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ABSTRACT 

Insulin Treatment Increases Myocardial Ceramide Accumulation and 
Disrupts Cardiometabolic Function 

Aimee Elizabeth Hodson 
Department of Physiology and Developmental Biology, BYU 

Master of Science 

Prevalence of diabetes, especially type 2 diabetes mellitus (T2DM) is increasing 
worldwide. Millions of people are already affected by T2DM and estimates predict over half a 
billion people will likely be suffering from the disease by 2030. T2DM is associated with an 
increased risk of developing cardiovascular disease. Cardiovascular dysfunction is the leading 
cause of mortality among type 2 diabetics. 

Treatment for T2DM has changed over time. Though it was once known as insulin 
independent, a large portion of type 2 diabetics are now treated with insulin injections. 
However, type 2 diabetics treated with insulin are more likely to suffer from heart 
complications. Due to this, we sought to determine the specific effect of insulin and insulin- 
induced ceramide accrual on heart mitochondrial bioenergetics. To do so we used both in vitro 
and in vivo models.  H9c2 cardiomyocytes and adult male mice were treated with insulin with 
or without the ceramide biosynthesis inhibitor myriocin. Mitochondrial bioenergetics were 
determined in permeabilized cardiomyocytes and myocardium.  In this study we demonstrate 
that insulin induced ceramide accrual in both isolated cardiomyocytes and whole murine 
myocardium. We further found that insulin treatment is sufficient to disrupt mitochondrial 
respiration in both models. Inhibition of the ceramide accrual rescued mitochondrial respiration, 
indicating that ceramide is necessary for the insulin-induced alterations in heart mitochondrial 
respiration. 

These results suggest that insulin has a role in the development of heart complications 
associated with T2DM due to cardiomyocyte mitochondrial disruption. They also implicate 
ceramide as a possible mediator in the development of insulin-related heart disorders. 

Keywords: type 2 diabetes, ceramide, mitochondria, hyperinsulinemia, insulin 
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CHAPTER 1: Introduction and Background 

Type 2 Diabetes Mellitus 

Type 2 diabetes mellitus (T2DM) is currently a major public health problem, and 

incidence is only increasing. In 2014 there were 29.1 million people with diabetes in the United 

States. Another 86 million were pre-diabetic, and about 15-30% of pre-diabetics were expected 

to develop T2DM over the next 5 years (Centers for Disease Control and Prevention, 2014). 

Prediabetes is characterized by blood glucose levels that are higher than normal, but not high 

enough for a full diagnosis as type 2 diabetes. This is due to the beginning stages of insulin 

resistance, where insulin levels are abnormally high in order to keep glucose levels from 

spinning out of control. There are no clearly visible symptoms associated with prediabetes. 

Consequently, a large portion of those affected by prediabetes are unaware they have the 

disease, are untreated, and are more likely to develop T2DM. 

Estimates predict that in 2030 around 552 million persons worldwide will be affected by 

T2DM (Whiting, Guariguata, Weil, & Shaw, 2011). T2DM is characterized by insulin 

resistance, which causes the body to not use the insulin it produces effectively resulting in 

higher than normal levels of glucose in the blood. It was previously known as non-insulin 

dependent diabetes mellitus. However, as an estimated 29% of type 2 diabetics use insulin 

injections in order to regulate their blood glucose levels, this term is no longer accurate (Centers 

for Disease Control and Prevention, 2014). Another previous name for T2DM, adult-onset 

diabetes, has also become irrelevant. Correlated with the trend of ever increasing childhood 

obesity, prevalence of T2DM in children and adolescents has increased greatly over the past 

decade (Amed, et al., 2010; Pinhas-Hamiel & Zitler, 2005). The dropping of these former 



2 
 

names highlights the growing impact of T2DM as it affects people of all ages and the increasing 

pervasiveness of insulin treatment. 

 
Cardiovascular Complications 

 
It has long been established that T2DM greatly increases the risk of cardiovascular 

disease (Kannel & McGee, 1979). The two diseases share many common risk factors such as 

dyslipidemia, insulin resistance, obesity, pro-inflammatory state, and pro-thrombotic states. The 

presence of these common risk factors helps explain the correlation between T2DM and 

cardiovascular dysfunction, however, it has been found that even independent of these risk 

factors T2DM is associated with about a two-fold risk increase for cardiovascular disease (The 

Emerging Risk Factors, 2010). Even when controlling for abnormal cholesterol levels, perhaps 

the most commonly examined risk factor for cardiovascular disease, cardiovascular events have 

been shown to increase with T2DM (van der Heijden, et al., 2013). Recent studies have also 

found connections through shared regulator genes involved in the development of both T2DM 

and cardiovascular disease (Chan, et al., 2014). The impact of these connections, and the search 

for as of yet unknown pathways is currently a field of pronounced interest amongst researchers 

examining T2DM. 

Not only is T2DM connected with a greater risk of cardiovascular diseases, it increases 

the risk of recurrence in those who have already experienced cardiovascular events. The 

increased risk of repetition also escalates cardiovascular related mortality in T2DM (van der 

Heijden, et al., 2013). It is therefore unsurprising that the major cause of mortality in persons 

suffering from T2DM is cardiovascular disease (Sowers, Epstein, & Frohlich, 2001). 

Due to the prevalence of T2DM, the high correlation between cardiovascular 

dysfunction and T2DM, the increased risk of recurrence, and the impact of cardiovascular 
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disease on T2DM-related mortality there is considerable importance in gaining a deeper 

understanding concerning how these two diseases are connected. 

