAGATGGC -3’ 

113 
Reverse 5’- CAGCTTCAGACTCCAGGC -3’ 

TRPM5 
Forward 5’- CTCCGAGGAGCTGGACAC -3’ 

130 
Reverse 5’- CTTGGCGATGTCCACGCG -3’ 

TRPM6 
Forward 5’- GAATCCCTCCTTGGGGTG -3’ 

155 
Reverse 5’- GCCCACAGTCCCATCATC -3’ 

TRPM7 
Forward 5’- GCCCAGCAAATCTAGGTG -3’ 

147 
Reverse 5’- CTGAAGGCTCATCCTGAG -3’ 

TRPM8 
Forward 5’- GGAGGAGACCGAGAGTTG -3’ 

188 
Reverse 5’- GCAGAAGCTTCAGCTGCC -3’ 
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TRPV Family Primers 

Primer Target:   Sequence  Length (bp) 

TRPV1 
Forward 5’- CCACAGCGGTGGTGACGC -3’ 

107 
Reverse 5’- GGAGCTGTCAGGTGGCCG -3’ 

TRPV1 alternate 
Forward 5’- CATCAAGCGCACCCTGAG -3’ 

170 
Reverse 5’- CTTCTGGCTTGAGGGACC -3’ 

TRPV2 
Forward 5’- GTGTCAGCCAGCCGGACC -3’ 

113 
Reverse 5’- GCTGGTCCGGGACAGGTACTC -3’ 

TRPV2 alternate 
Forward 5’- CTGAAGCTGGCTGCCAAG -3’ 

170 
Reverse 5’- GAGTTCTCCTCCCAGCTG -3’ 

TRPV3 
Forward 5’- GCCAGCAGAGATCACCCCCAC -3’ 

111 
Reverse 5’- GGCTTGGAGAAGATGGGG -3’ 

TRPV4 
Forward 5’- CGGTGGAGGAAGAAGGTC -3’ 

120 
Reverse 5’- GCCCCGGGACACGATGTC -3’ 

TRPV5 
Forward 5’- GGCGCGCATCTACAACCC -3’ 

108 
Reverse 5’- GGGGGTTGGGGCAGTGTGGGG -3’ 

TRPV5 alternate 
Forward 5’- CCGTCCTCCAGCAGAAAC -3’ 

175 
Reverse 5’- GGTCCCCCGAGGATAGTC -3’ 

TRPV6v1 Forward 5’- CCAGATGTTGGGCCCTTTCAC -3’ 109 

TRPV6v3 Forward 5’- GGGGCAGCCGCTCAGGGGACC -3’ 128 

TRPV6v1&3 Reverse 5’- GAAGGCGGAGGCAAAGCCCAG -3’  

TRPV6v1 with 
TRPV6v1&3 reverse 

alternate 1 

Forward 5’- GGATTCCAGATGTTGGGC -3’ 
139 

TRPV6v1 alternate with 
TRPV6v1&3 reverse 

alternate 2 

    
144 

TRPV6v3 alternate with 
TRPV6v1&3 alternate 2 

Forward 5’- CAAGGGGCAGCCGCTCAG -3’ 161 

TRPV6v1&3 alternate 1 Reverse 5’- GTCGGGGTCCTCTGTCTG -3’ 
 

TRPV6v1&3 alternate 2 Reverse 5’- GATGATATAGAAGGCGGAGGC -3’ 
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PKD Family Primers 

Primer Target:   Sequence  Length (bp) 

PKD1 
Forward 5’- CTTCCGGATGTCCCGGAG -3’ 

125 
Reverse 5’- CCGGGAAGGTGAGGAAGG -3’ 

PKD2 
Forward 5’- GGATGATGAGCTCCAGTG -3’ 

167 
Reverse 5’- GATGGGCTGTACTGGAAG -3’ 
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Table 2: Primers used for detection of NFAT and WNK kinase in MDCK 
NFAT Family Primers 

Primer Target:   Sequence  Length (bp) 

NFATc1 
Forward 5’- CCTACGAGCTGAGGATTG -3’ 

152 
Reverse 5’- CTGTAGTGTGAGCGGTTC -3’ 

NFATc2 
Forward 5’- GACGAGTTCGACTTCTCC -3’ 

135 
Reverse 5’- CTTGAGGCCATAGTCCAG -3’ 

NFATc3 
Forward 5’- CACGACGAGCTCGACTTC -3’ 

141 
Reverse 5’- GGTAGATGGAGGTGGATC -3’ 

NFATc4 
Forward 5’- GGACACAGCCCCATCTTC -3’ 

154 
Reverse 5’- CTTTGACAGCTCCTCGGC -3’ 

NFATc5 
Forward 5’- CCGACAGTGCCAAAGCAC -3’ 

135 
Reverse 5’- GTCCACACAACATAGGGC -3’ 
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Table 3: Primers used for detection of WNK kinase in MDCK. 
NFAT Family Primers 

Primer Target:   Sequence  Length (bp) 

KS-WNK1 
Forward 5’- TTGTCATCATAAATTCTCATTGCTG -3’ 

??? 
Reverse 5’- AGGAATTGCTACTTTGTCAAAACT -3’ 

L-WNK1 
Forward 5’- CAGATCTACCGTCGAGTG -3’ 

156 
Reverse 5’- CTCCTGGAAGAAGGCATG -3’ 

WNK2 
Forward 5’- GGTTCATCATCTGTCCGG -3’ 

218 
Reverse 5’- GTCTTGAGTCTCTGCCAG -3’ 

WNK3 
Forward 5’- GGTTGAAGTTGCTTGGTG -3’ 

247 
Reverse 5’- GCTCCTTAAGACCTTTGG -3’ 

WNK4 
Forward 5’- GAATGAGCAAGCCATGCAG -3’ 

172 
Reverse 5’- GTACATATTCTCTGCCTGC -3’ 
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