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ABSTRACT 

A Semi-Automated Algorithm for Segmenting the Hippocampus 
in Control and Patient Populations 

Nathan McKay Muncy 
Department of Physiology and Developmental Biology 

Master of Science 
Neuroscience 

Calculating hippocampal volume from Magnetic Resonance (MR) images is an 
essential task in many studies of neurocognition in healthy and diseased populations. The `gold 
standard' method involves hand tracing, which is accurate but laborious, requiring expertly 
trained researchers and significant amounts of time. As such, segmenting large datasets with 
the standard method is impractical. Current automated pipelines are inaccurate at hippocampal 
demarcation and volumetry. We developed a semi-automated hippocampal segmentation 
pipeline based on the Advanced Normalization Tools (ANTs) suite of programs to segment the 
hippocampus. We applied the semi-automated segmentation pipeline to 70 participant scans 
(26 female) from groups that included participants diagnosed with autism spectrum disorder, 
healthy older adults (mean age 74) and healthy younger controls. We found that hippocampal 
segmentations obtained with the semi-automated pipeline more closely matched the 
segmentations of an expert rater than those obtained using FreeSurfer or the segmentations of 
novice raters. Further, we found that the pipeline performed best when including manually- 
placed landmarks and when using a template generated from a heterogeneous sample (that 
included the full variability of group assignments) than a template generated from more 
homogeneous samples (using only individuals within a given age or with a specific 
neuropsychiatric diagnosis). Additionally, the semi-automated pipeline required much less 
time (5 minutes per brain) than manual segmentation (30-60 minutes per brain) or FreeSurfer 
(8 hours per brain). 

Keywords: hippocampus, segmentation, algorithm, autism, advanced normalization tools 
(ANTs) 
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INTRODUCTION 

Cortical and subcortical segmentation is a useful morphometric tool used for both 

research and diagnostic purposes. Segmentation involves the process of labeling and separating 

voxels associated with regions-of-interest (ROIs) (Fischl et al., 2002; Pruessner et al., 2000; 

Yassa & Stark, 2009). This process, i.e. pipeline, is expedient for use in studying typical and 

atypical brain morphologies, as typical morphologic variations occur naturally and manifest 

when controlling for age and sex (Allen, Bruss, Brown, & Damasio, 2005; Allen, Damasio, & 

Grabowski, 2002; Avants, Yushkevich, et al., 2010; Avants, Cook, et al., 2010; Bartley, Jones, & 

Weinberger, 1997; Cox, 1996; Evans, 2006; Persson et al., 2014) and atypical morphologies are 

associated with trauma and a variety of neurodegenerative, developmental, and psychiatric 

disorders (Csernansky et al., 1998; Csernansky et al., 2002; Csernansky et al., 2005; Fischl et al., 

2002; Sparks et al., 2002; Wang et al., 2006; Yassa et al., 2010). Volumetric analysis of structure 

is a valuable area of research as task performance and severity of disorder or disease are heavily 

correlated with cortical and subcortical volumes (Doxey & Kirwan, 2015; Jung et al., 2014; 

Turner, Furey, Drevets, Zarate Jr, & Nugent, 2012). 

While various methods and pipelines for brain segmentation exist, two standard methods 

have emerged: manual segmentation and automated segmentation via FreeSurfer. These methods 

are widely used, but both have significant and different drawbacks. Manual segmentation is often 

considered the “gold standard” of segmentation (Avants, Epstein, Grossman, & Gee, 2008; 

Chupin et al., 2007; Pluta et al., 2009). A well-trained researcher manually segments a particular 

ROI, e.g. the hippocampus, by drawing a mask over the desired region. The mask assigns a label 

to the ROI, and segmentation occurs as labeled regions are separated one from another, and from 

non-labeled regions. The main benefit of manual segmentation is accuracy: a well-trained 
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researcher may accurately identify and distinguish both typical and atypical morphologic 

variations. Additionally, an expert researcher will not make the same systematic errors that more 

automated pipelines are known to make (Hunsaker & Amaral, 2014). There are significant 

drawbacks, however, to manual segmentation (Khan, Wang, & Beg, 2008; Wenger et al., 2014). 

