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ABSTRACT 

The Programmatic Generation of Discrete-Event 
Simulation Models from Production 

Tracking Data 

Christopher Rand Smith 
School of Technology, BYU 

Master of Science 

Discrete-event simulation can be a useful tool in analyzing complex system dynamics in 
various industries. However, it is difficult for entry-level users of discrete-event simulation 
software to both collect the appropriate data to create a model and to actually generate the base-
case simulation model. These difficulties decrease the usefulness of simulation software and 
limit its application in areas in which it could be potentially useful. 

This research proposes and evaluates a data collection and analysis methodology that 
would allow for the programmatic generation of simulation models using production tracking 
data. It uses data collected from a GPS device that follows products as they move through a 
system. The data is then analyzed by identifying accelerations in movement as the products 
travel and then using those accelerations to determine discrete events of the system. The data is 
also used to identify flow paths, pseudo-capacities, and to characterize the discrete events. Using 
the results of this analysis, it is possible to then generate a base-case discrete event simulation.  

The research finds that discrete event simulations can be programmatically generated 
within certain limitations. It was found that, within these limitations, the data collection and 
analysis method could be used to build and characterize a representative simulation model. A test 
scenario found that a model could be generated with 2.1% error on the average total throughput 
time of a product in the system, and less than 8% error on the average throughput time of a 
product through any particular process in the system. The research also found that the time to 
build a model under the proposed method is likely significantly less, as it took an experienced 
simulation modeler .4% of the time to build a simple model based off a real-world scenario 
programmatically than it did to build the model manually.  
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1 INTRODUCTION 

1.1 Background 

Discrete-event simulation software has proven to be a reliable tool for system 

improvement, because it is able to assist a user in identifying and solving problems. An accurate 

simulation model also gives the user an opportunity to explore a defined system or test “what-if” 

scenarios without having to invest the time and money that would be necessary to test out 

different scenarios on the actual system. These benefits are infrequently realized in industry, 

because entry-level users of discrete-event simulation software find it difficult to gather the data 

necessary to create a simulation and also have difficulty using correctly gathered data to create a 

base case scenario. Without the base-case scenario it is difficult to explore the system or test 

“what-if” scenarios using simulation. 

However, if discrete-event simulation software were able to reduce the amount of 

training, experience, and time necessary to create accurate simulation models, then a discrete-

event simulation tool would be useful for a larger subset of people. The use of discrete-event 

simulation tools would likely increase due to the more favorable balance between the time 

invested in creating the model and the benefits of the insight gained from the model. 

1 

 



1.2 Objective 

The purpose of this thesis is to develop methods for collecting and analyzing product 

location data as it moves through production in order to programmatically create discrete-event 

simulation models. The research answers the following questions: 

1. Can timestamp and location data collected through a GPS tracker be used to facilitate 

programmatic model creation? 

2. Can programmatic model creation tools be used to facilitate model creation in a way 

that product flow and processing is determined through analysis of a sample of 

product location data as it moves through a system? 

3. Can the lead time required to create an accurate simulation model be reduced by 

using automated data collection and programmatic model creation? 

4. What types of data are ignored or unachievable through this form of analysis? 

1.3 Justification 

The following two problems are currently experienced by users that are beginning to use 

discrete-event simulation software: 

1. The data collection phase of a project does not always occur in the same time period 

as model creation, which often results in inaccurate model results. 

2. The user experiences a high lead time from the start of model creation to getting 

results of simulated what-if scenarios. 
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Currently discrete-event simulation software has a steep learning curve, which 

necessitates large amounts of training and/or expertise in order to produce models that can 

accurately depict the real-world scenario that is being simulated. Over the years many changes 

have been made in various discrete-event simulation software packages to try to reduce the 

learning curve, and enhance the ability of an entry-level user. These changes have managed to 

decrease the amount of coding experience and other skills necessary to model common 

scenarios. However, many entry-level users of discrete-event simulation software still become 

discouraged by the amount of training, experience, and, most importantly, time that is necessary 

to achieve worthwhile simulation results. By supplying a possible solution to this difficulty the 

usefulness of simulation software can be enhanced. However, this research does not presume that 

training and experience will no longer be useful, as any significant modifications of the base case 

will have to be done by a more experienced modeler. 

1.4 Limitations 

This research is limited to the scope of systems where the products physically move 

through a set of processes. It also does not attempt to include in the generated simulations the 

actions of indirect resources on the product. Therefore, this method would be ineffective in 

instances where indirect resource capability is the main objective of simulation, and would be 

more effective where throughput and bottleneck analysis is the desired result of simulation. For 

additional limitations of method see section 5.3 Limitations of Algorithm. 
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1.5 Glossary of Terms 

Computer Simulation: A computer model that is made to represent or mimic an actual 

system. The model is then used to draw inferences on the behavior of the actual system. 

Discrete-Event Simulation (DES): A subset of computer simulation that is involved in 

modeling systems where events drive the system. This is in contrast to other forms of computer 

simulation including fluid simulation, stress simulation, and others where events do not drive the 

simulation. 

Processor: A step in a system in which the product is contained for a determined interval 

of time. This step differs from a queue, because although the interval of time may be non-

constant it is not considered waiting time. Movement of an item between system steps is also 

modeled as a processor in this research. 

Product: The item that moves through the system. This is the part of the system in the 

research that is tracked using a GPS tracking system. 

Queue: A step in the system where the time can be classified as waiting time. The 

waiting time could be determined be either a downstream or upstream process.  

Route: The specific series of processors and queues that the product moves through in 

the system. The route can be constant or variable. Different products may experience different 

routes or routing as they move through the system. 

 System: The aggregate of all non-product items making up a model.
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2 LITERATURE REVIEW 

2.1 Problem Definition 

There is an abundance of articles both within academia and from without that highlight 

the problem that is being addressed by this thesis. A particularly good article highlights the 

amount of time in a simulation model that is spent collecting, analyzing, and inputting data into 

the simulation model (Skoogh, 2012). This article makes the following noteworthy observation: 

However, despite its potential, industries worldwide have not adopted DES 
completely in their production development process. One reason is arguably that 
production simulation projects tend to be slow in providing clients with model 
results. This is a significant disadvantage, since manufacturing development and 
design projects usually rely on rapid responses from analyses. Hence, renouncing 
precision in favor of quick response, organizations are tempted to choose less 
complex tools. (Skoogh, 2012) 

This observation is helpful in defining the problem that DES is currently experiencing. The lead 

time between starting the analysis and getting results seems to be prohibitively long for many 

potential users. This article also mentions that “activities in the input data management process 

constitute around one third of the total time consumption in DES projects.” This is important, 

because the proposed data collection and analysis portion of this research aims to reduce both 

that time and the model creation time in the total time of a DES project. It is clear that a problem 

currently exists, because of the long lead time in DES projects. It is also clear that resolving this 

problem could lead to DES being used more frequently as a tool. 
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2.2 Programmatic Model Generation 

Programmatic model generation is a topic that has been explored in a variety of other 

articles. One article, “Stochastic generation of discrete-event simulation models,” identifies the 

different steps that are necessary in creating models (Huber, 2008). These steps are identified as 

the following: definition of input parameters, model hierarchy creation, component placement, 

component linkage, and variable variation. This research attempts to programmatically 

accomplish each of the steps as outlined in this previous research. For similar research that has 

been done to programmatically create models for forms of data analysis other than simulation see 

Section 2.4 Creating Models from GPS Data. 

2.3 Data Collection for Simulation Models 

Many articles have identified data collections methods for the successful creation of 

statistically representative simulation models. An article, “Automated input data management: 

Evaluation of a concept for reduced time consumption in discrete event simulation,” proposes an 

idea that attempts to reduce the amount of time that is necessary for data input in creating a 

simulation model (Skoogh, 2012). The idea presented is a complicated system that allows for 

real-time simulation updates. The system derived in this research accomplishes a similar goal to 

the solution that will be proposed, but seems to do it in a much more intrusive manner to an 

operation than would be feasible in many manufacturing environments. 

2.4 Creating Models from GPS Data 

There are a few articles of research that have used GPS data to create models of real-

world scenarios, but they were not creating discrete-event simulations. Most of these articles 
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dealt with analyzing traffic flow patterns, and creating models of traffic networks. 

Programmatically modelling traffic networks actually has many similarities to programmatically 

generating discrete-event simulations, because they both must identify when events happen, how 

long they take, and how objects move between those events. There were a couple interesting 

articles that attempted to use GPS data to create models of traffic flow.  

One article was using GPS data to try to identify the most efficient traffic route and then 

compared that route to those that people chose manually (Spissu, 2011). This article establishes 

some of the difficulties with using GPS data from the modelling of routes. It found the 

following: 

Although GPS-based data collection and, in particular, smart phone data collection 
have been shown to offer a number of advantages in the present and earlier studies, 
some technological limitations still affect data quality. In this work, 42% of the 
reported trips could not be associated with the corresponding routes mostly because 
of canyon effects, signal reflex, and user carelessness. (Spissu, 2011) 

The findings from that article make it clear that care must be taken when using GPS to ensure 

that data is collected in areas where its limitations can be reduced. 

Another article was attempting to estimate travel time of routes through an arterial 

network of roadways (Pan, 2007). The difficulty with this task is that arterial roadways have 

many stops signs, stop lights, and congestion that makes classifying that time difficult. The 

planned stoppages (i.e. stop signs and stop lights) were classified in the research as links. The 

method of the research was to use continuously sampled GPS data to identify when a vehicle was 

decelerating and then attributed any time between that deceleration and the next acceleration to 

the closest link (Pan, 2007). That link was then characterized by an average of the experienced 

times during the sample. This article proposes some similar concepts to those that are being 

presented in the current research, because the current research also uses acceleration to identify 
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when an object is in a new process. The current research then associates the time between that 

acceleration and the next acceleration as belonging to the process. This article found that it was 

able to determine the link time (the time between when a person started decelerating at a stop 

sign or stoplight to when they finished accelerating afterwards) with about 5.5% error using data 

collected with a GPS data collection system. 

