
Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2015-03-01

The Programmatic Generation of Discrete-Event
Simulation Models from Production Tracking Data
Christopher Rand Smith
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Industrial Technology Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Smith, Christopher Rand, "The Programmatic Generation of Discrete-Event Simulation Models from Production Tracking Data"
(2015). All Theses and Dissertations. 5829.
https://scholarsarchive.byu.edu/etd/5829

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F5829&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F5829&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F5829&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F5829&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F5829&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1062?utm_source=scholarsarchive.byu.edu%2Fetd%2F5829&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/5829?utm_source=scholarsarchive.byu.edu%2Fetd%2F5829&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

The Programmatic Generation of Discrete-Event

Simulation Models from Production

Tracking Data

Christopher Rand Smith

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Charles R. Harrell, Chair
Michael P. Miles

Andrew R. George

School of Technology

Brigham Young University

March 2015

Copyright © 2015 Christopher Rand Smith

All Rights Reserved

ABSTRACT

The Programmatic Generation of Discrete-Event
Simulation Models from Production

Tracking Data

Christopher Rand Smith
School of Technology, BYU

Master of Science

Discrete-event simulation can be a useful tool in analyzing complex system dynamics in
various industries. However, it is difficult for entry-level users of discrete-event simulation
software to both collect the appropriate data to create a model and to actually generate the base-
case simulation model. These difficulties decrease the usefulness of simulation software and
limit its application in areas in which it could be potentially useful.

This research proposes and evaluates a data collection and analysis methodology that
would allow for the programmatic generation of simulation models using production tracking
data. It uses data collected from a GPS device that follows products as they move through a
system. The data is then analyzed by identifying accelerations in movement as the products
travel and then using those accelerations to determine discrete events of the system. The data is
also used to identify flow paths, pseudo-capacities, and to characterize the discrete events. Using
the results of this analysis, it is possible to then generate a base-case discrete event simulation.

The research finds that discrete event simulations can be programmatically generated
within certain limitations. It was found that, within these limitations, the data collection and
analysis method could be used to build and characterize a representative simulation model. A test
scenario found that a model could be generated with 2.1% error on the average total throughput
time of a product in the system, and less than 8% error on the average throughput time of a
product through any particular process in the system. The research also found that the time to
build a model under the proposed method is likely significantly less, as it took an experienced
simulation modeler .4% of the time to build a simple model based off a real-world scenario
programmatically than it did to build the model manually.

ACKNOWLEDGEMENTS

Many thanks to my wife, Stephanie, for her help, patience, and consistent encouragement

throughout. My family, most particularly parents, grandparents, siblings, in-laws, and all others,

also deserve my sincere gratitude for their support and encouragement. In addition, I would like

to thank my committee for their help and support.

TABLE OF CONTENTS

ABSTRACT ... ii

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

1 Introduction ... 1

1.1 Background ... 1

1.2 Objective ... 2

1.3 Justification ... 2

1.4 Limitations .. 3

1.5 Glossary of Terms ... 4

2 Literature Review ... 5

2.1 Problem Definition ... 5

2.2 Programmatic Model Generation .. 6

2.3 Data Collection for Simulation Models .. 6

2.4 Creating Models from GPS Data .. 6

2.5 GPS Accuracy ... 8

2.6 Multi-Resolution Modeling .. 10

3 Methodology .. 11

3.1 Introduction ... 11

3.2 Development of Model Creation Algorithm ... 11

3.3 Development of Data Collection System .. 12

3.4 Scenario Testing ... 14

4 Results and Analysis ... 16

4.1 Data Analysis Algorithm .. 16
iv

4.1.1 Identifying Process Steps .. 16

4.1.2 Characterizing Process Steps .. 19

4.1.3 Identifying Product Flow .. 20

4.1.4 Algorithm Output Capability .. 22

4.2 Data Gathering Tool Variation ... 24

4.3 Scenario 1 - Car Route .. 25

4.3.1 Scenario 2 - Walking Route .. 26

4.3.2 Limitations of Data Gathering Tool .. 26

4.4 Programmatically Generated Model Accuracy ... 28

4.4.1 Generated Simulation .. 29

4.4.2 Scenario 1 - Car Route .. 31

4.4.3 Scenario 2 - Walking Route .. 33

4.5 Capability of Proposed Model-Building Methodology .. 34

4.6 Time-Savings of Proposed Model-Building Methodology .. 35

5 Conclusions .. 36

5.1 Limitations of Algorithm .. 36

5.1.1 Algorithmic Limitations .. 37

5.1.2 Methodical Limitations ... 39

5.2 Summary ... 41

References .. 43

Appendix A. Data Collection Tool Code .. 45

A.1. Code - Location.php .. 45

Appendix B. Data Analysis Algorithm Tool Code .. 47

B.1. Code - DataAnalysis Module .. 47

v

B.2. Code - Settings Form .. 58

B.3. Code - Distribution-Fitting.php ... 59

Appendix C. FlexSim Data Translator Code .. 61

C.1. Code - FlexSim Function: ModelImport ... 61

C.2. Code - FlexSim Function: FivePointDistribution ... 65

Appendix D. Five-Point Distribution ... 66

D.1. Explanation ... 66

vi

LIST OF TABLES

Table 3-1: Example of Data Gathering Tool Output .. 13

Table 4-1: Output of the Data Analysis Algorithm from the Car Route Scenario 22

Table 4-2: Algorithm Output Usage in Model Input .. 23

Table 4-3: Error of Characteristics of Programmatically Generated Model 29

Table 4-4: Characteristics of Manually Generated Original Model ... 29

Table 4-5: Comparison of Observed and Generated Simulation Processing Times 32

Table 4-6: Comparison of Observed and Manual Simulation Processing Times 32

Table 4-7: Characteristics of Walking Route System. .. 33

vii

LIST OF FIGURES

Figure 4-1: Acceleration in Time of a Product and Cutoff Point ... 17

Figure 4-2: Scatterplot of Coordinate Locations During Trial 1 .. 25

Figure 4-3: Original (Top) and Programmatically Generated (Bottom) Simulations................... 30

Figure 4-4: Position of Data Points in Scenario 2 Trials .. 33

viii

1 INTRODUCTION

1.1 Background

Discrete-event simulation software has proven to be a reliable tool for system

improvement, because it is able to assist a user in identifying and solving problems. An accurate

simulation model also gives the user an opportunity to explore a defined system or test “what-if”

scenarios without having to invest the time and money that would be necessary to test out

different scenarios on the actual system. These benefits are infrequently realized in industry,

because entry-level users of discrete-event simulation software find it difficult to gather the data

necessary to create a simulation and also have difficulty using correctly gathered data to create a

base case scenario. Without the base-case scenario it is difficult to explore the system or test

“what-if” scenarios using simulation.

However, if discrete-event simulation software were able to reduce the amount of

training, experience, and time necessary to create accurate simulation models, then a discrete-

event simulation tool would be useful for a larger subset of people. The use of discrete-event

simulation tools would likely increase due to the more favorable balance between the time

invested in creating the model and the benefits of the insight gained from the model.

1

1.2 Objective

The purpose of this thesis is to develop methods for collecting and analyzing product

location data as it moves through production in order to programmatically create discrete-event

simulation models. The research answers the following questions:

1. Can timestamp and location data collected through a GPS tracker be used to facilitate

programmatic model creation?

2. Can programmatic model creation tools be used to facilitate model creation in a way

that product flow and processing is determined through analysis of a sample of

product location data as it moves through a system?

3. Can the lead time required to create an accurate simulation model be reduced by

using automated data collection and programmatic model creation?

4. What types of data are ignored or unachievable through this form of analysis?

1.3 Justification

The following two problems are currently experienced by users that are beginning to use

discrete-event simulation software:

1. The data collection phase of a project does not always occur in the same time period

as model creation, which often results in inaccurate model results.

2. The user experiences a high lead time from the start of model creation to getting

results of simulated what-if scenarios.

2

Currently discrete-event simulation software has a steep learning curve, which

necessitates large amounts of training and/or expertise in order to produce models that can

accurately depict the real-world scenario that is being simulated. Over the years many changes

have been made in various discrete-event simulation software packages to try to reduce the

learning curve, and enhance the ability of an entry-level user. These changes have managed to

decrease the amount of coding experience and other skills necessary to model common

scenarios. However, many entry-level users of discrete-event simulation software still become

discouraged by the amount of training, experience, and, most importantly, time that is necessary

to achieve worthwhile simulation results. By supplying a possible solution to this difficulty the

usefulness of simulation software can be enhanced. However, this research does not presume that

training and experience will no longer be useful, as any significant modifications of the base case

will have to be done by a more experienced modeler.

1.4 Limitations

This research is limited to the scope of systems where the products physically move

through a set of processes. It also does not attempt to include in the generated simulations the

actions of indirect resources on the product. Therefore, this method would be ineffective in

instances where indirect resource capability is the main objective of simulation, and would be

more effective where throughput and bottleneck analysis is the desired result of simulation. For

additional limitations of method see section 5.3 Limitations of Algorithm.

3

1.5 Glossary of Terms

Computer Simulation: A computer model that is made to represent or mimic an actual

system. The model is then used to draw inferences on the behavior of the actual system.

Discrete-Event Simulation (DES): A subset of computer simulation that is involved in

modeling systems where events drive the system. This is in contrast to other forms of computer

simulation including fluid simulation, stress simulation, and others where events do not drive the

simulation.

Processor: A step in a system in which the product is contained for a determined interval

of time. This step differs from a queue, because although the interval of time may be non-

constant it is not considered waiting time. Movement of an item between system steps is also

modeled as a processor in this research.

Product: The item that moves through the system. This is the part of the system in the

research that is tracked using a GPS tracking system.

Queue: A step in the system where the time can be classified as waiting time. The

waiting time could be determined be either a downstream or upstream process.

Route: The specific series of processors and queues that the product moves through in

the system. The route can be constant or variable. Different products may experience different

routes or routing as they move through the system.

 System: The aggregate of all non-product items making up a model.

4

2 LITERATURE REVIEW

2.1 Problem Definition

There is an abundance of articles both within academia and from without that highlight

the problem that is being addressed by this thesis. A particularly good article highlights the

amount of time in a simulation model that is spent collecting, analyzing, and inputting data into

the simulation model (Skoogh, 2012). This article makes the following noteworthy observation:

However, despite its potential, industries worldwide have not adopted DES
completely in their production development process. One reason is arguably that
production simulation projects tend to be slow in providing clients with model
results. This is a significant disadvantage, since manufacturing development and
design projects usually rely on rapid responses from analyses. Hence, renouncing
precision in favor of quick response, organizations are tempted to choose less
complex tools. (Skoogh, 2012)

This observation is helpful in defining the problem that DES is currently experiencing. The lead

time between starting the analysis and getting results seems to be prohibitively long for many

potential users. This article also mentions that “activities in the input data management process

constitute around one third of the total time consumption in DES projects.” This is important,

because the proposed data collection and analysis portion of this research aims to reduce both

that time and the model creation time in the total time of a DES project. It is clear that a problem

currently exists, because of the long lead time in DES projects. It is also clear that resolving this

problem could lead to DES being used more frequently as a tool.

5

2.2 Programmatic Model Generation

Programmatic model generation is a topic that has been explored in a variety of other

articles. One article, “Stochastic generation of discrete-event simulation models,” identifies the

different steps that are necessary in creating models (Huber, 2008). These steps are identified as

the following: definition of input parameters, model hierarchy creation, component placement,

component linkage, and variable variation. This research attempts to programmatically

accomplish each of the steps as outlined in this previous research. For similar research that has

been done to programmatically create models for forms of data analysis other than simulation see

Section 2.4 Creating Models from GPS Data.

