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ABSTRACT 
 

The Role of Receptors for Advanced Glycation End-Products (RAGE) 
and Ceramide in Cardiovascular Disease 

 
Michael Bruce Nelson 

Department of Physiology and Developmental Biology, BYU 
Master of Science 

 

 Type 2 diabetes and cigarette smoke exposure are associated with an increased risk of 
cardiovascular complications. The role of advanced glycation end-products (AGEs) is already 
well-established in numerous comorbidities including cardiomyopathy. Given the role of AGEs 
and their receptor, RAGE, in activating inflammatory pathways, we sought to determine whether 
ceramides could be a mediator of RAGE-induced altered heart mitochondrial function. Using an 
in vitro model, we treated H9C2 cardiomyocytes with carboxy-methyl lysine-BSA, followed by 
mitochondrial respiration assessment. We found that mitochondrial respiration was significantly 
impaired in AGE-treated cells, but not when co-treated with myriocin, an inhibitor of de novo 
ceramide biosynthesis. Moreover, we exposed WT and RAGE KO mice to side-stream cigarette 
smoke and found reduced mitochondrial respiration in the left ventricle myocardium from WT 
mice, but the RAGE KO mice were protected from this effect. Finally, conditional over-
expression of RAGE in the lungs of mice also elicited a robust increase in left ventricular 
ceramides. Altogether, these findings suggest a RAGE-ceramide axis as an important contributor 
to cardiomyopathy. 
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CHAPTER 1: Introduction 
 
 According to the Centers for Disease Control and Prevention, cardiovascular disease is 

currently the number-one leading cause of death in the United States (CDC; 2010). In 2010, just 

under 600,000 reported deaths were attributed to heart disease, with an additional 216,000 

stemming from chronic lower respiratory disease and diabetic complications (CDC, 2010). 

Although there are genetic aspects to cardiovascular disease, it’s well-established that many of 

the risk factors stem from lifestyle components including diet and body mass index  (Jones, 

2010). Chief among those risk factors are whether or not the individual is diabetic (Lorber, 2014) 

and whether or not they smoke on a regular basis (Messner & Bernhard, 2014). Indeed, many of 

the additional 216,000 deaths may have carried cardiovascular comorbidities. 

 These risk factors play a role in the lives of many Americans. They often reduce the 

quality of life, increase the burden of medical costs, and significantly shorten life-span (Sicras-

Mainar, Navarro-Artieda, & Ibanez-Nolla, 2013). Current estimates suggest that over 26 million 

Americans are diabetic as defined by their HbA1C level, and its predicted that approximately 

half of Americans will be diagnosed by the year 2020 (Hawks, 2013). Although the prevalence 

of cigarette smoke usage has declined over the last 50 years, one recent report also suggested that 

approximately one-fifth of working adults still smoke (Burns, 2014). Although diet, exercise, and 

healthy lifestyles are undoubtedly the best preventative measures, a greater understanding of the 

mechanistic pathology could provide novel methods to ameliorate and treat cardiovascular 

complications as individuals work to treat the underlying causes of their conditions. Where we 

currently stand, two players that merit further investigation for the role they play in 

cardiovascular disease are the receptor of advanced glycation end-products (RAGE) and the 

sphingolipid ceramide. 
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Receptor of Advanced Glycation End Products (RAGE) 
 
 RAGE is a pattern-recognition receptor of the immunoglobulin family (Robinson, 

Johnson, Bennion, & Reynolds, 2012). Under normal physiological circumstances, membrane-

bound RAGE (mRAGE) serves a protective role by generating non-specific inflammatory 

responses to a host of heterogeneous compounds, but can introduce complications with sustained 

activation and chronic inflammation (Tobon-Velasco, Cuevas, & Torres-Ramos, 2014). It 

contains a variable extracellular V-region-like immunoglobulin domain, two constant C-region-

like domains, a single-pass transmembrane domain, and a cytosolic domain that is responsible 

for mediating signal transduction (Robinson, Stogsdill, Lewis, Wood, & Reynolds, 2012). Other 

forms of RAGE, however, including soluble RAGE (sRAGE) and endogenous secretory RAGE 

(esRAGE), are also found in the body, but are incapable of generating inflammatory responses 

(Huang, Que, & Shen, 2014).  

 The receptor is highly expressed in the lung alveoli (Reynolds et al., 2008), and much of 

our lab’s research on RAGE has focused on its role in the context of lung exposure to cigarette 

smoke, and to a lesser degree, environmentally available diesel particulate matter (Reynolds, 

Wasley, & Allison, 2011). Because of its expression profile, it is thought to play a key role 

during embryonic lung development and to contribute significantly to the progression of COPD 

(Stogsdill et al., 2013; Winden et al., 2013). Numerous studies, however, have also affirmed that 

RAGE is expressed in peripheral tissues including vasculature and cardiac tissue (Yu et al., 

2013). In many of these other tissues, RAGE may be involved in promoting macrovascular and 

microvascular complications (Chawla et al., 2014) and contribute to the onset of cardiomyopathy 

(Bodiga, Eda, & Bodiga, 2014). Indeed, the contribution of RAGE to cardiovascular disease has 

been well-documented (Yan, Ramasamy, & Schmidt, 2009). 
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 RAGE binds to a host of ligands including S100/calgranulin polypeptides, HMGB1, and 

advanced glycation end products (AGEs) derived through the non-enzymatic combination of 

amino groups and reducing sugars (Ibrahim, Armour, Phipps, & Sukkar, 2013; Xue et al., 2014). 