2.5 GPS Accuracy 

This research depends on a data collection tool that can provide a coordinate position. 

Specifically this research used GPS coordinates to define product movement through a system. 

In order to know the limitation of this research it is necessary to know the limitation of the 

devices that were used in collecting the data. The tool’s limitations directly influenced the types 

of systems that can use the proposed methodology to create a simulation model. The current 

accuracy of a worst-case scenario for uncorrected civilian GPS coordinates at a 95% confidence 

level is 7.8 meters (Department of Defense, 2008). However, if one uses multiple satellites, 

augmentation services, or other correction methods it is realistic to achieve accuracies within a 

few centimeters (NGS, 2014). Therefore, it is reasonably possible to use this method on systems 

where the significant distance between processes is greater than the limitation of the data 

collection tool, which is a few centimeters. Other methods could be used to gather this type of 

data including ultrasonic methods, RF mapping, etc., but those methods, due to their less 

developed nature, weren’t explored in this research. GPS is especially useful because of the 

active development that is occurring in this area. With newer GPS satellites that are currently in 

development, it is anticipated that uncorrected civilian GPS accuracy will drop to 0.63 meters 
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(United States Air Force, 2014). The current research used uncorrected GPS coordinates, which 

resulted in significant error in scenarios with movement on a small scale. 

Various research articles have used a similar GPS data collection method. One such 

research article found that a GPS data collection system could be used to adequately gather 

location and timestamp data to track the usage of construction equipment on a construction site 

(Pradhananga, 2013). That research acknowledged that there are multiple approaches that could 

be used to collect location data, and that each has benefits and limitations. However, as it states: 

GPS is well known to work independently (defined as a device that may not require 
any other installation of technology on a project site, other than a device on the 
resource to track it) and provide real-time data (defined as equal or greater than 1 
Hz data update rate)… GPS devices are also affordable and easy to install. The data 
it provides can also be analyzed with relative little computational effort. For these 
reasons, this work presents the implementation of GPS technology for tracking the 
location of construction equipment as it relates to work sampling, including cyclic 
activities which are very common in earth moving operations. (Pradhananga, 2013) 

Similar benefits are recognized in the current research by using GPS instead of other methods for 

tracking location. Another finding from that same research was the observed accuracy that was 

achieved with low-cost GPS systems, which was 0.68-4.36 meters (Pradhananga, 2013). It found 

the following: 

In sum, the GPS data loggers were found to perform better under clear view of sky 
while the performance degraded with increasing obstacles. The standard deviations 
were high compared to the value of the mean in all cases, indicating that the 
readings were not consistent and can vary significantly. It should also be noted that 
error rates vary among data loggers. The above error tests, however, provide a 
general idea of what data low-cost easy-to-install GPS data can provide. 
(Pradhananga, 2013) 

From this analysis it would seem that either a higher quality GPS device would need to be used in 

order to get data using a GPS for a small scale system, or the GPS device would need to be better 

than the low-cost option used in the aforementioned research. 
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2.6 Multi-Resolution Modeling 

An interesting caveat to this research is the capability to automatically do multi-

resolution simulation modeling. The idea of multi-resolution modeling is presented in the article 

“Using dynamic multiresolution modelling to analyze large material flow systems” 

(Dangelmaier, 2004). This article introduces the idea of multi-level simulation modeling. It also 

presents the idea of model scope indication by view distance in the model. This suggests that 

representative simulation models can be achieved by increasing the scope in one area of the 

simulation that is crucial to the modeler while decreasing the scope in other areas. This concept 

may be a possibility for the simulation models created using the method that are proposed in this 

thesis.
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3 METHODOLOGY 

3.1 Introduction 

The methodology for developing an algorithm for programmatically generating discrete-

event simulation models from production tracking data was separated into the following three 

sequential phases: 

Phase 1 – Development of Model Creation Algorithm 

Phase 2 – Development of Data Collection System 

Phase 3 – Scenario Testing 

3.2 Development of Model Creation Algorithm 

This phase of research is concerned with being able to replicate a manually generated 

simulation model using a programmatic model creation algorithm. For this phase a simple test 

case was generated in simulation software. The software used in the research was FlexSim, 

which is a discrete-event simulation software provided by FlexSim Software Products, Inc. The 

model was a simple system with six processing steps. The model included the following basic 

procedures: processing steps, multiple exit locations, route reentry, route consolidation, route 

splitting, probabilistic routing, and variable processing times. The model was developed in order 

to create data that would be used to try to programmatically mimic the original model. The 
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dataset was created from the model by recording the absolute x, y, and z location to a general 

origin and the time of every product in the system for every second that the model ran. The 

dataset included data for 100 products as they went through the modeled system. This data was 

then saved in .csv format and imported into excel for data analysis.  

Once the dataset was gathered from the initial model, an Excel VBA-based algorithm was 

written to comb through the data to attempt to identify the original processes and routing. For 

more information about the data analysis algorithm see section 4.1 Data Analysis Algorithm. 

This algorithm was then capable of identifying the steps in the system, a distribution that 

characterized the processing times of each step, the capacity of each step, and the routing 

through the system. The model was then analyzed to determine the accuracy of the 

programmatically generated model to the original simulation model using some key output 

characteristics, which included the average processing times of each processing step in the model 

and the average throughput for each step in the model. The results of those comparisons can be 

found in section 4.3.1 Generated Simulation. After developing the programmatic model creation 

algorithm it was important to determine the limitations of the algorithm. These limitations and 

their significance were explored and the results are found in section 5.3 Limitations of 

Algorithm. Phase 1 was finished once the algorithm was created and the limitations identified. 

3.3 Development of Data Collection System 

The data collection system was developed to provide the following information about a 

product at a constant interval as it moved through the system: 
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1. Unique Product Identifier – An indexed number for each product observed. 

2. Longitude – The longitudinal position of the observed product at a given time. 

3. Latitude – The latitudinal position of the observed product at a given time. 

4. Product Type Identifier – An indexed number for each product type observed. 

5. Timestamp – The time (in seconds) since the beginning of observation 

Once this information was collected the longitude and latitude were converted to X and Y 

coordinates based off of an origin at the first position of the first observed product. The 

calibration time was also removed from the beginning of the dataset. Once these steps were done 

this information created a collection of data points that looked similar to the example in Table 

3-1. 

 

Item X Y Type Time
1 0 0 1 12
1 1.519118 -1.61331 1 13
1 3.038236 -3.22662 1 14
1 1.082859 -6.48886 1 15
1 -2.39164 -8.1378 1 16
1 -20.7806 -17.7902 1 17
1 -35.695 -25.7936 1 18
1 -62.5246 -33.7249 1 19
1 -74.4397 -33.6527 1 20
1 -95.1282 -33.5273 1 21
1 -103.901 -33.4741 1 22
1 -115.156 -33.4058 1 23
1 -115.419 -33.4042 1 24

Table 3-1: Example of Data Gathering Tool Output 

13 

 



3.4 Scenario Testing 

Scenario testing was done in an attempt to verify the capability of the proposed 

methodology. Two scenarios were developed in order to test the data collection system and the 

simulation software data translator that was used to build the models from the data analysis 

algorithm output. 

The first test scenario was done on a large scale by identifying a driving route between 

two locations. The route went through stop signs and traffic lights, which broke the route into 

multiple steps. The route was driven three times in order to act as three products moving through 

the system. The route was done on a large scale in order to determine the accuracy of model 

creation where the amount of tool induced variability was minimal. The actual time for each 

segment was recorded during each route. The car was also GPS tracked during each route. The 

aggregated GPS data was then sent through the programmatic model creation algorithm in order 

to create a representative model, and to identify the various segments. The programmatically 

identified time for each segment was then compared to the recorded time. The distribution of 

average trip times was also compared to the distribution of calculated trip times. The results of 

this scenario can be found in section 4.3.2 Scenario 1 – Car Route. 

The second scenario that was analyzed was to determine if the GPS data collection 

system would be accurate enough in a small production system. This scenario was setup by 

creating five production steps in a small room. The products moved through the system 

according to an established model. The time spent in each location was determined variably by 

predetermined distributions. Once the system was setup, five products were tracked using GPS 

as they moved through the system. The aggregated GPS data for the five products was then sent 

through the model generation algorithm to create a simulation model to represent the predefined 
14 

 



system. The similarity between the programmatically created model and the predefined system 

was then analyzed. The analysis of this scenario can be found in section 4.3.3. 

 

 

 

 

 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
15 

 



 

4  RESULTS AND ANALYSIS 

4.1 Data Analysis Algorithm 

 To convert GPS data to a discrete-event simulation model it is necessary to run the data 

through an algorithm that makes calculations and crucial assumptions. The algorithm 

calculations can be broken into three major steps, which are the following: 

1. Identify the various process steps. 

2. Characterize each of the identified steps. 

3. Identify the path the products take as they flow through the process. 

As the algorithm moves through these calculations it makes many assumptions. Knowing the 

implicit assumptions in the calculations is a critical factor in creating an accurate model using the 

algorithm described below. 

4.1.1 Identifying Process Steps 

The first step in the algorithm is to identify the process steps. This is the most robust part 

of the model generation algorithm, because it is the one with the least presumptive assumptions. 