2.3 Data Collection for Simulation Models

Many articles have identified data collections methods for the successful creation of

statistically representative simulation models. An article, “Automated input data management:

Evaluation of a concept for reduced time consumption in discrete event simulation,” proposes an

idea that attempts to reduce the amount of time that is necessary for data input in creating a

simulation model (Skoogh, 2012). The idea presented is a complicated system that allows for

real-time simulation updates. The system derived in this research accomplishes a similar goal to

the solution that will be proposed, but seems to do it in a much more intrusive manner to an

operation than would be feasible in many manufacturing environments.

2.4 Creating Models from GPS Data

There are a few articles of research that have used GPS data to create models of real-

world scenarios, but they were not creating discrete-event simulations. Most of these articles

6

dealt with analyzing traffic flow patterns, and creating models of traffic networks.

Programmatically modelling traffic networks actually has many similarities to programmatically

generating discrete-event simulations, because they both must identify when events happen, how

long they take, and how objects move between those events. There were a couple interesting

articles that attempted to use GPS data to create models of traffic flow.

One article was using GPS data to try to identify the most efficient traffic route and then

compared that route to those that people chose manually (Spissu, 2011). This article establishes

some of the difficulties with using GPS data from the modelling of routes. It found the

following:

Although GPS-based data collection and, in particular, smart phone data collection
have been shown to offer a number of advantages in the present and earlier studies,
some technological limitations still affect data quality. In this work, 42% of the
reported trips could not be associated with the corresponding routes mostly because
of canyon effects, signal reflex, and user carelessness. (Spissu, 2011)

The findings from that article make it clear that care must be taken when using GPS to ensure

that data is collected in areas where its limitations can be reduced.

Another article was attempting to estimate travel time of routes through an arterial

network of roadways (Pan, 2007). The difficulty with this task is that arterial roadways have

many stops signs, stop lights, and congestion that makes classifying that time difficult. The

planned stoppages (i.e. stop signs and stop lights) were classified in the research as links. The

method of the research was to use continuously sampled GPS data to identify when a vehicle was

decelerating and then attributed any time between that deceleration and the next acceleration to

the closest link (Pan, 2007). That link was then characterized by an average of the experienced

times during the sample. This article proposes some similar concepts to those that are being

presented in the current research, because the current research also uses acceleration to identify

7

when an object is in a new process. The current research then associates the time between that

acceleration and the next acceleration as belonging to the process. This article found that it was

able to determine the link time (the time between when a person started decelerating at a stop

sign or stoplight to when they finished accelerating afterwards) with about 5.5% error using data

collected with a GPS data collection system.

2.5 GPS Accuracy

This research depends on a data collection tool that can provide a coordinate position.

Specifically this research used GPS coordinates to define product movement through a system.

In order to know the limitation of this research it is necessary to know the limitation of the

devices that were used in collecting the data. The tool’s limitations directly influenced the types

of systems that can use the proposed methodology to create a simulation model. The current

accuracy of a worst-case scenario for uncorrected civilian GPS coordinates at a 95% confidence

level is 7.8 meters (Department of Defense, 2008). However, if one uses multiple satellites,

augmentation services, or other correction methods it is realistic to achieve accuracies within a

few centimeters (NGS, 2014). Therefore, it is reasonably possible to use this method on systems

where the significant distance between processes is greater than the limitation of the data

collection tool, which is a few centimeters. Other methods could be used to gather this type of

data including ultrasonic methods, RF mapping, etc., but those methods, due to their less

developed nature, weren’t explored in this research. GPS is especially useful because of the

active development that is occurring in this area. With newer GPS satellites that are currently in

development, it is anticipated that uncorrected civilian GPS accuracy will drop to 0.63 meters

8

(United States Air Force, 2014). The current research used uncorrected GPS coordinates, which

resulted in significant error in scenarios with movement on a small scale.

Various research articles have used a similar GPS data collection method. One such

research article found that a GPS data collection system could be used to adequately gather

location and timestamp data to track the usage of construction equipment on a construction site

(Pradhananga, 2013). That research acknowledged that there are multiple approaches that could

be used to collect location data, and that each has benefits and limitations. However, as it states:

GPS is well known to work independently (defined as a device that may not require
any other installation of technology on a project site, other than a device on the
resource to track it) and provide real-time data (defined as equal or greater than 1
Hz data update rate)… GPS devices are also affordable and easy to install. The data
it provides can also be analyzed with relative little computational effort. For these
reasons, this work presents the implementation of GPS technology for tracking the
location of construction equipment as it relates to work sampling, including cyclic
activities which are very common in earth moving operations. (Pradhananga, 2013)

Similar benefits are recognized in the current research by using GPS instead of other methods for

tracking location. Another finding from that same research was the observed accuracy that was

achieved with low-cost GPS systems, which was 0.68-4.36 meters (Pradhananga, 2013). It found

the following:

In sum, the GPS data loggers were found to perform better under clear view of sky
while the performance degraded with increasing obstacles. The standard deviations
were high compared to the value of the mean in all cases, indicating that the
readings were not consistent and can vary significantly. It should also be noted that
error rates vary among data loggers. The above error tests, however, provide a
general idea of what data low-cost easy-to-install GPS data can provide.
(Pradhananga, 2013)

From this analysis it would seem that either a higher quality GPS device would need to be used in

order to get data using a GPS for a small scale system, or the GPS device would need to be better

than the low-cost option used in the aforementioned research.

9

2.6 Multi-Resolution Modeling

An interesting caveat to this research is the capability to automatically do multi-

resolution simulation modeling. The idea of multi-resolution modeling is presented in the article

“Using dynamic multiresolution modelling to analyze large material flow systems”

(Dangelmaier, 2004). This article introduces the idea of multi-level simulation modeling. It also

presents the idea of model scope indication by view distance in the model. This suggests that

representative simulation models can be achieved by increasing the scope in one area of the

simulation that is crucial to the modeler while decreasing the scope in other areas. This concept

may be a possibility for the simulation models created using the method that are proposed in this

thesis.

10

3 METHODOLOGY

3.1 Introduction

The methodology for developing an algorithm for programmatically generating discrete-

event simulation models from production tracking data was separated into the following three

sequential phases:

Phase 1 – Development of Model Creation Algorithm

Phase 2 – Development of Data Collection System

Phase 3 – Scenario Testing

3.2 Development of Model Creation Algorithm

This phase of research is concerned with being able to replicate a manually generated

simulation model using a programmatic model creation algorithm. For this phase a simple test

case was generated in simulation software. The software used in the research was FlexSim,

which is a discrete-event simulation software provided by FlexSim Software Products, Inc. The

model was a simple system with six processing steps. The model included the following basic

procedures: processing steps, multiple exit locations, route reentry, route consolidation, route

splitting, probabilistic routing, and variable processing times. The model was developed in order

to create data that would be used to try to programmatically mimic the original model. The

11

dataset was created from the model by recording the absolute x, y, and z location to a general

origin and the time of every product in the system for every second that the model ran. The

dataset included data for 100 products as they went through the modeled system. This data was

then saved in .csv format and imported into excel for data analysis.

Once the dataset was gathered from the initial model, an Excel VBA-based algorithm was

written to comb through the data to attempt to identify the original processes and routing. For

more information about the data analysis algorithm see section 4.1 Data Analysis Algorithm.

This algorithm was then capable of identifying the steps in the system, a distribution that

characterized the processing times of each step, the capacity of each step, and the routing

through the system. The model was then analyzed to determine the accuracy of the

programmatically generated model to the original simulation model using some key output

characteristics, which included the average processing times of each processing step in the model

and the average throughput for each step in the model. The results of those comparisons can be

found in section 4.3.1 Generated Simulation. After developing the programmatic model creation

algorithm it was important to determine the limitations of the algorithm. These limitations and

their significance were explored and the results are found in section 5.3 Limitations of

Algorithm. Phase 1 was finished once the algorithm was created and the limitations identified.

3.3 Development of Data Collection System

The data collection system was developed to provide the following information about a

product at a constant interval as it moved through the system:

12

1. Unique Product Identifier – An indexed number for each product observed.

2. Longitude – The longitudinal position of the observed product at a given time.

3. Latitude – The latitudinal position of the observed product at a given time.

4. Product Type Identifier – An indexed number for each product type observed.

5. Timestamp – The time (in seconds) since the beginning of observation

Once this information was collected the longitude and latitude were converted to X and Y

coordinates based off of an origin at the first position of the first observed product. The

calibration time was also removed from the beginning of the dataset. Once these steps were done

this information created a collection of data points that looked similar to the example in Table

3-1.

Item X Y Type Time
1 0 0 1 12
1 1.519118 -1.61331 1 13
1 3.038236 -3.22662 1 14
1 1.082859 -6.48886 1 15
1 -2.39164 -8.1378 1 16
1 -20.7806 -17.7902 1 17
1 -35.695 -25.7936 1 18
1 -62.5246 -33.7249 1 19
1 -74.4397 -33.6527 1 20
1 -95.1282 -33.5273 1 21
1 -103.901 -33.4741 1 22
1 -115.156 -33.4058 1 23
1 -115.419 -33.4042 1 24

Table 3-1: Example of Data Gathering Tool Output

13

3.4 Scenario Testing

Scenario testing was done in an attempt to verify the capability of the proposed

methodology. Two scenarios were developed in order to test the data collection system and the

simulation software data translator that was used to build the models from the data analysis

algorithm output.

The first test scenario was done on a large scale by identifying a driving route between

two locations. The route went through stop signs and traffic lights, which broke the route into

multiple steps. The route was driven three times in order to act as three products moving through

the system. The route was done on a large scale in order to determine the accuracy of model

creation where the amount of tool induced variability was minimal. The actual time for each

segment was recorded during each route. The car was also GPS tracked during each route. The

aggregated GPS data was then sent through the programmatic model creation algorithm in order

to create a representative model, and to identify the various segments. The programmatically

identified time for each segment was then compared to the recorded time. The distribution of

average trip times was also compared to the distribution of calculated trip times. The results of

this scenario can be found in section 4.3.2 Scenario 1 – Car Route.

The second scenario that was analyzed was to determine if the GPS data collection

system would be accurate enough in a small production system. This scenario was setup by

creating five production steps in a small room. The products moved through the system

according to an established model. The time spent in each location was determined variably by

predetermined distributions. Once the system was setup, five products were tracked using GPS

as they moved through the system. The aggregated GPS data for the five products was then sent

through the model generation algorithm to create a simulation model to represent the predefined
14

system. The similarity between the programmatically created model and the predefined system

was then analyzed. The analysis of this scenario can be found in section 4.3.3.

15

4 RESULTS AND ANALYSIS

4.1 Data Analysis Algorithm

 To convert GPS data to a discrete-event simulation model it is necessary to run the data

through an algorithm that makes calculations and crucial assumptions. The algorithm

calculations can be broken into three major steps, which are the following:

1. Identify the various process steps.

2. Characterize each of the identified steps.

3. Identify the path the products take as they flow through the process.

As the algorithm moves through these calculations it makes many assumptions. Knowing the

implicit assumptions in the calculations is a critical factor in creating an accurate model using the

algorithm described below.

4.1.1 Identifying Process Steps

The first step in the algorithm is to identify the process steps. This is the most robust part

of the model generation algorithm, because it is the one with the least presumptive assumptions.

This step can be broken down into the following minor steps for each observation:

1. Create a chart of the difference in the absolute value of the instantaneous acceleration of

the object as it moves through time.