 
Glucose and Insulin Research Paradigms 

 
A large percentage of past research has focused on the impact of high glucose levels as 

the link between heart dysfunction and T2DM (Fuentes-Antrás, et al., 2015; Laakso, 1999; 

Matheus, et al., 2013; Schmidt, Yan, Wautier, & Stern, 1999). Through this paradigm of 

thought many important discoveries concerning glucose-related mechanisms have been made. 

Poor glycemic control has been linked to inflammation, receptor for advanced glycation 

endproducts (RAGE activation, and possible disruption of mitochondrial function (Nelson, et 

al., 2015a; Schmidt, et al., 1999; Tilton, et al., 1995).  It seems possible, however, that there 

may be an equally, if not more, impactful role for high insulin levels on cardiovascular health in 

T2DM (Mandavia, Aroor, DeMarco, & Sowers, 2013; Pories & Dohm, 2012). These findings 

are especially relevant as insulin injections have become a more common medication for 

controlling glucose levels in T2DM. While such therapies are successful in lowering blood 

glucose levels in T2DM, they also lead to an increase in mortality (The Action to Control 

Cardiovascular Risk in Diabetes Study, 2008). It is therefore expedient that further 

investigations be made to determine the impacts of high insulin levels associated with T2DM on 

cardiovascular health. 

Recent research has suggested that while intensive glucose control may lead to a 

reduction in microvascular complications, it is not as effective in preventing cardiovascular 

complications (Laakso, 1999). Other glucose control studies have shown that intensive-therapy, 

which often includes insulin injections, may result in a decrease in cardiovascular events, but no 

corresponding increase in patient survival (Hayward, et al., 2015). This is not to say that 
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glucose control is unimportant in T2DM treatment. Higher risk of cardiovascular events has 

been seen in conjunction with poor glycemic control due to lack of treatment or delay of 

treatment (Green, et al., 2015; Paul, Klein, Thorsted, Wolden, & Khunti, 2015). It has also been 

shown that patients with better controlled glucose experienced a significant reduction in 

cardiovascular events survival (Holman, Paul, Bethel, Matthews, & Neil, 2008). However, the 

research is still contradictory. There are contrasting studies showing no significant improvement 

in cardiovascular dysfunction with better controlled glucose (Prato, 2009; Skyler, et al., 2009). 

Due to the inconsistency of the data, some researchers have begun looking for new 

treatment options with more concrete results. One new direction which has shown promise is 

the use of medications that control hyperglycemia without increasing insulin to reduce the risk 

of cardiovascular dysfunction in T2DM (Green, et al., 2015). These hopeful results offer further 

credence to the importance of insulin in the etiology of T2DM, and offers an area for future 

research. 

 
Ceramide 

 
Ceramide is a sphingolipid made of a combination of sphingoid base backbone, 

sphingosine, and a fatty acid. As denoted by their name, given in reference to the mysterious 

Sphinx, the function of sphingolipids was unknown for many years. Today, these lipids are still 

under investigation, but roles in cell differentiation, cell membranes, signaling pathways that 

mediate cell growth, and cell death have been elucidated (Merrill Jr, et al., 1997). Ceramide in 

particular has been implicated in cellular stress responses and mediation of several 

inflammatory factors such as TNF-α and interleukin-1 (Merrill Jr, et al., 1997). 

There are two pathways through which ceramide is synthesized: the de novo pathway 

and a recycling pathway. In the de novo pathway several enzymes -- including serine 
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palmitoyltransferase, 3-ketosphingosine reductase, ceramide synthase, and ceramide desaturase 
 
– are involved in converting palimtoyl-CoA to ceramide (Pralhada Rao, et al., 2013). Ceramide 

can also be formed through the hydrolysis of more complex sphingolipids, or sphingolipid 

recycling. This recycling process is an important part of lipid homeostasis (Pralhada Rao, et al., 

2013). 

In previous studies it has been found that increasing insulin levels also leads to an 

accumulation of ceramide in skeletal muscle (Hansen, et al., 2014).  As understanding of the 

role ceramide plays has improved, it has become more and more apparent that the accumulation 

of ceramide is linked with the pathogenesis of several diseases, including Alzheimer’s, obesity, 

metabolic syndrome, type 1 diabetes mellitus, and T2DM (Filippov, et al., 2012; Galadari, 

Rahman, Pallichankandy, Galadari, & Thayyullathil, 2013; X. Li, Becker, & Zhang, 2010; 

Yuyama, Mitsutake, & Igarashi, 2014). Ceramides have also recently been increasingly 

implicated as playing a role in the development of cardiovascular diseases (Di Paola, Cocco, & 

Lorusso, 2000; X. Li, et al., 2010; Park, et al., 2008; Zhang, et al., 2012). The relationship 

between ceramide and these diseases, as well as the accumulation of ceramide in the presence of 

high insulin, implicates a possible role for ceramide as a mediator for cardiovascular 

dysfunction in type 2 diabetics. It has been postulated that one method through which ceramides 

are negatively impacting cardiac function is through increasing mitochondrial fission (Smith, et 

al., 2013). 

 
Mitochondria 

 
Mature cardiomyocytes have a high metabolic demand, and are therefore highly 

oxidative cells. Most of the energy required for cardiomyocyte contractions is supplied through 

the oxidative phosphorylation of the mitochondria (Lemieux & Hoppel, 2009). A disruption in 
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the function of cardiac mitochondria can lead to heart failure (Holmgren, et al., 2003; 

Lesnefsky, Moghaddas, Tandler, Kerner, & Hoppel, 2001). Mitochondrial function depends 

greatly on its morphology and connectivity. In the fusion state mitochondria form a reticular 

network and have increased rates of respiration. In contrast, the fission state is characterized by 

a disintegration of mitochondrial connectivity and a decrease in respiratory capacity (Ishihara, 

Jofuku, Eura, & Mihara, 2003). T2DM is associated with an increase in mitochondrial fission 

(P. Li, et al., 2012), and mitochondrial fission has been connected with an increase in cardiac 

dysfunction (Pennanen, et al., 2014). 