This step can be broken down into the following minor steps for each observation: 

1. Create a chart of the difference in the absolute value of the instantaneous acceleration of 

the object as it moves through time. 
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This step is done by finding the distance that a tracked product traveled between each 

data point, and then finding the difference between that calculated point and the previous 

calculated point. This gives the instantaneous velocity of the product at each time interval. Then 

the acceleration is found by calculating the difference between those velocities. When charted 

this gives a chart that should look something like the graph in Figure 4-1.  

Figure 4-1: Acceleration in Time of a Product and Cutoff Point 

 
2. Determine the differential acceleration cutoff point.  

This cutoff point determines the scope of the resulting model. The lower the cutoff point 

the more processes we are likely to create from the data, because it will be more sensitive to 

change. The higher the cutoff point the less likely we are to experience processes that are driven 

by noise in the data. Therefore, the cutoff point should be chosen in a position where it is less 

than all relevant accelerations, but is higher than all accelerations that are a result of noise. An 

example of such a cutoff is shown in Figure 4-1. 
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3. Determine the location sensitivity measure.  

This sensitivity is basically a location sensitivity. A location sensitivity measure must be 

used because exactly the same GPS locations are unlikely in simultaneous observations. 

Therefore, one must be willing to group processes that start and end in similar areas as the same 

process. Therefore, a location setting of one would mean that if a process was found that started 

within one distance unit of an existing process, and ended within one distance unit of the same 

existing process, then it would be considered the same process. 

4. Split each observation into its respective processes using the acceleration cutoff point.  

If the acceleration is above the cutoff point, then the points before the cutoff point are 

considered a separate process than the points after the cutoff point. For each of the identified 

processes calculate a processing time, by subtracting the last time in the process by the first time 

in the process. Also determine the process starting point by the first GPS coordinate, and it’s 

ending point using the last GPS coordinate. 

5. Using the location sensitivity measure, group similar processes between observations.  

Use the methods described in detail in the next section, which allow for stochastic 

representation of the process. 

These steps use the GPS data, and a couple cutoff points to programmatically break the 

data into the various processing steps that the product experienced during the observed run. 
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4.1.2 Characterizing Process Steps 

 The next step in the data analysis algorithm was the need to characterize each of the 

process steps that were identified. This process can be done in the following, not necessarily 

sequential, steps: 

1. Identify a stochastic representation of the processing time for each step  

This can be done in a variety of ways. The data could be run through a system that 

identifies a distribution with the highest goodness of fit. The distribution could then be sampled 

from for the stochastic representation. However, in this research it was instead determined to 

generate a stochastic representation whose method could be applied to any situation and 

adequately represent the sample. The distribution is described in detail in Appendix D, but it is 

basically determined by placing 20% of the area under the probability density curve as a uniform 

distribution between the observed minimum and the data point at the 20th percentile of the data. 

Then doing likewise for each 20th percentile above that until the last uniform distribution is 

located between the 80th percentile of data and the maximum. This distribution does not give a 

perfect representation of the data. However, given the other much more important assumptions 

used in this generation algorithm this assumption does not seem egregious. 

2. Identify if the process is deterministic or indeterministic 

The classic examples of both would be a step with a defined process time being 

deterministic, and a step that acts as a queue being indeterministic. This research does not 

attempt to create a method to identify if a process is deterministic or indeterministic. It assumes 

that every process is deterministic. However, this assumption does limit the effectiveness of the 
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algorithm in creating exactly representative simulation models. This step might be achieved by 

using the methods explained in section 4.4.1.3. Processing Time vs. Delay Time Identification. 

3. Identify a pseudo-capacity of each step 

This step can only be done if the sample was taken from sequential products. It is done by 

looking at each process step at each unit of time and finding the time unit where the maximum 

number of products were in the process step. That maximum can then be considered a pseudo-

capacity of that step in the system. This method is extremely limited, because it is only an 

estimated capacity based off of observation, and not necessarily the true limit of the particular 

step’s capability. A true capacity would reflect how many units a step could handle in isolation, 

however this method creates a capacity that only reflects the experienced maximum in the 

sample, and not a true maximum. This method will underestimate the true capacity of any step 

where it’s capacity is being limited by another step in the system. Therefore, if capacity 

considerations are an important in the desired outcome of the model it would be prudent to adjust 

the capacities of the steps of the generated model to more accurately reflect the observed real-

world scenario. 

4.1.3 Identifying Product Flow 

 The next step in the data analysis algorithm is creating the flow by which the products 

move through the process steps of the system. This is done by accomplishing the following two 

tasks: 
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1. Identify the flow paths 

To identify the flow paths it is necessary to recognize the path that each observed product 

experienced as it moved through the system. The method to determine paths is to create a list of 

the orders a product went through. Once this list is generated for each product we can then make 

sure to send the simulation program the necessary information to make the connections between 

those events. The output shown in Table 4-1 does this in the columns labeled “IN” and “OUT”. 

2. Characterize the flow paths 

This is the more difficult of the two tasks associated with creating the flow paths. This 

step attempts to identify the logic by which a product decides which step to move to when there 

are multiple options. This is not an issue when one step moves to only one other step. But in 

other situations, such as which step to proceed to in a situation where one step can go to multiple 

other steps, the characterizing of the logic associated with that particular flow is important in 

order to accurately reflect the real-world scenario. In order to simplify the model generation 

algorithm it was assumed that the generated models relied on probabilistic routing. In other 

words it was assumed that, in a situation where a split in routing occurred after a step, a defined 

percentage went down each route. If this algorithm was used on a system with multiple product 

types, then each product type’s flow would be generated independently. This would be done by 

creating probabilistic routing for each case. The algorithm would then be able to split routing by 

product type by sending 100% of a theoretical product type 1 to one step and 100% of a 

theoretical product type 2 to another step. The assumption of probabilistic routing allows us to 

analyze the data by looking at every time an observation left a particular step and then develop a 

percentage from the results of where the observations ended up going. This method is not 

complete as a lot of routing is not done in a probabilistic manner. However, one could develop 
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methods to identify various other types of routing such as first available or round-robin (see 

section 5.3.1.2. Probabilistic Flow).  

4.1.4 Algorithm Output Capability 

 Using the methods in the algorithm it is possible to generate an output that looks 

something like Table 4-1. Table 4-1 is the output generated for the car route scenario (see 

Section 4.3.2).  

 

Table 4-1: Output of the Data Analysis Algorithm from the Car Route Scenario 

  

 

The simulation software package is then required to have a translator that takes these simulation 

outputs and programmatically create the steps and flow for the model (see Table 4-2).  

 

 

 

 

Process Start X End X Start Y End Y Angle Length IN OUT Times Distributions Pseudo-Capacity
0 0 -145.78 0 325.3091 114.1385 356.4799 test|-1`1 37~37~48 fivepointdistribution(37~37~37~39.2~43.6~48) 3
1 -146.535 74.68844 371.9068 694.5784 55.56544 391.225 test|0`0.6667 12~31 fivepointdistribution(12~15.8~19.6~23.4~27.2~31) 2
2 131.5003 857.4866 700.4009 698.6524 -0.13799 725.9884 test|1`1 45~15 fivepointdistribution(15~21~27~33~39~45) 2
3 930.8949 1321.835 696.8568 695.7362 -0.16423 390.9417 test|2`1~13`1 8~9~8 fivepointdistribution(8~8~8~8~8.4~9) 2
4 1396.76 1765.415 695.787 689.7104 -0.94433 368.7053 test|3`0.6666 8~12 fivepointdistribution(8~8.8~9.6~10.4~11.2~12) 2
5 1839.646 2203.096 688.7353 680.8994 -1.23508 363.5344 test|4`0.5 8 fivepointdistribution(8~8~8~8~8~8) 1
6 2255.831 2648.232 679.9061 669.3899 -1.53513 392.542 test|5`1~4`0.5 10~15 fivepointdistribution(10~11~12~13~14~15) 2
7 2683.38 2746.572 667.9305 39.19389 -84.2607 631.9042 test|6`1~14`1 20~18~18 fivepointdistribution(18~18~18~18.4~19.2~20) 2
8 2746.214 2744.277 -20.1294 -950.257 269.8807 930.1292 test|7`0.6667 22~23 fivepointdistribution(22~22.2~22.4~22.6~22.8~23) 1
9 2744.241 2368.044 -976.235 -1047.52 190.7297 382.8907 test|8`1~16`1 15~18~20 fivepointdistribution(15~16.2~17.4~18.4~19.2~20) 2

10 2336.078 1072.152 -1047.12 -1037.96 179.5844 1263.959 test|9`1 29~27~15 fivepointdistribution(15~19.8~24.6~27.4~28.2~29) 2
11 1009.297 352.4403 -1036.97 -1041.03 180.3541 656.8693 test|10`1 16~19~22 fivepointdistribution(16~17.2~18.4~19.6~20.8~22) 2
12 341.7351 49.22311 -1041.31 -1044.54 180.6324 292.5298 test|11`1 test|-2`1 22~25~23 fivepointdistribution(22~22.4~22.8~23.4~24.2~25) 2
13 -156.655 581.5314 372.2545 674.5336 22.26856 797.6786 test|0`0.3333 23 fivepointdistribution(23~23~23~23~23~23) 1
14 1562.073 2637.7 671.7496 655.1939 -0.88181 1075.754 test|3`0.3333 23 fivepointdistribution(23~23~23~23~23~23) 1
15 2746.353 2745.21 7.54237 -380.19 269.8312 387.7336 test|7`0.3333 9 fivepointdistribution(9~9~9~9~9~9) 1
16 2745.062 2744.242 -443.339 -975.382 269.9117 532.0429 test|15`1 13 fivepointdistribution(13~13~13~13~13~13) 1
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Table 4-2: Algorithm Output Usage in Model Input 

ALGORITHM OUTPUT DATA FLEXSIM MODEL INPUT DATA 
Process Unique Identifier Object Name 

Start X Object X Position 

Start Y Object Y Position 

Angle Object Z Rotation 
Length Object Length 

In Object Input Connections, Input Object Flow Logic, Source Locations 

Out Sink Locations, Object Flow Logic 
Distributions Object Processing Time 

Pseudo-Capacity Object Max Content 
 

 

A translator was developed for the FlexSim simulation software package that took the data and 

generated a model within the software. The FlexSim translator code can be found in Appendix C 

– FlexSim Data Translator. The translator followed the following logical steps in creating the 

model from the output data: 

1. Create the object in the model 

2. Name the object 

3. Position, rotate, and elongate the object so it is in the correct visual space 

between the start and end points 

4. Apply the output processing time to the object 

5. Apply the pseudo-capacity amount to the object 

6. Create sources and sinks in the model 

7. Connect the objects using the output flow path 

8. Apply the flow logic to the object 
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Once the translator was created it was possible to collect raw GPS data using the data 

collection tool, analyze it using the data analysis algorithm tool, and then make that output into a 

model using the FlexSim data translator tool. This completed the steps necessary to 

programmatically generate a simulation model from raw GPS data. 

