
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2019-06-01

The Conversion of Manual Machining Equipment into Smart, The Conversion of Manual Machining Equipment into Smart,

Connected Systems with Real-Time Monitoring and Issue Connected Systems with Real-Time Monitoring and Issue

Identification Capabilities Identification Capabilities

David Lee Williams
Brigham Young University

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Williams, David Lee, "The Conversion of Manual Machining Equipment into Smart, Connected Systems
with Real-Time Monitoring and Issue Identification Capabilities" (2019). Theses and Dissertations. 8542.
https://scholarsarchive.byu.edu/etd/8542

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F8542&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/8542?utm_source=scholarsarchive.byu.edu%2Fetd%2F8542&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

The Conversion of Manual Machining Equipment into Smart, Connected Systems

with Real-Time Monitoring and Issue Identification Capabilities

David Lee Williams

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Yuri Hovanski, Chair
Reuben D. Domike
Michael P. Miles

School of Technology

Brigham Young University

Copyright © 2019 David Lee Williams

All Rights Reserved

ABSTRACT

The Conversion of Manual Machining Equipment into Smart, Connected Systems
with Real-time Monitoring and Issue Identification Capabilities

David Lee Williams

School of Technology, BYU
Master of Science

With the advent of the fourth industrial revolution, information technology and

manufacturing systems are merging to form what is now known as Smart Manufacturing.
However, with this newer technology being integrated with newer pieces of machining
equipment, companies with legacy equipment occasionally are in a bind since these machines
were not designed or built with the fundamental components of smart manufacturing systems:
unified connectivity, real-time monitoring, and issue identification.

The purpose of this research is to provide a solution for converting manual machining
equipment into smart systems with these fundamental components of smart manufacturing. The
pieces of equipment that were the subjects of this experimentation were an HJ-1100 Kingston
lathe and four ACER Vertical Turret Milling machines. None of these machines had any of these
capabilities at the inception of this project.

These machines were successfully converted into smart systems with varying degrees of
reliability between the lathe and the four mills in the case of real-time monitoring and issue
identification. The setups and configurations to achieve these three smart components are
described and provided.

Keywords: smart manufacturing, thingworx, kepserverex, unified connectivity, real-time
monitoring, issue identification, lathe, mill, manufacturing apps

ACKNOWLEDGEMENTS

I wish to express appreciation to everyone who contributed towards the completion of

this project, I could not have done this without them. Dr. Yuri Hovanski provided superb

mentorship, insight, and guidance towards the conversion of manual machines into smart

systems. Kevin Cole helped tremendously with the National Instruments side of the smart

factory, especially when it came to creating and customizing LabVIEW code. John Reinhard

aided significantly in the IT side of the project, helping establish connectivity with the machines

and installing key software components. Clint Bybee was also instrumental in bringing

machining knowledge, experience, and expertise to this project and was invaluable when

simulating safe crash tests on the equipment. PTC also helped tremendously with the donation of

several pieces of software, including ThingWorx and KEPServerEX.

I also express my gratitude to those that may have not been mentioned, but may have

aided me in other ways, helping me get through the ups and downs, the good days and bad ones.

This includes members of my family, friends, colleagues, company representatives who helped

in support cases, and God. Words do not sufficiently express how much all of this support has

meant to me. Thank you.

iv

TABLE OF CONTENTS

The Conversion of Manual Machining Equipment into Smart, Connected Systems with Real-

Time Monitoring and Issue Identification Capabilities ... i

ABSTRACT .. ii

TABLE OF CONTENTS ... iv

LIST OF TABLES ... ix

LIST OF FIGURES .. x

1 Introduction ... 1

 Background ... 1

 Purpose of Research .. 2

 Research Questions ... 2

 Methodology ... 3

 Glossary .. 6

2 Literature Review .. 7

 Introduction ... 7

 Defining “Smart” .. 8

2.2.1 Unified Connectivity ... 10

2.2.2 Real-Time Monitoring .. 11

2.2.3 Issue Identification .. 12

 Smart Implementation: Challenges ... 12

3 Methodology .. 15

v

 Introduction ... 15

 Unified Connectivity ... 15

3.2.1 Lathe ... 15

3.2.1.1 Equipment Used .. 16

3.2.1.2 Tapping into a Purely Mechanical System ... 17

3.2.1.3 LabVIEW to KEPServerEX ... 20

3.2.1.4 KEPServerEX to ThingWorx Manufacturing Apps 24

3.2.2 Mills .. 25

3.2.2.1 Equipment Used .. 25

3.2.2.2 VF-S7 to ETH-200 Communication Card .. 25

3.2.2.3 Embedded Web Server Configuration .. 27

3.2.2.4 Point-To-Point Configuration ... 29

3.2.2.5 ETH-200 Communication Card to KEPServerEX 30

3.2.2.6 KEPServerEX to ThingWorx Manufacturing Apps 40

 Real-Time Monitoring .. 40

3.3.1 Lathe ... 40

3.3.1.1 Spindle Time ... 41

3.3.1.2 Machine Status .. 41

3.3.2 Mills .. 42

3.3.2.1 Machine Status .. 42

3.3.2.2 RPM .. 43

 Issue Identification .. 44

3.4.1 Setting Up Users with Email and Text Notification Capabilities 44

vi

3.4.2 Lathe ... 45

3.4.2.1 After-Hour Operation.. 45

3.4.2.2 Crash Notification ... 47

3.4.3 Mills .. 48

3.4.3.1 After-Hour Operation.. 48

3.4.3.2 Crash Notification ... 49

4 Research Results and Analysis .. 50

 Unified Connectivity ... 50

4.1.1 Lathe ... 50

4.1.2 Discussion of Results .. 53

4.1.2.1 Iterations Taken to Get to Final Version of LabVIEW Program 53

4.1.2.2 24/7 Connectivity .. 54

4.1.2.3 Common Causes of Bad Connections... 55

4.1.2.4 Limitations .. 55

4.1.3 Summary ... 56

4.1.4 Mills .. 57

4.1.5 Discussion of Results .. 59

4.1.5.1 Iterations of the Connectivity Setup ... 59

4.1.5.2 E-Stop Problem ... 61

4.1.5.3 Cost of Setup ... 62

4.1.5.4 Limitations .. 62

4.1.6 Summary ... 62

 Real-Time Monitoring .. 63

vii

4.2.1 Lathe ... 63

4.2.2 Discussion of Results .. 67

4.2.2.1 Advantages .. 67

4.2.2.2 Limitations .. 67

4.2.3 Summary ... 76

4.2.4 Mills .. 76

4.2.5 Discussion of Results .. 83

4.2.5.1 Advantages .. 83

4.2.5.2 Limitations .. 83

4.2.6 Summary ... 84

 Issue Identification .. 84

4.3.1 Lathe ... 85

4.3.2 Discussion of Results .. 87

4.3.2.1 Limitations .. 87

4.3.3 Summary ... 88

4.3.4 Mills .. 89

4.3.5 Discussion of Results .. 92

4.3.6 Summary ... 93

 Shop Supervisor Requested Items Summary .. 93

5 Conclusions and Recommendations .. 95

 Conclusions ... 95

5.1.1 Unified Connectivity ... 95

5.1.1.1 Lathe ... 95

viii

5.1.1.2 Mills .. 96

5.1.2 Real-Time Monitoring .. 96

5.1.2.1 Lathe ... 96

5.1.2.2 Mills .. 97

5.1.3 Issue Identification .. 97

5.1.3.1 Lathe ... 97

5.1.3.2 Mills .. 98

 Recommendations for Future Research .. 98

References ... 100

Appendix A: LabVIEW Code ... 102

ix

LIST OF TABLES

Table 1-1: Desired Information in the Smart Factory ... 4

Table 4-1: Lathe Unified Connectivity Summary and Analysis ... 51

Table 4-2: Mill Unified Connectivity Summary and Analysis ... 57

Table 4-3: Lathe Real-Time Monitoring Summary and Analysis .. 63

Table 4-4: Machine Conditions Matrix ... 68

Table 4-5: Mills Real-Time Monitoring Summary and Analysis ... 77

Table 4-6: Lathe Issue Identification Summary and Analysis .. 85

Table 4-7: Mills Issue Identification Summary and Analysis .. 89

Table 4-8: Results on Shop Supervisor Requests ... 93

x

LIST OF FIGURES

Figure 2-1: Digital Transformation-Understand Phase ... 9

Figure 3-1: Lathe_11, Test Lathe Subject for Smart Conversion ... 16

Figure 3-2: Lathe_11 Electric Diagram .. 18

Figure 3-3: Wires Connecting to the ON/OFF Selector and the Motor Channels 19

Figure 3-4: Summary Page of New Channel Settings .. 22

Figure 3-5: Summary of Device Creation Settings ... 23

Figure 3-6: Summary of Tag Settings ... 24

Figure 3-7: Communication Connection Between the Mill and KEPServerEX 26

Figure 3-8: Embedded Web Server on the ETH-200 Communication Card 28

Figure 3-9: Screenshot of a Point-to-Point Configuration for a Point on Mill 1 29

Figure 3-10: Summary Page of New Channel Settings .. 31

Figure 3- 11: General Tab Settings ... 32

Figure 3-12: Scan Mode Tab Settings .. 33

Figure 3-13: Timing Tab Settings ... 33

Figure 3-14: Auto-Demotion Tab Settings ... 34

Figure 3-15: Tag Generation Tab Settings .. 34

Figure 3-16: Variable Import Settings Tab Settings ... 35

Figure 3-17: Unsolicited Tab Settings .. 35

Figure 3-18: Error Handling Tab Settings .. 36

Figure 3-19: Ethernet Tab Settings ... 36

Figure 3-20: Settings Tab Settings .. 37

Figure 3-21: Block Sizes Tab Settings.. 37

xi

Figure 3-22: Redundancy Tab Settings... 38

Figure 3-23: Mill Tag Creation ... 38

Figure 3-24: Channel, Device, and Tag Creation, Quick Client ... 39

Figure 3-25: Status Configuration for Lathe_11 ... 42

Figure 3-26: Status Configuration for Mill 1 .. 43

Figure 3-27: Real-Time Monitoring of RPM from a Derived Tag ... 44

Figure 3-28: Subscription Code and Parameters .. 45

Figure 3-29: Service Code and Parameters ... 46

Figure 3-30: Code for AfterHoursScan Service .. 49

Figure 4-1: Working Lathe Connectivity .. 51

Figure 4-2: Bad Lathe Connectivity from Stopped LabVIEW Program 52

Figure 4-3: System_Error Tag Signifying Communication Loss to the Device 53

Figure 4-4: Mill 1 Connectivity to KEPServerEX .. 58

Figure 4-5: Quick Client of Mill 1 when E-Stopped .. 58

Figure 4-6: Indicator of Mill 1 Communication Loss ... 59

Figure 4-7: Connectivity Attempt Using RS232 Cords/Modbus RTU Protocol 60

Figure 4-8: Additional Properties Tied to KEPServerEX Tags .. 64

Figure 4-9: Asset Advisor View of Lathe_11 ... 65

Figure 4- 10: Status Definitions for Lathe 11 ... 66

Figure 4-11: Production KPIs View of Lathe_11 ... 67

Figure 4-12: Lathe Test 1-Machine Off, Motor Off, Brake Not Pressed 69

Figure 4-13: Test 2-Machine On, Motor Off, Brake Not Pressed .. 69

Figure 4-14: Lathe Test 3-Machine Off, Motor On, Brake Not Pressed 70

xii

Figure 4-15: Lathe Test 4-Machine On, Motor On, Brake Not Pressed 70

Figure 4-16: Lathe Test 5-Machine Off, Motor Off, Brake Pressed .. 71

Figure 4-17: Lathe Test 6-Machine On, Motor Off, Brake Pressed ... 71

Figure 4-18: Lathe Test 7-Machine Off, Motor On, Brake Pressed ... 72

Figure 4-19: Lathe Test 8-Machine On, Motor On, Brake Pressed .. 72

Figure 4-20: Lathe_11 Running, then Motor Lever Switched Off ... 73

Figure 4-21: Lathe_11 Running, then Brake is Pressed ... 74

Figure 4-22: Lathe_11 Voltage Conditions at 35 RPM .. 74

Figure 4-23: Lathe_11 Voltage Conditions at 490 RPM .. 75

Figure 4-24: Lathe_11 Voltage Conditions at 2000 RPM .. 75

Figure 4-25: Mill 1 RPM Relationship ... 78

Figure 4-26: Mill 2 RPM Relationship ... 78

Figure 4-27: Mill 3 RPM Relationship ... 79

Figure 4-28: Mill 4 RPM Relationship ... 79

Figure 4-29: Additional Properties for Mill 1 Tied to KEPServerEX Tags 80

Figure 4-30: Asset Advisor for Mill 1 and Other Assets .. 81

Figure 4-31: Status Definition Tab for Mill 1 ... 81

Figure 4-32: Production KPIs View of Mill 1 .. 82

Figure 4-33: Alert Monitoring .. 82

Figure 4-34: Alert Monitoring Historical View .. 83

Figure 4-35: After-Hour Email Notification for Lathe_11 ... 86

Figure 4-36: Email Notification for Lost Lathe Connection .. 86

Figure 4-37: Lathe_11 in a Heavy-Cutting State .. 87

xiii

Figure 4-38: Lathe_11 Running, then Lathe 10 Turned On ... 88

Figure 4-39: Alert Monitoring for Mill 1 .. 90

Figure 4-40: Email Notification for High RPM on Mill 1 .. 90

Figure 4-41: Email Notification for Heavy Cutting On Mill 1 ... 91

Figure 4-42: Email Notification for After-Hour Operation on Mill 1 .. 92

1

1 INTRODUCTION

 Background

As society becomes more and more immersed in the Information Age, the ability to

collect, transfer, store, analyze, and optimize data becomes essential. Information technology has

become one of the driving factors in innovation. This is becoming more prominently seen with

the emergence of smart, connected products in essentially all manufacturing sectors, and even

extends to the manufacturing processes themselves (Porter and Heppelmann, 2014). Data is

being used to better optimize manufacturing assembly lines and inform line decisions. Machines

now need to be able to connect and communicate with each other and provide feedback to the

operator. They need to be smarter.