Due to the crucial role of healthy mitochondria to cardiac health, as well as the 

pathological implications of dysfunctional mitochondria, it is important to understand the 

factors which affect mitochondrial form and function. Better understanding the connection 

between T2DM, high insulin, and cardiac dysfunction could lead to better prevention of T2DM 

mortality and is an important area of research. 

In view of the evidence implicating a role for insulin in the etiology of cardiac 

complications, especially through ceramide mediated mitochondrial disruption, the aim of this 

study is to better elucidate the role of insulin in cardiac dysfunction and investigate the 

possibility of ceramide as an intermediate in the pathway of insulin induced disruption of 

cardiac metabolic activity. 

 
Summary of Research 

 
Previous research conducted in the BYU obesity and metabolism lab has centered on the 

sphingolipid ceramide and its effects in a wide array of circumstances. The research has 

reinforced the notion of ceramide as a key player in mediating several of the pathological 

consequences of obesity and type 2 diabetes mellitus. Our lab has previously demonstrated that 
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insulin increases ceramides in skeletal muscle (Hansen, et al., 2014). It was shown in our lab 

that ceramides are secreted from A549 lung cells after exposure to cigarette smoke (Thatcher et 

al 2014). The lab built on this study in order to show that myocardiocytes incubated with the 

medium taken from cigarette smoke-exposed lung cells results in a pronounced inhibition of 

myocardial mitochondrial respiration. This effect could be attenuated through ceramide 

inhibition (Tippetts, et al., 2014). 

These findings complement previous results generated in our lab regarding ceramide and 

mitochondrial function. As described previously, morphology is extremely important in 

mitochondrial function. Healthy mitochondria are in the fusion morphology, meaning they form 

a reticular network throughout the cell (Ishihara, Jofuku, Eura, & Mihara, 2003). In contrast, our 

lab has found a correlation between ceramides and the disruption of this fusion state. This 

disruption is known as mitochondrial fission, which means the reticular network is decreased, 

mitochondrion become more separated from one another, and the mitochondrial respiration is 

reduced. Our lab found this process stimulates mitochondrial fission through dynamin related 

protein 1 (Smith, et al., 2013). 

Following the previously seen effects of insulin in increasing ceramide accumulation in 

skeletal muscle, and the effects of ceramide on the heart, we hypothesized that high insulin 

would produce a similar result in cardiomyocytes, and this presence of ceramides would then 

disrupt mitochondrial activity. 
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Abstract 
 
 

Background 
 

States of hyperinsulinemia, particularly insulin resistance and type 2 diabetes mellitus, 

are becoming remarkably common, with roughly half a billion people likely to suffer from the 

disorder within the next 15 years. Along with this rise has been an associated increased burden 

of cardiovascular disease. Considering type 2 diabetics treated with insulin are more likely to 

suffer from heart complications, we sought to determine the specific effect of insulin on 

ceramide-dependent cardiometabolic risk factors, including insulin resistance and altered heart 

mitochondrial physiology. 

 
Methods 

 
H9c2 cardiomyocytes and adult mice were treated with insulin with or without myriocin 

to inhibit ceramide biosynthesis. Insulin and glucose changes were tracked throughout the study 

and mitochondrial bioenergetics was determined in permeabilized cardiomyocytes and 

myocardium. 

 
Results 

 
Herein, we demonstrate that insulin is sufficient to disrupt heart mitochondrial 

respiration in both isolated cardiomyocytes and whole myocardium, possibly by increasing 

mitochondrial fission. Further, insulin increases ceramide accrual in a time-dependent manner, 

which is necessary for insulin-induced alterations in heart mitochondrial respiration and insulin 

resistance. 

 

 



16  

Conclusions 
 

Collectively, these observations have two implications. First, they indicate a pathological 

role of insulin in heart complications stemming from mitochondrial disruption. Second, they 

identify ceramide as a possible mediator of insulin-related heart disorders. 

 
Background 

 
We have known for decades that type 2 diabetes mellitus diabetes (T2DM) increases the 

risk of heart disease [1]. Indeed, the observation is so common that this phenomenon is referred 

to as “diabetic heart disease”, bringing attention to the fact that cardiovascular complications are 

the most common cause of mortality in those suffering with T2DM [2,3]. Considering the 

increasing incidence of T2DM worldwide [4], and the remarkable number of undiagnosed 
 

cases, at least in early stages [5], understanding the nature of the relationship between these two 
 

pathologies may prevent heart disease and prolong healthy living among those with T2DM. 
 

Reflective of the prevailing understanding of the etiology of T2DM, a great deal of 

research efforts have focused on glucose and glycemic control as the causal factors between 

T2DM and heart disease [6–10]. This focus has elucidated several glucose-related mechanisms, 

such as the reduction of glucose to sorbitol [11], and especially, the formation of advanced 
 

glycation end-products (AGE) and activation of its receptor (RAGE) [12–14]. Moreover, 
 

whether a consequence of RAGE activation or a distinct mechanism, hyperglycemia is known 

to induce inflammation [15]. Similarly, poor glycemic control may disrupt mitochondrial 

function and increase production of reactive oxygen species [16]. 
 