4.2 Data Gathering Tool Variation 

The data gathering tool uses GPS to identify latitude and longitude coordinates at a given 

time interval for the duration of the product’s time in the system. These latitudes and longitudes 

were then converted to a coordinate system with the origin being the first recorded location of 

the first observed product. GPS was chosen over other coordinate location identification methods 

due to its developed nature and accessibility for most parties. The GPS used in the experiments 

was the GPS chip in an off-the-shelf cellular phone. This GPS technology was intentionally 

picked, because it fairly represents the inaccuracies in results that could be expected from many 

GPS systems. Given the variability from the tool itself it was determined that the algorithm, in 

order to be useful, would have to be able to deal with the inaccuracies created by the tool. 

Therefore, the two aforementioned scenarios were developed to test the accuracy of the GPS data 

gathering tool. 
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4.3 Scenario 1 - Car Route 

 The first scenario used a car route around a large rectangular area (2800’ x 1800’), with 

the minimum distance between changes in acceleration being about 100’. The setup of the 

scenario was described in Chapter 3. In doing some pre-experiment trials it was noted that a 

warmup period was required in order to calibrate the device. In the experiment a calibration 

period of 30 seconds was used at the beginning of each trial. Those calibration observations were 

then discarded from the data. Once the experiment was setup and a suitable location determined, 

the experiment was run. Figure 4-2 is a scatterplot of the location of the vehicle during the two 

trips.  From the scatterplot one can somewhat visually see the transitions between processes in 

the system. Once this data was gathered it was input into the model generation algorithm that 

Figure 4-2: Scatterplot of Coordinate Locations During Trial 1 
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was previously developed. The accuracy of the model generated in this scenario is explored 

further in section 4.3.2. This experiment seemed to suggest that when used on a large scale the 

accuracy of the GPS was not an inhibiting factor in the accuracy of the programmatically 

generated model. This suggests that the GPS tool would be, at least partially, capable of being 

used in conjunction with the model generation algorithm to create models with movements that 

occur on a large scale like simulations of transportation, supply-chain, logistics, etc. 

4.3.1 Scenario 2 - Walking Route 

The first scenario was successful in determining that in a situation where the scale of 

movement was fairly large the accuracy of the GPS tool was not a significant factor. The purpose 

of the second scenario was to determine the effect that variation in the tool had on the 

algorithm’s model output when the movements between processes were smaller. This scenario 

was done in an area that was about 20’X20’, and the minimum distance between steps was about 

10’. The smaller distance between changes in velocity made it so that any inaccuracy of the GPS 

tool would be more pronounced in the data that was collected. The accuracy of the 

programmatically generated models is explored further in section 4.3.3. 

4.3.2 Limitations of Data Gathering Tool 

 It was observed that the accuracy of the GPS data gathering tool could play a significant 

role in the accuracy of the programmatically generated model. As seen in scenario 2, the 

variation observed in the programmatically generated model was more than the variation that 

was inherent in the process itself.  
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GPS accuracy is a factor of the device itself, as some GPS devices are more accurate than 

others. The GPS device used in this research was not the market leader in accuracy, so it would 

be feasible that greater accuracy could be achieved through a more precise and accurate GPS 

system. The necessary amount of precision would be dependent on the physical scale of the 

subject system, and the desired accuracy of the generated model. For instance, a system could be 

in a small physical area where the GPS inaccuracy causes 10% more variation than would be 

expected in the system. If in such a system the desired result was to determine if a simple change 

would change the output of the system and the change caused a 100% increase in output, then it 

may be reasonable to accept the inaccuracy of the GPS for the sake of further analysis. However, 

that would have to be determined based on the risk tolerance of the person or organization that is 

creating the simulation. 

In order to determine the amount of variation that is being caused by the device it would 

be necessary to do the following things: 

1. Create a sample system where movements were on the same physical scale that 

would be used in the subject system. 

2. Apply sample speeds or delay times to each process in the sample system. This 

can be done by sampling from a distribution or using a flat time. 

3. Move the GPS device through the sample system. 

4. Analyze the gathered data using the data analyzer. 
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5. Determine the variation caused by the inaccuracy of the GPS tool in the 

programmatically generated model by comparing the processing times in the 

sample system to the processing times in the programmatically generated 

model. 

6. Considering desired outcomes of the simulation model, determine if the tool 

accuracy is unbearably high for the subject models physical scale. 

 
Using this method it seems possible to determine if a specific GPS tool is accurate and precise 

enough to be used in the method proposed in this research. If the above method suggests that it is 

not suitable, then one could look into more accurate and precise GPS devices. If no GPS device 

seems to work, then it would be necessary to gather coordinate locations in some other way. This 

could feasibly be done using RFID mapping or by using a barcode scanner as a product enters 

and exits a station and associating that station with a coordinate location. Each of these 

techniques could be used with the same data analysis and model generation techniques to 

programmatically generate a model. The difficulty with the alternative data gathering methods is 

that they would require additional steps or resources that would not be necessary if one would be 

able to use the simpler GPS data gathering method. 

4.4 Programmatically Generated Model Accuracy 

One of the important findings from this research is the accuracy that might be achieved in 

various settings using the proposed data analysis algorithm. Each of the three subsequent 

scenarios attempted to identify the possibilities and limitations of the proposed algorithm. 
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4.4.1 Generated Simulation 

 To create the data analysis algorithm a model was created in FlexSim, a simulation 

software package. The model looked like what is seen in Figure 4-3 and had characteristics as 

described in . A function was then written to get location data for 100 products as they moved 

through the simulation. This data was then fed into the data analysis algorithm. The output of the 

data analysis algorithm was then fed back into FlexSim by using the “FlexSim Data Translator” 

code in Appendix C. The characteristics of this programmatically generated model were then 

compared against the characteristics of the initial model, and a percent error was calculated. 

Then both the models were run for 100 replications of 4000 time units, and some critical 

statistics were compared. The comparison of characteristics and comparison of critical statistics, 

Table 4-3: Error of Characteristics of Programmatically Generated Model 

Table 4-4: Characteristics of Manually Generated Original Model 

Object Characteristics Inputs Outputs Processing Time Capacity
Source Processor 1
Processor 1 Source Processor 2 triangular(15, 25.0, 20.0, 0) 1
Processor 2 Processor 1,Processor 6 Processor 3 bernoulli(50, 10, 11, 0) 3
Processor 3 Processor 2 Processor 4, Processor 5 exponential(10, 3, 0) 4
Processor 4 Processor 3 Processor 6, Sink2 25 2
Processor 5 Processor 3 Sink 1 20 1
Processor 6 Processor 4 Processor 2 8 1
Sink Processor 4, Processor 5
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with their resultant percent error, can be found in Table 4-3. The visual comparison of the 

simulation models can be seen in Figure 4-3. This data suggested an average 21% error in 

estimating capacity, 9.92% error in estimating time within a step, and 7% accuracy in estimating 

the throughput of a step. The error could be reduced even further in estimating the time within a 

step if the distributions had been generated after checking for outliers. This would have resulted 

in less than 1% error. The algorithm also created the exact flow from step to step within the 

simulation.  

Figure 4-3: Original (Top) and Programmatically Generated (Bottom) Simulations 
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 These results were encouraging, because it meant that the algorithm was able to create a 

fairly accurate representation of an original system using just the location data of the items as 

they moved through the system. The minimal size of the error was especially impressive 

considering the use of an overly simplistic distribution (see Appendix D).  

4.4.2 Scenario 1 - Car Route 

 The setup of this scenario is described earlier, but the results showed that, when the 

variation of the GPS is minimal when compared to the scope of the movement, it is possible to 

create a fairly accurate simulation model to represent the system. When performing this 

experiment the time in each segment of the car route was recorded. These times were then used 

to create a simulation model using traditional model-building techniques and a simulation model 

using the proposed methodology. The average times recorded for each segment of the drive 

where then compared against the averages for each time segment from the manually and 

programmatically generated simulation models (see Table 4-5 and  

Table 4-6). The time to create the programmatically generated simulation model was also 

compared against the time to create the manually generated simulation model. The model 

building time for the programmatically generated simulation model was about 5 seconds. The 

model building time for the manually generated simulation model was about 20 minutes. The 

model building in both cases was done by someone experienced with the simulation software. 