Ligands of RAGE, however, are also found abundantly in the environment. Dietary AGEs are 

present in the foods we ingest, and they can be readily absorbed from the gut (Poulsen et al., 

2013). They also form a major constituent of cigarette smoke, and are generated through 

Malliard chemical reactions involving smoke components and plasma proteins (Vlassara & 

Palace, 2002). Indeed, previous studies have revealed that serum levels of AGEs are higher in 

smokers compared to non-smokers (Cerami et al., 1997). Finally, AGEs can also be produced 

endogenously within our bodies. Chronic hyperglycemia can generate oxidative stress and 

activate several mechanisms leading to increased production of advanced glycation end-products 

from methylglyoxal derivatives (Gaens, Stehouwer, & Schalkwijk, 2013).  Chief among those 

AGEs are proteins with N(ε)-carboxy-methyl-lysine (CML) and N(ε)-carboxy-ethyl-lysine 

adducts (Schmitt, Linder, Standker, Hammes, & Preissner, 2008; Xue et al., 2011). As these 

AGEs accumulate, they can interact with RAGE in vasculature, lung, and heart where they 

activate signaling cascades that increase expression of pro-inflammatory cytokines that mediate 

inflammatory responses (Brett et al., 1993). Of note, interaction between CML and RAGE is 

thought to promote signaling through NF-kB to increase expression of cytokines including IL-

1β, IL-6, and TNFα (Tobon-Velasco et al., 2014). These cytokines may, in turn, regulate 

endogenous production of sphingolipids. 

Ceramide 
 
 For years, the role of sphingolipids was unknown. In fact, the very word “sphingolipid” is 

rooted in reference to the mythological sphinx of Greek tradition (Merrill et al., 1997). 
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Nowadays, however, sphingolipids are known to be a necessary component of cell membranes 

(Ohta et al., 2009) and to modulate numerous processes including inflammation, apoptosis and 

autophagy (Schilling et al., 2013). As such, they play a crucial role in heart health and the 

development of cardiovascular disease (de Faria Poloni, Chapola, Feltes, & Bonatto, 2014). 

Ceramides fall into this family of lipid, and they can be generated through one of several 

pathways (Kogot-Levin & Saada, 2014). One such pathway is the de novo pathway in which 

palmitoyl-CoA is converted to ceramide through several enzymes including serine 

palmitoyltransferase, 3-ketosphingosine reductase, ceramide synthase and ceramide desaturase 

(Brice & Cowart, 2011). Another method, known as the recycling pathway, involves the 

cleavage of sphingomyelin by acid- and neutral-sphingomyelinase enzymes to generate ceramide 

(Claus, Dorer, Bunck, & Deigner, 2009). Many of these enzymes involved in ceramide 

production can be targeted pharmacologically; however, SPT2 is often the main target and 

widely recognized as the rate-limiting enzyme of ceramide biosynthesis (Batheja, Uhlinger, 

Carton, Ho, & D'Andrea, 2003). Despite the important role ceramide plays, it’s increasingly 

believed that excessive accumulation of this particular sphingolipid in heart and blood vessels 

may be an important factor in the etiology of various disease states. 

 Hyperlipidemia and the accumulation of lipotoxic metabolites in heart may increase the 

risk of cardiovascular disease (Kang, Kim, Lee, & Park, 2013). Ceramides have been shown to 

interfere with signaling pathways involved with various metabolic and physiological processes. 

For example, it has been shown to induce insulin resistance in skeletal muscle by interfering with 

insulin signaling pathways (Russo, Ross, & Cowart, 2013), promote hypertension by blocking 

phosphorylation of eNOS in vascular tissue (Zhang et al., 2012), and even exacerbate 

emphysema-like symptoms in lung (Petrache et al., 2005). Other studies have asserted that 
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ceramide can induce cardiomyocyte death by altering mitochondrial metabolism (Parra et al., 

2013). One plausible explanation for the latter observation is that ceramide has been shown to 

stimulate mitochondrial fission (Smith et al., 2013). This paradigm of ceramide-mediated 

mitochondrial fission in heart, however, has yet to be fully investigated. Because activation of 

inflammatory signaling pathways has been shown to upregulate ceramide biosynthesis (Bikman, 

2012), it’s possible that inflammation mediated by RAGE may play a role in the de novo 

biosynthesis of ceramide by lung and heart. 

Summary of Research 
 
 Previous research conducted in our lab has reinforced the notion of RAGE and ceramide 

as key players in cardiovascular disease. Our lab has previously demonstrated that A549 cells 

synthesize and actively secrete ceramides in response to treatment with growth media infused 

with cigarette smoke extract (CSE) (Thatcher et al., 2014). Following this observation, we 

hypothesized that, in living organisms, the lungs can actively secrete ceramides into the blood in 

response to cigarette smoke. Following secretion, these sphingolipids can then travel 

systemically and accumulate in peripheral tissues where they disturb regular metabolic 

processes. Specifically, we have demonstrated that cigarette smoke exposure increases ceramide 

accumulation in both skeletal muscle and heart (Thatcher et al., 2014; Tippetts et al., 2014). 

Furthermore, we’ve shown that ceramides stimulate mitochondrial fission and reduce 

mitochondrial respiration by upregulating dynamin related protein 1 (Smith et al., 2013). Despite 

these observations, however, we have yet to offer a mechanism accounting for the increase in 

ceramides. 