First, the method is dependent on the expertise of the researcher. Becoming proficient in typical 

and atypical neuroanatomy is a difficult task, and the amount of time required to label data sets 

by hand is extensive (Avants et al., 2008). This proves costly in time, training, and computer 

resources. Second, as the task is researcher dependent, inter-rater reliability is an issue. As 

pointed out by Avants, raters may make systematic segmentation errors in some structures 

(Avants et al., 2011). It has been shown that researchers have biases to varying degrees, which 

result in left-right hippocampal asymmetries that are not present anatomically and significant 

inter-rater discrepancies in the head and tail; as Maltbie (2012) describes, such rater-caused 

volumetric variance is likely to greatly affect most neuroimaging studies since interrater variance 

may approach 11% for hippocampal volumes (Hasboun et al., 1996; Maltbie et al., 2012; Sparks 

et al., 2002). Third, as the manual segmentations are typically done slice-by-slice in one view, 

e.g. the sagittal view, the output of the manual segmentation method is often “boxy” and does 

not reflect the smooth nature of the underlying anatomy. Finally, the amount of time it takes to 

segment a dataset restricts the size of the dataset that can be analyzed in a reasonable time, 

restricting the size and scope of studies and necessitating smaller datasets for purely pragmatic 

reasons (Tustison et al., 2014). Such limitations in manual segmentation reduce the scientific 

power of the method. 

Automated segmentation is most often accomplished via FreeSurfer (Fischl et al., 2002), 

which is a fully automated program that labels and segments cortical and subcortical structures. 
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Although FreeSurfer requires significant computational time, it places much less demand on the 

researcher than manual segmentation. There are several limitations to FreeSurfer. First, the 

technique is dependent on previously rendered atlases, which may or may not be suitable for the 

studied group. For example, a subject pool consisting of children cannot be accurately segmented 

by a template derived from adults (Fonov et al., 2011). Nor would it make sense to use a healthy, 

young adult, male atlas for studying women, geriatric, or unhealthy groups, thereby necessitating 

several atlases for analysis within the same study. Second, FreeSurfer takes considerable 

computational time to perform a full segmentation, up to eight hours to segment a single subject. 

Without parallelization, large datasets may require weeks or months of processing time. Third, 

FreeSurfer subcortical segmentation is voxel-based, meaning that FreeSurfer compares voxel 

intensity to the atlas to guide segmentation. This raises issues of loss of fine detail and 

segmentation problems (Fischl et al., 2002; Khan et al., 2008). As an example, the alveus, a thin 

strip of white matter used to anatomically separate the amygdala from the head of the 

hippocampus, is only 1mm thick (Chupin et al., 2007) and with standard structural MRI scan 

resolution of about 1mm3, the intensity of the alveus is easily averaged with the nearby 

intensities of the amygdala and hippocampus through partial volume sampling. This leads to 

systematic errors in which FreeSurfer labels a portion of amygdala as hippocampus, errors that 

must be corrected manually (Figure 5). This issue does not happen as readily in other subcortical 

regions because FreeSurfer, in registering the voxel intensities, is able to account for the 

averaged differences in intensities between subcortical regions. The amygdala and hippocampus, 

however, have nearly identical image intensities (see: Fischl et al., 2002). Consequently, without 

the guidance of the alveus, FreeSurfer makes errors in the amygdaloid-hippocampal region. 
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Recently, the development of Advanced Normalization Tools software (ANTs) (Avants 

et al., 2008; Avants et al., 2011) has significantly addressed the issues associated with manual 

and automatic segmentation. Symmetric Normalizer (SyN), one of the toolkits in ANTs, is able 

to more accurately compare the template to the scan by utilizing two unique approaches, termed 

symmetric registration and cross-correlation (Avants et al., 2008). Symmetric registration refers 

to the fact that both scan and template are warped using an optimization function to a midpoint 

(so their movements are symmetric) and cross-correlation is the fact that the registration 

algorithm utilizes local intensity values, in addition to voxel intensity, from both the scan and 

template when finding the corresponding point in both images. 

An additional advantage of ANTs is a decreased dependence on pre-labeled atlases. 