This gives companies three options when deciding whether or not to implement a smart

solution: do nothing, purchase machines and equipment that come prebuilt with these smart

capabilities, or alter their current equipment to have that connectivity capability (Muhuri, Shukla,

and Abraham, 2019). The following scenario describes what typically occurs when encountered

with such a decision.

In a case study shared by PTC, 3D Systems, like most manufacturers, had a system that

was designed for connectivity and creating data, but no efficient way to make use of, or analyze

that data. Eventually, 3D Systems was able to make use of that connectivity, and subsequently

2

enable their machines to have smart capabilities. These changes allowed them to start tracking

3D printer properties such as nitrogen levels and temperature variances. Furthermore, they were

able to remotely diagnose and service the printers if needed (PTC, 2018). 3D Systems has seen

vast improvements in its ability to collect pertinent information and resolve customer issues with

greater speed and efficiency since converting their processes into smart systems.

This case study provides useful insight into both what is being done and what still needs

to be explored in smart implementation. In this study, it mentions machines that already had the

ability to connect. What about the machines that were never designed to do so? In exploring

smart implementation, many case studies, like the one above, often involve the use of newer

technology to implement a smart solution, but there is a gap in solutions for older, manual

machines, such as mills and lathes. Finding a way to transform these manual machines into smart

systems provides an avenue for exploration and has the potential to yield performance results

similar to those of 3D Systems in the manufacturing sector.

 Purpose of Research

The purpose of this research is to demonstrate that manual machining equipment can be

converted into systems with the fundamental smart components of unified connectivity, real-time

monitoring, and issue identification capabilities.

 Research Questions

This study aims to show that manual lathes and manual mills, although never initially

designed to provide information or feedback, can be converted into smart connected systems

3

with unified connectivity, real-time monitoring, and issue identification capabilities. This

research intends to answer the following questions:

1. Is it possible to establish unified connectivity between manual lathes/mills and a

computer?

2. Can the information being received from these machines be reliably manipulated in order

to display real-time monitoring?

3. From the data being transferred and monitored, can issue identification be implemented

to alert shop supervisors in the event of anomalies?

 Methodology

One manual lathe and four manual mills were used as the subjects of experimentation.

The reasoning for selecting lathes and mills is because they are two of the most common manual

material removal machines in the manufacturing industry, past and present. These machines

would be equipped with the hardware necessary to allow them to create and transfer data to one

central computer, thus establishing unified connectivity.

That data would then be monitored on a PTC IIoT platform called ThingWorx Composer

and displayed using the Thingworx Manufacturing Apps, accomplishing the second objective,

real-time monitoring. The reason that PTC was chosen among other IoT platforms is because it is

the leading IIoT platform in the manufacturing industry (McAvoy, 2019). ThingWorx also has

the ability to establish quick, easy, and reliable connections with KEPServerEX, a piece of

software intended to handle communication with the machines. KEPServerEX was used because

of its ability to communicate with a wide range of protocols and machine languages, greatly

simplifying the task of bringing disparate systems into one streamlined data stream that

4

integrates with ThingWorx Composer, which then displays the desired information (in real-time)

in a visualization tool called a mashup. Combining KEPServerEX with ThingWorx presented a

robust solution with a wide range of potential applications for others to utilize (Kepware, 2019).

In addition to establishing unified connectivity with these machines and having real-time,

useful data being monitored, logic would then be written and events/alerts would then be

constructed that analyzed that data and discerned various machine states and notified the shop

supervisor of machine state anomalies, such as abnormal hours of machine operation, and unsafe

RPM rates. This automated response to analyzed internal data is known as issue identification.

At the outset of this research, coordination was made with Clint, the shop supervisor, and

Eric, the department tooling/machine specialist. Table 1-1 states the information that they desired

to obtain from the machines being used in this research and in future research projects.

Table 1-1: Desired Information in the Smart Factory

Desired Data

Data Notes on Implementation
How This is Going to be

Accomplished
1. Machine/spindle-spinning

or stopped Is the motor running? That is a voltage measurement

2. Spindle RPM
Similar to a bike tire sensor for RPM,
reflect the rpm of the machine

Research sensors that can connect
to LabVIEW

3. Spindle load
Find out more: will this require a force
sensor?

We may/may not be able to
measure this

4. Crash notification
Find out more: is it a result of a
dramatic change in rpm, torque, etc.?

conditional statement based on
change in rpm

5. How many hours the
spindle is in operation

Time stamp once data changes from 0
and then back to 0

conditional statement based on the
voltage change from off/on

5

 The methodology and results chapters in this paper will explain and summarize which of

these aspects were able to be achieved and which, if any, were not able to be realized by the end

of this research.

There are multiple tiers of smart manufacturing. To reach the top tier with closed-loop

improvement (machine self-correction and optimization) and performance benchmarking is

unrealistic in this stage of smart implementation and would take more time and resources than

presently allotted. The fundamentals must first be achieved before considering more

sophisticated tools and features. Furthermore, because the subjects of experimentation are

located in an educational environment, features such as reverse control and self-correction will

not be explored because these features are not conducive in this setting, for safety and liability

reasons. It is important to note that this research and methodology is being conducted in an

educational machining lab: there will be inherent differences in the data that is collected, and the

features that will be implemented. There will be many similarities, but a few differences. One

main example of this distinction will be demonstrating reverse control of the machines. Because

this lab is set up to introduce students to using and operating these machines, reverse control of

the machines will not be implemented, but in an industrial factory setting, this may be attempted

and even encouraged. Another facet that is an important distinction machines responding to the

data of other machines. In this setting, that will not be appropriate, but in the field, this would be

an excellent way to optimize line efficiency and increase line automation.

 For this education setting, the pieces of data and overall smart solution implementation

will have the main goals to improve safety, increase proper education of using the different

machines, and encourage correct machine usage. These goals are shared in the industrial sector,

but they are not the primary goals like they are in the educational setting.

6

 Future projects may include integrating augmented reality (AR) experiences for training

and maintenance purposes, predictive analytics, and other smart principles, but the primary scope

of this research was concerned with providing these manual machines with the three fundamental

smart components of 1) unified connectivity, 2) real-time monitoring, and 3) issue identification.

These components will be discussed more in-depth in the following chapters.

 Glossary

IoT – internet of things

AR – augmented reality

ThingWorx Composer – IoT platform used to create digital twins of real-world, physical objects.
This is the IoT platform used for this project

ThingWorx Manufacturing Apps – an extension of ThingWorx Composer containing prebuilt
mashups, real-time monitoring, and alert capabilities with manufacturing facilities as the
intended user

KEPServerEX – a connectivity platform that enables users to connect, manage, monitor, and
control diverse automation devices and software applications through a single-server interface

RPM – revolutions per minute

cDAQ – compact data acquisition device. This is the type of instrument from National
Instruments that was used in the lathe portion of this project

LabVIEW – software that controls the cDAQ and manipulates its data

OPC UA – Open Platform Communication Unified Architecture. The communication protocol
used to connect LabVIEW to KEPServerEX

SMS – smart manufacturing system

7

2 LITERATURE REVIEW

 Introduction

It has been suggested that up to this point in history, there have been four defining

industrial revolutions. The first was the advent of steam power systems. The second began with

the introduction of electricity and assembly line mass production. The third came with the arrival

of computers and information technology. The fourth industrial revolution, the one in which we

are now participating, involves machine communication and increased levels of automated

functions (Muhuri, Shukla, and Abraham, 2019). Data creation and analysis is now the driving

factor for decision making. Smart manufacturing is becoming the focus of global manufacturing

transformation and is changing the way that companies and industries operate (Qi and Tao,

2018).

 This is evident in an initiative performed by the National Institute of Standards of

Technology (NIST) in an endeavor to have a 22 kW lathe become more “smart”. Examples of

the pieces of data that NIST was able to track and monitor include spindle load, spindle speed,

cutting, thrust, and axial forces. They demonstrated that by creating data and analyzing that data,

optimization and first part correct production can be achieved (Ivester and Heigel, 2000). This

versatility of production leads to dramatic increases in levels of innovation and commensurate

decreases in changeover time. From this case, some of the possibilities are shown for what can

be done to a lathe machining station, and provides a good example for some of the features that

8

will be integrated into the lathe and mills serving as the subjects for this research. Their CNC

lathe was able to generate and send data, manipulate it into a usable format, and respond to it,

which will be the goal for this manual lathe. The difference is the CNC lathe came with those

capabilities prebuilt, and the manual lathe and mills did not. By providing a solution to allow

manual machines to have these capabilities, companies have another avenue to use to maintain a

competitive edge.

As shown in the NIST example, data is powerful. It helps companies reduce material and

machining costs, optimize line operations, and provide supervisors with useful data for market

strategy and growth. With more and more devices becoming connected, the possibilities and

progress that can and will be made will accelerate. In 2015, there were approximately 15.41

billion devices connected. This year, in 2018, there are approximately 23.14 billion devices, and

in 2025, it is expected that there will be above 75 billion connected devices (Statista, 2018).

More and more companies are starting to embrace this relatively new concept, converting their

“dumb” machines into “smart” systems.

 Defining “Smart”

The term “smart” can have multiple interpretations and meanings. In general, people

think of a smart phone, or a smart TV: a device that is able to able to connect, share, and interact

with a person or other device (Techopedia, 2019). But what does the word “smart” connote in the

industrial sector? “Smart” when applied to an industrial system refers to fully-integrated,

collaborative systems that respond in real time to meet changes in the factory setting, the supply

network, and customer needs (McKewen, 2015). It is associated with 4 main capabilities: self-

recognition and communication to other parts of the manufacturing enterprise, self-monitoring

9

and optimization of its operations, self-assessment of the quality of its work, and self-learning

and performance improvement over time (Ivester and Heigel, 2000). The word “self” is

associated with all of these capabilities, implying varying levels of machine independence in

smart systems. In this research project, the first three of these four capabilities were

implemented. The fourth level of self-learning extends beyond the scope of the environment in

which these machines are stationed. The first three capabilities of communication, self-

monitoring, and self-assessment will be referred to as unified connectivity, real-time monitoring,

and issue identification respectively throughout the rest of this paper, and will be discussed in

greater detail. These components constitute what PTC calls the understand phase of the

manufacturing digital transformation journey (Figure 2-1). This project will cover the

connectivity, visibility, and issue identification portions in the understand phase of the journey,

but has the potential with further experimentation to venture into the advance and outperform

phases.

Figure 2-1: Digital Transformation-Understand Phase

10

 The other aspect of smart, connected products that needs to be addressed is the elements

of a smart setup. Smart products and systems share three main elements: physical components

(mechanical/electrical parts), smart components (sensors, software, digital user interface), and

connectivity components (ports, antennae, protocols, networks) (Porter and Heppelmann, 2015).

Converting manual machines into smart systems will naturally require all of these components.

By providing the proper hardware, software, and communication protocols to a

machining center, unified connectivity, real-time monitoring, and issue identification capabilities

can be enabled. Humans would not need to constantly be at the machine pressing a button once

every 10 minutes to restart a cycle. Operators would not need to spend hours stopping an entire

line because of one machine unexpectedly shutting down, because the system would have told

the maintenance technician days in advance that oil levels were running low, or that a belt

needed to be replaced. These are merely a few examples of the power of “smart” systems with

the fundamental principles of unified connectivity, real-time monitoring, and issue identification.

2.2.1 Unified Connectivity

Unified connectivity refers to a system’s ability to connect and send data, whether it be

from devices to other devices, or from multiple devices to a single device. The diversity of

protocols and languages of disparate systems makes unified connectivity difficult for legacy

equipment (Petrova-Antonova, Andreev, and Ilieva). If there is no communication being relayed

between the devices involved, then there is not much else that can be done to enable other

“smart” features and components. Real-time data monitoring and issue identification features

associated with those machines without some form of connectivity or communication would not

be realistic. However, with unified connectivity, machines can be equipped with sensors or other

11

digital devices to collect and exchange data. This is where the internet of things (IoT) plays a

role. IoT creates a digital representation of a physical objects, machines, or processes. By

collecting data from numerous different devices and/or their embedded sensors, object-to-object

communication and data sharing is possible (Zhong et al., 2017). Once the connectivity gap is

bridged, data can then be conveyed to and from the smart factory devices and then manipulated,

allowing beneficial feedback to the supervisor (Petrova-Antonova, Andreev, and Ilieva).

2.2.2 Real-Time Monitoring

Once unified connectivity is established, the data must be put into a useable format and

provide beneficial information and transparency to the end-user (Biron, Busiek, and Lang, 2018).

“Real-time” refers to the actual time in which an action or operation occurs and may have its

own time-precision requirements depending on the application. An example of this may be a

thermometer taking temperature measurements vs. a soda-can assembly line. The real-time needs

for the thermometer application would not need to be as frequent as the soda-can line. The

thermometer may only need to update once every few minutes to provide useful, quality data,

whereas the soda-can line updates would need to be much more frequent. Real-time monitoring

is essential in being able to visualize trends and patterns and make informed decisions. Many

companies with manual machines do not have such data monitoring in place simply because of

the fact that no data is being generated in the first place. Having this established monitoring and

visibility allow supervisors to recognize trends in production, have constant awareness of asset

status, and make informed decisions (Kumar, Vaishya, and Parag, 2018). This will enable

accelerated growth in the manufacturing sector and allow for more optimized processes and

operations to be introduced into companies and industry as a whole.