 Interestingly, RAGE shares some similarities with another receptor that is known to 

increase ceramide biosynthesis. Several studies have shown that the interaction of both palmitic 
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acid and LPS with Toll-like Receptor 4 (TLR4) in cellular macrophages results in increased 

production of ceramide (Schilling et al., 2013).  RAGE and TLR4 both share similar ligands and 

activate similar signaling pathways (Ullah et al., 2014; Veloso et al., 2011); therefore, RAGE 

may exacerbate TLR4-mediated effects by inciting parallel signaling pathways in both cardiac 

and lung tissue. Both RAGE and TLR4 signal through the canonical NF-kB pathway to increase 

expression of inflammatory cytokines (Ibrahim et al., 2013; Reynolds, Kasteler, Schmitt, & 

Hoidal, 2011). These inflammatory cytokines, in turn, may act to activate or increase expression 

of enzymes involved in either the de novo pathway or recycling pathway of ceramide 

biosynthesis (Medler et al., 2008). Since RAGE is expressed in heart and lung, there is a high 

likelihood that activation of RAGE by advanced glycation end-products promotes 

cardiomyopathy by enhancing cardiac ceramide accumulation and reducing the metabolic 

efficacy of cardiomyocytes.  

 To our knowledge, the study outlined in the following chapter is the first to test the 

possibility of a RAGE-ceramide axis in both cardiac and lung tissue. This research helps to 

identify mechanisms of increased cardiac ceramide accumulation and to what extent ceramide 

mediates the effects of RAGE in diabetic and smoke-induced cardiovascular disease. 
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Abstract 
 

Cigarette smoke exposure is associated with an increased risk of cardiovascular 

complications. The role of advanced glycation end-products (AGEs) is already well established 

in numerous comorbidities including cardiomyopathy. Given the role of AGEs and their 

receptor, RAGE, in activating inflammatory pathways, we sought to determine whether 

ceramides could be a mediator of RAGE-induced altered heart mitochondrial function. Using an 

in vitro model, we treated H9C2 cardiomyocytes with the AGE carboxy-methyl lysine prior to 

mitochondrial respiration assessment. We discovered that mitochondrial respiration was 

significantly impaired in AGE-treated cells, but not when co-treated with myriocin, an inhibitor 

of de novo ceramide biosynthesis. Moreover, we exposed WT and RAGE KO mice to 

secondhand cigarette smoke and found reduced mitochondrial respiration in the left ventricle 

myocardium from WT mice, but the RAGE KO mice were protected from this effect. Finally, 

conditional over-expression of RAGE in the lungs of transgenic mice elicited a robust increase in 

left ventricular ceramides in the absence of smoke exposure. Altogether, these findings suggest a 

RAGE-ceramide axis as an important contributor to AGE-mediated disrupted cardiomyocyte 

mitochondrial function. 

Introduction 
 
 Receptors for advanced glycation end-products (RAGE) are important mediators of 

numerous chronic complications.  Many of these conditions, including peripheral neuropathy 

(Bekircan-Kurt, Uceyler, & Sommer, 2014), retinopathy (Abu El-Asrar et al., 2014; Chen, 

Curtis, & Stitt, 2013), nephropathy (Zhou, Wang, Zhu, & Hao, 2012), and cardiomyopathy 

(Bodiga, Eda, & Bodiga, 2014; Ma et al., 2009), reduce quality of life (Rodriguez-Pascual et al., 

2011) and often involve macrovascular and microvascular complications (Chawla et al., 2014).  
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RAGE was originally characterized for its ability to bind advanced glycation end-products 

(AGEs) and for its role as a prominent feed-forward receptor involved in inflammation 

(Reynolds et al., 2008).  AGEs are derived via the non-enzymatic combination of amino groups 

and reducing sugars (Nicholl & Bucala, 1998) and hyperglycemia-mediated induction of protein 

glycosylation is implicated in the production of systemic AGEs (Hodgson et al., 2014; Xue et al., 

2014).  However, independent of blood glucose, cigarette smoke exposure increases AGE 

formation through Malliard chemical reactions involving smoke components and plasma proteins 

(Nicholl et al., 1998).  Whether through chronic hyperglycemia or secondhand cigarette smoke 

exposure, cellular responses provide abundant AGEs for RAGE signaling that causes enhanced 

expression of pro-inflammatory cytokines and deleterious inflammatory responses (Manigrasso, 

Juranek, Ramasamy, & Schmidt, 2014).  Two AGEs often found in increased abundance with 

diabetics and smokers are N(ε)-carboxy-methyl-lysine (CML) (Schmitt, Linder, Standker, 

Hammes, & Preissner, 2008) and N(ε)-carboxy-ethyl-lysine (Xue et al., 2011). 

 In addition to RAGE, sphingolipids are another factor increasingly recognized to play a 

role in the progression of inflammatory disorders (Bikman, 2012; Maceyka & Spiegel, 2014).  

Ceramides, in particular, are a subset of sphingolipid that have been linked to cardiometabolic 

disruption (Tippetts et al., 2014), altered mitochondrial dynamics and function (Bikman & 

Summers, 2011; Smith et al., 2013; Summers, 2006), increasing atheroma development 

(Bismuth, Lin, Yao, & Chen, 2008), and mediating insulin resistance (Thatcher et al., 2014).  We 

have previously shown that ceramides are actively synthesized in the lung with cigarette smoke 

exposure (Tippetts et al., 2014).  

 Since activation of inflammatory signaling pathways has been shown to up-regulate 

ceramide biosynthesis (Bikman, 2012), it is plausible that RAGE-mediated inflammation can 
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stimulate the synthesis and elaboration of ceramides.  RAGE functions as other pattern 

recognition receptors, including Toll-like receptor 4, which increases ceramide biosynthesis upon 

activation (Holland et al., 2011). This paradigm involving a connection between RAGE and 

ceramide, however, has yet to be fully investigated.  Based on this intersection, we hypothesized 

that RAGE-AGE signaling would increase cardiomyocyte ceramide accrual, thereby increasing 

ceramide-mediated cardiomyocyte mitochondrial dysfunction. 