16

This step is done by finding the distance that a tracked product traveled between each

data point, and then finding the difference between that calculated point and the previous

calculated point. This gives the instantaneous velocity of the product at each time interval. Then

the acceleration is found by calculating the difference between those velocities. When charted

this gives a chart that should look something like the graph in Figure 4-1.

Figure 4-1: Acceleration in Time of a Product and Cutoff Point

2. Determine the differential acceleration cutoff point.

This cutoff point determines the scope of the resulting model. The lower the cutoff point

the more processes we are likely to create from the data, because it will be more sensitive to

change. The higher the cutoff point the less likely we are to experience processes that are driven

by noise in the data. Therefore, the cutoff point should be chosen in a position where it is less

than all relevant accelerations, but is higher than all accelerations that are a result of noise. An

example of such a cutoff is shown in Figure 4-1.

17

3. Determine the location sensitivity measure.

This sensitivity is basically a location sensitivity. A location sensitivity measure must be

used because exactly the same GPS locations are unlikely in simultaneous observations.

Therefore, one must be willing to group processes that start and end in similar areas as the same

process. Therefore, a location setting of one would mean that if a process was found that started

within one distance unit of an existing process, and ended within one distance unit of the same

existing process, then it would be considered the same process.

4. Split each observation into its respective processes using the acceleration cutoff point.

If the acceleration is above the cutoff point, then the points before the cutoff point are

considered a separate process than the points after the cutoff point. For each of the identified

processes calculate a processing time, by subtracting the last time in the process by the first time

in the process. Also determine the process starting point by the first GPS coordinate, and it’s

ending point using the last GPS coordinate.

5. Using the location sensitivity measure, group similar processes between observations.

Use the methods described in detail in the next section, which allow for stochastic

representation of the process.

These steps use the GPS data, and a couple cutoff points to programmatically break the

data into the various processing steps that the product experienced during the observed run.

18

4.1.2 Characterizing Process Steps

 The next step in the data analysis algorithm was the need to characterize each of the

process steps that were identified. This process can be done in the following, not necessarily

sequential, steps:

1. Identify a stochastic representation of the processing time for each step

This can be done in a variety of ways. The data could be run through a system that

identifies a distribution with the highest goodness of fit. The distribution could then be sampled

from for the stochastic representation. However, in this research it was instead determined to

generate a stochastic representation whose method could be applied to any situation and

adequately represent the sample. The distribution is described in detail in Appendix D, but it is

basically determined by placing 20% of the area under the probability density curve as a uniform

distribution between the observed minimum and the data point at the 20th percentile of the data.

Then doing likewise for each 20th percentile above that until the last uniform distribution is

located between the 80th percentile of data and the maximum. This distribution does not give a

perfect representation of the data. However, given the other much more important assumptions

used in this generation algorithm this assumption does not seem egregious.

2. Identify if the process is deterministic or indeterministic

The classic examples of both would be a step with a defined process time being

deterministic, and a step that acts as a queue being indeterministic. This research does not

attempt to create a method to identify if a process is deterministic or indeterministic. It assumes

that every process is deterministic. However, this assumption does limit the effectiveness of the

19

algorithm in creating exactly representative simulation models. This step might be achieved by

using the methods explained in section 4.4.1.3. Processing Time vs. Delay Time Identification.

3. Identify a pseudo-capacity of each step

This step can only be done if the sample was taken from sequential products. It is done by

looking at each process step at each unit of time and finding the time unit where the maximum

number of products were in the process step. That maximum can then be considered a pseudo-

capacity of that step in the system. This method is extremely limited, because it is only an

estimated capacity based off of observation, and not necessarily the true limit of the particular

step’s capability. A true capacity would reflect how many units a step could handle in isolation,

however this method creates a capacity that only reflects the experienced maximum in the

sample, and not a true maximum. This method will underestimate the true capacity of any step

where it’s capacity is being limited by another step in the system. Therefore, if capacity

considerations are an important in the desired outcome of the model it would be prudent to adjust

the capacities of the steps of the generated model to more accurately reflect the observed real-

world scenario.

4.1.3 Identifying Product Flow

 The next step in the data analysis algorithm is creating the flow by which the products

move through the process steps of the system. This is done by accomplishing the following two

tasks:

20

1. Identify the flow paths

To identify the flow paths it is necessary to recognize the path that each observed product

experienced as it moved through the system. The method to determine paths is to create a list of

the orders a product went through. Once this list is generated for each product we can then make

sure to send the simulation program the necessary information to make the connections between

those events. The output shown in Table 4-1 does this in the columns labeled “IN” and “OUT”.

2. Characterize the flow paths

This is the more difficult of the two tasks associated with creating the flow paths. This

step attempts to identify the logic by which a product decides which step to move to when there

are multiple options. This is not an issue when one step moves to only one other step. But in

other situations, such as which step to proceed to in a situation where one step can go to multiple

other steps, the characterizing of the logic associated with that particular flow is important in

order to accurately reflect the real-world scenario. In order to simplify the model generation

algorithm it was assumed that the generated models relied on probabilistic routing. In other

words it was assumed that, in a situation where a split in routing occurred after a step, a defined

percentage went down each route. If this algorithm was used on a system with multiple product

types, then each product type’s flow would be generated independently. This would be done by

creating probabilistic routing for each case. The algorithm would then be able to split routing by

product type by sending 100% of a theoretical product type 1 to one step and 100% of a

theoretical product type 2 to another step. The assumption of probabilistic routing allows us to

analyze the data by looking at every time an observation left a particular step and then develop a

percentage from the results of where the observations ended up going. This method is not

complete as a lot of routing is not done in a probabilistic manner. However, one could develop
21

methods to identify various other types of routing such as first available or round-robin (see

section 5.3.1.2. Probabilistic Flow).

4.1.4 Algorithm Output Capability

 Using the methods in the algorithm it is possible to generate an output that looks

something like Table 4-1. Table 4-1 is the output generated for the car route scenario (see

Section 4.3.2).

Table 4-1: Output of the Data Analysis Algorithm from the Car Route Scenario

The simulation software package is then required to have a translator that takes these simulation

outputs and programmatically create the steps and flow for the model (see Table 4-2).

Process Start X End X Start Y End Y Angle Length IN OUT Times Distributions Pseudo-Capacity
0 0 -145.78 0 325.3091 114.1385 356.4799 test|-1`1 37~37~48 fivepointdistribution(37~37~37~39.2~43.6~48) 3
1 -146.535 74.68844 371.9068 694.5784 55.56544 391.225 test|0`0.6667 12~31 fivepointdistribution(12~15.8~19.6~23.4~27.2~31) 2
2 131.5003 857.4866 700.4009 698.6524 -0.13799 725.9884 test|1`1 45~15 fivepointdistribution(15~21~27~33~39~45) 2
3 930.8949 1321.835 696.8568 695.7362 -0.16423 390.9417 test|2`1~13`1 8~9~8 fivepointdistribution(8~8~8~8~8.4~9) 2
4 1396.76 1765.415 695.787 689.7104 -0.94433 368.7053 test|3`0.6666 8~12 fivepointdistribution(8~8.8~9.6~10.4~11.2~12) 2
5 1839.646 2203.096 688.7353 680.8994 -1.23508 363.5344 test|4`0.5 8 fivepointdistribution(8~8~8~8~8~8) 1
6 2255.831 2648.232 679.9061 669.3899 -1.53513 392.542 test|5`1~4`0.5 10~15 fivepointdistribution(10~11~12~13~14~15) 2
7 2683.38 2746.572 667.9305 39.19389 -84.2607 631.9042 test|6`1~14`1 20~18~18 fivepointdistribution(18~18~18~18.4~19.2~20) 2
8 2746.214 2744.277 -20.1294 -950.257 269.8807 930.1292 test|7`0.6667 22~23 fivepointdistribution(22~22.2~22.4~22.6~22.8~23) 1
9 2744.241 2368.044 -976.235 -1047.52 190.7297 382.8907 test|8`1~16`1 15~18~20 fivepointdistribution(15~16.2~17.4~18.4~19.2~20) 2

10 2336.078 1072.152 -1047.12 -1037.96 179.5844 1263.959 test|9`1 29~27~15 fivepointdistribution(15~19.8~24.6~27.4~28.2~29) 2
11 1009.297 352.4403 -1036.97 -1041.03 180.3541 656.8693 test|10`1 16~19~22 fivepointdistribution(16~17.2~18.4~19.6~20.8~22) 2
12 341.7351 49.22311 -1041.31 -1044.54 180.6324 292.5298 test|11`1 test|-2`1 22~25~23 fivepointdistribution(22~22.4~22.8~23.4~24.2~25) 2
13 -156.655 581.5314 372.2545 674.5336 22.26856 797.6786 test|0`0.3333 23 fivepointdistribution(23~23~23~23~23~23) 1
14 1562.073 2637.7 671.7496 655.1939 -0.88181 1075.754 test|3`0.3333 23 fivepointdistribution(23~23~23~23~23~23) 1
15 2746.353 2745.21 7.54237 -380.19 269.8312 387.7336 test|7`0.3333 9 fivepointdistribution(9~9~9~9~9~9) 1
16 2745.062 2744.242 -443.339 -975.382 269.9117 532.0429 test|15`1 13 fivepointdistribution(13~13~13~13~13~13) 1

22

Table 4-2: Algorithm Output Usage in Model Input

ALGORITHM OUTPUT DATA FLEXSIM MODEL INPUT DATA
Process Unique Identifier Object Name

Start X Object X Position

Start Y Object Y Position

Angle Object Z Rotation
Length Object Length

In Object Input Connections, Input Object Flow Logic, Source Locations

Out Sink Locations, Object Flow Logic
Distributions Object Processing Time

Pseudo-Capacity Object Max Content

A translator was developed for the FlexSim simulation software package that took the data and

generated a model within the software. The FlexSim translator code can be found in Appendix C

– FlexSim Data Translator. The translator followed the following logical steps in creating the

model from the output data:

1. Create the object in the model

2. Name the object

3. Position, rotate, and elongate the object so it is in the correct visual space

between the start and end points

4. Apply the output processing time to the object

5. Apply the pseudo-capacity amount to the object

6. Create sources and sinks in the model

7. Connect the objects using the output flow path

8. Apply the flow logic to the object

23

Once the translator was created it was possible to collect raw GPS data using the data

collection tool, analyze it using the data analysis algorithm tool, and then make that output into a

model using the FlexSim data translator tool. This completed the steps necessary to

programmatically generate a simulation model from raw GPS data.

4.2 Data Gathering Tool Variation

The data gathering tool uses GPS to identify latitude and longitude coordinates at a given

time interval for the duration of the product’s time in the system. These latitudes and longitudes

were then converted to a coordinate system with the origin being the first recorded location of

the first observed product. GPS was chosen over other coordinate location identification methods

due to its developed nature and accessibility for most parties. The GPS used in the experiments

was the GPS chip in an off-the-shelf cellular phone. This GPS technology was intentionally

picked, because it fairly represents the inaccuracies in results that could be expected from many

GPS systems. Given the variability from the tool itself it was determined that the algorithm, in

order to be useful, would have to be able to deal with the inaccuracies created by the tool.

Therefore, the two aforementioned scenarios were developed to test the accuracy of the GPS data

gathering tool.