12

2.2.3 Issue Identification

Issue identification takes real-time monitoring one step further. Instead of the constant

need for a human to interact with the system, logic may be written that automates the system to

notify an operator or a supervisor of a particular anomaly. The system has a built-in capability

for responding to its own data (Roblek, Mesko, and Krapez, 2016). For example, if there is a

crash on a lathe, then the voltage values being tracked are likely to spike out of a normal

operating range for a brief moment. That abnormality, once detected, can then trigger an

automated text or email message to the shop supervisor, prompting him/her within seconds to go

out to the machine and inspect the situation.

Colfax was a company that utilized IoT to enhance their services. After establishing

connectivity between their devices, they were able to allow their customers to easily identify or

be alerted to deviations from normal operation, or be informed ahead of time if a system is about

to fail (Thingworx, 2018). For successful smart manufacturing to be of benefit, it is essential for

the system to be able to diagnose defects or other abnormalities in the production process and be

able to respond accordingly (Wang et al., 2018).

 Smart Implementation: Challenges

Many companies in the manufacturing industry are already moving towards smart

systems and solutions to help increase efficiency, cut costs, and increase output. However,

several obstacles stand in the way to building a smart setup. One of the concerns at the top of the

list is operational flexibility. With the integration of new software and set ups, will the solution

be scalable to the rest of the plant? This is one of the main things to consider when implementing

a smart solution (PTC, 2017).

13

The primary focus of this project will be on how to implement a smart solution into a

system that a company already has, especially if resources are limited and the machines being

used are not designed to communicate in the first place. This will be simulated in an academic

setting by enabling manual machines in the shop with connectivity, real-time monitoring, and

issue identification capabilities, 3 of the fundamental components of “smart”. In preliminary

research of smart implementations, such as the 3D Systems case study mentioned earlier,

machines were built already with the intent to generate and send/receive data. Case studies

typically show the use of the latest cutting-edge technology to provide the “way of the future”.

However, many companies are still using machines that are decades old simply because they

have never had problems, and there had not been a sufficiently good reason to change machining

or tooling setup. There is a gap in case studies and documentation showing the conversion of

manual machines (such as lathes and mills operated by human efforts) into smart systems

without having to upgrade or buy new machines or tooling. Many machines simply were not

designed to have connectivity capabilities. Many even have measures to prohibit such a data

flow (Bates, 2018). This gap in knowledge and application in converting manual machining

equipment into smart systems provides an opportunity to perform research that can be beneficial

for many companies in this type of situation.

If a solution can be found, then those types of companies may be able to apply the

principles learned from this research into their own circumstances, using much more affordable

means (Wrenn and Thompson, 2018). Supervisors would have full-time awareness of the

machines in use without even having to be on-site. The machines, equipped with these smart

capabilities would be able to be more self-reliant, greatly reducing the need for constant human

monitoring. Alerts of machine crashes, worn tools, low oil and coolant levels, and air leaks (to

14

name a few) could all be sent automatically from the machine once enabled with these smart

capabilities. Manual machines are relatively unexplored when it comes to smart system

conversion. This is what constitutes the focus of this study.

15

3 METHODOLOGY

 Introduction

The following sections describe how unified connectivity, real-time monitoring, and issue

identification were achieved for the lathe and the four mills. Included are pictures of physical

connections, screenshots of diagrams and code snippets that were used in converting these

manual machines into smart systems with these three components.

 Unified Connectivity

The following sections describe in detail how unified connectivity was set up for the

Kingston HJ-1100 lathe.

3.2.1 Lathe

The manual lathe that was the subject of this project was an HJ-1100 Kingston lathe,

shown in Figure 3-1. This lathe was neither designed nor built with the capability to track its

various electrical outputs levels and send that as data. The only type of tracking that was being

used was a device that measured the x and z coordinates of the tool stock in relation to a

configurable zeroed point in space. The main challenge in converting this lathe into a smart

system with unified connectivity lay in measuring an electrical signal and customizing the code

16

needed to successfully transfer that measurement to the manufacturing apps for real-time

monitoring and data analysis for issue identification.

Figure 3-1: Lathe_11, Test Lathe Subject for Smart Conversion

3.2.1.1 Equipment Used

Hardware:

• HJ-1100 Kingston Lathe

• National Instruments NI cDAQ-9191 (wireless chassis)

• National Instruments NI 9225 (Isolated Analog Input Module)

• Wires to connect module to lathe electrical channels

17

Software:

• Laboratory Virtual Instrument Engineering Workbench (LabVIEW) 2017

• KEPServerEX (version 6.3 or later)

• Thingworx Manufacturing Apps

Links Used:

• Link for configuration and setup of the manufacturing apps:

https://www.ptc.com/support/-

/media/FF82D759E1E94A818086006219E4D3BB.pdf?sc_lang=en

• Link for a customization guide for the manufacturing apps:

https://www.ptc.com/support/-

/media/99B4D4DE487C441096DF3FC5FE36C575.pdf?sc_lang=en

3.2.1.2 Tapping into a Purely Mechanical System

Because there were no methods built into the lathe to create data or send that data to

another device, it was necessary to come up with a solution to do just that. National Instruments

was the company of choice because of their specialization in data acquisition, the speed at which

their devices are able to acquire and send data, and because of the broad range of their presence

in facilities and settings in industry across the world.

The device that was selected to aid in establishing unified connectivity on the Kingston

lathe in this project was the NI cDAQ-9191. This acted as the chassis for the NI 9225 analog

input module and was able to take the voltage measurements obtained by this module and send

them wirelessly to a computer with LabVIEW installed. It was chosen to select a DAQ device

https://www.ptc.com/support/-/media/FF82D759E1E94A818086006219E4D3BB.pdf?sc_lang=en
https://www.ptc.com/support/-/media/FF82D759E1E94A818086006219E4D3BB.pdf?sc_lang=en
https://www.ptc.com/support/-/media/99B4D4DE487C441096DF3FC5FE36C575.pdf?sc_lang=en
https://www.ptc.com/support/-/media/99B4D4DE487C441096DF3FC5FE36C575.pdf?sc_lang=en

18

that could transmit data wirelessly because of the discouragement of having cords running along

the factory floor. Setup of this NI cDAQ-9191 device was done using the Quick Start guide that

came with the chassis. For this project, the cDAQ was set up with a unique IP address to

communicate over the university Wi-Fi. Figure 3-2 shows a picture of the electrical diagram of

the lathe. It depicts the numerous channels being supplied with power, and their corresponding

functions.

Figure 3-2: Lathe_11 Electric Diagram

19

The cDAQ-9191 has three ports from which it can send data. Two of these ports were

used in this project. The pieces of information that were selected to be tracked were the channels

associated with the on/off selector (going through Port 0 on the cDAQ) and the channels

associated with the motor (going through Port 2 on the cDAQ). These physical connections are

shown in Figure 3-3. From these ports, the voltages would change according to the machine’s

status and would then form a predictable pattern off of which the state of the machine could be

determined. These voltage values would be sent to a computer with LabVIEW (Laboratory

Virtual Instrument Engineering Workbench) installed.

Figure 3-3: Wires Connecting to the ON/OFF Selector and the Motor Channels

20

3.2.1.3 LabVIEW to KEPServerEX

LabVIEW is a system-design platform that uses visual programming to monitor and

control data being acquired by acquisition devices. In this project, a National Instruments device,

was used in conjunction with LabVIEW. By configuring the NI cDAQ-9191 to communicate

with a computer with LabVIEW installed, that data could now be acquired, altered, and

forwarded on to KEPServerEX. From KEPServerEX, the data could then be sent to the

manufacturing apps. The biggest challenge, however, was getting the acquired data from

LabVIEW to KEPServerEX so that all of the machines in the smart system setup could be

streamlined from one source into the manufacturing apps.

In the LabVIEW program that was created and used for this project (shown in Appendix

A: LabVIEW Code) several things were done to the data being acquired before it was sent to

KEPServerEX. The positive peaks for the voltage measurements were taken, giving a true value

of what the voltage actually was instead of a near-zero, averaged measurement from equally

positive and negative voltages. The rate at which the samples were taken was 1000 Hz with 100

samples to read. The values on these two voltage ports were then expressed as doubles, averaged,

and then converted into strings for ease of use in other programs. Simultaneously, the doubles

being used were evaluated to determine if the machine spindle was running or not. If the

machine spindle was running, then a timer turned on and updated the accumulated run time. This

spindle running time was then sent with the other two voltage values, as a string, to the rest of

the program.

In sending the data to KEPServerEX, it was necessary to write a customized LabVIEW

program that had the ability to send its acquired data to KEPServerEX. This was done using an

Open Platform Communication Unified Architecture (OPC UA) connection, with KEPServerEX

21

acting as the client, and LabVIEW acting as the server. OPC UA is a machine to machine

protocol developed by the OPC Foundation and is used for industrial automation. Because of its

flexibility in being able to work with many different types of machines and not being tied to any

one machine or language, it was found to be an appropriate fit for smart conversion of the

Kingston lathe. Fortunately, National Instruments has already recognized the trend towards OPC

UA connections and in fact has example VIs that establish this kind of connection. This example

VI was used as the basis for connection and was then customized for this particular project

application. An in-depth depiction and description of the LabVIEW program used in this smart

setup is given in Appendix A: LabVIEW Code.

Before the data could be brought into KEPServerEX, however, the proper channel,

device, and tags had to be created with the proper parameters. Details of the channel, device, and

tag configurations inside KEPServerEX will be given below.

Pre-Work for Setting up an OPC UA/KEPServerEX Connection-

• Using/deploying OPC Servers, DSC, and LabVIEW OPC UA Toolkit:

http://www.ni.com/product-documentation/54990/en/

• Download KEPServerEX (6.3 is the version that was used for this project)

The demo-version of KEPServerEX only runs for 2 hours at a time. If possible, obtain a

professional license for an instance of KEPServerEX.

For this connection to occur, make sure that the OPC UA Toolkit is installed with

LabVIEW 2017, and that the OPC UA Client driver is installed with KEPServerEX.

• Open the newly installed KEPServerEX program

• In the left hand panel, right click on “Connectivity” and click “New Channel”

http://www.ni.com/product-documentation/54990/en/

22

Channel Creation Wizard Settings-

A representation of all of the settings used to configure the channel inside KEPServerEX

is given in Figure 3-4. Many of these settings are specifically based off of the research computer

from which this LabVIEW instance was hosted. When replicating this experiment, these settings

may be used, but it may be necessary to open a support case with National Instruments and

Kepware in obtaining the correct endpoint URL and driver specifications.

Figure 3-4: Summary Page of New Channel Settings

Device and Tag Creation Wizard Settings-

Upon creation of the channel, a device was set up with the needed parameters and

settings. Figure 3-5 shows a list of the parameters used in the creation of the device in this

project named Lathe11.

23

Figure 3-5: Summary of Device Creation Settings

After the device was set up, tags were created to reflect the incoming data from the

machines or communication cards. Right-click on the newly-created device and select New Tag.

Figure 3-6 is a representation of what information is needed for tag creation. Repeat this for as

many tags as needed. The specific address will be needed in order to successfully establish a

good connection with live data updating in real-time.

24

Figure 3-6: Summary of Tag Settings

In order to find the address for this specific tag within the LabVIEW program, probe the

pink wire going into the NI OPC UA Server.lvlib:Write.vi from the corresponding NI OPC UA

Server.lvlib:Add Item.vi file while the program is running.

Run the Quick Client with the LabVIEW program running in the background to check

and make sure that the data is coming in from LabVIEW and is updating in KEPServerEX.

3.2.1.4 KEPServerEX to ThingWorx Manufacturing Apps

Once the data is seen updating in the Quick Client, it is ready to be sent to the

ThingWorx Manufacturing apps. From this point, use the Configuration and Setup Guide for the

Thingworx Manufacturing Apps (version 8.3) to create a digital twin of the lathe and bring in the

real-time data of the smart lathe setup. Once the data comes into KEPServerEX, the connection

between the lathe and the manufacturing apps is essentially seamless and reliable unified

connectivity is established. KEPServerEX was built to have that connectivity with ThingWorx

and allows robust solutions to be integrated between completely different devices, as will be

shown.

25

3.2.2 Mills

3.2.2.1 Equipment Used

Hardware:

• 2 ICC ETH-200 Communication Cards (Ethernet Multiprotocol Network Gateway)

• Tosvert VF-S7 (Industrial inverter used on Mill 1)

• Tosvert VF-S9 (Industrial inverter used on Mills 2-4)

• 6 Cat 5 Ethernet cords

• 2 Power Supply 9VDC Barrel Jack cords

Software:

• KEPServerEX (version 6.3 or later)

• ThingWorx manufacturing apps

• Embedded webserver (configured using the ETH-200 cards)

3.2.2.2 VF-S7 to ETH-200 Communication Card

The protocol that the VF-S7 inverter uses is an older version of Toshiba protocol. When

looking into the drivers that KEPServerEX supports, this Toshiba protocol was not supported by

current drivers. A change in the protocol had to be made. After some research and

communication with Toshiba representatives, the recommended communication card that would

help to convert the older Toshiba protocol into a more usable and compatible protocol (such as

Modbus TCP/IP) was the ICC ETH-200 Communication Card. Standard Cat 5 Ethernet cords

26

were used in the setup of the mills to connect the inverter to the communication card, and the

communication card to a computer with KEPServerEX. The final setup of the mill connection is

shown in Figure 3-7. It shows the inverter being connected to the communication card via serial

connection. The card is then connected on the bottom to the computer with KEPServerEX

installed.

Figure 3-7: Communication Connection Between the Mill and KEPServerEX

The communication card may be powered in one of two ways: by an auxiliary power

cord, or by the inverter on the mill itself. For this project, it was decided to go with the auxiliary

power cord because the machines may be in an e-stop condition, which cuts off power supply to

27

the machine and subsequently, the card. One cord comes from each machine’s inverter (from the

Ethernet jack) and plugs into the ASD1 serial port. Once the milling machine is connected to the

card, and is out of an e-stop state, a green LED light on the ASD1 port will light up, signaling

that the machine is connected. Another cord then goes from the Ethernet/IP jack on the side of

the communication card. An orange light will begin to flash orange, signaling that this

connection has been properly established.