Instead, one is able to use the ANTs software to create a study-specific template derived from the 

very images that are to be studied, which yields a more sensitive and applicable form of 

comparison (B. B. Avants, P. Yushkevich, et al., 2010; Wilke, Holland, Altaye, & Gaser, 2008; 

Yoon, Fonov, Perusse, & Evans, 2009). These novel approaches by the ANTs program have 

been shown to outperform standard segmentation methods (Klein et al., 2010; Tustison et al., 

2014). 

Here it was our aim to develop a pipeline (dubbed the "semi-automated pipeline" or SAP) 

based around the ANTs software that was as accurate as manual segmentation, fast enough for 

large datasets, easy to use, and robust in atypical and aged populations. In addition to the 

pipeline, we supply the scripts and parameters used in the pipeline for the sake of algorithmic 

transparency (Kovacevic, 2006; Tustison et al., 2013). To assess the performance of the SAP, we 

compared hippocampal volumes obtained with the semi-automated pipeline (SAP) to those 

obtained with manual segmentation by both novice and expert researchers, and FreeSurfer (FS). 
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Furthermore, we considered several permutations of the SAP in order to establish the optimal 

procedure in terms of ease of use and robustness of results.  
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METHODS 

Participants 

Seventy volunteers (26 female) gave written informed consent prior to participating in 

MRI scanning. Participant groups included a group diagnosed with autism spectrum disorder 

(ASD) (n=19, 5 female, mean age 22.5), a group of healthy older adults (n=16, 8 female, mean 

age 74.3) and a group of healthy, young-adults which served as a control population (n=35, 13 

female, mean age 22.2). All scans were obtained for the purpose of functional localization in 

functional MRI (fMRI) studies. The fMRI data are reported elsewhere. The Institutional Review 

Board at Brigham Young University approved all research.  

 

MRI Data Acquisition 

Data acquisition was performed at the BYU MRI Research Facility using a 3T Siemens 

TIM Trio MRI scanner. All structural MR images were acquired using one of two T1-weighted 

magnetization-prepared rapid acquisition with gradient echo (MP-RAGE) sequences. For the 

ASD and ASD-control groups (n=35), the sequence used the following parameters: TE = 2.26 

ms, flip angle = 9°, slices = 176, slice thickness = 1.0 mm, matrix size = 256 × 224, field of view 

= 250 × 220.8 mm, voxel size = 1 × 1 × 1 mm. For the remaining participants in the Aged and 

Aged-control groups (n=35), the sequence used the following parameters: TE = 2.08 ms, flip 

angle = 8°, slices = 128, slice thickness = 1.20 mm, matrix size = 192 × 192, field of view = 

220.8 × 220.8 mm, voxel size = 1.15 × 1.15 × 1.2 mm. 

Initial spatial normalization of all individual MR images was accomplished using the 

Analysis of Functional NeuroImages (AFNI) suite of programs (Cox, 1996) to manually perform 

AC-PC alignment (Talairach, 1988). 
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Manual Hippocampal Segmentation 

Manual tracings were performed by two researchers (one experienced, one novice) using 

a protocol based on the anatomical description of Insausti et al. (Cox, 1996; Insausti et al., 1998) 

and referencing common, published, anatomical guidelines (Hasboun et al., 1996). The novice 

researcher trained on a practice set of scans until they had obtained sufficiently high inter-rater 

reliability, calculated using the Dice Similarity Coefficient (DSC) (Dawant et al., 1999; Dice, 

1945; Sparks et al., 2002) using the formula 2|A*B| / (|A| + |B|). Values for the DSC range 

from 0 to 1, with good scores ≥ 0.7, where a value of 1 indicates complete similarity (Bartko, 

1991; Zijdenbos, Dawant, Margolin, & Palmer, 1994), and the novice researcher obtained DSCs 

≥ 0.9 when compared with the experienced researcher. Manual segmentations were used as the 

standard against which we compared the semi-automated method described below (Avants et al., 

2008; Chupin et al., 2007; Pluta et al., 2009). All scans (n=70) were segmented by both the 

novice and experienced researcher. 

The Semi-Automated Pipeline 

In order to address the limitations associated with manual and automatic segmentation, 

we adapted a segmentation pipeline (Table 1) that had previously been developed for use in 

rhesus macaques by Hunsaker and Amaral (2014), here dubbed the Semi-Automated Pipeline 

or SAP. The SAP progressed in the following steps: 1) Landmark the AC-PC oriented structural 

scans; 2) Render a heterogeneous study-specific template; 3) Landmark and manually segment 

the template; 4) Register the template to the structural scans. 