 
Materials and Methods 
 
Cell Culture 
 
 Immortalized rat H9C2 cardiac myocytes were obtained from America Type Cell Culture 

(ATCC; Manassas, VA) and used at passages 9-12. CML-BSA was purchased from MBL 

International (Woburn, MA), and the myriocin was obtained from Sigma-Aldrich (St. Louis, 

MO). The cells were split into 6-well plates and grown to confluency.  Myriocin-treated cells 

were pretreated for 1 hour with 1μL of 10 mM myriocin. Cells were subsequently co-treated with 

either 30 μL CML-BSA/mL growth media or normal growth media for 24 hours. All subsequent 

analysis took place after the exposure period. 

Mice 
 
 Wild type (WT) C57BL/6 mice are in house and were obtained from Jackson 

Laboratories (Bar Harbor, ME).  RAGE knock out (KO) mice lacking membrane and soluble 

RAGE were generated on a C57BL/6 background.  Conditional RAGE transgenic mice were also 

generated that overexpress RAGE in alveolar epithelium when fed doxycycline (dox) (Reynolds, 

Stogsdill, Stogsdill, & Heimann, 2011; J. A. Stogsdill et al., 2012).  Dox incorporation into 

murine diets caused the up-regulation of RAGE in the lungs of transgenic mice from postnatal 
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day 20 until sacrifice date at postnatal day 110 (M. P. Stogsdill et al., 2013).  The mice were kept 

on normal light/dark cycles and had free access to food and water.  Housing and treatment of all 

mice were in accord with approved IACUC protocols at Brigham Young University.  

Smoke Exposure 
 
 For one study, WT and RAGE KO mice were randomly assigned to control- and smoke-

exposure groups and acutely treated using an in-house nose-only smoke exposure system 

(InExpose System, Scireq, Canada).  Over the course of 1 week, the mice were restrained daily 

and connected to an exposure tower for 10 minutes where they were nasally exposed to 

secondhand cigarette smoke from 2 cigarettes.  Computer-generated puffs resulted in 10 seconds 

of secondhand exposure followed by 50 seconds of fresh air.  After exposure, the mice were then 

allowed to rest for 10 minutes before repeating the process two additional times until they had 

been exposed to a total of 6 cigarettes per day.  The smoke challenge chosen in the study was 

associated with a good tolerance of mice to the smoke sessions, and an acceptable level of 

particulate density concentration according to literature (Rinaldi et al., 2012; Wood et al., 2014).  

Control animals were similarly handled and restrained but kept under a smoke-free environment.  

In a second chronic exposure study, WT mice were similarly assigned to control- and smoke-

exposure groups and exposed to secondhand smoke.  The procedure, however, included exposure 

to 4 cigarettes per day for 8 weeks.  Studies were performed in accordance with principles 

outlined in the National Institutes of Health Guide for the Care and Use of Laboratory Animals. 

Immunohistochemistry  
 
 Heart tissue from control- and cigarette smoke-exposed mice was fixed in 4% 

paraformaldehyde, processed, embedded in paraffin wax, sectioned, and stained according to 
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standard immunohistochemical procedures (Reynolds, Mucenski, Le Cras, Nichols, & Whitsett, 

2004; Robinson, Johnson, Bennion, & Reynolds, 2012). The ceramide primary antibody used for 

immunohistochemical detection was obtained from Sigma Aldrich (C8104-50TST, 1:500).  

Development in 3,3-diaminobenzidone (DAB) revealed enhanced brown chromogen in tissues 

positive for ceramide expression.  

Mass Spectrometry 
 
 In isolating lipids, pellets were suspended in ice-cold chloroform/methanol (1:2), 

incubated for 15 minutes on ice, then briefly vortexed. Aqueous and organic phases were 

separated by addition of ice-cold water and chloroform. The organic phase was collected in a 

fresh vial and dried via vacuum centrifugation (Eppendorf Concentrator Plus). Lipids were then 

characterized and quantified using shotgun lipidomics on a Thermo ScientificLTQ Orbitrap XL 

mass spectrometer, as previously described (Hansen et al., 2014).  

Mitochondrial Respiration  
 
 Oxygen consumption from H9C2 cardiomyocytes and cardiac muscle obtained from mice 

was determined using an O2K oxygraph (Oroboros Instruments). Cells (digitonin 1mg/ml) and 

tissue (saponin 50 µg/ml) were then permeabilized.  Following permeabilization, samples were 

transferred to respiration chambers. Respiration was determined using a substrate-uncoupler-

inhibitor titration protocol. Electron flow through complex 1 was assessed by supporting the 

system with glutamate (G, 10 mM) and malate (M, 2 mM). Following stabilization, ADP was 

added to determine oxidative phosphorylation capacity (P, 2.5 mM). Succinate (S, 10 mM) was 

then added to assess complex 1 + 2 electron flow. To determine full electron transport system 

capacity, the chemical uncoupler FCCP (carbonyl cyanide p-trifluoromethoxyphenylhydrazone, 
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0.05 μM) was added (E). In order to assess complex 2 electron flow, complex 1 was then 

inhibited by including rotenone (Rot, 0.5 μM). 