3.2.2.3 Embedded Web Server Configuration

From the Ethernet connection, the ports, protocols, and registers may be configured via

an embedded web server. Here is a link to the ETH-200 user manual that will help with the

setup:

• http://www.iccdesigns.com/products/gateway/eth200/documents/ETH-

200%20V1.130%20User%27s%20Manual.pdf

Below are the specific instructions on the steps to integrate the ETH-200 into this project.

• Type the default factory IP address (pg. 28 of the user manual pdf) of the ETH-200 into a

web browser. In this application, it was 192.168.1.100.

• Authentication will be required. For the first time setting up the card, the following

credentials are used:

o Username: admin

o Password: (nothing, simply press enter)

http://www.iccdesigns.com/products/gateway/eth200/documents/ETH-200%20V1.130%20User%27s%20Manual.pdf
http://www.iccdesigns.com/products/gateway/eth200/documents/ETH-200%20V1.130%20User%27s%20Manual.pdf

28

• Once inside the web server, the IP address may be reconfigured to be unique.

• Set the correct date and time

• You may set up a new admin and user username and password if desired

• Enable the necessary connections for your application

o For this project, the drive going to the ETH-200 is through the ASD1 and ASD2

ports via a CAT 5 Ethernet cable connection, and another Ethernet cable going

from the Ethernet/IP port to the Ethernet port on the laptop. I enabled the ASD1

port and Ethernet/IP port and disabled all others on the web server page

After each change to the web server interface, if there’s a “submit” button in the section

you are changing, click submit to update the parameters. Figure 3-8 provides a screenshot of the

interface and the configurations of the ports used for this project:

Figure 3-8: Embedded Web Server on the ETH-200 Communication Card

29

3.2.2.4 Point-To-Point Configuration

Now that the basic communication channels are set up appropriately, configuration of the

ETH-200 to monitor the right points/tags/addresses within in the VF-S7 drive is the next step in

the process in achieving unified connectivity: the card must look for the specific pieces of

information that are desired. This is done by setting up points with the correct settings, channels,

and protocols and is referred to as point-to-point configuration, as shown in Figure 3-9.

Figure 3-9: Screenshot of a Point-to-Point Configuration for a Point on Mill 1

• Address: which device (all of these will be a “1”)

• Parameter: these are the tags/registers listed in the VF-S7 manual. Because it is desired to

only monitor settings, and not change them (for liability reasons) only “read-only” tags

will be used. These are found in the table(s) on pg. 35-36 of the Toshiba VF-S7 Serial

communications option manual. The VF-S9 manual is essentially the same as the VF-S7

manual, but a link is provided below in the event of future explorations of other data and

aspects of the machine:

30

o VF-S7 manual: http://www.inverter-plc.com/toshiba/VF-

S7_Serial_Communication_Function_Manual_e6580720.pdf

o VF-S9 manual: http://www.efesotomasyon.com/toshiba/VF-

S9_Communications_Function_e6581139.pdf

• Repeat this process for each piece of desired information

• Click submit to refresh the changes made

There are up to 100 points that may be configured and collected from connected devices.

If multiple machines are being connected to the same ETH-200 card, the second, third, etc.

machine points may be listed further down in the column. Just ensure to specify the port from

which the information will be pulled in the point-to-point configuration section and refresh upon

completion.

3.2.2.5 ETH-200 Communication Card to KEPServerEX

• Download KEPServerEX (6.3 is the version that was used for this project)

Ensure that the installation includes the Modbus suite drivers.

The demo-version of KEPServerEX only runs for 2 hours at a time. If possible, obtain a

professional license for an instance of KEPServerEX. The professional version of the license

provides constant communication with all of its devices without the need to restart the program

every two hours.

• Open the newly installed KEPServerEX program

• In the left hand panel, right click on “Connectivity” and click “New Channel”

http://www.inverter-plc.com/toshiba/VF-S7_Serial_Communication_Function_Manual_e6580720.pdf
http://www.inverter-plc.com/toshiba/VF-S7_Serial_Communication_Function_Manual_e6580720.pdf
http://www.efesotomasyon.com/toshiba/VF-S9_Communications_Function_e6581139.pdf
http://www.efesotomasyon.com/toshiba/VF-S9_Communications_Function_e6581139.pdf

31

Channel Creation Wizard Settings-

Similar to the lathe, channels, devices, and tags had to be created inside KEPServerEX.

In this project, one channel with the Modbus TCP/IP Ethernet driver was configured. Figure 3-10

shows the channel configuration for connecting to the four mills used in this project. Once the

settings are configured as listed above, click Finish.

Figure 3-10: Summary Page of New Channel Settings

32

Device Creation Wizard Settings-

After creating the channel, the “eth200 device” was created (click on “click to add new

device” in the left panel). Here are the different parameters that were set for this device. Not all

of the settings from each tab were able to be shown, so screenshots for each individual tab/step

through the wizard are provided for eth200 device creation:

Figure 3- 11 shows the settings used for the General tab upon device creation. Here the

driver being used is represented along with the ID with the corresponding IP address of the

machine/communication card. Additionally, one may enable the data to be collected or not, as

well as having the device or data collection be simulated or not. The type of driver being used for

this device follows the channel driver (Modbus) and specifically uses the Ethernet form of

Modbus TCP/IP.

Figure 3- 11: General Tab Settings

Figure 3-12 shows the scan rate that will be used for the device that was set up for the

ETH-200 communication card. It is left at the default rate, updating at the rate of which the client

(the mill driver) is pushing out information. The mill driver is set to send the data that is being

33

requested at about 40 milliseconds per push. The rate of scan inside of KEPServerEX may be

adjusted based off of what is desired, but is limited to a scan rate of 10 milliseconds.

Figure 3-12: Scan Mode Tab Settings

Figure 3-13 depicts the timing settings that were used on the device created in

KEPServerEX. These were the default settings that were provided in the configuration pop-ups.

Figure 3-13: Timing Tab Settings

Figure 3-14 shows the setting that is used for this device configuration. Auto-demotion

refers to what KEPServerEX will do when the device is unresponsive. If enabled, KEPServerEX

34

will place the device off-scan for a set time in order to optimize its communication with other

devices. This device will continually be scanned, even when unresponsive, in order to ensure the

most consistent communication possible.

Figure 3-14: Auto-Demotion Tab Settings

Figure 3-15 defines how tags can and will be generated. For this project, is was chosen to

manually create the tags in order to be selective in the information being tracked and received.

Figure 3-15: Tag Generation Tab Settings

35

Figure 3-16 shows the settings used on the variable import settings tab. The variable

import settings tab specifies the parameters and types of files acceptable for importing tags.

Figure 3-16: Variable Import Settings Tab Settings

Figure 3-17 shows the settings used on the unsolicited tab of device creation. If disabled,

all tags have an initial value of 0 and an OPC quality of Good. If enabled, all tags have an initial

value of 0 and an OPC quality of Bad.

Figure 3-17: Unsolicited Tab Settings

36

Figure 3-18 shows the settings used for the error handling tab. When enabled, the driver

will stop polling for data if there is an illegal address or illegal data involved. If disabled, the

driver will poll despite such errors.

Figure 3-18: Error Handling Tab Settings

Figure 3-19 shows the settings used for the Ethernet tab in device creation, with the

associated port and IP protocol.

Figure 3-19: Ethernet Tab Settings

37

Figure 3-20 shows the enabled/disabled values used for this project in the settings tab

inside device creation. The defaults were used for this pop-up.

Figure 3-20: Settings Tab Settings

Figure 3-21 shows the settings used in the block sizes tab of device creation. The default

settings were used in this configuration.

Figure 3-21: Block Sizes Tab Settings

Figure 3-22 shows the settings used in the redundancy tab of device creation. However,

this is only available with an additional Media-Level plug-in. Consequently, the options are

38

grayed-out, and the defaults were used for this application, but there were no negative side-

effects as a result.

Figure 3-22: Redundancy Tab Settings

Tag Creation-

• Right click on the device that was just created. Click New Tag. Figure 3-23 is a

screenshot of the inputs for a new tag for the eth200 device. No changes were made to the

default values in the Scaling tab, so no picture is provided for the scaling tab. It is

recommended that the tag name match the name given in the embedded web server for

consistency purposes. Click OK

Figure 3-23: Mill Tag Creation

39

Modbus TCP/IP addresses start in the 40000 range. For this application, to get the correct

information from the ETH-200 communication card, go to the embedded web server, look at the

row number for the parameter needed and add 40000 to it (shown above). Ex: 1 (on the web

server) converts to an address of 40001 in KEPServerEX.

If establishing a KEPServerEX channel, device, and tags for the first time, it is

recommended that you call a PTC/KEPServerEX representative to help navigate the numerous

parameters and settings needed for a proper connection.

• Run the Quick Client to make sure that data is updating properly and in real-time. Figure

3-24 shows a representation of what the channel, device, and created tags look like as

well as where to go to run the Quick Client and navigate to the newly bound data

Figure 3-24: Channel, Device, and Tag Creation, Quick Client

When the popup window comes up, scroll down to the device with the newly created tags

(ethcordtest.eth200 in this application). On the right, the tags will be shown updating in real-

time.

40

If you get a “Bad” connection, check your physical connections and your channel, device,

and tag settings to make sure that everything is configured correctly, then try running Quick

Client again.

3.2.2.6 KEPServerEX to ThingWorx Manufacturing Apps

• Install the ThingWorx Manufacturing Apps as an extension to ThingWorx Composer.

Make sure that the versions of ThingWorx Composer and the apps are compatible with

each other. This project used ThingWorx Composer and apps version 8.3

• Walk through the steps of the Configuration and Setup Guide to set up equipment with

additional properties tied to the tags with the real-time data being tracked from the ETH-

200 communication card

 Real-Time Monitoring

3.3.1 Lathe

Now that raw data is coming into KEPServerEX and the ThingWorx Manufacturing

Apps, it becomes expedient to convert that data into something useful for a production

supervisor or manufacturing engineer. Two numeric voltage values will not mean much to

anyone. This data will need to be interpreted by the smart system in which it plays a part. After

conversing with the shop supervisor about the lathe, several pieces of information to monitor in

real-time were determined: machine status (machine on/off, spindle state, and brake state,

forward/reverse rotation of spindle), tracking the spindle-on time, and checking to see if there

was a crash on the machine.

41

3.3.1.1 Spindle Time

The spindle time was another desired piece of information to be monitored in real-time

and displayed. This was made easiest by writing the logic in the LabVIEW program being run in

the background of the smart setup. The LabVIEW code needed to obtain and send this piece of

data to KEPServerEX over a OPC UA connection is given in Appendix A: LabVIEW Code.

Once the spindle time was brought into KEPServerEX and subsequently the

manufacturing apps, it can be added as an Additional Property within the Configuration and

Setup tile under the Lathe_11 asset. All properties brought into the manufacturing apps are then

monitored in real-time, updating every few seconds.

3.3.1.2 Machine Status

Once all of the desired properties are in either the apps or KEPServerEX, the machine

status may be defined based off of the brought in properties (Figure 3-25). For instructions on

how to properly configure the status of the asset or machine, refer to the Configuration and Setup

Guide for the ThingWorx Manufacturing Apps. The statuses defined in the manufacturing apps

were set up based off of the dynamic values of the tags being pulled in from KEPServerEX. As

these tags change, so will the statuses. For example, the machine will be considered to be in a

“running” state for the lathe if both the MachineState and MotorState tags are evaluated to be

“true”. For the Planned Downtime status, this can be defined in the General Information tab

inside of the manufacturing apps and can be set for whichever time the operator supervisor

decides.

42

Figure 3-25: Status Configuration for Lathe_11

3.3.2 Mills

3.3.2.1 Machine Status

Similar to the lathe status configuration within the Configuration and Setup tile of the

manufacturing apps, the mills can be individually defined for each different type of machine

state (Figure 3-26). However, the mills were able to keep a more comprehensive track of the

machine status because of the information already on the drive. Unlike the lathe, the mills started

the communication process with a protocol. The protocol had to be converted to a more useable

format, but there was something preexisting in place.

43

Figure 3-26: Status Configuration for Mill 1

3.3.2.2 RPM

The RPM of the mills did not come as a direct result of the information provided from the

inverter. Rather, it had to be derived from said information, specifically the Current Output

Frequency tag. This was accomplished inside of the KEPServerEX opf file by creating a derived

tag based off of the Mill 1 current output frequency. This is done by right-clicking the Advanced

Tags option on the left hand-side of the KEPServerEX window and clicking on Derived Tag.

Figure 3-27 shows a depiction of one of the derived tags used for Mill 1. Other derived tags were

also configured during the setup process. This includes the derived tags needed for the other

mills in the smart factory as well as the machine status derived tags that would help to discern

the machine status for the lathe.

44

Figure 3-27: Real-Time Monitoring of RPM from a Derived Tag

 Issue Identification

3.4.1 Setting Up Users with Email and Text Notification Capabilities

This step is done using the Configuration and Setup Guide for the Thingworx

Manufacturing Apps 8.3. The link to this guide is given above in the section regarding

KEPServerEX to ThingWorx Manufacturing apps. The process of doing this takes place inside

of the Configuration and Setup Tile inside of the manufacturing apps. Once there, go to the Users

tab. Here, one is able to set up a User or edit an existing User and allow them the appropriate

levels of access and authorization.

45

3.4.2 Lathe

3.4.2.1 After-Hour Operation

After the users are configured in the manufacturing apps, services can then be written in

ThingWorx to scan and see if any of the machines are still operating after specified hours. There

were three Things in Composer that were created to provide this after hour alert capability:

AfterHoursScan, EnableAfterHoursScan, and DisableAfterHoursScan. All of these Things

inherited the Scheduler base thing template in the General Information tab upon creation. Once

saved, these schedulers may then be scheduled for a particular time in the Configuration tab. The

schedule property must be provided in CRON format.