However, in the case of the programmatically generated model this experience was not 

necessary, because the user had to merely run the function, and then select the output file created 

by the data analysis algorithm. In this situation the time to create the programmatically generated 

simulation model was just .4% of the time necessary to create the manually generated simulation 
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model, or 240X faster. However, it is likely that the relationship between programmatic and 

manual model building time is not linear, because the program will take around 5 seconds 

regardless of the scope of the model, and manual building time is highly dependent on the scope 

of the model. 

 
Table 4-5: Comparison of Observed and Generated Simulation Processing Times 

  

 

Table 4-6: Comparison of Observed and Manual Simulation Processing Times 

 

  

From this experiment it is evident that the algorithm was capable of generating a fairly 

accurate simulation model when paired with the data collection system. There was significant 

error (2.1-7.6%) between the generated model and the real-world system, and it is more than the 

error that existed in the manually generated simulation model (.3-4.4%). However, it is feasible 

to think of situations where the higher error could be traded off for the much faster model-

building capabilities of the algorithm. 

Observed Average Simulation Average % Error
Process Input Output Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3 Trial 4 Trial 5
Process 1 2 37.0 37.0 43.0 39.0 37.0 37.0 37.0 37.0 37.0 37.0 5.1%
Process 2 1 3 58.0 29.0 52.0 46.3 48.5 55.0 42.6 45.0 23.0 42.8 7.6%
Process 3 2 4 33.0 35.0 32.0 33.3 31.2 28.1 40.0 30.1 28.2 31.5 5.4%
Process 4 3 5 43.0 45.0 42.0 43.3 40.3 41.3 40.5 40.1 40.6 40.5 6.4%
Process 5 4 6 59.0 60.0 58.0 59.0 68.3 60.9 62.8 67.7 57.1 63.4 7.4%
Process 6 5 22.0 24.0 22.0 22.7 22.6 22.1 24.9 22.3 24.8 23.3 3.0%
Total 252.0 230.0 249.0 243.7 247.9 244.4 247.7 242.2 210.8 238.6 2.1%

Observed Generated Simulation

Observed Average Simulation Average % Error
Process Input Output Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3 Trial 4 Trial 5
Process 1 2 37.0 37.0 43.0 39.0 40.9 40.6 38.0 39.7 41.2 40.1 2.8%
Process 2 1 3 58.0 29.0 52.0 46.3 45.9 32.3 57.7 40.1 45.4 44.3 4.4%
Process 3 2 4 33.0 35.0 32.0 33.3 32.4 32.7 32.4 33.3 32.5 32.6 2.1%
Process 4 3 5 43.0 45.0 42.0 43.3 45.3 43.9 42.3 44.1 42.3 43.6 0.6%
Process 5 4 6 59.0 60.0 58.0 59.0 60.1 59.3 60.0 58.3 59.2 59.4 0.6%
Process 6 5 22.0 24.0 22.0 22.7 21.5 23.0 22.6 23.3 22.7 22.6 0.3%
Total 252.0 230.0 249.0 243.7 246.2 231.7 253.0 238.7 243.3 242.6 0.5%

Observed Manual Simulation
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4.4.3 Scenario 2 - Walking Route 

The last scenario’s purpose was to test the robustness of the generated algorithm on a 

small scale, where the system was near the edge of the accuracy of the GPS tool. In this scenario 

the data was collected over five trials, using the flow and processing times characterized in Table 

Process Input Output Processing Time Capacity
Source Process 1

Process 1 Source Process 2 60 1
Process 2 Process 1 Process 3 normal(120,30) 1
Process 3 Process 2 Process 4, Process 5 normal(90,30) 1
Process 4 Process 3 Process 5 75 1
Process 5 Process 3, Process 4 Sink 120 1

Sink Process 5

Table 4-7: Characteristics of Walking Route System. 
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4-7.  When this data was then input in the data analysis algorithm, the algorithm was unable to 

create a model that resembled the original system. This was largely due to the inability of the 

GPS tool to be accurate to the precision necessary in the system. When the locations of each trial 

were plotted, it was apparent that the tool was not capable of the precision necessary in this 

system (see Figure 4-4). Therefore, at this level of detail it was not possible to create a model 

that completely reflected the original system.  

This scenario’s experiment shows that the data-gathering tool that was used had limited 

ability to create useful data on this size system. These limitations could be analyzed and 

overcome as described in section 4.2.3. 

4.5 Capability of Proposed Model-Building Methodology 

The proposed model-building methodology is capable of creating simulation models that 

are fairly accurate in representing their real-world scenarios. However, the accuracy of the 

simulation models is highly dependent on the comparative accuracy of the GPS data collection 

tool in relation to the size of the subject system. As such, this methodology will likely become 

more effective as the accuracy of such tools increases.  

The results show that this methodology can produce simulations with error on system 

throughput time at about 2% and error on an individual process time between 3% and 8% (see 

Section 4.3.2). However, this methodology is not particularly good at estimating the true 

capacity of individual processes in a system, as it was only capable of determining capacity with 

a higher average error of 21% (see Section 4.3.1). This is the result of only being able to 

determine capacity based off of observed limits in the context of the system instead of a 

processes limit in isolation. The accuracy of other statistics was not analyzed as part of the 
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research. Therefore, the accuracy of additional statistics from a given model would have to be 

tested against real-world observations to determine if the model was representative. 

4.6 Time-Savings of Proposed Model-Building Methodology 

The proposed model-building methodology seems to be successful in reducing the time 

and software knowledge necessary to create a working model of a system. It does seem possible 

to programmatically accomplish many of the model-building steps. From the car route scenario 

(see Section 4.3.2) it was observed that the time to build a complete model manually with an 

experienced modeler was about 240X longer than the time it took to build that model using the 

proposed programmatic model-building methodology. It was also observed that the time 

difference would increase non-linearly as each additional process would take much more time to 

manually add to a simulation than each additional process would take to add programmatically. 

A significant amount of the time difference is caused by the automated fitting of data using the 

“Five-Point Distribution” (see Appendix D) instead of manually fitting each set of data to a 

distribution. However, time savings were accomplished in each part of the model-building 

process. 
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5 CONCLUSIONS 

5.1 Limitations of Algorithm 

The models generated using the proposed algorithm have many limitations. These 

limitations are caused by the nature of the technique and by simplifying assumptions made 

within the proposed algorithm.  

The limitations caused by the simplifying assumptions of the proposed algorithm are not 

a reflection of the method, but rather are a reflection of the limited scope of this research. 

Therefore, these particular limitations could be overcome through further research. The 

limitations caused by simplifying assumptions of the proposed algorithm include the following: 

- Limited to a single type of product or item moving through the system 

- Limited to probabilistic flow 

- Identifying the differences between queues and processors 

The limitations caused by the proposed methodology would be more difficult to 

overcome with the current method, because the proposed method has no identifiable means of 

overcoming these limitations. The limitations caused by the technique itself include the 

following: 

- Ignoring resources in the system 

- Differentiating setup times within a process 

- Inability to produce models for immobile systems 
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5.1.1 Algorithmic Limitations 

Algorithmic limitations are limitations that are self-imposed on the presented research in 

order to create a reasonable scope, and could be overcome in a fairly straightforward way with 

additional research. 

Single Product Type 

The proposed algorithm was limited to being able to handle systems with a single type of 

product or item. This limitation is merely a simplifying assumption of the research, as the 

method could be expanded to systems that handle many different types of products. In order to 

do that, the products would not only need a unique identifier attached to them as they move 

through the system, but would also require a product type identifier that was unique to each 

product type. Each product type could then be analyzed separately to determine flow. Pseudo-

capacity could be determined by finding a maximum number of each product that is ever in a 

process at a time, and the maximum number of the combined products that is ever in the process 

at a time. This could then be used to calculate a pseudo-capacity of the process given any product 

mix. Further research could identify ways to more effectively handle systems with multiple 

product types. 

Probabilistic Flow 

The proposed algorithm is limited to dealing with systems where flow is determined in a 

probabilistic manner, or at least can be accurately represented in a probabilistic manner. A 

system with this type of flow would send all the output of one process to the subsequent 

processes using a fairly consistent percentage to each subsequent process. This is a significant 

limitation, because it is common for a system to include at least one instance where flow can’t be 

accurately depicted using probabilistic flow. A few common exceptions to this type of flow are 
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systems where flow is determined by sending the product to the first available subsequent 

process, sending the product to subsequent processes in a round-robin manner, or sending the 

product to a queue with the shortest waiting time. Each of these types of system flow could be 

accurately identified in the proposed method, but the proposed algorithm only attempts to 

identify the method for characterizing probabilistic flow. Each alternative flow method would 

not be too difficult to implement in the algorithm, because once identified most simulation 

software packages have built-in methods for building models with different flow characteristics. 

Therefore, it would be necessary to identify the type of flow, include this information in the 

algorithm output, and then adjust the software translator in order to include the information in the 

programmatically generated model. 

 The first available flow method could be identified using a similar data gathering and 

analysis method as presented in this research. Flow could be identified as “first-available” by 

determining if the products used that method in the system. This would be done by looking to see 

if the product predictably moved to the first available subsequent process. Availability of 

subsequent processes would have to be determined by their pseudo-capacity, which may not be 

completely accurate. However, a confidence level could be determined to estimate the flow type 

as “first-available” if most of the time it did seem to use that method. The outlier instances could 

then be used in a feedback loop to accurately adjust the pseudo-capacities. 