Landmarks were manually placed within both hippocampi of all participants using the 

program Multi-image Analysis GUI (Mango; University of Texas Health Science Center; 

http://ric.uthscsa.edu/mango/) following the landmarking guidelines of Hunsaker and Amaral 
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(Hunsaker & Amaral, 2014) and referencing the locations specified by Pluta et al. (2009). 

Landmarks were used in order to guide the automated registration performed by the Advanced 

Normalization Tools (ANTs) software (Csernansky et al., 1998; Hunsaker & Amaral, 2014; 

Pluta et al., 2009; Tustison, Avants, & Gee, 2009) by biasing the registration of the fixed to the 

moved image (Klein et al., 2010) for certain regions of high inter-subject variability e.g. the 

boundaries of the hippocampus. All landmarks were placed by the novice researcher. 

ANTs (Avants et al., 2011) was then used to render a study-specific template (SST) 

(Chupin et al., 2007; Evans, 2006) utilizing all participants in all groups reported above, plus an 

additional 104 scans from other healthy, young adults utilizing the same scanning protocols 

previously described (n=172, 59 female, mean age = 28.4 ± 16.7; see appendix A for specific 

command line options; Avants et al., 2010). That is, instead of rendering multiple homogenous 

templates to use with each different group as has previously been done (e.g., Hunsaker & 

Amaral, 2014; Klein et al., 2010), we rendered a heterogeneous template from all the scans of the 

various groups, thereby making an overall study-specific template rather than multiple group-

specific templates. The additional 102 scans were included to improve overall generalizability of 

the template. We believe this method will prove superior to templates based on homogenous 

samples, standard atlases, or single scans (Fonov et al., 2011) as it both minimizes the 

deformation resulting from the requisite warping (i.e., the Jacobian) required for each 

registration and requires only a single manual segmentation in template space.  

The SST was then manually segmented by the experienced researcher and landmarked, 

according to the same protocols previously described, and registration of each scan to the SST 

was calculated using the ANTs software (Hunsaker & Amaral, 2014). Upon registration, 

segmentation occurred by warping the template hippocampal mask into subject space for all 
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scans. The hippocampal masks were then split according to hemisphere, and converted to binary 

masks.  

 

FreeSurfer 

 In order to better evaluate the output of ANTs hippocampal segmentation was also 

performed using FreeSurfer 5.0 on all scans. In this way we were able to assess the performance 

of the SAP with regard to the commonly accepted methods of manual segmentation and 

FreeSurfer.  

 

Variants of the SAP 

Additionally, we examined two variants of the SAP as outlined above. The SAPH variant 

consists of utilizing multiple homogeneous templates instead of a single, heterogeneous 

template, and the SAPXL variant does not utilize landmarks in either the structural scans or the 

template, and does not include the Point-Set Expectation (PSE) option during the registration 

process. SAPH and SAPXL represent common methods of ANTs usage, and were included in 

order to assess whether or not a heterogeneous template and the addition of landmarks increased 

the reliability and robustness of SAP when compared to an experienced rater and the more 

standard segmentation protocols. Accordingly, all scans were processed using SAP, SAPH, 

SAPXL, FS, and manual segmentation (Table 1). Furthermore, when considering the 

hippocampal volume measurements resulting from the various segmentation protocols, 

hippocampal volumes from our experienced researcher were used as a standard against which we 

compared the multiple pipelines. 
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RESULTS 

Comparison of SAP to FreeSurfer and Manual Segmentation 

 Hippocampal volumes derived from each segmentation method (SAP, FS, and novice and 

experienced manual segmentation) for all participants (n=70) were analyzed with a repeated-

measures ANOVA, accounting for the lack of independence in the two hemispheres and reported 

using the multivariate counterpart of the Student’s t-test, the Hotelling’s T2. A significant main 

effect of segmentation method on hippocampal volumes was found for each method (alpha=0.05, 

Hotelling’s T2 (3,68) = 4997.343, two-sided p-value < 0.000001). All methods were found to 

differ significantly one from another (Table 2), except for the experienced-SAP comparison 

(Hotelling’s T2 (1, 68) = 0.905, two-sided p-value = 0.345), indicating that the SAP produced 

statistically identical volumes to the experienced researcher. Likewise, the distribution of 

hippocampal volumes produced by SAP were nearly identical to the experienced researcher, and 

unlike those produced by the novice researcher or FreeSurfer (Figure 1). 