24

4.3 Scenario 1 - Car Route

 The first scenario used a car route around a large rectangular area (2800’ x 1800’), with

the minimum distance between changes in acceleration being about 100’. The setup of the

scenario was described in Chapter 3. In doing some pre-experiment trials it was noted that a

warmup period was required in order to calibrate the device. In the experiment a calibration

period of 30 seconds was used at the beginning of each trial. Those calibration observations were

then discarded from the data. Once the experiment was setup and a suitable location determined,

the experiment was run. Figure 4-2 is a scatterplot of the location of the vehicle during the two

trips. From the scatterplot one can somewhat visually see the transitions between processes in

the system. Once this data was gathered it was input into the model generation algorithm that

Figure 4-2: Scatterplot of Coordinate Locations During Trial 1

-1200

-1000

-800

-600

-400

-200

0

200

400

600

800

1000

-500 0 500 1000 1500 2000 2500 3000

Y
CO

O
RD

IN
AT

E

X COORDINATE

Plot of Locations During Trials

25

was previously developed. The accuracy of the model generated in this scenario is explored

further in section 4.3.2. This experiment seemed to suggest that when used on a large scale the

accuracy of the GPS was not an inhibiting factor in the accuracy of the programmatically

generated model. This suggests that the GPS tool would be, at least partially, capable of being

used in conjunction with the model generation algorithm to create models with movements that

occur on a large scale like simulations of transportation, supply-chain, logistics, etc.

4.3.1 Scenario 2 - Walking Route

The first scenario was successful in determining that in a situation where the scale of

movement was fairly large the accuracy of the GPS tool was not a significant factor. The purpose

of the second scenario was to determine the effect that variation in the tool had on the

algorithm’s model output when the movements between processes were smaller. This scenario

was done in an area that was about 20’X20’, and the minimum distance between steps was about

10’. The smaller distance between changes in velocity made it so that any inaccuracy of the GPS

tool would be more pronounced in the data that was collected. The accuracy of the

programmatically generated models is explored further in section 4.3.3.

4.3.2 Limitations of Data Gathering Tool

 It was observed that the accuracy of the GPS data gathering tool could play a significant

role in the accuracy of the programmatically generated model. As seen in scenario 2, the

variation observed in the programmatically generated model was more than the variation that

was inherent in the process itself.

26

GPS accuracy is a factor of the device itself, as some GPS devices are more accurate than

others. The GPS device used in this research was not the market leader in accuracy, so it would

be feasible that greater accuracy could be achieved through a more precise and accurate GPS

system. The necessary amount of precision would be dependent on the physical scale of the

subject system, and the desired accuracy of the generated model. For instance, a system could be

in a small physical area where the GPS inaccuracy causes 10% more variation than would be

expected in the system. If in such a system the desired result was to determine if a simple change

would change the output of the system and the change caused a 100% increase in output, then it

may be reasonable to accept the inaccuracy of the GPS for the sake of further analysis. However,

that would have to be determined based on the risk tolerance of the person or organization that is

creating the simulation.

In order to determine the amount of variation that is being caused by the device it would

be necessary to do the following things:

1. Create a sample system where movements were on the same physical scale that

would be used in the subject system.

2. Apply sample speeds or delay times to each process in the sample system. This

can be done by sampling from a distribution or using a flat time.

3. Move the GPS device through the sample system.

4. Analyze the gathered data using the data analyzer.

27

5. Determine the variation caused by the inaccuracy of the GPS tool in the

programmatically generated model by comparing the processing times in the

sample system to the processing times in the programmatically generated

model.

6. Considering desired outcomes of the simulation model, determine if the tool

accuracy is unbearably high for the subject models physical scale.

Using this method it seems possible to determine if a specific GPS tool is accurate and precise

enough to be used in the method proposed in this research. If the above method suggests that it is

not suitable, then one could look into more accurate and precise GPS devices. If no GPS device

seems to work, then it would be necessary to gather coordinate locations in some other way. This

could feasibly be done using RFID mapping or by using a barcode scanner as a product enters

and exits a station and associating that station with a coordinate location. Each of these

techniques could be used with the same data analysis and model generation techniques to

programmatically generate a model. The difficulty with the alternative data gathering methods is

that they would require additional steps or resources that would not be necessary if one would be

able to use the simpler GPS data gathering method.

4.4 Programmatically Generated Model Accuracy

One of the important findings from this research is the accuracy that might be achieved in

various settings using the proposed data analysis algorithm. Each of the three subsequent

scenarios attempted to identify the possibilities and limitations of the proposed algorithm.

28

4.4.1 Generated Simulation

 To create the data analysis algorithm a model was created in FlexSim, a simulation

software package. The model looked like what is seen in Figure 4-3 and had characteristics as

described in . A function was then written to get location data for 100 products as they moved

through the simulation. This data was then fed into the data analysis algorithm. The output of the

data analysis algorithm was then fed back into FlexSim by using the “FlexSim Data Translator”

code in Appendix C. The characteristics of this programmatically generated model were then

compared against the characteristics of the initial model, and a percent error was calculated.

Then both the models were run for 100 replications of 4000 time units, and some critical

statistics were compared. The comparison of characteristics and comparison of critical statistics,

Table 4-3: Error of Characteristics of Programmatically Generated Model

Table 4-4: Characteristics of Manually Generated Original Model

Object Characteristics Inputs Outputs Processing Time Capacity
Source Processor 1
Processor 1 Source Processor 2 triangular(15, 25.0, 20.0, 0) 1
Processor 2 Processor 1,Processor 6 Processor 3 bernoulli(50, 10, 11, 0) 3
Processor 3 Processor 2 Processor 4, Processor 5 exponential(10, 3, 0) 4
Processor 4 Processor 3 Processor 6, Sink2 25 2
Processor 5 Processor 3 Sink 1 20 1
Processor 6 Processor 4 Processor 2 8 1
Sink Processor 4, Processor 5

29

with their resultant percent error, can be found in Table 4-3. The visual comparison of the

simulation models can be seen in Figure 4-3. This data suggested an average 21% error in

estimating capacity, 9.92% error in estimating time within a step, and 7% accuracy in estimating

the throughput of a step. The error could be reduced even further in estimating the time within a

step if the distributions had been generated after checking for outliers. This would have resulted

in less than 1% error. The algorithm also created the exact flow from step to step within the

simulation.

Figure 4-3: Original (Top) and Programmatically Generated (Bottom) Simulations

30

 These results were encouraging, because it meant that the algorithm was able to create a

fairly accurate representation of an original system using just the location data of the items as

they moved through the system. The minimal size of the error was especially impressive

considering the use of an overly simplistic distribution (see Appendix D).

4.4.2 Scenario 1 - Car Route

 The setup of this scenario is described earlier, but the results showed that, when the

variation of the GPS is minimal when compared to the scope of the movement, it is possible to

create a fairly accurate simulation model to represent the system. When performing this

experiment the time in each segment of the car route was recorded. These times were then used

to create a simulation model using traditional model-building techniques and a simulation model

using the proposed methodology. The average times recorded for each segment of the drive

where then compared against the averages for each time segment from the manually and

programmatically generated simulation models (see Table 4-5 and

Table 4-6). The time to create the programmatically generated simulation model was also

compared against the time to create the manually generated simulation model. The model

building time for the programmatically generated simulation model was about 5 seconds. The

model building time for the manually generated simulation model was about 20 minutes. The

model building in both cases was done by someone experienced with the simulation software.

However, in the case of the programmatically generated model this experience was not

necessary, because the user had to merely run the function, and then select the output file created

by the data analysis algorithm. In this situation the time to create the programmatically generated

simulation model was just .4% of the time necessary to create the manually generated simulation

31

model, or 240X faster. However, it is likely that the relationship between programmatic and

manual model building time is not linear, because the program will take around 5 seconds

regardless of the scope of the model, and manual building time is highly dependent on the scope

of the model.

Table 4-5: Comparison of Observed and Generated Simulation Processing Times

Table 4-6: Comparison of Observed and Manual Simulation Processing Times

From this experiment it is evident that the algorithm was capable of generating a fairly

accurate simulation model when paired with the data collection system. There was significant

error (2.1-7.6%) between the generated model and the real-world system, and it is more than the

error that existed in the manually generated simulation model (.3-4.4%). However, it is feasible

to think of situations where the higher error could be traded off for the much faster model-

building capabilities of the algorithm.

Observed Average Simulation Average % Error
Process Input Output Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3 Trial 4 Trial 5
Process 1 2 37.0 37.0 43.0 39.0 37.0 37.0 37.0 37.0 37.0 37.0 5.1%
Process 2 1 3 58.0 29.0 52.0 46.3 48.5 55.0 42.6 45.0 23.0 42.8 7.6%
Process 3 2 4 33.0 35.0 32.0 33.3 31.2 28.1 40.0 30.1 28.2 31.5 5.4%
Process 4 3 5 43.0 45.0 42.0 43.3 40.3 41.3 40.5 40.1 40.6 40.5 6.4%
Process 5 4 6 59.0 60.0 58.0 59.0 68.3 60.9 62.8 67.7 57.1 63.4 7.4%
Process 6 5 22.0 24.0 22.0 22.7 22.6 22.1 24.9 22.3 24.8 23.3 3.0%
Total 252.0 230.0 249.0 243.7 247.9 244.4 247.7 242.2 210.8 238.6 2.1%

Observed Generated Simulation

Observed Average Simulation Average % Error
Process Input Output Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3 Trial 4 Trial 5
Process 1 2 37.0 37.0 43.0 39.0 40.9 40.6 38.0 39.7 41.2 40.1 2.8%
Process 2 1 3 58.0 29.0 52.0 46.3 45.9 32.3 57.7 40.1 45.4 44.3 4.4%
Process 3 2 4 33.0 35.0 32.0 33.3 32.4 32.7 32.4 33.3 32.5 32.6 2.1%
Process 4 3 5 43.0 45.0 42.0 43.3 45.3 43.9 42.3 44.1 42.3 43.6 0.6%
Process 5 4 6 59.0 60.0 58.0 59.0 60.1 59.3 60.0 58.3 59.2 59.4 0.6%
Process 6 5 22.0 24.0 22.0 22.7 21.5 23.0 22.6 23.3 22.7 22.6 0.3%
Total 252.0 230.0 249.0 243.7 246.2 231.7 253.0 238.7 243.3 242.6 0.5%

Observed Manual Simulation

32

4.4.3 Scenario 2 - Walking Route

The last scenario’s purpose was to test the robustness of the generated algorithm on a

small scale, where the system was near the edge of the accuracy of the GPS tool. In this scenario

the data was collected over five trials, using the flow and processing times characterized in Table

Process Input Output Processing Time Capacity
Source Process 1

Process 1 Source Process 2 60 1
Process 2 Process 1 Process 3 normal(120,30) 1
Process 3 Process 2 Process 4, Process 5 normal(90,30) 1
Process 4 Process 3 Process 5 75 1
Process 5 Process 3, Process 4 Sink 120 1

Sink Process 5

Table 4-7: Characteristics of Walking Route System.

-30

-25

-20

-15

-10

-5

0

5

10

15

20

-40 -20 0 20 40 60 80 100

Position of Data Points

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

Figure 4-4: Position of Data Points in Scenario 2 Trials

33

4-7. When this data was then input in the data analysis algorithm, the algorithm was unable to

create a model that resembled the original system. This was largely due to the inability of the

GPS tool to be accurate to the precision necessary in the system. When the locations of each trial

were plotted, it was apparent that the tool was not capable of the precision necessary in this

system (see Figure 4-4). Therefore, at this level of detail it was not possible to create a model

that completely reflected the original system.

This scenario’s experiment shows that the data-gathering tool that was used had limited

ability to create useful data on this size system. These limitations could be analyzed and

overcome as described in section 4.2.3.