However, while the focus on glucose as a mediating mechanism linking T2DM to 

cardiovascular complications has yielded valuable insight, it nevertheless ignores what may be 

at least an equally relevant etiological factor of T2DM etiology—insulin. Pories and Dohm 
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recently posited that excess insulin, not glucose, is the essential factor in T2DM onset [17], a 

position supported by considerable evidence [18]. T2DM is a progressive spectrum of insulin 

resistance, with overt T2DM representing a state where insulin secretion, despite being 

elevated, is no longer sufficient to control blood glucose. As some have recommended a 

paradigm shift from looking at diabetes as a consequence of hyperinsulinemia rather than 

hyperglycemia, we are prompted to explore the causal relationship between T2DM and heart 

disease in a similar light. 

Previous reports have observed a role for insulin in the etiology of cardiovascular 

complications [19]. Importantly, insulin therapy, despite adequately controlling blood glucose, 

has been shown to increase mortality in T2DM [20]. Similar to glucose-induced mechanisms 

(e.g., AGE formation, etc.), insulin has distinct downstream mediators; one mediator may be the 

sphingolipid ceramide. Ceramides are increasingly recognized as an injurious mediator of heart 

pathologies [21–25] and we have recently found that insulin increases ceramide biosynthesis 

and accrual in skeletal muscle [26, 27]. In light of the evidence suggesting a role for insulin in 

the etiology of heart complications, the purpose of these experiments was to determine the 

effect of insulin on heart ceramides, as well as possible ceramide-induced alterations in 

mitochondrial function. 

Methods 

Cell Culture 

H9c2 cardiomyocytes were maintained in DMEM +10 % FBS. For differentiation into 

myotubes, cells were grown to confluency and the medium was replaced with DMEM +10 % 

horse serum (Invitrogen, Grand Island, NY). Myotubes were used for experiments on day 3 of 

differentiation. Cells were treated with insulin (50 nM; Actrapid; Novo Nordisk, Plainsboro, 
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NJ) and myriocin (10 µM; Sigma), an inhibitor of serine palmitoyltransferase, at the times 

indicated. 

 
Animals 

 
Sixteen-week-old male C57Bl/6 mice were separated into one of four groups (six per 

group) to receive morning injections of saline (PBS), insulin (daily; 0.75 U/kg/BW; Actrapid; 

Novo Nordisk, Plainsboro, NJ), myriocin (thrice weekly; 0.3 mg/kg; Sigma) or both for 28 days 

with free access to water and chow (Harlan 8604) throughout the length of the study. After the 

28-d treatment, mice underwent intraperitoneal glucose (G7021; Sigma-Aldrich, St. Louis, MO) 

and insulin (Actrapid; Novo Nordisk, Plainsboro, NJ) tolerance tests. For both tests, mice were 

fasted for 6 h and received an injection of either glucose (1 g/kg body wt) or insulin (0.75 U/kg 

body wt). These are doses that are above the typical rate of insulin treatment in type 2 diabetics 

(0.5 U/kg) [28]. Plasma glucose (Bayer Contour glucose meter), insulin (ELISA; Crystal Chem 

Inc.), and adiponectin (Crystal Chem Inc.) levels were determined. Studies were conducted in 

accordance with the principles and procedures outlined in the National Institutes of Health 

Guide for the Care and Use of Laboratory Animals and were approved by the IACUC 

(Institutional Animal Care and Use Committee) at Brigham Young University. 

 
Lipid Isolation Analysis 

 
Lipids were extracted and quantified as described previously [29]. Briefly, lipids were 

 

isolated with chloroform–methanol (1:2), and after addition of water, the organic phase was 

collected and dried. After resuspension, lipids were quantified using a shotgun lipidomics 

technique on a Thermo Scientific LTQ Orbitrap XL mass spectrometer. 

http://cardiab.biomedcentral.com/articles/10.1186/s12933-015-0316-y#CR28
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Protein Analysis 

Cell and tissue proteins were analyzed via western blot as described previously [29]. 

Cell and Myocardium Permeabilization 

For cells, H9c2 cardiomyocytes were detached in culture dishes with 0.05 % trypsin– 

EDTA (Sigma) and growth medium was added to the culture. Contents were transferred to a 

tube and centrifuged for 10 min at 1000×g at RT. After removal of supernatant, cells were lifted 

in MiR05 [0.5 mM EGTA, 3 mM MgCl2, 60 mM K-lactobionate, 20 mM taurine, 10 mM 

KH2PO4, 20 mM HEPES, 110 mM sucrose, and g/l BSA (Sigma; A3803) adjusted to pH 7.1] 

plus 1 mg/ml digitonin and gently rocked at RT for 5 min before centrifugation at 1000×gfor 

5 min. After discarding supernatant, cells were then suspended in 2.2 ml warm MiR05 and 

transferred to chambers in the O2K (Oroboros Instruments, Innsbruck, Austria). Following 

respiration protocol (outlined below), cells were removed from the chambers and used for 

protein quantification. For myocardial mitochondrial respiration, left ventricle was quickly 

removed from euthanized mice and immediately placed in ice-cold buffer X (60 mM K-MES, 

35 mM KCl, 7.23 mM K2EGTA, 2.77 mM CaK2EGTA, 20 mM imidazole, 20 mM tuarine, 

5.7 mM ATP, 15 mM PCr, 6.56 mM MgCl2–6H2O, pH 7.1) and trimmed of connective tissue. 