 Dice similarity coefficients (DSCs), the ratio of overlap to non-overlap, were used in 

determining the extent to which the same space was segmented by each method. The SAP 

method had a higher agreement with the experienced (Exp) researcher (mean DSC = 0.85) than 

either the novice (mean DSC = 0.78) or FreeSurfer (mean DSC = 0.60), and the SAP-E DSC was 

revealed to have the highest degree of agreement between all DSCs (Figure 2). According to a 

repeated measures ANOVA, this agreement was found to be significantly different from the 

DSCs resulting from the other comparisons of segmentation methods (Hotelling’s T2 (1, 68) = 

184.368, two-sided p-value < 0.00001). 
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Analysis of Variations on the Semi-Automated Pipeline 

 In order to justify both the landmarks and the heterogeneous template, two variations of 

the SAP method were used to segment the same groups of participants. The semi-automated 

pipeline without landmarks (SAPXL) does not include landmarks in either the participant scans 

or the template, and does not use the PSE option during ANTs registration. The semi-automated 

pipeline with homogeneous templates (SAPH) utilizes a unique template built for each group 

(ASD, ASD-control, Aged, Aged-control), that was then manually segmented and landmarked 

(see Table 1). 

 Repeated-measures analysis of variance revealed that SAPXL produced volumes that 

were not significantly different from the experienced researcher (Hotelling’s T2 (1, 68) = 0.955, 

two-sided p-value = 0.332), while a main effect was found for the SAPH method (Table 3). This 

suggests that Exp, SAP, and SAPXL produce nearly identical volumes in all 70 participants, but 

that SAPH does not. This is further evidenced in both the distribution of volumes and DSCs 

(Figure 3).  

 Finally, repeated-measure analyses conducted on the specific, individual groups (ASD, 

Aged, and control) revealed the same results, that is, that SAP and SAPXL produce volumes 

statistically equal to Exp in all individual groups while SAPH and FS do not, and that differences 

in DSCs between SAP_Exp and SAPXL_Exp appear to only be statistically, but not practically, 

significant. Furthermore, SAPH had better agreement in the control groups with E than it had in 

the ASD and Aged groups, which is likely a template effect resulting of the different 

hippocampal masks used in each of the four homogeneous templates (Figure 4). 
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DISCUSSION 

Overview 

 The purpose of this study was to develop a protocol for hippocampal segmentation that 

was as accurate as standard methods but was faster, more easily used, required minimal training, 

and proved robust in atypical populations. The Semi-Automated Pipeline protocol accomplished 

this, performing equally well to our experienced rater and outperforming both FreeSurfer (Klein 

et al., 2010) and novice raters, while minimizing researcher bias and interrater reliability 

concerns inherent in manual segmentation (Figure 5). 

The standard pipeline (SAP) and a variations of the pipeline that did not employ 

landmarks on the individual subjects or template (SAPXL) performed equally to manual 

segmentations performed by an experienced rater (Exp). A variation of the pipeline that used 

templates specific to the homogenous groups studied rather than a heterogeneous template based 

on subjects from each group under investigation did not perform as well. Similarly, manual 

segmentation performed by a novice rater (Nov) and FreeSurfer both resulted in less accurate 

hippocampal segmentation. As SAP takes more processing time than SAPXL due to the 

inclusion of landmarks, we therefore recommend considering the SAPXL method of 

segmentation, in addition to SAP, for hippocampal volumetric studies. We anticipate the SAPXL 

method to decrease processing time while increasing reliability both between groups and studies. 

Additionally, we recommend not using the SAPH pipeline, as is commonly done, in order to 

reduce template-mask confounds when comparing different groups. 