 The round-robin type of flow could be determined in a similar method. It could be 

determined if the products moved from the process to the subsequent process by going to the 

next possible subsequent process each time a product left the process. This could be combined 

with the method for identifying the first-available type of flow in order to create first-available 

round-robin flow, which is a common type of flow in many systems. 
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 Other system flow types could be identified, and methods could be developed to identify 

flow types and include them in the data analysis and model generation algorithm. Each of the 

mentioned system flow characteristics could be included in the algorithm, but were not in order 

to limit the scope of this particular research. 

Processing Time vs. Delay Time Identification 

 One limitation inherent in the data collection method is an inability to instinctually 

identify the difference between the time a product spends in the system being processed, and the 

time a product spends in the system waiting or being delayed. This inability is caused by the 

product constantly sending only movement location data while it is being tracked regardless of 

whether it is simply waiting for availability. This limitation is slightly overcome in the proposed 

algorithm by assuming that certain statistical representations of processes are more likely for 

queues than processing steps, and in such a case the object should be modeled as a queueing step 

in the system. This could also be overcome by identifying the subsequent steps after a process, 

the flow of the system, and determining if the product is not moving to the subsequent step 

because of a limit of the pseudo-capacity. If so, then the process would be modeled as a queue in 

the system. If not, then the process would be modeled as a processing step in the system. 

5.1.2 Methodical Limitations 

Methodical limitations are those that are imposed by the proposed methodology. Most of 

the methodical limitations are caused by the data collection method. 

Modeling of Resources 

One important limitation of the proposed methodology is the inability to account for 

additional resources that are often required in a system. For instance, often an operator is shared 
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between machines and acts as a constraint on the system. This methodology would not be able to 

accurately create models programmatically for systems where the resources play a significant 

role in constraining the operation of the system. This limitation could feasibly be overcome by 

tracking the location of the resources in the system and allocating them according to their 

location, but this is not within the scope of this research. 

Differentiating Setup Time from Process Time 

 Another limitation inherent in the data collection method is the inability to differentiate 

between setup time and process time in a system. Unless the product moves between the setup 

time and process time, there is no way to distinguish the difference between the two. This 

limitation would be difficult to overcome purely using a tracking system, but could be overcome 

with a hybrid system. A hybrid system would use a different data gathering method, but employ 

the same data analysis and model building techniques proposed in this research. One example of 

a hybrid system would be using a bar code scanner to track when a product enters a process, 

when it starts processing at that process, and when it leaves each process in the system. The 

processes would then be given a coordinate location. Data would then be generated to show the 

coordinate location of the product at intervals during its time in the system. This data could then 

be fed into the data analysis tool, and would allow for the separation of the setup and processing 

times in the programmatically generated simulation. 

Immobile Systems 

The most obvious limitation of the proposed methodology is that the product must 

physically move through the system, and that the movement through the system must be 

representative of the processes being performed on the product. This is not true for every system. 

Many systems have the product stationary and the work is done by resources moving to the 

product. Some systems are hybrids where a part moves into a station where various tasks are 
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performed, and then it moves to the next station where various tasks are performed. In such a 

hybrid situation it would be possible to create an initial model using this method, and then build 

it out with the station details manually. The proposed data analysis method could also be adapted 

to analyze data on events and tagged locations of a product in a system instead of physical 

location, but that is not within the scope of this research.  

5.2 Summary 

The proposed model generating methodology consists of the data gathering tool, data 

analysis algorithm, and simulation software data translator.  

The data gathering tool is a GPS device that is attached to a product as it moves through a 

system, and has a web browser that can access a PHP page with the code in Appendix A. The 

data gathered in the tracking tool includes a unique identifier of the product being tracked, a GPS 

latitude and longitude of the current position of the device, a unique identifier that distinguishes 

product type, and the number of seconds that have elapsed since tracking began. This data is 

captured at a consistent interval until the product has left the subject system. 

The data gathered from the data gathering tool is used as input for the data analysis 

algorithm. The data analysis algorithm assumes that changes in velocity of the object are 

correlated with transitions between different steps in the system. Basically, the data gathering 

tool attempts to convert the flow of the product through the system into discrete events that the 

product experiences. This is accomplished by identifying processes that start and end when a 

product experiences a period of acceleration above a defined threshold. The output of the data 

analysis algorithm defines the location, flow, processing, and pseudo-capacity for a collection of 

system processes. 
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The output of the data analysis algorithm is then translated by the simulation software 

data translator. In this research a data translator was written for FlexSim simulation software. 

The data translator takes the data analysis algorithm output and uses it to create a simulation.  

By following these steps it is possible to create a simulation from product tracking data. 

The accuracy of the model is not necessarily as good as it would be if the model was created 

manually. However, for large simulation models the model-building time using this methodology 

is significantly lower, because the model is programmatically built. Therefore, in order to 

determine if this methodology would be practical a user of simulation software would have to 

weigh the cost of time against the cost or inaccuracy. A user could also use the aforementioned 

model building methodology to quicken the model building time by using the algorithm to create 

a model with the basic logic, and then edit the model to add any custom logic. By doing this the 

user could use the advantageous elements of the algorithm, but not be limited by as many of the 

limitations. 

There are many limitations to this model building methodology, as discussed in section 

5.3. However, even with these limitations there seems to be a place for this methodology within 

the set of useful simulation model building methodologies. 
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APPENDIX A. DATA COLLECTION TOOL CODE 

The location of an object was gathered by accessing a PHP page from a GPS device 

attached to the product that had a web browser. The PHP page had the code attached below. The 

page would then give the coordinate location of an object at the user-defined time interval until it 

had reached the user-defined number of instances. The raw data was then processed manually 

into the format that was required by the data analysis algorithm tool. The code is as defined 

below, which is mostly derived from a stack overflow article answer (daniellmb): 

A.1.   Code - Location.php  

<?php  
if (isset($_POST['submit'])) { 
 $howoften = $_POST['howoften']; 
 $howmany = $_POST['howmany']; 
?> 
<html xmlns="http://www.w3.org/1999/xhtml"> 
<head> 
<title>Geolocation API Demo</title> 
</head> 
<body> 
<div id="message"></div> 
<script> 
x=0; 
function successHandler(location) { 
    var message = document.getElementById("message"), html = []; 
    html.push(location.coords.longitude, ","); 
    html.push(location.coords.latitude, ","); 
    html.push(x,"|"); 
    message.innerHTML = message.innerHTML + html.join(""); 
} 
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function errorHandler(error) {} 
function myTimer() { 
 x=x+1 
 if (x==<?php echo $howmany; ?>) { 
  clearInterval(myVar); 
 } 
 navigator.geolocation.getCurrentPosition(successHandler, errorHandler); 
} 
var myVar = setInterval(function(){myTimer()},<?php echo $howoften; ?>); 
</script> 
</body> 
</html> 
<?php  
} 
else { 
?> 
<form action="" method="post"> 
 How Many: <input type="text" name="howmany"><br> 
 How Often: <input type="text" name="howoften"><br> 
 <input type="submit" name="submit" value="Submit"> 
</form> 
<?php 
} 
?>
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APPENDIX B. DATA ANALYSIS ALGORITHM TOOL CODE 

The “Data Analysis Algorithm Tool Code” was written in Excel VBA syntax. It contains 

a module and a form. Also included is the code for a PHP page that the module uses to create 

distributions for the processing steps. 

B.1.   Code - DataAnalysis Module 

 
Public test_distance As Double 
Public test_time As Double 
Public test_acceleration As Double 
Public increment_time As Double 
Public fNameAcceleration As String 
Public fNameTime As String 
 
Dim last_location(2) As Double 
Dim x As Double 
Dim y As Double 
Dim z As Double 
Dim currentTime As Double 
Dim rowCount As Double 
Dim itemRow As Integer 
Dim temp_double As Double 
Dim temp_boolean As Boolean 
 
Dim itemNumber As Integer 
Dim startX As Double 
Dim startY As Double 
Dim inProcessor As Integer 
Dim processorNumber As Double 
Dim numberOfProcessors As Integer 
Dim processorDistanceStart As Double 
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Dim processorDistanceEnd As Double 
Dim dataArray() As Double 
Dim processorArray() As Double 
Dim timeArray() As Double 
Dim inProcessorArray() As Integer 
Dim processorInOut() As Double 
Dim flowLogic() As Integer 
 
 
Dim concatenateIn As String 
 
Sub DataAnalyzer() 
'delete other worksheets 
    Application.DisplayAlerts = False 
    On Error Resume Next 
    Sheets(3).Delete 
    Sheets(2).Delete 
    On Error GoTo 0 
    Application.DisplayAlerts = True 
'start code 
    rowCount = Range("A1000000").End(xlUp).Row 
     