Real Time PCR 
 
 RNA from cells was isolated using Trizol (Invitrogen, Grand Island, NY) and quantified 

via optical density measurement. Reverse transcription of RNA was performed using Superscript 

III First-Strand Synthesis System in order to obtain cDNA for PCR.  Primers for serine 

palmitoyltransferase 1 and 2 (SPT1, SPT2) and ceramide synthase 2 (CERS2) were obtained and 

diluted according to the manufacturer’s protocol. Bio Rad iQ SYBR Green Supermix was used 

to perform Real Time PCR, along with previous cDNA, primers, and water.  Values were 

assessed using the ΔΔCT method and comparisons were made with amplified actin.  Control 

wells lacking template or RT were included to identify primer-dimer products and to exclude 

possible contaminants. 

Immunoblotting 
 
 Total protein from H9C2 cardiac myocytes and heart tissue was obtained after 

homogenization with RIPA buffer supplemented with protease inhibitors (Fisher Scientific, 

Waltham, MA).  Protein was then quantified using a BCA Protein Assay Kit (Fisher Scientific) 

and 20 μg of the resulting lysate was blotted using a mouse polyclonal antibody (RnDSystems, 

Pittsburg, PA, #AF1179) against RAGE (1:1000) as already outlined (Reynolds et al., 2010). 

Western blots were visualized and quantified using a LI-COR C-DiGit Blot Scanner (LI-Cor 

Biosciences).  Quantification of RAGE was performed by densitometry and normalization with 

actin provided comparisons between samples. 



    
 

19 
 

Statistics 
 
  In vitro data presented are representative of experiments performed in triplicate and 

animal experiments involved at least 4 samples per group.  Data are presented as the mean ± 

SEM. Data were compared by ANOVA with Tukey’s post-hoc analysis (Graphpad Prism; La 

Jolla, CA). Significance was set at p < 0.05. 

Results 
 
AGEs Reduced Cardiomyocyte Mitochondrial Function In A Ceramide-Dependent Manner 
 
 CML is one of the most physiologically relevant AGEs in a diabetic context.  To assess 

the effects of AGEs on cardiomyocytes, we treated H9C2s with growth media containing CML-

BSA, with and without myriocin, an inhibitor of serine palmitoyltransferase (SPT), the rate 

limiting enzyme in de novo ceramide biosynthesis.  Compared to control cells, gene expression 

levels of SPT1, SPT2, and CerS2 were significantly elevated in CML-treated cells (Figure 2.1A).  

Similarly, compared to control conditions, cells exposed to CML-BSA showed a robust increase 

in ceramide production by mass spectrometry, but not when pretreated with myriocin 

(CML+MYR; Figure 2.1B).  The increase in SPT and ceramides plausibly implicate RAGE as a 

factor contributing to de novo ceramide biosynthesis. 

 In order to determine the effect of RAGE-mediated inflammation on heart cell function, 

we similarly exposed H9C2 cardiomyocytes to the same conditions described above and assessed 

mitochondrial respiration using a substrate-uncoupler-inhibitor titration protocol (see materials 

and methods).  A significant reduction in respiration was elicited in cells treated with CML-BSA 

upon addition of glutamate and malate (leak state, GML) (Figure 2.2A).  Pre-treatment with 

myriocin, however, abolished the effects of CML-BSA and restored respiration to control levels. 

Similar results were also found upon stimulation of complex 1-mediated oxidative 
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phosphorylation with ADP addition (GMP). Addition of succinate to introduce complex II-

mediated respiration (GMSP) revealed a slight departure from the trend; whereas CML-treated 

cells experienced a comparable increase in respiration as control cells, CML treatment appeared 

to blunt the normal response to succinate addition.   We further observed reduced complex II 

function when analyzing the Complex II Control Factor (GMSP less GMP; Figure 2.2B).  Similar 

to succinate addition, the addition of FCCP (respiration uncoupler) (GMSE) failed to increase 

respiration with CML treatment to a level seen with control or myriocin treatment.  Altogether, 

these findings suggest that respiration in cardiomyocytes is impaired by RAGE signaling and is 

mediated through increased ceramide accrual. 

RAGE Signaling Contributed To Cigarette Smoke-Induced Ceramide Accrual In Cardiomyocytes 
 
 Because AGEs and smoke impact ceramide levels in vitro, we next assessed whether 

similar effects occurred in vivo.  Specifically, as RAGE expression is known to be elevated with 

inflammation and exposure to cigarette smoke (Ramasamy & Schmidt, 2012; Wood et al., 2014), 

we sought to ascertain the expression profile of RAGE in cardiac tissue under both control 

conditions and following smoke exposure.  To establish its expression in heart, WT mice were 

restrained and exposed to either room air or secondhand cigarette smoke for one or 8 weeks. 

Following the treatment, we assessed RAGE protein expression in left ventricle myocardium.  

Compared to control animals, RAGE expression was significantly elevated in animals after one 

week (not shown) or eight weeks of secondhand cigarette smoke exposure (Figure 2.3).  We next 

analyzed ceramide levels by mass spectrometry in order to assess whether ceramides are also 

elevated in cardiomyocytes following secondhand smoke exposure.  WT mice exposed to acute 

cigarette smoke showed a significant increase in ceramides (Figure 2.4A); however, this effect 

was diminished in RAGE KO mice after one week of exposure.  In order to qualitatively 
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visualize these differences, we also performed immunohistochemistry on heart samples for 

ceramides.  WT mice exposed to secondhand cigarette smoke expressed pronounced DAB-

mediated staining for ceramides in heart tissue (Figure 2.4B, arrow), but ceramides were 

qualitatively diminished in exposed RAGE KO mice (Figure 2.4B). 