 

Researcher and Computational Time Considerations 

 Manual segmentation required 20 hours of instruction and training for the novice 

researcher, and over 100 man-hours to manually segment 70 scans, which unfortunately resulted 
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in less-than-desirable inter-rater Dice similarity coefficients (DSCs). FreeSurfer required 

approximately eight hours of processing time per participant scan. In our case, we were able to 

take advantage of a supercomputing cluster to perform FS on all scans in parallel, but this option 

is not always widely available. In contrast, the novice researcher was able to learn, become 

proficient in, and then landmark all scans for both this study and another (n=172) within ten 

hours, and moreover, achieve hippocampal volumes similar to those of an expert rater, and not 

including landmarks would further reduce this processing time. The Study-specific Template 

took 147 hours of computation time to render, utilizing 4 cores and 8gb of RAM, and the ANTs 

registration required only one hour of processing time when performed in parallel on all subjects 

on a supercomputing cluster.  

Template rendering time may be reduced by incorporating fewer scans in the template, as 

it is not necessary to include all scans from the study, but only a relevant percentage from each 

group; a template later rendered with only 20 scans required a mere five hours of computation 

time. Indeed, it likely the better option to build a template from a smaller, representative sample 

as our template was not particularly sensitive to the hippocampal sulcus. 

 

SegAdapter 

SegAdapter (https://www.nitrc.org/projects/segadapter/) is a learning-based software that 

can be used to correct automatic, consistent errors resulting from segmentation algorithms 

(Wang, Das et al. 2011). The application in this paper would have been to help correct the output 

of SAP to the manual segmentations. We decided not to employ SegAdapter (SA) for a number 

of reasons. First, a pipeline utilizing SA is still dependent on manual segmentation, a protocol 

that the SAP is meant to replace. Second, SA is heavily dependent on the quality of the manual 

segmentation. In our hands, the post-SA volumes had very high DSCs with both researchers 
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(>0.9), novice and experienced alike. We felt that these results could not be trusted since we 

previously determined that Nov had inferior segmentations when compared to Exp. As such, the 

SA correction was adversely affected by the novice’s segmentations, thereby resulting in high 

DSCs. Indeed, post-SA volumes differed from both SAP and SAPXL volumes. As such, only SA 

volumes guided by Exp could be reasonably trusted, but again this involves either segmenting a 

group twice (manually, SA-SAP), or segmenting a training set for the SA software, which only 

adds to the post-processing workload. If a high level of sensitivity is needed, however, the SA-

SAP method could prove very useful, once the SegAdapter algorithm has been properly trained 

on expert segmentations. 

 

Application to Other Structures 

 Practically, this protocol is not limited to the hippocampus. As it is dependent on only a 

template and ROI mask, any MRI scan utilizing a T1 or T2 image could be segmented with SAP, 

both within and without the CNS. Also, the increase in sensitivity and robustness and reduction 

in confounds may yield more consistent results and make SAP a useful tool for studying 

neurodegenerative disorders like Alzheimer's and Parkinson’s disease (Tustison, et. al., 2014). 

Finally, with a reduced time required for the segmentation of each scan by SAP, less training, 

and less demand on the researcher and resources, large datasets may be segmented in a very 

reasonable amount of time. 

 

Limitations 

 There are several limitations to this study. First, as this study used images that had 

previously been acquired, two different sets of scanning parameters were used to acquire the MR 

images. When controlling for scan parameters, however, no significant difference was detected 
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between control scans that were acquired using different parameters. Had a difference been 

detected, this study would not necessarily be invalidated as the comparisons were not performed 

between the various groups and scanning protocols, but between the segmentation methods 

within each participant. A second limitation in this study is its dependency on the “standard” 

hippocampal segmentation procedure: manual segmentation. As reported, significant differences 

were found between the researchers who participated in manual segmentation. While the novice 

researcher had trained until they had achieved DSCs > 0.9 with the experienced researcher, it 

seems that the novice researcher only improved on the training scans and underperformed on the 

actual dataset. More important to the study, however, than the inter-rater reliability issue (which 

was not unexpected) is the inherent relativity of the analysis. In the absence of a known standard 

against which we could compare the various segmentation pipelines, we were forced to assume 

that our experienced rater produced the most accurate hippocampal masks. As such, all of the 

analyses done in this study were inherently contrastive and limited by the skill of the experienced 

researcher. Indeed, our study could say nothing of the true performance of the various 

segmentation methods, but speaks only of their performance relative to Exp, and while it is not 

uncommon nor unwarranted to use an experienced rater as a standard (Avants, Epstein, 