4.5 Capability of Proposed Model-Building Methodology

The proposed model-building methodology is capable of creating simulation models that

are fairly accurate in representing their real-world scenarios. However, the accuracy of the

simulation models is highly dependent on the comparative accuracy of the GPS data collection

tool in relation to the size of the subject system. As such, this methodology will likely become

more effective as the accuracy of such tools increases.

The results show that this methodology can produce simulations with error on system

throughput time at about 2% and error on an individual process time between 3% and 8% (see

Section 4.3.2). However, this methodology is not particularly good at estimating the true

capacity of individual processes in a system, as it was only capable of determining capacity with

a higher average error of 21% (see Section 4.3.1). This is the result of only being able to

determine capacity based off of observed limits in the context of the system instead of a

processes limit in isolation. The accuracy of other statistics was not analyzed as part of the

34

research. Therefore, the accuracy of additional statistics from a given model would have to be

tested against real-world observations to determine if the model was representative.

4.6 Time-Savings of Proposed Model-Building Methodology

The proposed model-building methodology seems to be successful in reducing the time

and software knowledge necessary to create a working model of a system. It does seem possible

to programmatically accomplish many of the model-building steps. From the car route scenario

(see Section 4.3.2) it was observed that the time to build a complete model manually with an

experienced modeler was about 240X longer than the time it took to build that model using the

proposed programmatic model-building methodology. It was also observed that the time

difference would increase non-linearly as each additional process would take much more time to

manually add to a simulation than each additional process would take to add programmatically.

A significant amount of the time difference is caused by the automated fitting of data using the

“Five-Point Distribution” (see Appendix D) instead of manually fitting each set of data to a

distribution. However, time savings were accomplished in each part of the model-building

process.

35

5 CONCLUSIONS

5.1 Limitations of Algorithm

The models generated using the proposed algorithm have many limitations. These

limitations are caused by the nature of the technique and by simplifying assumptions made

within the proposed algorithm.

The limitations caused by the simplifying assumptions of the proposed algorithm are not

a reflection of the method, but rather are a reflection of the limited scope of this research.

Therefore, these particular limitations could be overcome through further research. The

limitations caused by simplifying assumptions of the proposed algorithm include the following:

- Limited to a single type of product or item moving through the system

- Limited to probabilistic flow

- Identifying the differences between queues and processors

The limitations caused by the proposed methodology would be more difficult to

overcome with the current method, because the proposed method has no identifiable means of

overcoming these limitations. The limitations caused by the technique itself include the

following:

- Ignoring resources in the system

- Differentiating setup times within a process

- Inability to produce models for immobile systems
36

5.1.1 Algorithmic Limitations

Algorithmic limitations are limitations that are self-imposed on the presented research in

order to create a reasonable scope, and could be overcome in a fairly straightforward way with

additional research.

Single Product Type

The proposed algorithm was limited to being able to handle systems with a single type of

product or item. This limitation is merely a simplifying assumption of the research, as the

method could be expanded to systems that handle many different types of products. In order to

do that, the products would not only need a unique identifier attached to them as they move

through the system, but would also require a product type identifier that was unique to each

product type. Each product type could then be analyzed separately to determine flow. Pseudo-

capacity could be determined by finding a maximum number of each product that is ever in a

process at a time, and the maximum number of the combined products that is ever in the process

at a time. This could then be used to calculate a pseudo-capacity of the process given any product

mix. Further research could identify ways to more effectively handle systems with multiple

product types.

Probabilistic Flow

The proposed algorithm is limited to dealing with systems where flow is determined in a

probabilistic manner, or at least can be accurately represented in a probabilistic manner. A

system with this type of flow would send all the output of one process to the subsequent

processes using a fairly consistent percentage to each subsequent process. This is a significant

limitation, because it is common for a system to include at least one instance where flow can’t be

accurately depicted using probabilistic flow. A few common exceptions to this type of flow are

37

systems where flow is determined by sending the product to the first available subsequent

process, sending the product to subsequent processes in a round-robin manner, or sending the

product to a queue with the shortest waiting time. Each of these types of system flow could be

accurately identified in the proposed method, but the proposed algorithm only attempts to

identify the method for characterizing probabilistic flow. Each alternative flow method would

not be too difficult to implement in the algorithm, because once identified most simulation

software packages have built-in methods for building models with different flow characteristics.

Therefore, it would be necessary to identify the type of flow, include this information in the

algorithm output, and then adjust the software translator in order to include the information in the

programmatically generated model.

 The first available flow method could be identified using a similar data gathering and

analysis method as presented in this research. Flow could be identified as “first-available” by

determining if the products used that method in the system. This would be done by looking to see

if the product predictably moved to the first available subsequent process. Availability of

subsequent processes would have to be determined by their pseudo-capacity, which may not be

completely accurate. However, a confidence level could be determined to estimate the flow type

as “first-available” if most of the time it did seem to use that method. The outlier instances could

then be used in a feedback loop to accurately adjust the pseudo-capacities.

 The round-robin type of flow could be determined in a similar method. It could be

determined if the products moved from the process to the subsequent process by going to the

next possible subsequent process each time a product left the process. This could be combined

with the method for identifying the first-available type of flow in order to create first-available

round-robin flow, which is a common type of flow in many systems.

38

 Other system flow types could be identified, and methods could be developed to identify

flow types and include them in the data analysis and model generation algorithm. Each of the

mentioned system flow characteristics could be included in the algorithm, but were not in order

to limit the scope of this particular research.

Processing Time vs. Delay Time Identification

 One limitation inherent in the data collection method is an inability to instinctually

identify the difference between the time a product spends in the system being processed, and the

time a product spends in the system waiting or being delayed. This inability is caused by the

product constantly sending only movement location data while it is being tracked regardless of

whether it is simply waiting for availability. This limitation is slightly overcome in the proposed

algorithm by assuming that certain statistical representations of processes are more likely for

queues than processing steps, and in such a case the object should be modeled as a queueing step

in the system. This could also be overcome by identifying the subsequent steps after a process,

the flow of the system, and determining if the product is not moving to the subsequent step

because of a limit of the pseudo-capacity. If so, then the process would be modeled as a queue in

the system. If not, then the process would be modeled as a processing step in the system.

5.1.2 Methodical Limitations

Methodical limitations are those that are imposed by the proposed methodology. Most of

the methodical limitations are caused by the data collection method.

Modeling of Resources

One important limitation of the proposed methodology is the inability to account for

additional resources that are often required in a system. For instance, often an operator is shared

39

between machines and acts as a constraint on the system. This methodology would not be able to

accurately create models programmatically for systems where the resources play a significant

role in constraining the operation of the system. This limitation could feasibly be overcome by

tracking the location of the resources in the system and allocating them according to their

location, but this is not within the scope of this research.

Differentiating Setup Time from Process Time

 Another limitation inherent in the data collection method is the inability to differentiate

between setup time and process time in a system. Unless the product moves between the setup

time and process time, there is no way to distinguish the difference between the two. This

limitation would be difficult to overcome purely using a tracking system, but could be overcome

with a hybrid system. A hybrid system would use a different data gathering method, but employ

the same data analysis and model building techniques proposed in this research. One example of

a hybrid system would be using a bar code scanner to track when a product enters a process,

when it starts processing at that process, and when it leaves each process in the system. The

processes would then be given a coordinate location. Data would then be generated to show the

coordinate location of the product at intervals during its time in the system. This data could then

be fed into the data analysis tool, and would allow for the separation of the setup and processing

times in the programmatically generated simulation.

Immobile Systems

The most obvious limitation of the proposed methodology is that the product must

physically move through the system, and that the movement through the system must be

representative of the processes being performed on the product. This is not true for every system.

Many systems have the product stationary and the work is done by resources moving to the

product. Some systems are hybrids where a part moves into a station where various tasks are
40

performed, and then it moves to the next station where various tasks are performed. In such a

hybrid situation it would be possible to create an initial model using this method, and then build

it out with the station details manually. The proposed data analysis method could also be adapted

to analyze data on events and tagged locations of a product in a system instead of physical

location, but that is not within the scope of this research.

5.2 Summary

The proposed model generating methodology consists of the data gathering tool, data

analysis algorithm, and simulation software data translator.

The data gathering tool is a GPS device that is attached to a product as it moves through a

system, and has a web browser that can access a PHP page with the code in Appendix A. The

data gathered in the tracking tool includes a unique identifier of the product being tracked, a GPS

latitude and longitude of the current position of the device, a unique identifier that distinguishes

product type, and the number of seconds that have elapsed since tracking began. This data is

captured at a consistent interval until the product has left the subject system.

The data gathered from the data gathering tool is used as input for the data analysis

algorithm. The data analysis algorithm assumes that changes in velocity of the object are

correlated with transitions between different steps in the system. Basically, the data gathering

tool attempts to convert the flow of the product through the system into discrete events that the

product experiences. This is accomplished by identifying processes that start and end when a

product experiences a period of acceleration above a defined threshold. The output of the data

analysis algorithm defines the location, flow, processing, and pseudo-capacity for a collection of

system processes.

41

The output of the data analysis algorithm is then translated by the simulation software

data translator. In this research a data translator was written for FlexSim simulation software.

The data translator takes the data analysis algorithm output and uses it to create a simulation.

By following these steps it is possible to create a simulation from product tracking data.

The accuracy of the model is not necessarily as good as it would be if the model was created

manually. However, for large simulation models the model-building time using this methodology

is significantly lower, because the model is programmatically built. Therefore, in order to

determine if this methodology would be practical a user of simulation software would have to

weigh the cost of time against the cost or inaccuracy. A user could also use the aforementioned

model building methodology to quicken the model building time by using the algorithm to create

a model with the basic logic, and then edit the model to add any custom logic. By doing this the

user could use the advantageous elements of the algorithm, but not be limited by as many of the

limitations.

There are many limitations to this model building methodology, as discussed in section

5.3. However, even with these limitations there seems to be a place for this methodology within

the set of useful simulation model building methodologies.

42

REFERENCES

Dangelmaier, W. and B. Mueck. “Using dynamic multiresolution modelling to analyze large
material flow systems.” Proceedings of the 2004 Winter Simulation Conference, no. 2
(2004): 1720-1727.

Daniellmb. “Geolocation API on the iPhone.” (2009).
http://stackoverflow.com/questions/221592/geolocation-api-on-the-iphone

Department of Defense. “Global Positioning System Standard Positioning Service Performance
Standard, 4th Edition.” United States Department of Defense (2008).

Huber, D., M. Eberling, C. Laroque, and W. Dangelmaier. “Stochastic generation of discrete-
event simulation models.” Inst. of Elec. and Elec. Eng. Computer Society (2008).

NGS. “Continuously Operating Reference Station (CORS).” National Geodetic Survey (2014).
http://www.ngs.noaa.gov/CORS/

Pan, C., J. Lu, D. Wang, and B. Ran. “Data Collection Based on Global Positioning System for
Travel Time and Delay for Arterial Roadway Network.” Transportation Research Record:
Journal of the Transportation Research Board, no. 2024 (2007): 35-43.

Pradhananga, N. and J. Teizer. “Automatic spatio-temporal analysis of construction site
equipment operations using GPS data.” Automation in Construction, v 29 (2013): 107-122.

Skoogh, A., B. Johansson, and J. Stahre. “Automated input data management: Evaluation of a
concept for reduced time consumption in discrete event simulation” SIMULATION, no. 11
(2012): 1279-1293.

Spissu, E., I. Meloni, and B. Sanjust. “Behavioral Analysis of Choice of Daily Route with Data
from Global Positioning System.” Transportation Research Record: Journal of the
Transportation Research Board, no. 2230 (2011): 96-103.