RAGE Signaling Was Necessary For Cigarette Smoke-Mediated Reductions In Myocardial 
Mitochondrial Respiration 
 

Following exposure to secondhand cigarette smoke, left ventricular myocardium from 

WT and RAGE KO mice was permeabilized and assessed for mitochondrial respiration. WT 

mice showed altered mitochondrial respiration in response to acute cigarette smoke exposure 

(Figure 2.5A).  However, RAGE deletion was protective against secondhand smoke-induced 

respiration defects (Figure 2.5A).  As with cells, we observed reduced complex II function when 

analyzing the Complex II Control Factor (GMSP less GMP; Figure 2.5B). 

Conditional Pulmonary Up-Regulation Of RAGE Increased Biosynthesis Of Cardiomyocyte 
Ceramides 
 
 The experiments outlined in Figures 3-5 considered the biology of RAGE and ceramide 

in cardiomyocytes following controlled pulmonary exposure to secondhand smoke.  To further 

assess the role of RAGE in promoting cardiac accumulation of ceramide, studies were designed 

in the absence of smoke that compare control mice and conditional transgenic mice that 

genetically over-express RAGE in the peripheral lung.  Up-regulation of RAGE in these mouse 

models has been validated by both immunoblotting and qPCR (J. A. Stogsdill et al., 2012; M. P. 

Stogsdill et al., 2013).  Lipids were purified from heart tissue obtained from RAGE transgenic 

mice following 90 days of RAGE up-regulation and age-matched non-transgenic controls prior 

to subjection to mass spectrometry analysis.  Compared to the control mice, hearts from 
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transgenic mice showed a significant increase in ceramides (Figure 2.6), further supporting the 

notion that RAGE is a sufficient mediator of de novo ceramide biosynthesis in cardiac tissue. 

Discussion 
 
 This study assessed the effects of RAGE stimulation on cardiomyocyte ceramide accrual 

and mitochondrial function. Because AGEs are established factors in the progression of 

cardiovascular complications (Ma et al., 2009; Nozynski et al., 2012), our goal was to assess 

whether RAGE signaling leads to mitochondrial disruption in heart tissue and whether ceramide 

is an obligate mediator of these effects.  Our results demonstrated that cardiomyocytes respond 

to AGE treatment with a robust increase in ceramide accrual.  This increase may be due, at least 

in part, to increased expression of the initial and rate-limiting enzymes of ceramide biosynthesis 

(i.e., SPT), as well as CerS2. To our knowledge, our results are the first to establish a RAGE-

ceramide axis within heart cells and tissue. 

 Under normal physiological circumstances, RAGE serves a protective role by generating 

a non-specific inflammatory response to a host of heterogeneous compounds, but this process 

can become pathological with sustained activation and chronic inflammation (Nedic, Rattan, 

Grune, & Trougakos, 2013).  Although the scope of our paper is limited to the effects of RAGE 

and ceramides on cardiomyocyte mitochondrial function, both are implicated in a host of diabetic 

and smoke-induced cardiovascular complications.  However, AGEs inhaled by smokers may be 

chemically and functionally different when compared to de novo AGE synthesis in uncontrolled 

diabetics.  Ma et al. (Ma et al., 2009) revealed that AGE-RAGE ablation prevents diabetes-

induced altered cardiovascular function, including cardiomyopathy.  Moreover, Park et al. (Park, 

Rosebury, Kindt, Kowala, & Panek, 2008) found that ceramide inhibition through SPT ablation 

is protective against dilated diabetes-induced cardiomyopathy. Thus, in light of our results of 
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increased ceramides with RAGE activation in heart tissue, future work will seek to determine 

whether ceramides are necessary for altered heart function orchestrated by RAGE signaling.  

Importantly, mitochondrial dysfunction may play a critical role in the pathogenesis of 

cardiomyopathy (Duncan, 2011).  This is relevant given our previous findings that ceramides 

directly disrupt mitochondrial physiology, reducing respiration and increasing oxidative stress 

(Tippetts et al., 2014), through a mitochondrial fission-dependent process (Smith et al., 2013). 

We previously found that ceramide accrual exhibited a widespread inhibition of mitochondrial 

respiration, but the effect appeared more selective to inhibiting complex II-mediated respiration.  

We note similar findings in this report—CML-treated cells did not experience the succinate-

induced respiration increase evidenced in both the control- and myriocin-treated cells.  Our 

demonstration that AGEs induce ceramide-dependent impairment in mitochondrial oxygen flux 

may explain, at least in part, why diabetic hearts are characterized by contractile impairment 

from anomalous energy metabolism.   

Our rationale for targeting RAGE as an activator of ceramide accrual in heart stems from 

two observations: 1) as noted earlier, RAGE mediates cardiovascular complications (Ma et al., 

2009); and 2) RAGE shares common signaling intermediates in pathways known to activate 

ceramide biosynthesis, namely Toll-like receptor 4 (TLR4).  We reported in 2011 that TLR4 is 

required for lipid- and endotoxin-induced ceramide biosynthesis (Holland et al., 2011).  

Interestingly, not only do TLR4 and RAGE share common downstream signaling (e.g., IRAK) 

(Sakaguchi et al., 2011), but also common ligand activators (e.g., HMGB1) (Ding et al., 2013; 

Sims, Rowe, Rietdijk, Herbst, & Coyle, 2010).  Our use of cigarette smoke exposure as an 

intervention to stimulate RAGE expression is based on our earlier reports of smoke exposure 

eliciting a robust increase in lung RAGE expression (Reynolds, Kasteler, Schmitt, & Hoidal, 
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2011; Robinson, Stogsdill, Lewis, Wood, & Reynolds, 2012), which is a necessary event in 

transducing inflammation.  However, the increase in heart RAGE expression is novel and 

conveys the possible importance of RAGE modulation in heart complications.  To our 

knowledge, while Denis et al. (Denis et al., 2002) were the first to find a ceramide-RAGE 

connection when they noted a roughly twofold increase in ceramides in cultured bovine pericytes 

with AGE exposure, our data may be the first to reveal this phenomenon in whole tissue.  