    test_distance = 1 
    test_time = 1 
    test_acceleration = 1 
     
    'x location 
    last_location(0) = -100 
    'y location 
    last_location(1) = -100 
    'type 
    last_location(2) = -1 
' 
' DataAnalyzer Macro 
' 
    Range("A1").Select 
    Selection.SpecialCells(xlCellTypeConstants, 23).Select 
    Selection.Copy 
    Sheets.Add After:=ActiveSheet 
    ActiveSheet.Paste 
    Application.CutCopyMode = False 
    ActiveWorkbook.Worksheets(2).Sort.SortFields.Clear 
    ActiveWorkbook.Worksheets(2).Sort.SortFields.Add Key:=Range("D2:D" & rowCount) _ 
        , SortOn:=xlSortOnValues, Order:=xlAscending, DataOption:=xlSortNormal 
    ActiveWorkbook.Worksheets(2).Sort.SortFields.Add Key:=Range("A2:A" & rowCount) _ 
        , SortOn:=xlSortOnValues, Order:=xlAscending, DataOption:=xlSortNormal 
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    ActiveWorkbook.Worksheets(2).Sort.SortFields.Add Key:=Range("E2:E" & rowCount) _ 
        , SortOn:=xlSortOnValues, Order:=xlAscending, DataOption:=xlSortNormal 
    With ActiveWorkbook.Worksheets(2).Sort 
        .SetRange Range("A1:E" & rowCount) 
        .Header = xlYes 
        .MatchCase = False 
        .Orientation = xlTopToBottom 
        .SortMethod = xlPinYin 
        .Apply 
    End With 
    Sheets(2).Select 
    Sheets(2).Name = "Analyzed Data" 
    Range("F1").Select 
    ActiveCell.FormulaR1C1 = "Distance" 
    Range("G1").Select 
    ActiveCell.FormulaR1C1 = "Velocity" 
    Range("H1").Select 
    ActiveCell.FormulaR1C1 = "Acceleration" 
    Columns("F:H").Select 
    Selection.ColumnWidth = 12.43 
    'fix some cells 
    Range("f2:h2").Value = 0 
    'put in the distance,velocity, and acceleration 
    Range("F3").Select 
    ActiveCell.FormulaR1C1 = _ 
        "=R[-1]C+SQRT(((RC[-4]-R[-1]C[-4])^2)+((RC[-3]-R[-1]C[-3])^2))" 
    Range("F3").Select 
    Selection.AutoFill Destination:=Range("F3:F" & rowCount) 
    Range("F3:F" & rowCount).Select 
    Range("G3").Select 
    ActiveCell.FormulaR1C1 = "=RC[-1]-R[-1]C[-1]" 
    Range("G3").Select 
    Selection.AutoFill Destination:=Range("G3:G" & rowCount) 
    Range("G3:G" & rowCount).Select 
    Range("H3").Select 
    ActiveCell.FormulaR1C1 = "=abs(RC[-1]-R[-1]C[-1])" 
    Range("H3").Select 
    Selection.AutoFill Destination:=Range("H3:H" & rowCount) 
    'set a default test acceleration by normalizing the data and then finding outliers 
    Dim groupSize As Integer 
    Dim groupMean(9) As Double 
    Dim theRange As String 
     
    groupSize = rowCount / 10 
    For x = 0 To 9 
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        theRange = Range("h" & ((x * groupSize) + 2) & ":h" & (((x + 1) * groupSize) + 
1)).Address 
        groupMean(x) = Application.WorksheetFunction.Sum(Range(theRange)) / groupSize 
    Next 
    For x = 0 To 9 
        Range("I" & (x + 2)).Value = groupMean(x) 
    Next 
    increment_time = Range("e3").Value - Range("e2").Value 
    test_acceleration = Application.WorksheetFunction.Quartile_Inc(Range("I2:I11"), 1) - (1.5 * 
(Application.WorksheetFunction.Quartile_Inc(Range("I2:I11"), 3) - 
Application.WorksheetFunction.Quartile_Inc(Range("I2:I11"), 1))) 
    X_CreateAccelerationChart 
    X_CreateTimeChart 
    settings.Show 
End Sub 
     
Sub DataTests() 
    'do all the tests according to the sensitivities 
    For x = 2 To rowCount 
        temp_boolean = False 
        'do the acceleration test 
        If IsNumeric(Range("H" & x).Value) Then 
            temp_double = Range("H" & x).Value 
        Else 
            temp_boolean = True 
            temp_double = 0 
        End If 
        If temp_double > test_acceleration Or temp_boolean = True Then 
            temp_boolean = True 
        Else 
            temp_boolean = False 
        End If 
        Range("I" & x).Value = temp_boolean 
        'do the time test 
        temp_boolean = False 
        For y = 1 To (test_time / increment_time) 
            If ((x - y) < 1) Or (Range("D" & (x - y)).Value <> Range("D" & x).Value) Then Exit For 
            If Range("I" & (x - y)).Value = True Then temp_boolean = True 
        Next y 
        If temp_boolean = True Then 
            Range("J" & x).Value = False 
        ElseIf Range("I" & x).Value = True Then 
            Range("J" & x).Value = True 
        Else 
            Range("J" & x).Value = False 
        End If 
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        'do the distance test 
        If (Range("d" & x).Value <> last_location(2)) Then 
            Range("K" & x).Value = True 
            last_location(2) = Range("d" & x).Value 
        Else 
            If (Range("I" & x).Value = True) And (Sqr(((Range("b" & x).Value - last_location(0)) ^ 
(2)) + ((Range("c" & x).Value - last_location(1)) ^ (2))) > test_distance) Then 
                Range("K" & x).Value = True 
                last_location(0) = Range("b" & x).Value 
                last_location(1) = Range("c" & x).Value 
            Else 
                Range("K" & x).Value = False 
            End If 
        End If 
        'see when all the tests pass 
        If (Range("I" & x).Value = True And Range("J" & x).Value = True And Range("K" & 
x).Value = True) Or Range("a" & x).Value <> Range("a" & (x - 1)).Value Then 
            Range("L" & x).Value = True 
        Else 
            Range("L" & x).Value = False 
        End If 
    Next x 
    ProcessorCreate 
    End Sub 
     
Sub ProcessorCreate() 
    'create a sheet to store the runtimes 
    Sheets.Add After:=ActiveSheet 
    Sheets(3).Select 
    Sheets(3).Name = "Processors" 
    Cells(1, 1) = "Number" 
    Cells(1, 2) = "Start X" 
    Cells(1, 3) = "End X" 
    Cells(1, 4) = "Start Y" 
    Cells(1, 5) = "End Y" 
    Cells(1, 6) = "Angle" 
    Cells(1, 7) = "Length" 
    Cells(1, 8) = "IN" 
    Cells(1, 9) = "OUT" 
    Cells(1, 10) = "Times" 
    Sheets(2).Select 
    'redim dataArray to put data in it 
    ReDim dataArray((rowCount - 1), 4) 
    For x = 0 To (rowCount - 2) 
        dataArray(x, 0) = Cells(x + 2, 1) 
        dataArray(x, 1) = Cells(x + 2, 2) 
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        dataArray(x, 2) = Cells(x + 2, 3) 
        dataArray(x, 3) = Cells(x + 2, 5) 
        dataArray(x, 4) = Cells(x + 2, 12) 
    Next x 
    'processorNumber for processor # 
    processorNumber = 0 
    currentTime = 0 
    startX = Range("b2").Value 
    startY = Range("c2").Value 
    For x = 0 To (rowCount - 2) 
        If dataArray(x, 4) = True Then processorNumber = processorNumber + 1 
    Next x 
    'size the processor array 
    ReDim processorArray(processorNumber, 6) 
    ReDim timeArray(processorNumber, 1000) 
    ReDim inProcessorArray(processorNumber, 1000) 
    'fill the arrays 
    For x = 0 To processorNumber 
        For y = 0 To 6 
            processorArray(x, y) = -100 
        Next y 
        For y = 0 To 1000 
            timeArray(x, y) = -100 
            inProcessorArray(x, y) = -100 
        Next y 
    Next x 
     
    'find the max time 
    maxTime = 0 
    For x = 0 To (rowCount - 1) 
        If (dataArray(x, 3) > maxTime) Then maxTime = dataArray(x, 3) 
    Next x 
    timeArraySize = maxTime * (1 / increment_time) 
    Dim locationAtTime() As Double 
    ReDim locationAtTime(timeArraySize, processorNumber) 
    'go through the data array 
    numberOfProcessors = processorNumber 
    processorNumber = 0 
    For x = 0 To (rowCount - 2) 
        If dataArray(x, 0) <> itemNumber Then 
            itemNumber = dataArray(x, 0) 
            startX = dataArray(x, 1) 
            startY = dataArray(x, 2) 
            currentTime = dataArray(x, 3) 
            inProcessor = -1 
        ElseIf x = (rowCount - 2) Or dataArray((x + 1), 4) = True Then 

52 

 