Small fiber bundles were prepared and gently separated along their longitudinal axis under a 

surgical scope (Olympus, ST) to 1–2 mg. Bundles were then transferred to a tube with chilled 

buffer X and 50 μg/ml saponin and rocked at 4 °C for 30 min, then washed in buffer Z 

(105 mM K-MES, 30 mM KCl, 10 mM KH2PO4, 5 mM MgCl2–6H2O, 0.5 mg/ml BSA, pH 7.1) 

at 4 °C for at least 15 min. Samples were then blotted dry and weighed. 

Mitochondrial Respiration Protocol 

High-resolution O2 consumption was determined at 37 °C in permeabilized cells and 

http://cardiab.biomedcentral.com/articles/10.1186/s12933-015-0316-y#CR29
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fiber bundles using the Oroboros O2 K Oxygraph with MiR05 respiration buffer. Before 

addition of sample into respiration chambers, a baseline respiration rate was determined. After 

addition of sample, the chambers were hyperoxygenated to ~300 nmol/ml. Following this, 

respiration was determined by all or parts of the following substrate-uncoupler-inhibitor- 

titration (SUIT) protocol: electron flow through complex I was supported by 

glutamate  +  malate (10 and 2 mM, respectively) to determine leak oxygen consumption 

(GM L ). Following stabilization, ADP (2.5 mM) was added to determine oxidative 

phosphorylation capacity (GM D ). Succinate was added (GMS D ) for complex I  +  II electron 

flow into the Q-junction. To determine full electron transport system capacity in cells over 

oxidative phosphorylation, the chemical uncoupler carbonyl cyanide 4-(trifluoromethoxy) 

phenylhydrazone (FCCP) was added (0.05 μM, followed by 0.025 μM steps until maximal O2 

flux was reached). Mitochondrial membrane integrity was tested in all experiments by 

adding cytochrome c (not shown; 10 μM). Lastly, residual oxygen consumption was measured 

by adding antimycin A (2.5 μM) to block complex III action, effectively stopping any electron 

flow, which provides a baseline rate of respiration. 

Statistics 

Data are presented as the mean  ±  SEM. Data were compared by ANOVA with Tukey’s 

post hoc analysis (Graphpad Prism; La Jolla, CA). Significance was set at p < 0.05.  

Results 

Insulin Increases Cardiomyocyte Ceramide Accrual, Which is Necessary for 
Mitochondrial Disruption 

We observed a significant time-dependent increase in ceramide accrual in 

cardiomyocytes with insulin treatment (Fig. 2.1a), which was supported with an increase in 

http://cardiab.biomedcentral.com/articles/10.1186/s12933-015-0316-y#Fig1
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heart levels of serine palmitoyltransferase 2 (SPT2) and dihydroceramides desaturase 1 (Des1) 

with insulin treatment (Fig. 2.1b) at 24 h. Whereas 1 h of insulin had no effect on ceramides, 6 h 

of treatment roughly doubled ceramide levels, a level maintained, but not significantly 

increased, at 12 and 24 h. With previous mitochondrial-specific effects of ceramides in mind 

[23, 25], we next determined whether this ceramide accrual had any effect on cardiomyocyte 

mitochondrial bioenergetics. Insulin altered mitochondrial respiration in a contrasting and time- 

dependent manner. At 1 h of insulin treatment, respiration was increased in cardiomyocytes, but 

significantly decreased at 6 and 24 h (Fig. 2.2a). Insulin-induced alterations in respiration were 

also evident in the reduced respiratory control ratio, an overall indication of mitochondrial 

health [30], at longer time points (Fig. 2.2b). Moreover, distinct function of complex II- 

mediated respiration, defined as the CII factor, revealed acutely increased (at 1 h) then decreased 

(at 6 and 24 h) respiration rates (Fig. 2.2c). Overall, uncoupling control ratio, calculated as 

maximal uncoupled respiration by FCCP relative to ADP-stimulated state, was comparable 

among all conditions (Fig. 2.2d). Importantly, inhibition of ceramide accrual with myriocin 

abolished the insulin-induced decrement in respiration (Fig. 2.2a–c). 

Additionally, we found that insulin altered mitochondrial morphology, appearing to 

increase mitochondrial fission (Fig. 2.3a), which was prevented with ceramide inhibition. Drp1 

levels were similar among all treatments (Fig. 2.3b). Further, 1 h of insulin treatment was 

associated with an increase in mitochondrial complex III levels, but this was lost with 24 h 

(Fig. 2.3c). 

Insulin Treatment Increases Body Mass and Causes Hyperinsulinemia and Insulin 
Resistance in Mice 

To determine whether an in vivo correlate exists to substantiate our in vitro findings, 

we injected adult male mice (16 week old) with insulin daily (0.75 mg/kg) for 28 days. At the 
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conclusion of the 28 days treatment period, mice injected with insulin (INS) gained 

significantly more body mass than PBS-injected mice (Fig. 2.4a); however, those injected with 

insulin (daily) and myriocin (thrice weekly; INS + MYR) did not gain such mass. Moreover, 

those injected with myriocin alone (MYR) weighed less than PBS-injected mice. While heart 

mass tended to increase with INS injection (Fig. 4b; P = 0.072), the change was not significant, 

and was even less remarkable when controlled for by body mass (Fig. 2.4c). INS-injected mice 

also had higher fasting insulin (Fig. 2.5a), but not glucose (Fig. 2.5b) over the course of the 

treatment. Further, INS treatment caused compromised glucose and insulin tolerance (Fig. 2.5a, 

b, respectively), but not with ceramide inhibition. 