United States Air Force. “Global Positioning System (GPS) IIF Satellite” (2014).
http://www.losangeles.af.mil/library/factsheets/factsheet.asp?id=18670

43

APPENDICES

44

APPENDIX A. DATA COLLECTION TOOL CODE

The location of an object was gathered by accessing a PHP page from a GPS device

attached to the product that had a web browser. The PHP page had the code attached below. The

page would then give the coordinate location of an object at the user-defined time interval until it

had reached the user-defined number of instances. The raw data was then processed manually

into the format that was required by the data analysis algorithm tool. The code is as defined

below, which is mostly derived from a stack overflow article answer (daniellmb):

A.1. Code - Location.php

<?php
if (isset($_POST['submit'])) {
 $howoften = $_POST['howoften'];
 $howmany = $_POST['howmany'];
?>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Geolocation API Demo</title>
</head>
<body>
<div id="message"></div>
<script>
x=0;
function successHandler(location) {
 var message = document.getElementById("message"), html = [];
 html.push(location.coords.longitude, ",");
 html.push(location.coords.latitude, ",");
 html.push(x,"|");
 message.innerHTML = message.innerHTML + html.join("");
}

45

function errorHandler(error) {}
function myTimer() {
 x=x+1
 if (x==<?php echo $howmany; ?>) {
 clearInterval(myVar);
 }
 navigator.geolocation.getCurrentPosition(successHandler, errorHandler);
}
var myVar = setInterval(function(){myTimer()},<?php echo $howoften; ?>);
</script>
</body>
</html>
<?php
}
else {
?>
<form action="" method="post">
 How Many: <input type="text" name="howmany">

 How Often: <input type="text" name="howoften">

 <input type="submit" name="submit" value="Submit">
</form>
<?php
}
?>

46

APPENDIX B. DATA ANALYSIS ALGORITHM TOOL CODE

The “Data Analysis Algorithm Tool Code” was written in Excel VBA syntax. It contains

a module and a form. Also included is the code for a PHP page that the module uses to create

distributions for the processing steps.

B.1. Code - DataAnalysis Module

Public test_distance As Double
Public test_time As Double
Public test_acceleration As Double
Public increment_time As Double
Public fNameAcceleration As String
Public fNameTime As String

Dim last_location(2) As Double
Dim x As Double
Dim y As Double
Dim z As Double
Dim currentTime As Double
Dim rowCount As Double
Dim itemRow As Integer
Dim temp_double As Double
Dim temp_boolean As Boolean

Dim itemNumber As Integer
Dim startX As Double
Dim startY As Double
Dim inProcessor As Integer
Dim processorNumber As Double
Dim numberOfProcessors As Integer
Dim processorDistanceStart As Double

47

Dim processorDistanceEnd As Double
Dim dataArray() As Double
Dim processorArray() As Double
Dim timeArray() As Double
Dim inProcessorArray() As Integer
Dim processorInOut() As Double
Dim flowLogic() As Integer

Dim concatenateIn As String

Sub DataAnalyzer()
'delete other worksheets
 Application.DisplayAlerts = False
 On Error Resume Next
 Sheets(3).Delete
 Sheets(2).Delete
 On Error GoTo 0
 Application.DisplayAlerts = True
'start code
 rowCount = Range("A1000000").End(xlUp).Row

 test_distance = 1
 test_time = 1
 test_acceleration = 1

 'x location
 last_location(0) = -100
 'y location
 last_location(1) = -100
 'type
 last_location(2) = -1
'
' DataAnalyzer Macro
'
 Range("A1").Select
 Selection.SpecialCells(xlCellTypeConstants, 23).Select
 Selection.Copy
 Sheets.Add After:=ActiveSheet
 ActiveSheet.Paste
 Application.CutCopyMode = False
 ActiveWorkbook.Worksheets(2).Sort.SortFields.Clear
 ActiveWorkbook.Worksheets(2).Sort.SortFields.Add Key:=Range("D2:D" & rowCount) _
 , SortOn:=xlSortOnValues, Order:=xlAscending, DataOption:=xlSortNormal
 ActiveWorkbook.Worksheets(2).Sort.SortFields.Add Key:=Range("A2:A" & rowCount) _
 , SortOn:=xlSortOnValues, Order:=xlAscending, DataOption:=xlSortNormal

48

 ActiveWorkbook.Worksheets(2).Sort.SortFields.Add Key:=Range("E2:E" & rowCount) _
 , SortOn:=xlSortOnValues, Order:=xlAscending, DataOption:=xlSortNormal
 With ActiveWorkbook.Worksheets(2).Sort
 .SetRange Range("A1:E" & rowCount)
 .Header = xlYes
 .MatchCase = False
 .Orientation = xlTopToBottom
 .SortMethod = xlPinYin
 .Apply
 End With
 Sheets(2).Select
 Sheets(2).Name = "Analyzed Data"
 Range("F1").Select
 ActiveCell.FormulaR1C1 = "Distance"
 Range("G1").Select
 ActiveCell.FormulaR1C1 = "Velocity"
 Range("H1").Select
 ActiveCell.FormulaR1C1 = "Acceleration"
 Columns("F:H").Select
 Selection.ColumnWidth = 12.43
 'fix some cells
 Range("f2:h2").Value = 0
 'put in the distance,velocity, and acceleration
 Range("F3").Select
 ActiveCell.FormulaR1C1 = _
 "=R[-1]C+SQRT(((RC[-4]-R[-1]C[-4])^2)+((RC[-3]-R[-1]C[-3])^2))"
 Range("F3").Select
 Selection.AutoFill Destination:=Range("F3:F" & rowCount)
 Range("F3:F" & rowCount).Select
 Range("G3").Select
 ActiveCell.FormulaR1C1 = "=RC[-1]-R[-1]C[-1]"
 Range("G3").Select
 Selection.AutoFill Destination:=Range("G3:G" & rowCount)
 Range("G3:G" & rowCount).Select
 Range("H3").Select
 ActiveCell.FormulaR1C1 = "=abs(RC[-1]-R[-1]C[-1])"
 Range("H3").Select
 Selection.AutoFill Destination:=Range("H3:H" & rowCount)
 'set a default test acceleration by normalizing the data and then finding outliers
 Dim groupSize As Integer
 Dim groupMean(9) As Double
 Dim theRange As String

 groupSize = rowCount / 10
 For x = 0 To 9

49

 theRange = Range("h" & ((x * groupSize) + 2) & ":h" & (((x + 1) * groupSize) +
1)).Address
 groupMean(x) = Application.WorksheetFunction.Sum(Range(theRange)) / groupSize
 Next
 For x = 0 To 9
 Range("I" & (x + 2)).Value = groupMean(x)
 Next
 increment_time = Range("e3").Value - Range("e2").Value
 test_acceleration = Application.WorksheetFunction.Quartile_Inc(Range("I2:I11"), 1) - (1.5 *
(Application.WorksheetFunction.Quartile_Inc(Range("I2:I11"), 3) -
Application.WorksheetFunction.Quartile_Inc(Range("I2:I11"), 1)))
 X_CreateAccelerationChart
 X_CreateTimeChart
 settings.Show
End Sub

Sub DataTests()
 'do all the tests according to the sensitivities
 For x = 2 To rowCount
 temp_boolean = False
 'do the acceleration test
 If IsNumeric(Range("H" & x).Value) Then
 temp_double = Range("H" & x).Value
 Else
 temp_boolean = True
 temp_double = 0
 End If
 If temp_double > test_acceleration Or temp_boolean = True Then
 temp_boolean = True
 Else
 temp_boolean = False
 End If
 Range("I" & x).Value = temp_boolean
 'do the time test
 temp_boolean = False
 For y = 1 To (test_time / increment_time)
 If ((x - y) < 1) Or (Range("D" & (x - y)).Value <> Range("D" & x).Value) Then Exit For
 If Range("I" & (x - y)).Value = True Then temp_boolean = True
 Next y
 If temp_boolean = True Then
 Range("J" & x).Value = False
 ElseIf Range("I" & x).Value = True Then
 Range("J" & x).Value = True
 Else
 Range("J" & x).Value = False
 End If

50

 'do the distance test
 If (Range("d" & x).Value <> last_location(2)) Then
 Range("K" & x).Value = True
 last_location(2) = Range("d" & x).Value
 Else
 If (Range("I" & x).Value = True) And (Sqr(((Range("b" & x).Value - last_location(0)) ^
(2)) + ((Range("c" & x).Value - last_location(1)) ^ (2))) > test_distance) Then
 Range("K" & x).Value = True
 last_location(0) = Range("b" & x).Value
 last_location(1) = Range("c" & x).Value
 Else
 Range("K" & x).Value = False
 End If
 End If
 'see when all the tests pass
 If (Range("I" & x).Value = True And Range("J" & x).Value = True And Range("K" &
x).Value = True) Or Range("a" & x).Value <> Range("a" & (x - 1)).Value Then
 Range("L" & x).Value = True
 Else
 Range("L" & x).Value = False
 End If
 Next x
 ProcessorCreate
 End Sub

Sub ProcessorCreate()
 'create a sheet to store the runtimes
 Sheets.Add After:=ActiveSheet
 Sheets(3).Select
 Sheets(3).Name = "Processors"
 Cells(1, 1) = "Number"
 Cells(1, 2) = "Start X"
 Cells(1, 3) = "End X"
 Cells(1, 4) = "Start Y"
 Cells(1, 5) = "End Y"
 Cells(1, 6) = "Angle"
 Cells(1, 7) = "Length"
 Cells(1, 8) = "IN"
 Cells(1, 9) = "OUT"
 Cells(1, 10) = "Times"
 Sheets(2).Select
 'redim dataArray to put data in it
 ReDim dataArray((rowCount - 1), 4)
 For x = 0 To (rowCount - 2)
 dataArray(x, 0) = Cells(x + 2, 1)
 dataArray(x, 1) = Cells(x + 2, 2)

51

 dataArray(x, 2) = Cells(x + 2, 3)
 dataArray(x, 3) = Cells(x + 2, 5)
 dataArray(x, 4) = Cells(x + 2, 12)
 Next x
 'processorNumber for processor #
 processorNumber = 0
 currentTime = 0
 startX = Range("b2").Value
 startY = Range("c2").Value
 For x = 0 To (rowCount - 2)
 If dataArray(x, 4) = True Then processorNumber = processorNumber + 1
 Next x
 'size the processor array
 ReDim processorArray(processorNumber, 6)
 ReDim timeArray(processorNumber, 1000)
 ReDim inProcessorArray(processorNumber, 1000)
 'fill the arrays
 For x = 0 To processorNumber
 For y = 0 To 6
 processorArray(x, y) = -100
 Next y
 For y = 0 To 1000
 timeArray(x, y) = -100
 inProcessorArray(x, y) = -100
 Next y
 Next x

 'find the max time
 maxTime = 0
 For x = 0 To (rowCount - 1)
 If (dataArray(x, 3) > maxTime) Then maxTime = dataArray(x, 3)
 Next x
 timeArraySize = maxTime * (1 / increment_time)
 Dim locationAtTime() As Double
 ReDim locationAtTime(timeArraySize, processorNumber)
 'go through the data array
 numberOfProcessors = processorNumber
 processorNumber = 0
 For x = 0 To (rowCount - 2)
 If dataArray(x, 0) <> itemNumber Then
 itemNumber = dataArray(x, 0)
 startX = dataArray(x, 1)
 startY = dataArray(x, 2)
 currentTime = dataArray(x, 3)
 inProcessor = -1
 ElseIf x = (rowCount - 2) Or dataArray((x + 1), 4) = True Then