Grossman, & Gee, 2008; Chupin et al. 2007), we were nevertheless unable to assess how well 

the segmentation protocols performed in actuality. For this reason, we cannot know for certain 

whether the SAP, SAPXL, or SAPH variation performed most accurately. This, however, 

highlights the core issues which this paper attempts to address: the lack of a reliable and 

consistent subcortical segmentation pipeline, that is sensitive to atypical groups, and the utter 

dependency on manual segmentation (with its known various issues) that exists in the field. A 

potential solution could be found in repeating this study on cadavers: upon segmenting the scans 
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the hippocampi could then be extracted and its true volume calculated. This may give a more 

definitive answer as to which segmentation method, if any, performs most accurately. One 

anticipated issue with this approach is that fixing the brain, as is commonly done post mortem, 

would change the MR signal, and that an unfixed, unsuspended brain is likely to collapse 

somewhat during the scanning procedure. 

 

Conclusion 

In sum, we recommend using ANTs for hippocampal segmentation, over other common 

methods such as FreeSurfer or manual segmentation. When using ANTs for volumetric 

segmentation, we recommend rendering a single, heterogeneous template; landmarks may or 

may not be beneficial. This will allow for faster processing speeds, more sensitive 

segmentations, increase the number of groups that may be studied (ASD, AD), and reduce rater-

reliability concerns. Furthermore, utilizing a single template mask will reduce template-mask 

effects that are likely to confound sensitive studies.  
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Table 1: Various Segmentation Protocols. Manual Segmentation (MS) was performed on scans 
that were AC-PC aligned, and then the binary hippocampal masks were smoothed. The semi-
automated pipeline (SAP) involves rendering a heterogeneous template, manually segmenting 
this template and smoothing the segmentation masks, landmarking both the template and scans, 
and using ANTs to register each scan to the template and then warp the segmentation mask from 
template to scan space., and then splitting, thresholding, and smoothing the output. SAP differs 
from SAPH (the semi-automated pipeline utilizing homogeneous templates) in that different 
templates, and template masks are used. SAP differs from SAPXL (the semi-automated pipeline 
without utilizing landmarks) in that SAPXL did not landmark the scans nor the template, and the 
Point Set Expectation (PSE) option could not be used during the registration process. All output 
of the various segmentation pipelines based on ANTs were split, thresholded, and smoothed. 
FreeSurfer (FS) is entirely self-contained, and no additional pre-or post-processing was used. All 
methods (MS, SAP, SAPH, SAPXL, FS) were used to segment all scans (n=70). 

 
      Methods     

Steps MS SAP SAPH SAPXL FS 

AC-PC align X X X X   
Landmark scans   X X     
Landmark template   X X     
Heterogeneous template   X   X   
Homogeneous template     X     
Segment template(s)   X X X   
Smooth template masks   X X X  
ANTs registration with PSE   X X     
Split output masks   X X X   
Thresh output masks   X X X   
Smooth output masks X X X X   
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Table 2: Repeated Measures ANOVA of the Segmentation Methods. Hotelling’s T-squared value 
and their associated p-values for each comparison of segmentation methods: novice researcher 
(Nov), experienced researcher (Exp), the semi-automated pipeline (SAP), and FreeSurfer (FS). 
Every method differs significantly one from another, save Exp and SAP, indicating that SAP and 
Exp do not perform significantly different. 
 

Comparison T2 (1,68)  P-value 
Nov-Exp 667.3428 < .00001 
Nov-SAP 429.1486 < .00001 
Nov-FS 2481.4046 < .00001 
Exp-SAP 0.9058 0.34462 
Exp-FS 4710.4845 < .00001 
SAP-FS 5060.1502 < .00001 

 
 
 
 
Table 3: Comparison of Variations of the SAP Method.  Hippocampal volumes produced by the 
experienced researcher are equivalent to both the SAP and SAPXL methods, but SAPH differs 
significantly from Exp, SAP, and SAPXL. 
 