Moreover, our evidence of RAGE-mediated increased ceramides in animals exposed to cigarette 

smoke and in the lungs of RAGE TG mice speaks to the influence of lung RAGE signaling on 

heart ceramide accrual.  Despite the clear implication of RAGE in ceramide accrual, important 

questions remain such as to what extent RAGE signaling intermediates participate in ceramide 

biosynthesis and mitochondrial function, and how pulmonary RAGE up-regulation impacts 

ceramide accrual in heart tissue. 

Given the considerable cardiovascular burden inherent to cigarette smoke exposure 

(Talukder et al., 2011; Tonstad & Svendsen, 2005), our results provide a possible mechanism 

whereby smoke exposure leads to cardiovascular complications.  Ceramide has been shown to 

mediate cardiomyopathy (Park, Hu, et al., 2008), atherosclerosis (Bismuth et al., 2008), and 

inhibit NO-induced vasodilation (Zhang et al., 2012).  Thus, our results may have broad 

implications for cardiovascular therapies.   

In conclusion, our results demonstrate that RAGE signaling reduces heart mitochondrial 

respiration in a ceramide-dependent manner.  Considering the dependence of myocardium on 

normal mitochondrial function, these results provide evidence for the utility of anti-ceramide 

therapies in the treatment or prevention of multiple cardiovascular complications. 
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Figures 

 
Figure 2.1: RAGE Signaling Increases De Novo Ceramide Biosynthesis In Cardiomyocytes. Cardiac 
myocytes (H9C2) were treated for 24 h with either normal growth media (CON) or growth media infused 
with carboxy-methyl lysine BSA (CML; 30 μL/ml growth media), with and without myriocin (Myr; 10 
μM). Following the treatment period, expression levels of SPT1, SPT2, and CerS2 were quantified 
(Figure 2.1A, n=3), in addition to ceramides (Figure 2.1B, n=3). *, p < 0.05 for CML vs. other treatments. 
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Figure 2.2: RAGE Signaling Reduces Cardiomyocyte Mitochondrial Respiration Through Ceramide 
Accrual. Cardiac myocytes (H9C2, n=3) were treated for 24 h with either normal growth media or growth 
media containing CML-BSA with and without myriocin (Con, CML, CML+Myr). Following treatment, 
heart cell mitochondrial oxygen consumption was assessed using a substrate-uncoupler-inhibitor titration 
protocol (Figure 2.2A; See Figure 2.2C for description).  Complex II Control Factor was used to 
determine the specific effect on succinate addition on respiration (Figure 2.2B).  *, p < 0.05 for CML vs. 
other treatments. 
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Figure 2.3: Cigarette Smoke Increases RAGE Expression In Heart With Secondhand Cigarette Smoke 
Exposure. WT mice were restrained and exposed to either room air (n=3) or secondhand cigarette smoke 
(n=3, see materials and methods) for 8 wk. Following the exposure period, western blot (Figure 2.3A) and 
quantification (Figure 2.3B) was performed on heart tissue lysates to determine relative expression levels 
of RAGE. *, p < 0.05 for smoke vs. restrain. 
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Figure 2.4: RAGE KO Prevents Heart Ceramide Accrual With Cigarette Smoke. WT and RAGE KO 
mice were restrained and exposed to either room air or acute secondhand cigarette smoke for 1 wk. 
Following the exposure period, lipids were isolated from heart tissue and analyzed for ceramides (Figure 
2.4A). Immunohistochemical staining for ceramide was also performed to qualitatively depict any 
differences in heart tissue between WT and RAGE KO mice under the different exposure conditions 
(Figure 2.4B).  ceramides were significantly increased in WT mice exposed to tobacco smoke (arrow) 
compared to exposed RAGE KO mice.  Scale bars represent 200 nm and *, p < 0.05 for smoke vs. 
restrain within each group. 
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Figure 2.5: RAGE KO Prevents Cigarette Smoke-Induced Reduced Myocardial Mitochondrial 
Respiration. WT and RAGE KO mice were restrained and exposed to either room air or acute secondhand 
cigarette smoke for one wk. Following the exposure period, mitochondrial oxygen consumption of 
cardiac myocytes was assessed (Figure 2.5A).  Complex II Control Factor was used to determine the 
specific effect on succinate addition on respiration (Figure 2.5B).*, p < 0.05 for smoke vs. other 
treatments.  #, p < 0.05 for RAGEKO-Smoke vs. RAGEKO-Restrain. 
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Figure 2.6: Conditional Up-Regulation of Pulmonary RAGE Expression Increases Heart Ceramides. Non-
transgenic controls (Con) and Transgenic (RAGE TG) mice that overexpress RAGE were sacrificed and 
assessed for ceramide levels in cardiac tissue. *, p < 0.05 for RAGE TG vs WT. 
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CHAPTER 3: General Discussion And Future Directions 
 
 Our data from the previous chapter reinforce other studies implicating RAGE and 

ceramide in cardiovascular disease. RAGE signaling contributes to cardiomyopathy (Park et al., 

2008), coronary heart disease (Ligthart et al., 2014), atherosclerosis (Johnson et al., 2014), and 

even elicits endothelial dysfunction (Wu et al., 2013).  This work, however, suggests that cardiac 

lipotoxicity and excessive accumulation of ceramides mediate, at least in part, the effects of 

RAGE in diabetic- and smoke-induced cardiovascular disease. Our rationale for looking at 

RAGE as a mediator of ceramide lipotoxicity stems from work conducted in our lab, as well as 

other studies that looked at TLR4. TLR4 mediates lipid- and endotoxin-induced ceramide 

biosynthesis and shares many signaling pathways and ligand activators with RAGE (Schilling et 

al., 2013). 