After the schedule is configured, a subscription is fired based off of the scheduled event

that calls and activates a service to perform a function. In this project, the name of that service is

called ScanMachines and simply sends an email and a text to the specified supervisor in the

event that one of the machines is operating after normal hours (Figure 3-28).

Figure 3-28: Subscription Code and Parameters

46

Figure 3-29 shows the code that was used in order to send an email message and an SMS

text message (from a Twilio trial account) to the specified email and phone number. It further

checks the properties of the _AdvancedTags—Mill1MachineState tag to see if it is true or not. If

it is (the machine is on) then the service will be triggered and will send the email.

Figure 3-29: Service Code and Parameters

The EnableAfterHoursScan and DisableAfterHoursScan Things are then able to specify

the times within which the AfterHoursScan can and will be triggered. The same process is

followed: configure the time at which the subscription will be fired, create a service that then

calls the EnableScheduler or DisableScheduler service respectively within the AfterHoursScan,

then call the newly created service within its corresponding subscription.

47

3.4.2.2 Crash Notification

In order to send an alert to a supervisor of a crash, it was necessary to simulate what a

crash would look like voltage-wise. To do this, a cylindrical aluminum piece of stock was placed

into the chuck on Lathe_11 and 3 tests were performed, with the RPM of the lathe set to 950.

The procedure of the test was to turn the spindle on, take a heavy depth of cut of more than

0.100” into the part in the Z-direction, and then ram the cross-slide into the part in the X-

direction. After this was done, the brake was pressed to cut off the power to the spindle. The

LabVIEW program was set up to monitor the voltage values during this experiment. After the

experiments were performed, the data was analyzed and code was written in ThingWorx

Composer to send an alert of the machine crash. This code consisted of setting a threshold range

to define the normal voltage range of operation for the machine and spindle being on. From

talking with Clint, the shop supervisor, a two-volt reduction was determined to be the threshold

(anything below 161 volts with these machine state conditions) and would trigger an automated

email to be sent to him and the TAs for the lab.

The reason that these experiments were set up this way was because it simulated some of

the most common crashes that occur in that lathe machining environment. New students

occasionally take too heavy of a cut, they turn the wrong hand-wheel, or leave a key in the chuck

as they turn the spindle on. The experiment performed was set up this way to simulate a harder

force of crash. Leaving a key in the chuck was not performed on this lathe as an experiment due

to safety and because of the unpredictable trajectory of the key as it is flung out of the chuck.

However, because of the sudden nature of a key crash and the material of the key being made out

of a harder and more sturdy material than the aluminum stock used in the previously described

48

experiment, a safe level of assurance was reached that any key crashes would surpass the

threshold determined and would still subsequently trigger the automated alert service.

3.4.3 Mills

After-hour operation and crash notification were the alerts that were requested by the

shop supervisor to be set up and implemented into the smart system. Following are more details

about the construction of the each of these alerts.

3.4.3.1 After-Hour Operation

The after-hour operation alert was enabled in a two-step process very similar to that of

the lathe: set up a User inside the manufacturing apps with email and texting credentials and

capabilities, and create a scheduler thing inside ThingWorx Composer that will scan the

machines with a service to see if they are on or not at a specified time and have that service send

an alert to designated user if the machine scan returns a positive result.

Creating and setting up users with email and text credentials and capabilities has already

been discussed, but the ThingWorx step has some unique things that needed to be configured.

Like the lathe, three schedulers were created to handle the machine scan that was to take place

after hours in the machine shop: the AfterHoursScan thing, the EnableAfterHoursScan thing, and

the DisableAfterHoursScan thing. Having these three things made it possible to only fire the

service at a certain time of day/night. Figure 3-30 shows a snipshot of the code needed to send an

automated alert for Mill 1. These three Things are able to be configured inside of ThingWorx

Composer.

49

Figure 3-30: Code for AfterHoursScan Service

3.4.3.2 Crash Notification

In the case of the mills, the way to determine the crash notification was also to simply

simulate a heavy cut or even a hard drive into the material with the tool. The procedure was to

set up a cylindrical stock of aluminum into the vise, then take an exaggerated depth and force of

cut into the part. The Quick Client from KEPServerEX was used to help monitor in real time the

effects of the crash on the different pieces of information being tracked by the ETH-200

communication card. The thresholds and code would then be set and written to trigger an

automated alert to the specified persons.

50

4 RESEARCH RESULTS AND ANALYSIS

The results and analysis of achieving unified connectivity, real-time monitoring, and

issue identification are given in this chapter. Results and analysis for the lathe and the mills will

be discussed separately. The following table lists the overall results of achieving the three

fundamental smart components for the lathe and four mills and the following sections will

discuss these results in detail.

 Unified Connectivity

This section discusses in detail the results that were obtained for unified connectivity for

both the lathe and the mills. This will cover any iterations made in establishing the final

connection between the disparate devices to the ThingWorx Manufacturing Apps, as well as any

qualifying factors obtained from data analysis.

4.1.1 Lathe

Table 4-1 provides a summary of the two different methods investigated analyzed in

order to determine the best solution for lathe unified connectivity. Ultimately, the OPC UA

connection was selected to be the method utilized in the implementation of connectivity for this

factory. Although both methods were successful in establishing a connection, the OPC UA

method was clearly more advantageous.

51

Table 4-1: Lathe Unified Connectivity Summary and Analysis

Type of
Connectivity

Speed (1 push
of data)

Reliability of
Connection

Design Intent Other

REST API 30 ms Experiences
“hiccups” in
connection,
causing stop of
program

Built for simple
send/receive
communication
between 2
devices (one on
one)

n/a

OPC UA 29 µs Configured to
reset upon loss
of network
connection

Designed to
unify disparate
devices and
protocols for
industrial setting

Specific driver
in KEPServerEX
designed for this
type of
connection,
allowing direct
relay of data to
the
manufacturing
apps

Lathe unified connectivity was achieved by establishing an OPC UA connection between

LabVIEW and KEPServerEX. The detailed LabVIEW program outlining how this was done is

given in Appendix A: LabVIEW Code. Figure 4-1 shows a screenshot of the Quick Client inside

KEPServerEX that shows Good quality data connections with values being updated.

Figure 4-1: Working Lathe Connectivity

52

Figure 4-2 shows the Quick Client when there is a Bad quality connection for the tags.

This occurs when the LabVIEW program is ended or goes offline. As shown, the last known

values are utilized and displayed in KEPServerEX, and these are the values that will be shown in

the manufacturing apps.

Figure 4-2: Bad Lathe Connectivity from Stopped LabVIEW Program

Because the last known values are used at the time the connection goes bad, it may be

difficult to tell if the machine is actually producing good data. There needed to be a way to track

whether there was a good connection or not between the physical device and the digital

representation of that device inside of KEPServerEX. After further exploration of the Quick

Client in KEPServerEX, it was discovered that there are tags automatically generated upon

creation of the device’s tags and the execution of the Quick Client service. Figure 4-3 shows this

helpful tag: the System_Error tag. When this Boolean-based tag has a true value (1), this

signifies that there is an error in the connection. When it has a false value (0), then the

connections for all of the rest of the tags have a Good quality. This tag, along with user-created

53

tags, may be sent up to the manufacturing apps and utilized for monitoring and issue

identification purposes.

Figure 4-3: System_Error Tag Signifying Communication Loss to the Device

4.1.2 Discussion of Results

4.1.2.1 Iterations Taken to Get to Final Version of LabVIEW Program

There were several versions to get to the final iteration of the LabVIEW program being

used to establish unified connectivity for the lathe in this project. The first version, shown in

Appendix A: LabVIEW Code, has LabVIEW sending its data via REST API to directly change

the property values of a Thing inside of ThingWorx. Although this method worked, it was not as

suitable a solution as was the OPC UA connection to KEPServerEX. There are several reasons

for this.

One of the biggest reasons for choosing to go with the OPC UA server connection is that

this method is simply faster and does not rely on the network for pushing its data like the REST

54

API version does. After setting up an experiment to measure the data rates between these

applications, it was discovered that the OPC UA connection took 29 microseconds in LabVIEW

to send its data to KEPServerEX, whereas it took the REST API version several milliseconds.

After consideration, this makes sense because REST protocol was simply not built or designed to

be sending or receiving massive amounts of data in an industrial setting like the OPC UA

connection was. Additionally, the REST API version would be limited as to the number of

machines that it would be able to acquire data from and send data to. The OPC UA connection

was meant to be able to connect to other machines that had other protocols and bring those data

streams into one flow.

Another reason that the OPC UA connection method was used is because of its

connection to KEPServerEX, which the manufacturing apps were intended to be used with. If the

REST API version was pursued, then mashups and customized code would be required for every

piece of data for every machine which is what the apps were designed to reduce and, if possible,

eliminate. Using the REST API version frankly would require a lot of training, time, and would

not be an effective use of resources for the shop supervisor, or any other engineer out in the field

that may need to do this for dozens or even hundreds of devices.

4.1.2.2 24/7 Connectivity

A minor problem that was encountered with initial setups was the fact that with a demo

version of KEPServerEX came a limitation on how long the program would keep track of data.

In the demo-version, a two-hour time limit was imposed. This would not be an acceptable

solution in an industrial environment, so a more permanent option was needed. A professional

license of KEPServerEX 6.3 was obtained and activated to allow 24/7 connectivity with the

55

factory devices. Instructions on how to manage and activate a license for KEPServerEX can be

found at my.kepware.com.

4.1.2.3 Common Causes of Bad Connections

One of the most common causes of a “bad” quality connection in the manufacturing apps

is that the LabVIEW program was ended or aborted manually, or if there was a disruption in

connection between the cDAQ chassis and the network. When this happens, the connection of

the program to the device is severed and will naturally cause a disrupted connection to

KEPServerEX and change the quality of the data connection from “good” to “bad”, which will

then also display a bad quality piece of data in the manufacturing apps. That is why it was

important to set up a program that would run reset itself in the event of a hiccup in network

connection to the chassis. By resetting itself (which takes a matter of seconds), connectivity is

preserved, and the program will not fault out.

Other factors may need to be adjusted based off of application, such as the rate at which

data is being acquired/sent, for example. If the rates are too dissimilar, then the program may

cease to function as well. This applies to each different DAQ device, but once a reliable

frequency is set (1000 Hz for this project), the device functions reliably.

4.1.2.4 Limitations

There are some limitations to this method of establishing unified connectivity with an

older machine. One of the first and foremost is the cost associated with this setup. It was

approximately $500 for the chassis alone. Because of the large amounts of voltage going through

the lathe that we needed to tap into, the module had to be able to accommodate for large voltage

56

values. The NI-9225 voltage module used for this device was $1500. Additionally, the module

only had three screw-in voltage connections that could be utilized, limiting the number of pieces

of data that could be acquired from the lathe. There are at least 10 other lathes in this factory

alone. It would be difficult to justify such an investment using this solution. National Instruments

was chosen for its exceptional ability to take measurements and for its universal use in the

manufacturing industry. Costs on this setup may be a limiting factor, but the principles are sound

and steps for implementation would prove beneficial for other types of systems already using

National Instruments products.

4.1.3 Summary

Is it possible to establish unified connectivity between manual lathes/mills and a

computer?

From the setup and results of the lathe portion of this project, it is possible to establish

unified connectivity between a manual lathe and a computer. The lathe connectivity was

accomplished by measuring and acquiring data using National Instruments devices and having its

control program, LabVIEW, send that data to a computer to a commonly used piece of software

in the manufacturing industry called kepware (KEPServerEX) via an OPC UA connection. 24/7

connectivity was set up with the ability to send its data to a visualization tool on an IIoT platform

called the ThingWorx Manufacturing Apps. Although setup was costly, the principles and steps

used prove valuable for implementation of other types of NI products across the manufacturing

industry everywhere.

57

4.1.4 Mills

Table 4-2 provides a summary of the connectivity methods investigated in achieving

unified connectivity in the mills of the factory.

Table 4-2: Mill Unified Connectivity Summary and Analysis

Type of
Connectivity

Speed (1 push
of data)

Reliability of
Connection

Reason for
failure/success

Other

Direct
connection

between drive
and computer

(Ethernet cord)

40 ms No
communication
established

Older version
of Toshiba
protocol trying
to communicate
to modernized
KEPServer
driver

Difficult to say
whether the
Toshiba suite
would cover the
older version of
this protocol

Modbus RTU
(RS232 cord

from ETH card,
null modem

adapter, RS232
to USB

converter)

40 ms No
communication
established

Same as above Older type of
connection, less
reliable for
communication

Modbus RTU
(Ethernet cord
from Modbus
TCP/IP port
into Ethernet

port on
computer)

40 ms Communication
established
(first
configured on
embedded
webserver, then
streamed
directly into
KEPServerEX)

Successfully
converted older
Toshiba
protocol into a
more modern
and used
protocol

KEPServer
driver available
(tag addresses
start in the
40000 range)

Connectivity of the four mills in this project was achieved by converting the Toshiba

protocol being tracked on the mill inverter into Modbus TCP/IP with an ETH-200

communication card. Once converted into a protocol that KEPServerEX could communicate

58

with, it was a straightforward process relaying that information to the manufacturing apps.

Figure 4-4 shows the Good quality connections made on one of the mills.

Figure 4-4: Mill 1 Connectivity to KEPServerEX

Somewhat different than the lathe connection, the only time when the connection goes

bad (assuming that the wiring and hardware are all functioning properly) is when the machine

goes into an e-stop state. When this happens, the last Good values are retained as the tag values

in both KEPServerEX (and subsequently the manufacturing apps) as shown in Figure 4-5.

Figure 4-5: Quick Client of Mill 1 when E-Stopped

59

Subsequently, the Sytem_Error tag changes to true, allowing the apps to recognize that

the machine is simply in an e-stop mode. This tag tracks the condition of the connection (Figure

4-6). If the value remains true on the System_Error tag even after the machine is pulled out of e-

stop, then the connection may need to be checked.