52

 For z = 0 To numberOfProcessors
 processorDistanceStart = Sqr(((processorArray(z, 1) - startX) ^ (2)) +
((processorArray(z, 3) - startY) ^ (2)))
 processorDistanceEnd = Sqr(((processorArray(z, 2) - dataArray(x, 1)) ^ (2)) +
((processorArray(z, 4) - dataArray(x, 2)) ^ (2)))
 If processorDistanceStart < test_distance And processorDistanceEnd < test_distance
Then
 processorNumber = z
 startX = dataArray((x + 1), 1)
 startY = dataArray((x + 1), 2)
 'need to record the inProcessor in another array
 For y = 0 To 1000
 If inProcessorArray(processorNumber, y) = -100 Then Exit For
 Next y
 inProcessorArray(processorNumber, y) = inProcessor
 inProcessor = processorNumber
 'record the times in another array
 For y = 0 To 1000
 If timeArray(processorNumber, y) = -100 Then Exit For
 Next y
 timeArray(processorNumber, y) = dataArray(x, 3) - currentTime
 currentTime = dataArray(x, 3)
 Exit For
 ElseIf processorArray(z, 1) = -100 Then
 processorNumber = z
 processorArray(processorNumber, 0) = processorNumber
 processorArray(processorNumber, 1) = startX
 startX = dataArray((x + 1), 1)
 processorArray(processorNumber, 2) = dataArray(x, 1)
 processorArray(processorNumber, 3) = startY
 startY = dataArray((x + 1), 2)
 processorArray(processorNumber, 4) = dataArray(x, 2)
 'need to record the inProcessor in another array
 For y = 0 To 1000
 If inProcessorArray(processorNumber, y) = -100 Then Exit For
 Next y
 inProcessorArray(processorNumber, y) = inProcessor
 inProcessor = processorNumber
 'record the times in another array
 For y = 0 To 1000
 If timeArray(processorNumber, y) = -100 Then Exit For
 Next y
 timeArray(processorNumber, y) = dataArray(x, 3) - currentTime
 currentTime = dataArray(x, 3)
 Exit For
 End If

53

 Next z
 Else
 'add to the array with the items current
 timePos = dataArray(x, 3) * (1 / increment_time)
 locationAtTime(timePos, processorNumber) = locationAtTime(timePos,
processorNumber) + 1
 End If
 Next x
'print the processor array data to the sheet
 Sheets(3).Select
 For x = 0 To numberOfProcessors
 For y = 0 To 5
 If processorArray(x, y) <> -100 Then Cells(x + 2, y + 1).Value = processorArray(x, y)
 Next y
 Next x
 'calculate the angles and lengths
 y = Range("A1000000").End(xlUp).Row
 For x = 2 To y
 Range("f" & x).Formula = "=IF(B" & x & ">C" & x & ",DEGREES(ATAN((E" & x & "-
D" & x & ")/(C" & x & "-B" & x & ")))+180,DEGREES(ATAN((E" & x & "-D" & x & ")/(C" &
x & "-B" & x & "))))"
 Next x
 For x = 2 To y
 Range("g" & x).Formula = "=SQRT(((C" & x & "-B" & x & ")^2)+((E" & x & "-D" & x &
")^2))"
 Next x
'print the inProcessorArray
 ' y=lastrow
 z = y
 ReDim processorInOut((y - 2), 1)
 ReDim flowLogic((y - 2), (y - 2))
 'change this so that it compares the number of processors out
 For x = 0 To z - 2
 For y = 0 To 1000
 'concatenate them all
 'And InStr(concatenateIn, timeArray(x, y)) = False
 If timeArray(x, y) <> -100 Then
 If inProcessorArray(x, y) <> -1 Then
 processorInOut(x, 0) = processorInOut(x, 0) + 1
 processorInOut(inProcessorArray(x, y), 1) = processorInOut(inProcessorArray(x, y),
1) + 1
 'increment an array of size (# of processors)X(# of processors), so that we can
determine later how many went where
 flowLogic(inProcessorArray(x, y), x) = flowLogic(inProcessorArray(x, y), x) + 1
 End If
 End If

54

 Next y
 Next x
 'find sources and sinks
 For x = 0 To z - 2
 If (processorInOut(x, 0) - processorInOut(x, 1)) > 0 Then
 Range("i" & (x + 2)).Value = "test|-2`" & Round(((processorInOut(x, 0) -
processorInOut(x, 1)) / processorInOut(x, 0)), 4)
 End If
 Next x
 'put in a unique list
 For x = 0 To (z - 2)
 For y = 0 To 1000
 If timeArray(x, y) <> -100 And InStr(concatenateIn, "~" & inProcessorArray(x, y)) =
False Then
 If (inProcessorArray(x, y) >= 0) Then
 If (processorInOut(inProcessorArray(x, y), 1) = 0) Then
 percentFlow = 1
 Else
 percentFlow = Round((flowLogic(inProcessorArray(x, y), x) /
processorInOut(inProcessorArray(x, y), 1)), 4)
 End If
 concatenateIn = concatenateIn & "~" & inProcessorArray(x, y) & "`" & percentFlow
 Else
 concatenateIn = concatenateIn & "~" & inProcessorArray(x, y) & "`" & 1
 End If
 End If
 Next y
 concatenateIn = Mid(concatenateIn, 2)
 Cells(x + 2, 8) = "test|" & concatenateIn
 concatenateIn = ""
 Next x
'print the time array data to the sheet
 For x = 0 To (z - 2)
 For y = 0 To 1000
 If timeArray(x, y) <> -100 Then
 If timeArray(x, y) <> -1 Then
 concatenateIn = concatenateIn & "~" & timeArray(x, y)
 Else
 concatenateIn = concatenateIn & "~" & "Source"
 End If
 End If
 Next y
 concatenateIn = Mid(concatenateIn, 2)
 Cells(x + 2, 10) = concatenateIn
 concatenateIn = ""
 Next x

55

 'find the pseudo-capacity of each processor
 Dim processorCapacity() As Integer
 ReDim processorCapacity(z - 2)
 For t = 0 To UBound(locationAtTime, 1)
 For x = 0 To (z - 2)
 If (locationAtTime(t, x) > processorCapacity(x)) Then processorCapacity(x) =
locationAtTime(t, x)
 Next x
 Next t
 'put the pseudo-capacity in column L and label the column
 For x = 0 To (z - 2)
 Cells(x + 2, 12) = processorCapacity(x)
 Next x
 Cells(1, 12) = "Pseudo-Capacity"
 'Get the number of processors that we have
 y = Cells(Rows.Count, "A").End(xlUp).Row - 2
 'Go through each processor and create a web query to ge the distribution
 For x = 0 To y
 Range("K" & (x + 2)).Select
 With ActiveSheet.QueryTables.Add(Connection:= _
 "URL;http://www.descreye.com/distribution-fitting.php?processing_times=" &
Range("J" & (x + 2)).Value _
 , Destination:=Range("K" & (x + 2)))
 '.CommandType = 0
 .Name = Range("J" & (x + 2)).Value
 .FieldNames = True
 .RowNumbers = False
 .FillAdjacentFormulas = False
 .PreserveFormatting = True
 .RefreshOnFileOpen = False
 .BackgroundQuery = True
 .RefreshStyle = xlInsertDeleteCells
 .SavePassword = False
 .SaveData = True
 .AdjustColumnWidth = True
 .RefreshPeriod = 0
 .WebSelectionType = xlAllTables
 .WebFormatting = xlWebFormattingNone
 .WebPreFormattedTextToColumns = True
 .WebConsecutiveDelimitersAsOne = True
 .WebSingleBlockTextImport = False
 .WebDisableDateRecognition = False
 .WebDisableRedirections = False
 .Refresh BackgroundQuery:=False
 End With
 Next x

56

 SaveSheetCSV
End Sub

Sub X_CreateAccelerationChart()
 Dim accelerationChart As Object
 'get the number of rows of the first item
 Sheets(2).Select
 For x = 2 To rowCount
 If (Range("a" & x).Value <> Range("a" & (x + 1)).Value) Then Exit For
 Next
 Range("H1:H" & x).Select
 ActiveSheet.Shapes.AddChart2(227, xlLine).Select
 ActiveChart.SetSourceData Source:=Range("'Analyzed Data'!H1:H" & x)
 Range("I2").Select
 ActiveCell.FormulaR1C1 = test_acceleration
 Selection.AutoFill Destination:=Range("I2:I" & x), Type:=xlFillDefault
 Range("I2:I21").Select
 ActiveSheet.ChartObjects(1).Activate
 Set accelerationChart = ActiveSheet.ChartObjects(1).Chart
 accelerationChart.SeriesCollection.NewSeries
 accelerationChart.FullSeriesCollection(2).Values = "='Analyzed Data'!I2:I" & x
 accelerationChart.FullSeriesCollection(2).XValues = "='Analyzed Data'!E2:E" & x
 accelerationChart.SetElement (msoElementChartTitleAboveChart)
 accelerationChart.ChartTitle.Text = "Acceleration"
 fNameAcceleration = ThisWorkbook.Path & "\acceleration.gif"
 accelerationChart.Export fileName:=fNameAcceleration, FilterName:="GIF"
 ActiveSheet.ChartObjects(1).Delete
End Sub

Sub X_CreateTimeChart()
 Dim timeChart As Object
 Dim lastRow As Integer
 Dim lastTime As Double
 lastTime = 0
 y = 2
 'create the data for the chart
 'clear j column
 Range("j:j").Value = ""
 'get the number of rows of the first item
 Sheets(2).Select
 For x = 3 To rowCount
 If (Range("a" & x).Value <> Range("a" & (x + 1)).Value) Then Exit For
 If (Range("h" & x).Value > Range("i" & x).Value) Then
 Range("j" & y).Value = Range("e" & x).Value - lastTime
 lastTime = Range("e" & x).Value
 y = y + 1

57

 End If
 Next x
 'get the last row
 lastRow = Range("J1000000").End(xlUp).Row
 'set the current line
 Range("K2:K" & (y - 1)).Value = test_time
 'make the scatterplot
 Range("J2:J" & lastRow).Select
 ActiveSheet.Shapes.AddChart2(240, xlXYScatter).Select
 ActiveChart.SetSourceData Source:=Range("'Analyzed Data'!J2:J" & lastRow)
 ActiveChart.SeriesCollection.NewSeries
 ActiveChart.FullSeriesCollection(2).Values = "='Analyzed Data'!K2:K" & (y - 1)
 ActiveChart.ChartTitle.Text = "Time Values"
 fNameTime = ThisWorkbook.Path & "\time.gif"
 ActiveChart.Export fileName:=fNameTime, FilterName:="GIF"
 ActiveSheet.ChartObjects(1).Delete
End Sub

Sub SaveSheetCSV()
 Dim fNameTable As String
 fNameTable = ThisWorkbook.Path & "\table.csv"
 Sheets(3).SaveAs fileName:=fNameTable, FileFormat:=xlCSV
End Sub

Sub DeleteCreatedSheets()
 Application.DisplayAlerts = False
 On Error Resume Next
 Sheets(3).Delete
 Sheets(2).Delete
 On Error GoTo 0
 Application.DisplayAlerts = True
End Sub

B.2. Code - Settings Form

Private Sub cmd_submit_Click()
 test_acceleration = settings.inp_acceleration.Value
 test_distance = settings.inp_distance.Value
 test_time = settings.inp_time.Value
 DataAnalysis.DataTests
 settings.Hide
 Kill (fNameAcceleration)
 Kill (fNameTime)