Insulin Treatment in Mice Increases Muscle Ceramides and Alters Mitochondrial Bioenergetics 
and Morphology 

28 days of insulin elicited a roughly two-fold increase in myocardial ceramide content 

(Fig. 2.6a), though myriocin co-treatment prevented this effect. This effect was supported with 

an increase in heart SPT2 levels (Fig. 2.6b). Moreover, blood adiponectin was robustly inhibited 

with INS and moderately protected with MYR injections (Fig. 2.6c). Functionally, the increased 

ceramide accrual had a demonstrable and deleterious effect on myocardial mitochondrial 

respiration. In particular, overall respiration and RCR was reduced with INS treatment (Fig. 

2.7a, b), though CII factor was not significantly changed (Fig. 2.7c). Lastly, we found that 

myocardialmitochondria were smaller with INS treatment compared with all other conditions 

(Fig. 2.8a, b), though this was not reflected in any change in levels of mitochondrial complex 

proteins (Fig. 2.8c). This effect may be a result of INS-induced increased Drp1 levels 

http://cardiab.biomedcentral.com/articles/10.1186/s12933-015-0316-y#Fig4
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in the heart (Fig. 2.8d). 

Discussion 

Type 2 diabetes carries an increased risk of developing a surprising and increasing 

number of pathologies. Multiples lines of evidence reveal its hand in diseases stemming from 

cognitive [31], reproductive [32], musculoskeletal [33], and cardiovascular disorders [34]. 

However, type 2 diabetes is typified by two key characteristics—hyperglycemia and 

hyperinsulinemia [35, 36]—and while the disease has historically been defined by blood 

glucose levels, insulin may be a more sensitive and relevant diagnostic [37]. Indeed, a very 

recent study found that higher insulin exposure in type 2 diabetics is associated with a threefold 

increase in cardiovascular events [38]. Herein, we demonstrate that chronic insulin injections 

exert a time-specific and ceramide-dependent effect on cardiometabolic function, including 

insulin resistance and heart mitochondrial changes. 

These studies provide additional insight into the etiology of type 2 diabetes-related heart 

complications. In particular, these results suggest that insulin is an important pathogenic 

mediator and highlight the need to regularly measure insulin when evaluating heart disease risk. 

Our findings of insulin impacting mitochondrial physiology are not new—Parra et al. [39] 

found that insulin increased mitochondrial respiration. However, while we tended to see an 

overall dampening effect of insulin on mitochondrial respiration, a notable difference between 

our studies is the length of time; this previous report used a 3-h incubation, while we used 

several time points in our in vitro model. Indeed, our data corroborate those of Parra et al. [39] 
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when we analyzed mitochondrial respiration at 1 h, but not at periods over 6 h. Combined with 

our observations following a 4-week insulin treatment in mice, these data collectively suggest 

the clinical relevance of prolonged increases in insulin. 

In mice, we found that prolonged insulin treatment resulted in reduced glucose and 

insulin tolerance, suggesting that insulin alone, independent of other variables, is capable of 

inducing insulin resistance. This observation corroborates evidence from several previous 

reports in humans and rodents wherein hyperinsulinemia from endogenous (e.g., insulinoma) 

[40] and exogenous (e.g., injections) [26, 41, 42] sources causes insulin resistance. This insulin- 

desensitizing effect of prolonged hyperinsulinemia is likely at least partially mediated via 

ceramide accrual [26]. While it is possible that the insulin-resistant state caused by the insulin 

treatment in our study exerts some confounding effect on altering heart mitochondrial function 

independent of insulin-induced heart ceramide accrual, we nonetheless consider this an apparent 

feature of the prolonged hyperinsulinemia. Nevertheless, insulin resistance per se, in the 

absence of the often-accompanying hyperinsulinemia, may be the responsible lesion. 

In light of the observations by Dohm and Pories [17], who implicate hyperinsulinemia in 

the etiology of T2DM, we submit an alternative hypothesis as to the origins of diabetic heart 

disease that should be considered. As opposed to heart disease being a consequence of the 

potentially harmful milieu associated with T2DM, perhaps heart disease and T2DM are each 

consequences of one pathology—hyperinsulinemia. Such a theory is supported by multiple 

reports that implicate insulin alone in the etiology of both heart disease [43–45] and T2DM 

[46, 47]. Over two decades ago, Haffner et al. [48] wondered about the role of insulin and 

queried whether heart disease started before diabetes onset, when insulin, but not glucose, is 

elevated. Their results add to the body of evidence that insulin is an important etiological factor 
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in heart disease. A significant strength of measuring insulin is that it is elevated earlier than 

glucose in the progression to frank T2DM [46, 47] allowing not only an earlier diagnosis, but 

also an earlier, and thus more effective, intervention. Collectively, these observations emphasize 

the need to measure insulin in routine health screenings. 

Altogether, these results highlight the pathogenicity of hyperinsulinemia on 

cardiometabolic function, including insulin resistance and heart mitochondria. These findings 

are corroborated by recent work by Marciniak et al. [49] who found reduced cardiac 

mitochondrial function in a mouse model of type 2 diabetes, with concomitant 

hyperinsulinemia. Interestingly, cardiac mitochondrial function was largely unaffected in the 

streptozotocin-induced model of type 1 diabetes, which strengthens the insulin-centric paradigm 

of altered cardiometabolic health with type 2 diabetes. Another finding from Marciniak et al. 

[49] was that adiponectin was reduced in their model of type 2 diabetes, but not type 1, which is

a common finding in humans [35]. Considering the actions of adiponectin signaling on 

ceramide metabolism [50] and cardiovascular function [51], the reduced adiponectin that 

accompanies most insulin-resistant conditions may provide additional explanation into the 

increased heart ceramide accrual and reduced adiponectin we observed in our model of directly 

induced hyperinsulinemia [52]. 