Figure 4-6: Indicator of Mill 1 Communication Loss

4.1.5 Discussion of Results

4.1.5.1 Iterations of the Connectivity Setup

In the initial attempt to establish communication between the drive and the computer, an

Ethernet cord was connected into the serial port on the drive and the Ethernet port on the

computer. When this happened, no communication occurred between KEPServerEX (on the

computer) and the drive. After thought and consideration, it was determined that the correct

protocol and driver combination needed to happen so that KEPServerEX would know how the

data would be formatted coming in, and be able to respond and process that data accordingly.

60

This led into an investigation of the protocol being used on the drive. The protocol that the drive

was discovered to be using is an older version of Toshiba protocol.

In the second attempt of connecting a mill to a computer, an attempt to have the Toshiba

protocol be converted into Modbus RTU was made. Cords and hardware were ordered to pursue

this type of connection and the Modbus driver would be utilized inside of KEPServerEX. Figure

4-7 shows this connection. This setup uses RS232 cords to connect the mill to the card and then

to the computer.

Figure 4-7: Connectivity Attempt Using RS232 Cords/Modbus RTU Protocol

61

However, after additional thinking, in the industrial setting, it would be unrealistic to

have companies go and get an outdated cord and keep the language in an older protocol.

Consequently, it was decided to attempt using the Ethernet/IP port and protocol on the

communication card using a standards Cat 5 Ethernet cord. After configuring the channel,

device, and tags/addresses, the data came through to the computer and connectivity was

achieved, using a much more modern and ubiquitous protocol. Now the pieces of information on

the inverter already being tracked could be sent to the apps, without any complex code needing

to be written.

4.1.5.2 E-Stop Problem

After one mill was successfully communicating to KEPServerEX, Mill 2 and Mill 3 were

added to the ASD2 and ASD3 ports on the ETH-200 card respectively. The problem that arose

from this, however, was that on occasion, when one mill was e-stopped, the other tags from the

other mills would also cease being passed to KEPServerEX. The pattern in which they would fail

was unpredictable. Up to this point in the setup, the communication card was being powered by

the inverters on the mills themselves, and it was theorized when the card stopped receiving

power from its original source inverter, communication was disrupted for the entire card.

Consequently, auxiliary power cords were ordered to supply constant electricity to the card, and

a second communication card was ordered to have two mills on each card. When these things

were done, the e-stop dilemma was resolved, and the machines did not affect the power supply of

the card, providing consistent and reliable connectivity.

62

4.1.5.3 Cost of Setup

The cost of this set up was quite affordable. The cost for the communication card was

approximately $500. This would allow constant communication of up to three mills per card. The

other software needed would be KEPServerEX, which is a part of many companies already, and

the manufacturing apps, which is a free downloadable extension of ThingWorx Composer.

4.1.5.4 Limitations

One of the main limitations of this connectivity setup lays in the scan rate of the

communication card, which is dependent on the data rate of the inverter itself. After looking in

the manual for the baud rate (9600) and conversing with an applications engineer, it was

provided that the speed of data coming from the inverter to the communications card for 8 pieces

of information takes approximately 40 milliseconds. For other applications in industry, this may

prove to be a strength or a weakness in this solution. If the machine that is sending the

information has a slow data send-rate, then the communication card will follow suit: the flow

will only be as fast as the slowest piece in the setup.

4.1.6 Summary

Is it possible to establish unified connectivity between manual mills and a computer?

From the setup and procedures shown, it was discovered that it is indeed possible to

establish unified connectivity between manual mills and a computer. With this setup, a quick and

easy solution to establish unified connectivity was constructed to a device that was not initially

meant to be tracked and monitored using a relatively inexpensive communication card to convert

63

Toshiba protocol into a more common Modbus TCP/IP protocol, which could then be used in

conjunction with KEPServerEX.

 Real-Time Monitoring

This section discusses in detail the results that were obtained for real-time monitoring for

both the lathe and the mills. Due to the lathe and mills being electrically and mechanically

different from the other, the pieces of information gathered were also different.

4.2.1 Lathe

Table 4-3 depicts that numerous pieces of information that were able to be obtained and

monitored in real-time within the manufacturing apps. It also outlines some of the challenges that

were encountered in the process, as well as any next steps that may be desired to be explored in

future research.

Table 4-3: Lathe Real-Time Monitoring Summary and Analysis

Name Description Source Origin Logic Written Challenges
Encountered

Next Step

Runtime_total Cumulative runtime LabVIEW n/a LabVIEW code
writing

n/a

Port_2 Voltage Port_2 LabVIEW n/a n/a n/a
Port_0 Voltage Port_0 LabVIEW n/a n/a n/a
Machine State Derived tag(s)

KEPServerEX
KEPServerEX In KEPServerEX opf

file
Obtaining
thresholds

Add more
sensors

_Error System tag in
KEPServerEX

KEPServerEX n/a n/a n/a

Running Machine status Manufacturing apps (in apps) n/a n/a
Unplanned
Downtime

Machine status Manufacturing apps (in apps) n/a n/a

Warning Machine status Manufacturing apps (in apps) n/a n/a
Planned Downtime Machine status Manufacturing apps (in apps) n/a n/a
Availability Availability of

machine
Manufacturing apps Run Time / Planned

Production Time
Inaccurate default
formula

Change default
formula

Quality Quality of parts
coming off of line

Manufacturing apps Good Count / Total
Count

Education setting
(hard code solution)

Set up
application for
using this

Performance Ratio of actual run
rate to ideal run rate

Manufacturing apps (Total Count / Run
Time) / Ideal Run
Rate

Education setting
(hard code solution)

Set up app

OEE Overall Equipment
Effectiveness

Manufacturing apps Avail* Perf* Qual Inaccurate default
formula

Change default
formula

64

On the lathe, two out of the three ports were used to acquire voltage measurements.

Figure 4-8 shows bound properties being pulled from KEPServerEX. From the raw voltage

values being taken, the state of the machine was able to be determined. From two simple

measurements, the operator can now see the most common machine states (machine on/off,

motor on/off, etc.). These were the main components that were important for the initial setup of

real-time monitoring.

Figure 4-8: Additional Properties Tied to KEPServerEX Tags

Figure 4-9 shows the view of the lathe available under the Asset Advisor tab of the

manufacturing apps. It shows the display state, as well as how long it has been in that display

state, if there are any active alerts, and the number of alerts that have occurred that week. These

different pieces of information may be modified and configured differently if desired.

Instructions on how to do this are located in the Customization Guide for the ThingWorx

manufacturing apps.

65

Figure 4-9: Asset Advisor View of Lathe_11

Figure 4- 10 shows the status definitions for Lathe 11. With the manufacturing apps, the

default statuses that can be defined are Running, Unplanned Downtime, Warning, and Planned

Downtime. The Running status is defined to be when the spindle is on. Unplanned downtime is

defined to be when the machine and motor are off but the machine is not in scheduled/planned

downtime. Warning is the status whenever one of the alerts for the lathe/asset is active. Planned

downtime is user defined as the time of day or week in which the machine is scheduled to be

worked on or maintained. These statuses were based off of the values coming in from

KEPServerEX and are defined in the Expression sections, as shown. The status updates

approximately every 30 seconds. After researching in the configuration manual, it was

discovered that other features, such as KPIs have a default update rate of once per minute. The

convenient feature about the manufacturing apps is that they are completely configurable and

may be changed based off of the needs of the application or environment. The fastest update rate

that it will allow the user to set is 1 minute for KPI evaluation, but the status updates

approximately every 30 seconds. These definitions are based off of the dynamic tags being

pulled in from KEPServerEX which are then tied to the lathe. Although somewhat limited in the

quantity of information being pulled, enough information was pulled to be able to define these

numerous machine statuses.

66

Figure 4- 10: Status Definitions for Lathe 11

Figure 4-11 shows the production key performance indicators (KPIs) of the machines

within the factory. It is set up to track overall equipment effectiveness (OEE), availability,

quality, and performance. Additionally, it shows the story of the data over time for that KPI

calculation period. In this case, the calculation period is 5 minutes. This KPI calculation time

period may be adjusted (1-99,999 minutes). As mentioned earlier, this update is configurable

within ThingWorx Composer. Instructions on how to do this are located in the Customization

Guide. This will guide walks through how to set up all of the Things and Services that control

what is shown and displayed inside of the manufacturing apps. This type of configuration should

be done by an admin for the apps, not the TAs in the lab or the shop supervisor.

67

Figure 4-11: Production KPIs View of Lathe_11

4.2.2 Discussion of Results

4.2.2.1 Advantages

There were many advantages in the way that real-time monitoring was set up in this

project. The user-friendly display visuals offered insight into the machines status and

performance, as well a history of those factors. The manufacturing apps come with code already

built into them. This is useful because now the engineer or supervisor does not have to learn new

code script to show the data that he/she desires. It is already customized for the manufacturing

setting, and is customizable as well.

4.2.2.2 Limitations

The main limitation in the monitoring of the lathe was the variety of data that was able to

be monitored. Because only two ports on the cDAQ were used, a limited amount of information

68

could be reliably obtained. A third port could have been used, but would have yielded little more

results. The initial thought was to use two ports, that would then determine the states of the

machine, motor, and brake. Table 4-4 shows the different machine conditions in a matrix format

and served as the template for the following tests that were performed.

Table 4-4: Machine Conditions Matrix

Test Factors (+/-)

On/off switch Motor switch (on/neutral) Brake (pressed/not pressed)

1 - - -

2 + - -

3 - + -

4 + + -

5 - - +

6 + - +

7 - + +

8 + + +

 The following figures represent the eight tests that were performed and the voltage

behaviors under each of the main machine conditions. These eight tests represent the conditions

represented in the table above. These conditions were determined based off of the most

commonly used conditions to which the machine would be subjected. Other factors could be

included in future tests (coolant status, overhead light status, etc.) but were not deemed essential

in desired data for real-time monitoring. The desired pieces of data were determined by the shop

supervisor and are represented in Table 1-1. Discussion of the results in monitoring these pieces

of data is given later on in this chapter.

69

Figure 4-12: Lathe Test 1-Machine Off, Motor Off, Brake Not Pressed

Figure 4-13: Test 2-Machine On, Motor Off, Brake Not Pressed

 Test 1 demonstrates the machine voltage conditions when the machine is considered

turned off. Test 2 represents the voltage behavior when the on/off selector is switched to ON.

70

Figure 4-14: Lathe Test 3-Machine Off, Motor On, Brake Not Pressed

Figure 4-15: Lathe Test 4-Machine On, Motor On, Brake Not Pressed

 Test 3 depicts what the voltage would be like if the machine was switched off but the

motor lever was still engaged. Test 4 shows the normal operating voltages of the machine being

on and the motor lever is engaged. This is consistent despite varying RPM values.

71

Figure 4-16: Lathe Test 5-Machine Off, Motor Off, Brake Pressed

Figure 4-17: Lathe Test 6-Machine On, Motor Off, Brake Pressed

 Test 5 introduces the brake into the equation and shows what the behavior is when the

machine and motor are off, but the brake is pressed. Test 6 has the turned on but the motor is still

turned off.

72

Figure 4-18: Lathe Test 7-Machine Off, Motor On, Brake Pressed

Figure 4-19: Lathe Test 8-Machine On, Motor On, Brake Pressed

 Test 7 represents the voltage behaviors under the machine being on and the brake is

pressed. Test 8 shows the behavior when the machine and spindle are running, but then the brake

is pressed.

73

For the on/off switch and the motor selector aspects, the voltages were very distinct and

provided evidence that these two channels would be able to have reliable real-time monitoring.

However, problems arose after trying to monitor aspects of the machine that did not directly

relate to the ports being measured. The on/off switch channels and the motor spindle channels

were tapped, but trying to reliably distinguish when the brake was being applied proved

unreasonable. Because the brake being applied did not affect the values of the voltage on the two

ports being measured significantly, a reliable monitor on the brake could not be obtained. A

sample test that emphasizes this unreliability to distinguish additional features is shown below.

Figure 4-20 shows the voltage behavior of Port 0 and Port 2 as the machine is on with the motor

running, and then the motor lever is switched to the off-position.

Figure 4-20: Lathe_11 Running, then Motor Lever Switched Off

Figure 4-21 shows the voltage behaviors when the motor is running, then the brake is

pressed.

74

Figure 4-21: Lathe_11 Running, then Brake is Pressed

 From this example, it is suggested that it may be unreasonable to try and monitor

additional features such as the brake state, light status, etc. Additional ports and/or sensors would

be needed to obtain those pieces of information with fidelity.

Another limitation on the lathe real-time monitoring had to do with RPM, a piece of

information that the shop supervisor had requested (Table 1-1). Below are figures showing the

voltage behaviors being measured as they relate to different RPM rates.

Figure 4-22: Lathe_11 Voltage Conditions at 35 RPM

75

Figure 4-23: Lathe_11 Voltage Conditions at 490 RPM

Figure 4-24: Lathe_11 Voltage Conditions at 2000 RPM

 From these graphs, it is able to be deduced that there is no substantial change in the

voltage values under different RPM conditions. After consideration, this makes sense because

electrically everything is remaining the same. The factor that is changing is the gears that are

being used to rotate the spindle. RPM would not be able to be measured or derived electrically

from this setup.

 This then calls for other solutions to be utilized in order to obtain RPM on the lathe if it is

going to be incorporated into the smart solution. In Table 1-1, facet 2, it was requested that RPM

76

be monitored. For this to happen, sensors and other types of hardware would need to be used, but

in this research, the intent was to establish real-time monitoring based off of what the machine

already has. It is for this reason that RPM will not be pursued to completion in this research, but

will provide a good opportunity for future research and experimentation in connecting additional

sensors into an already-implemented smart solution.