58

End Sub

Private Sub inp_acceleration_Change()
 If IsNumeric(settings.inp_acceleration.Value) = True Then
 test_acceleration = settings.inp_acceleration.Value
 DataAnalysis.X_CreateAccelerationChart
 DataAnalysis.X_CreateTimeChart
 img_acceleration.Picture = LoadPicture(fNameAcceleration)
 img_time.Picture = LoadPicture(fNameTime)
 End If
End Sub

Private Sub inp_increment_Change()
 increment_time = settings.inp_increment.Value
End Sub

Private Sub inp_time_Change()
 If IsNumeric(settings.inp_time.Value) = True Then
 test_time = settings.inp_time.Value
 DataAnalysis.X_CreateTimeChart
 img_time.Picture = LoadPicture(fNameTime)
 End If
End Sub

Private Sub UserForm_Initialize()
 settings.inp_increment.Value = increment_time
 settings.inp_acceleration.Value = test_acceleration
 settings.inp_distance.Value = test_distance
 settings.inp_time.Value = test_time
 img_acceleration.Picture = LoadPicture(fNameAcceleration)
 img_time.Picture = LoadPicture(fNameTime)
End Sub

Private Sub UserForm_Terminate()
 Kill (fNameAcceleration)
 Kill (fNameTime)
End Sub

B.3. Code - Distribution-Fitting.php

<?php

59

function get_quartile($Array, $Quartile) {
 $pos = (count($Array) - 1) * $Quartile;

 $base = floor($pos);
 $rest = $pos - $base;
 if(isset($Array[$base+1])) {
 $return_value = $Array[$base] + $rest * ($Array[$base+1] - $Array[$base]);
 } else {
 $return_value = $Array[$base];
 }
 //echo $return_value."
";
 return $return_value;
}

$times = $_REQUEST['processing_times'];
$times = explode('~',$times);
sort($times);

$quartile = array();
$quartile['0']=get_quartile($times,0);
$quartile['.2']=get_quartile($times,.2);
$quartile['.4']=get_quartile($times,.4);
$quartile['.6']=get_quartile($times,.6);
$quartile['.8']=get_quartile($times,.8);
$quartile['1']=get_quartile($times,1);

$distribution_text = "fivepointdistribution(";
foreach ($quartile as $value) $distribution_text.="~".$value;
$distribution_text.=")";
$distribution_text = str_replace("(~","(",$distribution_text);
echo "<table><tr><td>".$distribution_text."</td></tr></table>";
?>

60

APPENDIX C. FLEXSIM DATA TRANSLATOR CODE

 The “FlexSim Data Translator Code” allows FlexSim to translate the data output by the

“Data Analysis Algorithm Tool Code” into the simulation software package. It includes two

functions that make this possible. One is the function that creates the model, and that is called

modelimport. The other function, fivepointdistribution, allows the use of the previously

discussed and custom five-point distribution in FlexSim. The code for each function is written in

FlexSim’s own language, FlexScript.

C.1. Code - FlexSim Function: ModelImport

/**Custom Code*/
nodeinsertinto(model());
setname(last(model()), "ModelData");
treenode ModelData = node("/ModelData",model());
string fileName = filebrowse("*.csv","Model Data CSV",pdir());
importtable(ModelData,fileName,0,0);
int numberOfProcessors = content(ModelData);
//create the processors
for (int x=2; x<=numberOfProcessors; x++) {
 createinstance(node("/fixedresources/Processor",library()),model());
 treenode processor = last(model());
 string processorName =
concat("Processor",numtostring(getnodenum(rank(rank(ModelData,x),1))));
 double processorLength = getnodenum(rank(rank(ModelData,x),7));
 double processorAngle = getnodenum(rank(rank(ModelData,x),6));
 double processorXLoc = getnodenum(rank(rank(ModelData,x),2));
 double processorYLoc = getnodenum(rank(rank(ModelData,x),4));

61

 string processorDistribution = concat("return
",getnodestr(rank(rank(ModelData,x),11)),";");
 double processorMaxContent = getnodenum(rank(rank(ModelData,x),12));
 processorDistribution = stringreplace(processorDistribution,"~",",");
 //adjust for bad positioning
 processorYLoc =
((processorLength*sin(degreestoradians(processorAngle)))/2)+processorYLoc;
 processorXLoc = processorXLoc-((processorLength/2)-
((processorLength/2)*cos(degreestoradians(processorAngle))));
 //set everything
 setname(processor, processorName);
 setsize(processor, processorLength,.1,.1);
 setrot(processor,0,0, processorAngle);
 setloc(processor,processorXLoc,processorYLoc,0);
 setnodestr(node(">variables/cycletime",processor),processorDistribution);
 setnodenum(node(">variables/maxcontent",processor),processorMaxContent);
}
//create the sinks
for (int x=2; x<=numberOfProcessors; x++) {
 string flowString = getnodestr(rank(rank(ModelData,x),9));
 //this data is a string with the port to connect followed by the percentage of the inputs
flow that goes to the current object
 //cut the fluff part
 if (stringlen(flowString)>0){
 flowString = stringcopy(flowString, 6,stringlen(flowString)-6);
 int sep = stringsearch(flowString,"`",0);
 string inputProcStr = stringcopy(flowString,1,sep);
 int inputProc = stringtonum(inputProcStr);
 double inputProb =
stringtonum(stringcopy(flowString,sep+2,(stringlen(flowString)-sep)-1));
 createinstance(node("/fixedresources/Sink",library()),model());
 treenode newSink = last(model());
 setname(newSink, concat("Sink",numtostring(x)));
 setloc(newSink, getnodenum(rank(rank(ModelData,x),3))+1,
getnodenum(rank(rank(ModelData,x),5)),0);
 treenode inProcessor = rank(model(),x+2);
 contextdragconnection(inProcessor,newSink,"A");
 //add a label to the inProcessor with the amount of it that goes to this sink
 addlabel(inProcessor,"Sink",inputProb);
 }
}
//create the connnections
for (int x=2; x<=numberOfProcessors; x++) {

62

 string flowString = getnodestr(rank(rank(ModelData,x),8));
 //this data is a string with the port to connect followed by the percentage of the inputs
flow that goes to the current object
 //cut the fluff part
 int flowStringLen = stringlen(flowString);
 flowString = stringcopy(flowString, 6,flowStringLen-5);
 //go through the string making each connection
 int found = 0;
 string currentString = "";
 int sep = 0;
 string inputProcStr = "";
 int inputProc = 0;
 double inputProb = 0;
 while (found>=0) {
 found = stringsearch(flowString,"~",0);
 if (found>0) {
 currentString = stringcopy(flowString,1,found);
 }
 else {
 currentString = flowString;
 found=-1;
 }
 //this is now just a incoming connection and a probability, seperate those
 sep = stringsearch(currentString,"`",0);
 inputProcStr = stringcopy(currentString,1,sep);
 inputProc = stringtonum(inputProcStr);
 inputProb =
stringtonum(stringcopy(currentString,sep+2,(stringlen(currentString)-sep)-1));
 //we should now have the input object and the probability to go to the current
object from the input object
 //make the connection
 if (inputProc>=0) {
 //it is a processor
 treenode inProcessor = rank(model(),inputProc+4);
 treenode outProcessor = rank(model(),x+2);
 contextdragconnection(inProcessor,outProcessor,"A");
 addlabel(inProcessor,concat("Flow",numtostring(x)),inputProb);
 }
 else {
 //it is a source
 createinstance(node("/fixedresources/Source",library()),model());
 treenode newSource = last(model());
 setname(newSource, concat("Source",numtostring(x)));

63

 setloc(newSource, getnodenum(rank(rank(ModelData,x),2))-1,
getnodenum(rank(rank(ModelData,x),4)),0);
 setvarstr(newSource,"interarrivaltime","return 0;");
 //create connections
 treenode outProcessor = rank(model(),x+2);
 contextdragconnection(newSource,outProcessor,"A");
 }
 //set the probability flow function

 //take off the current part of the flowString
 if (found>=0) flowString = stringcopy(flowString,found+2,(stringlen(flowString)-
found-1));
 }
}
//use the labels to create the flow probabilities
string starter = "double randomnum = uniform(0.0, 100.0, 0);double total = 0.0;";
for (int x=2; x<=numberOfProcessors; x++) {
 treenode proc = rank(model(),x+2);
 double remaining = 1;
 string flowCode = starter;
 for (int y=1;y<=content(labels(proc));y++) {
 if (stringsearch(getnodename(label(proc,y)),"Sink",0)>=0) {
 double percentage = getlabelnum(proc,y)*100;
 flowCode = concat(flowCode,"total += ",numtostring(percentage),";if
(randomnum <= total) return ",numtostring(y),";");
 remaining = 1-(percentage/100);
 }
 else {
 double percentage = getlabelnum(proc,y)*100;
 flowCode = concat(flowCode,"total +=
",numtostring(percentage*remaining),";if (randomnum <= total) return ",numtostring(y),";");
 }
 }
 flowCode = concat(flowCode,"return 1;");
 switch_flexscript(getvarnode(proc,"sendtoport"),1);
 setvarstr(proc,"sendtoport",flowCode);
 buildnodeflexscript(getvarnode(proc,"sendtoport"));
}

64

C.2. Code - FlexSim Function: FivePointDistribution

/**Custom Code*/
int quartile_end = duniform(2,6);
int quartile_beg = quartile_end-1;
double ran
domnumber = uniform(parval(quartile_beg),parval(quartile_end));
return randomnumber;

65

APPENDIX D. FIVE-POINT DISTRIBUTION

D.1. Explanation

The proposed “five-point distribution” is merely a collection of 5 uniform distributions

that are used to approximate a more advanced statistical distribution. In order to create the

distribution six percentiles in the data are found; 0, .2, .4, .6, .8, 1. For instance, assume the

following was an observed data set:

106, 110, 108, 100, 103, 101, 114, 102, 102, 103, 108, 100, 114, 105, 113, 104, 111, 104,

104, 100, 114, 100, 101, 114, 110, 102, 100, 109, 119, 100, 107, 122, 106, 103, 103, 102, 101,

102, 114, 114, 102, 110, 105, 100, 129, 107, 103, 111, 111, 113

The six percentiles calculated would be the following:

100, 101.8, 103, 107.4, 113, 129

The probability density curve of the resultant distribution looks like what is seen in the

figure on the following page.

66

To sample from this distribution two random numbers are then generated the first is a

random number sampled from a uniform distribution between 0 and 1. That random number is

then used to determine what range will be used for the second random number. In the example if

.22 was our first random number, then the second random number would be sampled from a

uniform distribution between 101.8 and 103. That number would then be the sample from the

distribution.

There are a few advantages and disadvantages to using this distribution. One advantage is

the all-encompassing nature of the distribution. This distribution adapts to the dataset, so it can

fit the distribution regardless of the skew or normality. This advantage also makes fitting data to

the distribution very simple. Six quick calculations provide all the information that is necessary

to create the distribution. One disadvantage of the distribution is that it is less precise than a

better fitted distribution. It also would have difficulty with any data that has more than two

modes, because using only five uniform distributions would not approximate a bimodal

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

97 99 101 103 105 107 109 111 113 115 117 119 121 123 125 127 129 131

Probability Density of Five-Point Distribution

Probability Density Function of the Example Five-Point Distribution.

67

distribution as effectively. This could be done by using more uniform (i.e. ten) distributions to

represent the bimodal data. This would be using the same concept but use ten points instead of

five.

68