The purpose of these studies was to explore the effect of insulin in altering 

cardiometabolic function, with a focus on two main components: insulin resistance and heart 

mitochondrial dynamics and physiology. However, while our findings shed light on the role of 

insulin in cardiometabolic pathologies, they nevertheless fall short of allowing firm conclusions 

concerning cardiovascular health. Thus, a significant weakness that will need to be addressed in 
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future studies is the lack of analyses to determine a functional impairment with the heart in this 

same context. 

Conclusions 

Our data suggest two potential therapeutic strategies for mitigating the heart disease 

burden associated with states of elevated insulin (e.g., pre-diabetes or T2DM). First, drugs to 

induce insulin sensitization (e.g., metformin) should take priority over drugs that induce insulin 

secretion (e.g., sulfonylurea), which is associated with a reduction [53] and increase [54–56] in 

heart disease risk, respectively. Second, ceramide inhibition may prove to be an effective 

deterrent to heart disease risk in various conditions, including hyperinsulinemia, as mounting 

evidence suggests inhibition of ceramide biosynthesis is effective at protecting cardiovascular 

health [57–59]. 
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Figure 2.1: Insulin Increases Ceramide in Cardiomyocytes. H9C2 cardiomyocytes were treated with 
insulin (INS; 50 nM) with or without myriocin (MYR; 10 μM), an inhibitor of ceramide biosynthesis, for 
the times indicated (n = 6). Following treatment time, lipids were isolated for analysis of sphingolipids 
via LCMS (a; n = 6) and protein levels of ceramide biosynthetic enzymes determined (b; n = 4). 
*P < 0.05 for INS vs. other treatments.
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Figure 2.2: Ceramide Inhibition Prevents Insulin-Induced Mitochondrial Disruption. H9C2 
cardiomyocytes were treated with insulin (INS; 50 nM) with or without myriocin (MYR; 10 μM), an 
inhibitor of ceramide biosynthesis, for the times indicated (n = 6). To measure mitochondrial respiration 
(a), cells were treated with: GM L , Glutamate (10 mM) + Malate (2 mM); GM D : + ADP (2.5 mM); 
GMS D , + Succinate (10 mM); GMS F , + FCCP (0.05 μM). Respiratory control ratio (RCR; b), Complex 
II Factor (c), and uncoupling control ratio (UCR; d) were determined by the analysis indicated. *P < 0.05 
for condition vs. control (PBS). 
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Figure 2.3: Insulin Treatment Affects Cardiomyocyte Mitochondrial Physiology. H9C2 cardiomyocytes 
were treated with insulin (INS; 50 nM) with or without myriocin (MYR; 10 μM), an inhibitor of 
ceramide biosynthesis, for the times indicated. Following treatment, cells were imaged to determine 
mitochondrial morphology (a; n = 3), and analyzed for Drp1 protein levels (b; n = 4), and mitochondrial 
complex proteins (c; n = 4). *P < 0.05 for INS vs. PBS; #P < 0.05 for INS + MYR vs. INS alone. 
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Figure 2.4: Insulin Injections Increase Body Mass, but not Heart Mass in Mice. 16-week-old male mice 
received injections of PBS (daily), insulin (INS; daily; 0.75 mg/kg), myriocin (MYR, thrice weekly; 
3 mg/kg), or INS + MYR for 28 d. Body mass increased in the INS-treated mice only (a; n = 6). Heart 
mass was measured in all mice (b, c; n = 6). *P < 0.05 for INS vs. PBS;#P < 0.05 for INS + MYR vs. 
INS alone. 
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Figure 2.5: Chronic Insulin Injections Increase Blood Insulin and Induce Glucose and Insulin 
Intolerance. 16-week-old male mice received injections of PBS (daily), insulin (INS; daily; 0.75 mg/kg), 
myriocin (MYR, thrice weekly; 3 mg/kg), or INS + MYR. Blood insulin (a) and glucose (b) was tracked 
weekly. At the conclusion of the study, IP glucose (c) and insulin (d) tolerance tests were performed. 
*P < 0.05 for INS vs. PBS; #P < 0.05 for INS + MYR vs. INS alone.
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Figure 2.6: Insulin Injection Increases Heart Ceramides. 16-week-old male mice received injections of 
PBS (daily), insulin (INS; daily; 0.75 mg/kg), myriocin (MYR, thrice weekly; 3 mg/kg), or INS + MYR. 
INS treatment increased myocardial ceramide accrual (a) and SPT2 (b). Serum adiponectin was also 
measured (c). *P < 0.05 for condition vs. PBS. #P < 0.05 for INS + MYR vs. INS alone. 
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Figure 2.7: Chronic Insulin Injections Disrupt Mitochondrial Function. 16-week-old male mice received 
injections of PBS (daily), insulin (INS; daily; 0.75 mg/kg), myriocin (MYR, thrice weekly; 3 mg/kg), or 
INS + MYR. Mitochondrial assessments were determined in permeabilized (saponin, 50 µg/ml) 
myocardium. To measure mitochondrial respiration (a), samples were treated with: GM L , Glutamate 
(10 mM) + Malate (2 mM); GM D , + ADP (2.5 mM); GMS D , + Succinate (10 mM). Respiratory control 
ratio (RCR; b) and Complex II Factor (c) were determined by the analysis indicated. *P < 0.05 for 
condition vs. PBS. 
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Figure 2.8: Chronic Insulin Injections Disrupt Myocardial Mitochondrial Function. 16-week-old male 
mice received injections of PBS (daily), insulin (INS; daily; 0.75 mg/kg), myriocin (MYR, thrice 
weekly; 3 mg/kg), or INS + MYR. Heart samples were processed for imaging via electron microscopy 
(a) and quantified based on average greatest mitochondrial diameter (b; n = 3). A portion of samples was
used to probe for mitochondrial complexes (c; n = 3) and Drp1 (D; n = 3). *P < 0.05 for condition vs.
PBS.
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CHAPTER 3: General Discussion and Future Directions 

Our data from the preceding chapter enhances the findings of previous studies 

implicating ceramide as an intermediate between hyperinsulinemia and cardiovascular disease. 