4.2.3 Summary

Can the information being received from the lathe be reliably manipulated in order to

display real-time monitoring?

The information being received from the lathe can be reliably manipulated in order to

display real-time monitoring. Statuses and KPIs are able to be measured. However, the level of

real-time monitoring in the lathe is limited by the limited amount of raw data being sent to the

manufacturing apps. Based off of test results on the most common lathe state conditions, it was

determined that features not tied to the machine and motor electrical channels (brake status,

RPM, etc.) would not be able to be reliably monitored. Real-time monitoring was able to be

established, but facet 2 in Table 1-1 regarding RPM will not be implemented at this time.

4.2.4 Mills

Table 4-5 provides a summary of the information that was able to be obtained in each of

the four mills of the smart factory. Significantly more pieces of data were able to be monitored

based off of information already being tracked and communicated from the drive to the

communication card. Reverse control of the machine was not attempted because of liability

reasons.

77

Table 4-5: Mills Real-Time Monitoring Summary and Analysis

Name Description Source Origin Logic Written Challenges
Encountered

Next Step

Status_sve_trp Status of machine at
time of last trip

FE01 on drive Read-only tag Find it in
communication
manual

n/a

RPMmill1conversion Derived tag from
voltage value

KEPServer n/a Calculating the
constant

n/a

Output_freq The frequency the
drive is set to

FE00 on drive Read-only tag Find it in
communication
manual

n/a

Outpt_voltage Incoming voltage of
drive from AC
reading

FE05 on drive Read-only tag Find it in
communication
manual

n/a

Outpt_curr_disp Current drawn from
motor to meet
demand

FE03 on drive Read-only tag Find it in
communication
manual

n/a

Mill1MotorState Derived tag from
KEP.

KEPServer n/a n/a n/a

Mill1MachineState Derived tag from
KEP.

KEPServer n/a n/a n/a

Curr_outpt_freq The current output
freq.

FD00 on drive Read-only tag Find it in
communication
manual

n/a

Curr_freq_comm Current freq
command of the
machine

FE02 on drive Read-only tag Find it in
communication
manual

n/a

Cum_run_time Total spindle run
time of machine
since its beginning

FE14 on drive Read-only tag Find it in
communication
manual

n/a

Bus_voltage Incoming voltage
from DC reading

FE04 on drive Read-only tag Find it in
communication
manual

n/a

_EStopPressed System tag
automatically
generated in
KEPServerEX

KEPServer n/a n/a (automatically
generated)

Find a way to
distinguish
between e-stop
and unavailable

Running Machine status Manufacturing apps (in apps) n/a n/a
Unplanned
Downtime

Machine status Manufacturing apps (in apps) n/a n/a

Warning Machine status Manufacturing apps (in apps) n/a n/a
Planned Downtime Machine status Manufacturing apps (in apps) n/a n/a
Availability Availability of

machine
Manufacturing apps Run Time / Planned

Production Time
Inaccurate default
formula

Change default
formula

Quality Quality of parts
coming off of line

Manufacturing apps Good Count / Total
Count since
beginning of the
planned operation
time

Education setting
(hard code solution)

Set up
application for
using this

Performance Ratio of actual run
rate to ideal run rate

Manufacturing apps (Total Count / Run
Time) / Ideal Run
Rate

Education setting
(hard code solution)

Set up
application for
using this

OEE Overall Equipment
Effectiveness

Manufacturing apps Availability *
Performance *
Quality

Inaccurate default
formula

Change default
formula

Real-time monitoring was attempted and achieved. The following sections and figures,

along, with the discussion that follows, help to explain what exactly was achieved in regards to

real-time monitoring for the mills. Figure 4-29 shows the additional properties that were able to

78

be pulled from the inverter on the mill as well as other derived tags used to relay useful data such

as revolutions per minute (RPM), machine state, and spindle state. The following four figures

depict the linear relationship between the current frequency command tag and RPM.

Figure 4-25: Mill 1 RPM Relationship

Figure 4-26: Mill 2 RPM Relationship

y = 0.2878x

0

1000

2000

3000

4000

5000

0 5000 10000 15000 20000

RP
M

Frequency (x100)

RPM based on frequency: Mill 1

y = 0.2763x

-500
0

500
1000
1500
2000
2500
3000
3500
4000
4500

0 5000 10000 15000 20000

RP
M

Frequency (x100)

RPM based on frequency: Mill 2

79

Figure 4-27: Mill 3 RPM Relationship

Figure 4-28: Mill 4 RPM Relationship

From tracking the relationship between frequency and RPM on the mill (on the machine

itself) a linear constant was able to be found for each of the mills relating the frequency and

RPM. Initially, RPM was never being tracked in the tags on the drive. Now that this relationship

was established, it did not matter. Now all that needed to be done was to multiply the current

y = 0.2607x

0
500

1000
1500
2000
2500
3000
3500
4000
4500

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

RP
M

Frequency (x100)

RPM based on frequency: Mill 3

y = 0.2682x

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

RP
M

Freqency (x100)

RPM based on frequency: Mill 4

80

frequency command tag inside of KEPServerEX by the constants found here, set that up to be a

derived tag inside of KEPServerEX, and then the RPM would be able to be displayed in the

manufacturing apps based off of that derived tag (Figure 4-29). This satisfies facet 2 in Table 1-1

for the shop supervisor’s requested pieces of information to have in the smart factory.

Figure 4-29: Additional Properties for Mill 1 Tied to KEPServerEX Tags

Figure 4-30 shows the statuses of multiple mills. This is accessible under the Asset

Advisor tab within the manufacturing apps. Like the lathe, it shows information about the

machine, the machine status, how long it has been in that status, if there are any active alerts, and

the number of alerts that were triggered that week. This page is configurable using the

Customization Guide accessible from the PTC or ThingWorx website, depending on how things

are desired to be configured.

81

Figure 4-30: Asset Advisor for Mill 1 and Other Assets

Figure 4-31 shows the production key performance indicators (KPIs) of the machines

within the factory. It is set up to track overall equipment effectiveness (OEE), availability,

quality, and performance. Additionally, it shows the story of the data over time for that KPI

calculation period. In this case, the calculation period is 5 minutes. In an industrial setting, it may

be more or less.

Figure 4-31: Status Definition Tab for Mill 1

82

Figure 4-32 shows the status definitions for Lathe 11. With the manufacturing apps, the

default statuses that can be defined are Running, Unplanned Downtime, Warning, and Planned

Downtime. These statuses were based off of the values coming in from KEPServerEX. There

was latency in receiving the status updates, but for the educational setting in which this project

took place, it was an acceptable update rate (approximately once per minute).

Figure 4-32: Production KPIs View of Mill 1

Figure 4-33 depicts a monitoring of the alerts that have been triggered and are active.

This view is found in the Alert Monitoring tab of the manufacturing apps.

Figure 4-33: Alert Monitoring

83

Figure 4-34 is a screenshot of the historical view within the Alert Monitoring tile of the

manufacturing apps.

Figure 4-34: Alert Monitoring Historical View

4.2.5 Discussion of Results

4.2.5.1 Advantages

The advantages of the setup of real-time monitoring for the mills in this project are

essentially the same as those of the lathe (mentioned above). The manufacturing apps enabled an

easy setup and configuration and manipulation of the data into a visual display of data in real-

time.

4.2.5.2 Limitations

The limitations of this setup of real-time monitoring for the mills is also essentially the

same as the those of the lathe. The monitoring is limited to the scan rate of the machine’s

84

inverter, and the data that can be manipulated and monitored is directly correlated to the amount

of raw data that is received in the first place.

4.2.6 Summary

Can the information being received from the mills be reliably manipulated in order to

display real-time monitoring?

The information being received from the mills can, in fact, be reliably manipulated in

order to display real-time monitoring. The amount of information that was able to be monitored

was dramatically more than that of the lathe because the inverter already tracking numerous

pieces of information. That information was able to be monitored in real-time and displayed in

user-friendly visualization tools of the manufacturing apps. Aspects of these monitored pieces of

information include KPI evaluations of all of the mills, alert monitoring, and machine status.

Additional tags, such as RPM and machine state tags, were able to be created and monitored

based off of linear relationships and other patterns, providing more even more data.

 Issue Identification

The following sections describe in detail the results of implementing issue identification

capabilities into the smart system set up of the lathe and the four mills in this project. These

results are based off of code written in ThingWorx Composer and alerts configured in the

manufacturing apps. All of these are in response to the data that is being brought in from the

lathe and mills of the smart set up. The automated notifications that are provided below are

common alerts to be found in industry. Other features may be incorporated in other applications,

but these were the features desired off of these machines.

85

4.3.1 Lathe

Table 4-6 outlines the numerous issues and anomalies that were interpreted and

responded to by the system for the lathe. These issues were incorporated specifically to address

the kinds of issues identified in Table 1-1.

Table 4-6: Lathe Issue Identification Summary and Analysis

Anomaly Signal Used Logic of
Processing

Action
Taken

Challenges
Encountered

Next
Steps

After-hour
operation

MachineOnMotorOn
tag

Boolean
value

Email,
text

Hiccups in REST
API version

Text

Lost
connection

System_error tag Boolean
value

Email,
text

Days between
occurrences

Code for
resetting
program

Heavy
cutting/tool

crash

Port_2 tag Defined
threshold

Email,
text

Multiple emails
sent, uncontrollable

voltage drops

Code for
single
email

Figure 4-35 shows an automated email that was sent in response to the lathe being on

after hours. This notification was triggered off of a service written in ThingWorx Composer.

This service is triggered at a certain specified time each day, and is enabled/disabled at other

specified times during the day. The service scans to see if the property values associated with the

spindle is on. If that value is true, then the automated alert is sent. The email account from which

the email is sent, as well as the subject details is all configurable inside of ThingWorx Composer

and is able to be adjusted based off of the different alert type. This scan simply discerns if the

Boolean value of the MachineOnMotorOn tag is true or not. Because the value was evaluated to

be true, the following email was sent.

86

Figure 4-35: After-Hour Email Notification for Lathe_11

Figure 4-36 shows the email notification that is sent in the event that there is an error in

the connection (due to the LabVIEW program being ended/aborted). This notification was set up

as an alert inside the manufacturing apps. This provides a convenient solution for knowing

exactly when a machine is down, and which machine that may be.

Figure 4-36: Email Notification for Lost Lathe Connection

87

4.3.2 Discussion of Results

4.3.2.1 Limitations

All of the above anomaly notifications were fairly easy to construct and configure.

However, a notification in the event of a crash or heavy cutting on the lathe would not be as

reliable. The reason is for this is because of the similarity in behavior in the event of heavy

cutting and the voltage behavior when another lathe or machine in the shop is turned on. Figure

4-37 depicts lathe 11 undergoing heavy cutting (simulated crash). It is seen that there is an

approximate 3-volt drop.

Figure 4-37: Lathe_11 in a Heavy-Cutting State

Figure 4-38 shows the voltage behavior of Lathe 11 running, and then another lathe

(Lathe 10) being turned on while it is running. This test was done to help demonstrate some of

the probable conditions and circumstances to which the lathe will be subjected. If there are

multiple machines, then the voltage change would likely be even greater.

88

Figure 4-38: Lathe_11 Running, then Lathe 10 Turned On

As seen in the figure above, there is approximately a 2-volt drop. This drop is from only

1 other lathe/machine being turned on while the spindle on Lathe 11 is running. It is safely

assumed that if more than 1 machine is in use or is turned on, the voltage drop in this figure

would be greater. The behaviors are different (one is much sharper than the other) however, the

amount of voltage change is what is being watched. Thresholds are set to determine the state of

the machine. If a ± 2.5-volt threshold is placed on the lathe system, the probability of receiving

false-positives greatly increases.

4.3.3 Summary

From the data being transferred and monitored, can issue identification be implemented

in the lathe to alert shop supervisors in the event of anomalies?

Once the data is coming into the manufacturing apps or ThingWorx Composer, logic was

able to be written and alerts were able to be configured to reliably send an automated notification

89

in the event of several anomalies: after-hour operation, and lost connection. The alert to be sent

in the event of heavy cutting or a crash, the voltage behaviors of the raw data under heavy

cutting conditions and the behavior when another machine was turned on were too similar to

reliably trigger a true-positive of a machine crash. Each of the alerts also answered the alerts

desired by the shop supervisor.

4.3.4 Mills

The following sections with their associated figures represent the results of integrating

issue identification capabilities into the smart system for the mills. Table 4-7 summarizes the

alerts that would automatically notify shop personnel in the event of each respective alert

becoming active. These alerts were implemented in response to the feedback provided by the

shop supervisor, given in Table 1-1.

Table 4-7: Mills Issue Identification Summary and Analysis

Anomaly Signal Used Logic of
Processing

Action
Taken

Challenges
Encountered

Next Steps

After-hour
operation

MotorState tag Boolean
value

Email,
text

n/a Text

Lost
connection

ErrorState property Boolean
value

Email Distinguishing
between lost

connection and
e-stop

Creating e-
stop status

Heavy
cutting/tool

crash

Outpt_curr_disp
property

Defined
threshold

Email,
text

Different part
materials

changes the
threshold

Standardizing
the desired
threshold

High RPM RPMmillconversion
tag

Defined
threshold

Email,
text

Linking Twilio
trial account to

notification

Obtaining
lasting twilio
account for

system

90

Figure 4-39 shows the active alert icon within the Asset Advisor of the manufacturing

apps.

Figure 4-39: Alert Monitoring for Mill 1

Figure 4-40 shows the email notification that was sent in the event of a high RPM on Mill

1. The alert to send this automated notification was built inside of the manufacturing apps. It is

based off of the RPMmill1conversion property being received from KEPServerEX and is

configurable for a shop supervisor.

Figure 4-40: Email Notification for High RPM on Mill 1

91

Figure 4-41 is a screenshot of the email notification that was sent in the event of heavy

cutting on Mill 2. This alert/notification was configured in the manufacturing apps and is based

off of the derived tag coming from KEPServerEX.