Comparison T2 (1,68)  P-value 
Exp-SAP 0.9058 0.34462 
Exp-SAPXL 0.9559 0.33173 
Exp-SAPH 176.3029 < .00001 
SAP-SAPXL 0.1017 0.7508 
SAP-SAPH 202.6593 < .00001 
SAPXL-SAPH 245.4571 < .00001 
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Figure 1: Distribution of Hippocampal Volumes per Segmentation Method. Hippocampal 
volumes as derived via the various segmentation methods for all 70 participants: Nov, Exp, SAP, 
and FS. The performance of Exp is more closely approximated by SAP than by Nov or FS. 
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Figure 2: Distribution of DSCs. SAP is shown to have the highest degree of agreement with Exp 
(SAP_Exp), when compared to the other segmentation methods. Additionally, SAP_Exp has a 
higher degree of similarity than any of the other comparisons. 
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Figure 3: Comparison of Exp, SAP, SAPXL, and SAPH. Left, Distributions of hippocampal 
volumes per segmentation method. While both SAP and SAPXL produce distributions of 
volumes that are equivalent to Exp, SAPH produces volumes that are unique. Right, DSCs 
between Exp and each SAP variation. While all distributions are significantly different one from 
another (Hotelling’s T2 (1, 68) > 3.978, two-sided p-value < 0.0001), the difference between 
SAP_Exp and SAPXL_Exp DSCs appears to be statistically but not practically significant. 
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Figure 4: Group-Specific Comparisons. While SAP, SAPXL, and FS appear to have consistent 
DSCs with Exp in each group, SAPH DSCs with Exp range from being nearly equal to those of 
SAP and SAPXL (ASD control, top right) to being quite different (Aged, bottom left). This 
difference in performance, both in comparison to itself and to SAP, SAPXL, is most likely the 
result of minute differences in segmentation masks for each of the homogeneous templates. 
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Figure 5: Comparison of Segmentation Hippocampal Masks. SAP (top), FS (bottom left), and 
Nov (bottom right) hippocampal masks superimposed over an ASD structural scan. The SAP 
protocol based on the ANTs software is sensitive to the alveus and gives a more accurate 
segmentation in typical and atypical groups than FS. Additionally, ANTs outputs a probabilistic 
mask with values that can be constrained more liberally or conservatively.  
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APPENDIX A: Scripting Commands 

 
This appendix only contains a small portion of the scripts used. A comprehensive list can be 
found at: https://github.com/nmuncy/HippSeg_Pipeline 
 
1. buildtemplateparallel.sh –d 3 –o <prefix> -c 2 –r 1 –j 4 <input_struct.nii.gz> 

 
2. ANTS 3 -o <prefix> -i 100x100x100x20 -t SyN[0.1] -r Gauss[3,0.] –m  
    CC[<template.nii.gz>,<struct.nii.gz>,<4>,4] –m  
    PSE[<template.nii.gz>,<struct.nii.gz>,<template_mask.nii.gz>,<struct_mask.nii.gz>,<4>, 
    <0.8>,<100>,0,25,10000]  
 
3. WarpImageMultiTransform 3 <struct.nii.gz> <prefix>ParticipantToTemplate.nii.gz  
    <prefix>Warp.nii.gz <prefix>Affine.txt -R <template.nii.gz> 
    WarpImageMultiTransform 3 <template.nii.gz> <prefix>TemplateToParticipant.nii.gz -i  
    <prefix>Affine.txt <prefix>InverseWarp.nii.gz –R <struct.nii.gz> 
    WarpImageMultiTransform 3 <template_mask.nii.gz> <prefix>auto.nii.gz –i  
    <prefix>Affine.txt <prefix>InverseWarp.nii.gz –R <struct.nii.gz> 
 
4. c3d <input.nii.gz> -as SEG –cmv –pop –pop –thresh 50% inf 1 0 –as MASK –push SEG  
    – times –o <L_output.nii.gz> -push MASK –replace 1 0 0 1 –push SEG –times –o  
    <R_output.nii.gz>  
 
5. c3d <input_L.nii.gz> -thresh 0.25 1 1 0 –o <output_L_thresh.nii.gz>; c3d <input_R.nii.gz  
    – thresh 1.25 2 2 0 –o <output_R_thres.nii.gz> 
 
6. recon-all –all –subjid <subjectID> -sd <subjectDirectory> -notal-check –hippo-subfields  
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