It builds on the earlier study done by our lab showing ceramide accrual in cardiomyocytes 

contributes to a decrease in mitochondrial respiration and increase in mitochondrial fission, both 

of which indicate mitochondrial dysfunction (Smith, et al., 2013).  Mitochondrial dysfunction 

has been linked to cardiac dysfunction (Lesnefsky, et al., 2001). Indeed, the highly oxidative 

character of cardiomyocytes makes mitochondrial function essential for normally functioning 

cardiomyocytes. In chapter 2 we found that insulin leads to an increase in mitochondrial 

dysfunction and ceramide is necessary for those observed detrimental effects. Taken in context 

with these previous studies this provides strong evidence of a link between high insulin levels 

and cardiac dysfunction. 

The first point examined by this study was confirming that high insulin levels will 

increase ceramide accrual in cardiac tissue. Investigations of insulin and ceramide interactions 

have become increasingly popular over recent years. However, ceramides have proved 

somewhat difficult to investigate as there are no membrane receptors for ceramides and 

ceramides with long chains of fatty acids cannot pass through the cell plasma membrane. This 

leaves two possible means of study, stimulate cells to increase intracellular content or use short 

chain ceramides that can diffuse across membranes (Górski, 2012). Intracellular ceramide 

content can be manipulated by affecting the physiological conditions which regulate amounts of 

de novo synthesis. For example, increased obesity, cigarette smoke, and gene manipulation have 

all been used to stimulate ceramide accumulation (Alayoubi, et al., 2013; Haus, et al., 2009; 

Nelson, et al., 2015b; Mikayla O. Thatcher, et al., 2014). Our lab has previously shown that 
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high insulin levels also cause ceramide accrual in skeletal muscle (Hansen, et al., 2014). In the 

current study we expanded on this finding by using insulin to increase ceramide accrual in the 

cardiomyocytes. 

We then explored how ceramide accumulation impacted mitochondrial function in the 

cardiomyocytes. It has previously found that ceramide negatively influences mitochondrial 

function in a wide variety of cells (Smith, et al., 2013; M. O. Thatcher, et al., 2014; Tippetts, et 

al., 2014; Wang, et al., 2009). In this study we found that increased insulin levels lead to 

mitochondrial dysfunction and that ceramide is necessary for this to occur. Prior findings 

showed an increase, rather than a decrease, in mitochondrial respiration after insulin treatment 

(Parra, et al., 2014). At first this finding may seem to be at odds with our data; however, the 

Parra et. al. study used a 3-hour incubation period. In our study we used several different time 

periods: 1-hour, 6-hour, and 24-hour treatments. The 1-hour study showed an increase in 

respiration rates, while longer incubation periods resulted in a decrease in mitochondrial 

respiration. 

As mitochondrial function has previously been shown to be linked to mitochondrial 

morphology (Westermann, 2012) we also looked at insulin effects on mitochondrial 

morphology. Our findings suggest an increase in mitochondrial fission following insulin 

treatment, results which can be reversed through ceramide inhibition. Mitochondrial fission and 

decreased mitochondrial function have been linked to increased risk of heart failure (Chen & 

Knowlton, 2011; Knowlton, Chen, & Malik, 2014; Marín-García, Akhmedov, & Moe, 2012; 

Ong & Hausenloy, 2010). While our current study did not measure heart failure risk, it is 

reasonable to hypothesize the observed changes in mitochondrial function and morphology 

would have detrimental effects on cardiac health. Future research into the exact effects of high 
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insulin and consequent mitochondrial morphology changes on cardiac function would be 

important in better understanding the physiological effects of high insulin. 

Historically T2DM has been mainly defined through blood glucose levels. This 

viewpoint has provided important information relative to the etiology of T2DM (Matheus, et al., 

2013; Nelson, et al., 2015a; Schmidt, et al., 1999). The results from this study suggest that 

insulin, as well as glucose, is an important pathogenic mediator in T2DM. We found that 

chronic insulin injections exert a time-specific effect on insulin resistance and glucose tolerance, 

and this effect is dependent on ceramide. These results indicate that insulin alone is able to 

induce insulin resistance. Insulin induced insulin resistance has been found previously as well 

(Hansen, et al., 2014; Prato, et al.). Our results corroborate the findings in these previous 

studies. We also found the insulin resistance development could be mitigated through ceramide 

inhibition. This implicates ceramide accrual as an intermediate in the development of insulin 

resistance from increased insulin levels. 

Taken together these findings point towards the possibility that heart disease may not be 

a side effect of the pathological effects of T2DM. Instead, it seems possible both T2DM and 

heart disease are developed concurrently due to the effects of hyperinsulinemia developed in 

those who are insulin resistant. It also indicates a potential reason why insulin injections lead to 

increased mortality in T2DM through cardiac dysfunction. These results suggest increased 

investigation is needed to better characterize the relationship between high insulin levels, 

ceramide accrual, and cardiac dysfunction. Such studies may help lead to better treatment 

options for T2DM. 
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