 The first point presented in our research is that advanced glycation end-products reduce 

cardiomyocyte mitochondrial function in a ceramide-dependent manner. AGEs, including 

proteins with N (ε)-(carboxymethyl) lysine adducts, are important in a number of diabetic- and 

smoke-induced pathologies (Schmitt, Linder, Standker, Hammes, & Preissner, 2008) and have 

been previously shown to induce oxidative stress (Wang et al., 2014) and impair mitochondrial 

function in cardiac myocytes (L. Zhang et al., 2014). Our rationale for exposing cardiac 

myocytes to CML-BSA and mice to cigarette smoke stems from evidence that various factors 

including diet (Poulsen et al., 2013), cigarette smoke (Cerami et al., 1997), and chronic 

hyperglycemia increase serum levels of advanced glycation end-products (Gaens, Stehouwer, & 

Schalkwijk, 2013). 

 The finding that RAGE signaling in lung contributed to cigarette smoke-induced 

ceramide accrual in cardiomyocytes is novel and has broad implications for future studies 
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looking at the interactions between heart and lung. Our lab previously showed that cigarette 

smoke increases cardiomyocyte ceramide accumulation (Tippetts et al., 2014); however, the data 

presented here take it one step further by offering a mechanism to account for the increase in 

cardiac ceramides. While other factors certainly may contribute to cardiac lipotoxicity (van de 

Weijer, Schrauwen-Hinderling, & Schrauwen, 2011), the RAGE-ceramide axis is a novel area of 

research that merits further investigation. 

 Furthermore, our data showed that RAGE signaling was necessary for cigarette smoke-

mediated reductions in myocardial mitochondrial respiration. A robust increase in cardiac 

ceramides was observed in wild type mice, but the RAGE KO mice were protected from smoke-

induced reduced respiration. Cardiomyocytes, in particular, are dependent on efficient 

mitochondrial metabolism (Wohlgemuth, Calvani, & Marzetti, 2014) and healthy turnover by 

carefully regulated mitochondrial fission-fusion events. Previous research conducted by Zhu et 

al. suggested that AGE-RAGE interactions may interfere with proper mitochondrial dynamics 

leading to increased apoptosis (Zhu et al., 2011). Several studies have even reported that 

inhibition of mitochondrial fission attenuates the progression of cardiovascular disease (Kubli & 

Gustafsson, 2012; Ong et al., 2010). Likewise, ceramides have also been reported to reduce 

contractility (Simon et al., 2014) and stimulate apoptosis by stimulating cytochrome-c release 

from mitochondria (Parra et al., 2013). 

 Although the work here suggests a novel function for RAGE, further studies are needed 

to clarify signaling pathways that interconnect RAGE and ceramide. Our work demonstrated that 

RAGE signaling increased expression of several enzymes involved in ceramide biosynthesis; 

however, it’s unclear which signaling pathways RAGE is acting through and whether it also 

results in increased activation of the de novo enzymes regulating ceramide synthesis. RAGE and 
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TLR4 both signal through the canonical NF-kβ pathway to increase expression of inflammatory 

cytokines (Ibrahim, Armour, Phipps, & Sukkar, 2013; Reynolds, Kasteler, Schmitt, & Hoidal, 

2011) but whether the NF-kβ pathway is involved has yet to be determined. Furthermore, it 

would be insightful to perform studies evaluating heart and lung interactions in the context of 

environmental issues, including inversion, to see whether cardiac myocyte respiration is hindered 

in response to exposure to particulate matter in the community. 

 This research also has broad implications for potential cardiovascular therapies. 

Importantly, it suggests that anti-RAGE and anti-ceramide approaches may alleviate 

cardiovascular symptoms in individuals with diabetes and chronic cigarette smoke exposure. 

Previous studies have shown that RAGE expression is attenuated by pharmacological treatment 

with a wide array of drugs including metformin (T. Zhang, Hu, Cai, Yi, & Wen, 2014), calcitriol 

(Lee et al., 2014), atorvastatin (Feng et al., 2011), and pioglitazone. Aside from targeting of 

RAGE, however, emphasis should also be placed on managing serum AGE levels and finding 

effective ways to reduce their interaction with RAGE. Vulesevic et al. recently suggested 

pharmacological targeting of methylglyoxal as a means of alleviating cardiovascular disease 

(Vulesevic, Milne, & Suuronen, 2014). Fukami et al. also suggested that administration of 

soluble RAGE (sRAGE) may reduce levels of inflammation and serve a protective function 

(Fukami, Yamagishi, & Okuda, 2014). Regardless of the method, however, a common thread 

among many of these authors is that blockade of AGE/RAGE interaction and signal transduction 

reduces oxidative stress and attenuates myocardial injury (Daffu et al., 2013). 

 Finally, there is also the potential for anti-ceramide therapies in the treatment of 

cardiovascular disease. Indeed, numerous studies have shown that inhibition of ceramide 

synthesis improves vascular function (Q. J. Zhang et al., 2012) and alleviates both 
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atherosclerosis (Chun et al., 2011) and cardiomyopathy (Park et al., 2008). Despite the beneficial 

effects of ceramide inhibitors such as myriocin and fumonisin B1 in these models of 

cardiovascular disease (Park et al., 2008), however, there remains a need to discover a ceramide 

blocker that is safe and effective in humans. 
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