Figure 4-41: Email Notification for Heavy Cutting On Mill 1

Figure 4-42 shows the email that was sent in the event of Mill 1 being on after hours.

This notification was set up and configured within ThingWorx Composer. Written in the exact

same service used to scan if the lathe was on, this machine was included in that service and

would trigger a notification to be sent to the shop supervisor in the event that it is on outside of

normal operating hours. Corresponding alerts and emails were created and tested for the other

mills in the smart factory as well. This email automatically comes with a link to the

manufacturing apps, allowing access to that email recipient to look into the apps and see in real-

time the status of the machine.

92

Figure 4-42: Email Notification for After-Hour Operation on Mill 1

4.3.5 Discussion of Results

From the efforts that were made concerning issue identification, there were two main

methods of sending alerts in the event of a machine issues or anomalies: custom-made email

notifications in ThingWorx Composer, and automated emails coming from the ThingWorx

manufacturing apps. Both methods were used in this project.

For the custom-made emails from Composer, the alert for after-hour machine operation

was done. This was done in Composer because the apps did not have a service that scanned the

machines for after-hour operation. This helps to demonstrate the flexibility of the system and

what is able to be accomplished. The service that was constructed to scan for after-hour

operation was designed to only scan once per specified unit of time.

The manufacturing apps handled all of the other alert notifications. When an alert was

triggered, the corresponding email with an alert description and link to the apps was sent to the

appropriate user. This proved to be very reliable and only sent one notification when that alert

state was reached. When the alert state was cleared, notifications would not be sent until another

alert was triggered.

93

4.3.6 Summary

From the data being transferred and monitored, can issue identification be implemented

in the mills to alert shop supervisors in the event of anomalies?

Once the data is coming into the manufacturing apps or ThingWorx Composer, logic was

able to be written and alerts were able to be configured to reliably send an automated notification

in the event of several anomalies: after-hour operation, and a high RPM. Additionally, a reliable

notification was able to be created for the mills that would notify the shop supervisor of heavy

cutting, or a crash. Other notifications may be constructed in the future, but these were the

features to test for issue identification capabilities, and were constructed in response to the

request of the shop supervisor.

 Shop Supervisor Requested Items Summary

Table 4-8 summarizes the results of satisfying the requests of the shop supervisor for the

lab containing the smart factory setup.

Table 4-8: Results on Shop Supervisor Requests

Desired data

Data Requested
Implemented on
Lathe (yes/no)

Implemented on
Mills (yes/no)

Reasons for not being implemented/recommendations

1. Machine/spindle-
spinning or stopped Yes Yes

n/a

2. Spindle RPM No Yes

This would require additional sensors (outside of scope)/ look
into sensors that would be able to connect into National
Instruments or directly into KEPServerEX

3. Spindle load No No
This would require additional sensors (outside of scope)/ look
into force sensors compatible with KEPServerEX

4. Crash notification Yes Yes
n/a

5. How many hours the
spindle is in operation Yes Yes

n/a

94

 As shown in the table above, most of the criteria were met in the completion of this

project. The only criteria that were not met were spindle RPM on the lathe, and spindle load on

both the lath and mill. All other requirements were met, including all of the desired alert

notifications, machine status, and spindle status aspects. The reason that the other two criteria

were not completed or pursued further was because the solutions to these would start to venture

outside of the scope of this research. This research intended to answer if the integration of these

machines into a larger smart system would be feasible, and evidence supports this. RPM and

spindle load fall more appropriately into the “features” category in which they would be nice to

have and add on, but are not necessary in order to answer or demonstrate proof of smart factory

integration. They do, however, provide important pieces of information that should be acquired

in future research and setups and will more than likely be implemented at a later date.

95

5 CONCLUSIONS AND RECOMMENDATIONS

 Conclusions

5.1.1 Unified Connectivity

Is it possible to establish unified connectivity between manual lathes/mills and a

computer?

5.1.1.1 Lathe

From the setup and results of the lathe portion of this project, it is possible to establish

unified connectivity between a manual lathe and a computer. The lathe connectivity was

accomplished by measuring and acquiring data using National Instruments devices and having its

control program, LabVIEW, send that data to a computer to a commonly used piece of software

in the manufacturing industry called kepware (KEPServerEX) via an OPC UA connection. 24/7

connectivity was set up with the ability to send its data to a visualization tool on an IIoT platform

called the ThingWorx Manufacturing Apps. Although setup was costly, the principles and steps

used prove valuable for implementation of other types of NI products across the manufacturing

industry everywhere. From the evidence provided, it can be reasonable assumed that unified

connectivity is indeed able to be established and allow a lathe to become fully integrated as part

of a larger smart system.

96

5.1.1.2 Mills

From the setup and procedures shown, it was discovered that it is indeed possible to

establish unified connectivity between manual mills and a computer. With this setup, a quick and

easy solution to establish unified connectivity was constructed to a device that was not initially

meant to be tracked and monitored using a relatively inexpensive communication card to convert

Toshiba protocol into a more common Modbus TCP/IP protocol.

5.1.2 Real-Time Monitoring

Can the information being received from these machines be reliably manipulated in order

to display real-time monitoring?

5.1.2.1 Lathe

The information being received from the lathe can be reliably manipulated in order to

display real-time monitoring. That information is able to be displayed in a variety of ways to

determine if the machine is on, running, in planned downtime, in unplanned downtime, offline,

etc. The KPIs are able to be measured off of the lathe. However, the level of real-time

monitoring in the lathe is limited by the limited amount of raw data being sent to the

manufacturing apps. Based off of test results on the most common lathe state conditions, it was

determined that features not tied to the machine and motor electrical channels (brake status,

RPM, etc.) would not be able to be reliably monitored. Real-time monitoring was able to be

established, but facet 2 in Table 1-1 regarding RPM will not be implemented at this time.

97

5.1.2.2 Mills

The information being received from the mills can, in fact, be reliably manipulated in

order to display real-time monitoring. The amount of information that was able to be monitored

was dramatically more than that of the lathe because the inverter already tracking numerous

pieces of information. That information was able to be monitored in real-time and displayed in

user-friendly visualization tools of the manufacturing apps. Aspects of these monitored pieces of

information include KPI evaluations of all of the mills, alert monitoring, and machine status.

Additional tags, such as RPM and machine state tags, were able to be created and monitored

based off of linear relationships and other patterns, providing more even more data.

5.1.3 Issue Identification

From the data being transferred and monitored, can issue identification be implemented

to alert shop supervisors in the event of anomalies?

5.1.3.1 Lathe

Once the data is coming into the manufacturing apps or ThingWorx Composer, logic was

able to be written and alerts were able to be configured to reliably send an automated notification

in the event of several anomalies: after-hour operation, and lost connection. The alert to be sent

in the event of heavy cutting or a crash, the voltage behaviors of the raw data under heavy

cutting conditions and the behavior when another machine was turned on were too similar to

reliably trigger a true-positive of a machine crash. Each of the alerts also answered the alerts

desired by the shop supervisor.

98

5.1.3.2 Mills

Once the data is coming into the manufacturing apps or ThingWorx Composer, logic was

able to be written and alerts were able to be configured to reliably send an automated notification

in the event of several anomalies: after-hour operation, and a high RPM. Additionally, a reliable

notification was able to be created for the mills that would notify the shop supervisor of heavy

cutting, or a crash. Other notifications may be constructed in the future, but these were the

features to test for issue identification capabilities, and were constructed in response to the

request of the shop supervisor.

 Recommendations for Future Research

For the lathe connection, it would be useful to try and find more ways to apply additional

sensors so that RPM, spindle load, light status, coolant status, spindle forward/spindle reverse,

etc. could be tracked and monitored. It would also be useful to see if there is a way to tap into the

monitor that displays the position of the tool and have that be monitored in the manufacturing

apps as well.

Additional pieces of data will allow for more monitoring and a more comprehensive view

of the state of the machine. It will also allow for more anomalies to be tracked.

For the mills, it would be beneficial to the shop supervisors or TAs to be able to monitor

the spindle direction, the table position, and whether or not the spindle is in high gear or low

gear. They both have ranges in which they operate safely, and being able to tell which gear the

machine is in would help provide accurate alerts and notifications with a more detailed

explanation of what is occurring.

99

From the aspect of the manufacturing apps, it would be useful to customize the KPIs to

have visuals of the information that is desired by the shop supervisors. The manufacturing apps

are naturally built for the mass manufacturing setting. Finding a way to customize the apps for

any environment would be beneficial for industry as well in the event that customization is

needed

100

REFERENCES

Bates, Jeff. 2018. "Merging Legacy Equipment with the Industrial Internet of Things: Three
Approaches for Integrated Data."

Biron, Joe, Don Busiek, and Jon Lang. 2018. "The State of the Industrial Internet of Things: A

Spotlight on Industrial Innovation."

Ivester, Robert W., and Jarred C. Heigel. 2000. Smart Machining Systems : Robust Optimization

and Adaptive Control Optimization for Turning Operations. vol. Book, Whole. Dearborn:
Society of Manufacturing Engineers.
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=3337873.

Kepware. 2019. "Thingworx Native Interface." https://www.kepware.com/en-

us/products/kepserverex/features/thingworx-native-interface/.

Kumar, Manoj, Rahul Vaishya, and Parag. 2018. "Real-Time Monitoring System to Lean

Manufacturing." Procedia Manufacturing 20 (2018/01/01/): 135-140.
https://dx.doi.org/https://doi.org/10.1016/j.promfg.2018.02.019.

McAvoy, Jack. 2019. PTC. 2019. Form of Item.

https://www.businesswire.com/news/home/20181101005795/en/PTC-Ranked-Number-
IoT-Platforms-Report-Rapid.

McKewen, Ellen. 2015. "What Is Smart Manufacturing? (Part 1a)." Form of Item.

https://www.cmtc.com/blog/what-is-smart-manufacturing-part-1a-of-6.

Muhuri, Pranab K., Amit K. Shukla, and Ajith Abraham. 2019. "Industry 4.0: A Bibliometric

Analysis and Detailed Overview." Engineering Applications of Artificial Intelligence 78:
218-235. https://dx.doi.org/10.1016/j.engappai.2018.11.007.

Petrova-Antonova, Dessislava, Georgi Andreev, and Sylvia Ilieva. Unified Connectivity of Iot

Devices through Abstraction of Application Protocols: ACM.

https://ebookcentral.proquest.com/lib/%5bSITE_ID%5d/detail.action?docID=3337873
https://www.kepware.com/en-us/products/kepserverex/features/thingworx-native-interface/
https://www.kepware.com/en-us/products/kepserverex/features/thingworx-native-interface/
https://dx.doi.org/https:/doi.org/10.1016/j.promfg.2018.02.019
https://www.businesswire.com/news/home/20181101005795/en/PTC-Ranked-Number-IoT-Platforms-Report-Rapid
https://www.businesswire.com/news/home/20181101005795/en/PTC-Ranked-Number-IoT-Platforms-Report-Rapid
https://www.cmtc.com/blog/what-is-smart-manufacturing-part-1a-of-6
https://dx.doi.org/10.1016/j.engappai.2018.11.007

101

Porter, Michael E., and James E. Heppelmann. 2014. "How Smart, Connected Products Are
Transforming Competition." Harvard business review.
http://www.econis.eu/PPNSET?PPN=804389543.

---. 2015. "How Smart, Connected Products Are Transforming Companies." Harvard business

review. http://www.econis.eu/PPNSET?PPN=837835453.

PTC. 2017. "13 Considerations for Your Warehouse Management System."

---. 2018. 3d Systems Accelerates Iot Initiatives with Thingworx Iiot Platform: PTC.

Qi, Qinglin, and Fei Tao. 2018. "Digital Twin and Big Data Towards Smart Manufacturing and

Industry 4.0: 360 Degree Comparison." IEEE Access 6: 3585-3593.
https://dx.doi.org/10.1109/ACCESS.2018.2793265.

Roblek, Vasja, Maja Mesko, and Alojz Krapez. 2016. A Complex View of Industry 4.0 April-

June 2016.

Statista. 2018. "Internet of Things (Iot) Connected Devices Installed Base Worldwide from 2015

to 2025 (in Billions)." https://www.statista.com/statistics/471264/iot-number-of-
connected-devices-worldwide/.

Techopedia. 2019. "Smart Device." 2019. Form of Item.

https://www.techopedia.com/definition/31463/smart-device.

Thingworx. 2018. "Ptc; Colfax Selects Thingworx Platform on Microsoft Azure to Accelerate Iot

Initiatives across Its Businesses." Journal of Engineering (Atlanta), NewsRx.
https://search.proquest.com/docview/1999427238.

Wang, Jinjiang, Yulin Ma, Laibin Zhang, Robert X. Gao, and Dazhong Wu. 2018. "Deep

Learning for Smart Manufacturing: Methods and Applications." Journal of
Manufacturing Systems 48: 144-156. Accessed Jul.
https://dx.doi.org/10.1016/j.jmsy.2018.01.003.

Wrenn, Kevin, and Brian Thompson. 2018. "Designing Smart Connected Products."

Zhong, Ray, Xun Xu, Eberhard Klotz, and Stephen Newman. 2017. "Intelligent Manufacturing

in the Context of Industry 4.0: A Review."

http://www.econis.eu/PPNSET?PPN=804389543
http://www.econis.eu/PPNSET?PPN=837835453
https://dx.doi.org/10.1109/ACCESS.2018.2793265
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.techopedia.com/definition/31463/smart-device
https://search.proquest.com/docview/1999427238
https://dx.doi.org/10.1016/j.jmsy.2018.01.003

102

APPENDIX A: LABVIEW CODE

LabVIEW code written to acquire the voltage values from port_0, port_2, and the runtime total

LabVIEW code used to establish OPC UA connection with KEPServerEX

103

LabVIEW code written and used in initial connection to ThingWorx using Rest API