            For z = 0 To numberOfProcessors 
                processorDistanceStart = Sqr(((processorArray(z, 1) - startX) ^ (2)) + 
((processorArray(z, 3) - startY) ^ (2))) 
                processorDistanceEnd = Sqr(((processorArray(z, 2) - dataArray(x, 1)) ^ (2)) + 
((processorArray(z, 4) - dataArray(x, 2)) ^ (2))) 
                If processorDistanceStart < test_distance And processorDistanceEnd < test_distance 
Then 
                    processorNumber = z 
                    startX = dataArray((x + 1), 1) 
                    startY = dataArray((x + 1), 2) 
                    'need to record the inProcessor in another array 
                    For y = 0 To 1000 
                        If inProcessorArray(processorNumber, y) = -100 Then Exit For 
                    Next y 
                    inProcessorArray(processorNumber, y) = inProcessor 
                    inProcessor = processorNumber 
                    'record the times in another array 
                    For y = 0 To 1000 
                        If timeArray(processorNumber, y) = -100 Then Exit For 
                    Next y 
                    timeArray(processorNumber, y) = dataArray(x, 3) - currentTime 
                    currentTime = dataArray(x, 3) 
                    Exit For 
                ElseIf processorArray(z, 1) = -100 Then 
                    processorNumber = z 
                    processorArray(processorNumber, 0) = processorNumber 
                    processorArray(processorNumber, 1) = startX 
                    startX = dataArray((x + 1), 1) 
                    processorArray(processorNumber, 2) = dataArray(x, 1) 
                    processorArray(processorNumber, 3) = startY 
                    startY = dataArray((x + 1), 2) 
                    processorArray(processorNumber, 4) = dataArray(x, 2) 
                    'need to record the inProcessor in another array 
                    For y = 0 To 1000 
                        If inProcessorArray(processorNumber, y) = -100 Then Exit For 
                    Next y 
                    inProcessorArray(processorNumber, y) = inProcessor 
                    inProcessor = processorNumber 
                    'record the times in another array 
                    For y = 0 To 1000 
                        If timeArray(processorNumber, y) = -100 Then Exit For 
                    Next y 
                    timeArray(processorNumber, y) = dataArray(x, 3) - currentTime 
                    currentTime = dataArray(x, 3) 
                    Exit For 
                End If 
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            Next z 
        Else 
            'add to the array with the items current 
            timePos = dataArray(x, 3) * (1 / increment_time) 
            locationAtTime(timePos, processorNumber) = locationAtTime(timePos, 
processorNumber) + 1 
        End If 
    Next x 
'print the processor array data to the sheet 
    Sheets(3).Select 
    For x = 0 To numberOfProcessors 
        For y = 0 To 5 
            If processorArray(x, y) <> -100 Then Cells(x + 2, y + 1).Value = processorArray(x, y) 
        Next y 
    Next x 
    'calculate the angles and lengths 
    y = Range("A1000000").End(xlUp).Row 
    For x = 2 To y 
        Range("f" & x).Formula = "=IF(B" & x & ">C" & x & ",DEGREES(ATAN((E" & x & "-
D" & x & ")/(C" & x & "-B" & x & ")))+180,DEGREES(ATAN((E" & x & "-D" & x & ")/(C" & 
x & "-B" & x & "))))" 
    Next x 
    For x = 2 To y 
        Range("g" & x).Formula = "=SQRT(((C" & x & "-B" & x & ")^2)+((E" & x & "-D" & x & 
")^2))" 
    Next x 
'print the inProcessorArray 
    ' y=lastrow 
    z = y 
    ReDim processorInOut((y - 2), 1) 
    ReDim flowLogic((y - 2), (y - 2)) 
    'change this so that it compares the number of processors out 
    For x = 0 To z - 2 
        For y = 0 To 1000 
            'concatenate them all 
            'And InStr(concatenateIn, timeArray(x, y)) = False 
            If timeArray(x, y) <> -100 Then 
                If inProcessorArray(x, y) <> -1 Then 
                    processorInOut(x, 0) = processorInOut(x, 0) + 1 
                    processorInOut(inProcessorArray(x, y), 1) = processorInOut(inProcessorArray(x, y), 
1) + 1 
                    'increment an array of size (# of processors)X(# of processors), so that we can 
determine later how many went where 
                    flowLogic(inProcessorArray(x, y), x) = flowLogic(inProcessorArray(x, y), x) + 1 
                End If 
            End If 
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        Next y 
    Next x 
    'find sources and sinks 
    For x = 0 To z - 2 
        If (processorInOut(x, 0) - processorInOut(x, 1)) > 0 Then 
            Range("i" & (x + 2)).Value = "test|-2`" & Round(((processorInOut(x, 0) - 
processorInOut(x, 1)) / processorInOut(x, 0)), 4) 
        End If 
    Next x 
    'put in a unique list 
    For x = 0 To (z - 2) 
        For y = 0 To 1000 
            If timeArray(x, y) <> -100 And InStr(concatenateIn, "~" & inProcessorArray(x, y)) = 
False Then 
                If (inProcessorArray(x, y) >= 0) Then 
                    If (processorInOut(inProcessorArray(x, y), 1) = 0) Then 
                        percentFlow = 1 
                    Else 
                        percentFlow = Round((flowLogic(inProcessorArray(x, y), x) / 
processorInOut(inProcessorArray(x, y), 1)), 4) 
                    End If 
                    concatenateIn = concatenateIn & "~" & inProcessorArray(x, y) & "`" & percentFlow 
                Else 
                    concatenateIn = concatenateIn & "~" & inProcessorArray(x, y) & "`" & 1 
                End If 
            End If 
        Next y 
        concatenateIn = Mid(concatenateIn, 2) 
        Cells(x + 2, 8) = "test|" & concatenateIn 
        concatenateIn = "" 
    Next x 
'print the time array data to the sheet 
    For x = 0 To (z - 2) 
        For y = 0 To 1000 
            If timeArray(x, y) <> -100 Then 
                If timeArray(x, y) <> -1 Then 
                    concatenateIn = concatenateIn & "~" & timeArray(x, y) 
                Else 
                    concatenateIn = concatenateIn & "~" & "Source" 
                End If 
            End If 
        Next y 
        concatenateIn = Mid(concatenateIn, 2) 
        Cells(x + 2, 10) = concatenateIn 
        concatenateIn = "" 
    Next x 
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    'find the pseudo-capacity of each processor 
    Dim processorCapacity() As Integer 
    ReDim processorCapacity(z - 2) 
    For t = 0 To UBound(locationAtTime, 1) 
        For x = 0 To (z - 2) 
            If (locationAtTime(t, x) > processorCapacity(x)) Then processorCapacity(x) = 
locationAtTime(t, x) 
        Next x 
    Next t 
    'put the pseudo-capacity in column L and label the column 
    For x = 0 To (z - 2) 
        Cells(x + 2, 12) = processorCapacity(x) 
    Next x 
    Cells(1, 12) = "Pseudo-Capacity" 
    'Get the number of processors that we have 
    y = Cells(Rows.Count, "A").End(xlUp).Row - 2 
    'Go through each processor and create a web query to ge the distribution 
    For x = 0 To y 
        Range("K" & (x + 2)).Select 
        With ActiveSheet.QueryTables.Add(Connection:= _ 
            "URL;http://www.descreye.com/distribution-fitting.php?processing_times=" & 
Range("J" & (x + 2)).Value _ 
            , Destination:=Range("$K$" & (x + 2))) 
            '.CommandType = 0 
            .Name = Range("J" & (x + 2)).Value 
            .FieldNames = True 
            .RowNumbers = False 
            .FillAdjacentFormulas = False 
            .PreserveFormatting = True 
            .RefreshOnFileOpen = False 
            .BackgroundQuery = True 
            .RefreshStyle = xlInsertDeleteCells 
            .SavePassword = False 
            .SaveData = True 
            .AdjustColumnWidth = True 
            .RefreshPeriod = 0 
            .WebSelectionType = xlAllTables 
            .WebFormatting = xlWebFormattingNone 
            .WebPreFormattedTextToColumns = True 
            .WebConsecutiveDelimitersAsOne = True 
            .WebSingleBlockTextImport = False 
            .WebDisableDateRecognition = False 
            .WebDisableRedirections = False 
            .Refresh BackgroundQuery:=False 
        End With 
    Next x 
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    SaveSheetCSV 
End Sub 
 
Sub X_CreateAccelerationChart() 
    Dim accelerationChart As Object 
    'get the number of rows of the first item 
    Sheets(2).Select 
    For x = 2 To rowCount 
        If (Range("a" & x).Value <> Range("a" & (x + 1)).Value) Then Exit For 
    Next 
    Range("H1:H" & x).Select 
    ActiveSheet.Shapes.AddChart2(227, xlLine).Select 
    ActiveChart.SetSourceData Source:=Range("'Analyzed Data'!$H$1:$H$" & x) 
    Range("I2").Select 
    ActiveCell.FormulaR1C1 = test_acceleration 
    Selection.AutoFill Destination:=Range("I2:I" & x), Type:=xlFillDefault 
    Range("I2:I21").Select 
    ActiveSheet.ChartObjects(1).Activate 
    Set accelerationChart = ActiveSheet.ChartObjects(1).Chart 
    accelerationChart.SeriesCollection.NewSeries 
    accelerationChart.FullSeriesCollection(2).Values = "='Analyzed Data'!$I$2:$I$" & x 
    accelerationChart.FullSeriesCollection(2).XValues = "='Analyzed Data'!$E$2:$E$" & x 
    accelerationChart.SetElement (msoElementChartTitleAboveChart) 
    accelerationChart.ChartTitle.Text = "Acceleration" 
    fNameAcceleration = ThisWorkbook.Path & "\acceleration.gif" 
    accelerationChart.Export fileName:=fNameAcceleration, FilterName:="GIF" 
    ActiveSheet.ChartObjects(1).Delete 
End Sub 
 
Sub X_CreateTimeChart() 
    Dim timeChart As Object 
    Dim lastRow As Integer 
    Dim lastTime As Double 
    lastTime = 0 
    y = 2 
    'create the data for the chart 
    'clear j column 
    Range("j:j").Value = "" 
    'get the number of rows of the first item 
    Sheets(2).Select 
    For x = 3 To rowCount 
        If (Range("a" & x).Value <> Range("a" & (x + 1)).Value) Then Exit For 
        If (Range("h" & x).Value > Range("i" & x).Value) Then 
            Range("j" & y).Value = Range("e" & x).Value - lastTime 
            lastTime = Range("e" & x).Value 
            y = y + 1 
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        End If 
    Next x 
    'get the last row 
    lastRow = Range("J1000000").End(xlUp).Row 
    'set the current line 
    Range("K2:K" & (y - 1)).Value = test_time 
    'make the scatterplot 
    Range("J2:J" & lastRow).Select 
    ActiveSheet.Shapes.AddChart2(240, xlXYScatter).Select 
    ActiveChart.SetSourceData Source:=Range("'Analyzed Data'!$J$2:$J$" & lastRow) 
    ActiveChart.SeriesCollection.NewSeries 
    ActiveChart.FullSeriesCollection(2).Values = "='Analyzed Data'!$K$2:$K$" & (y - 1) 
    ActiveChart.ChartTitle.Text = "Time Values" 
    fNameTime = ThisWorkbook.Path & "\time.gif" 
    ActiveChart.Export fileName:=fNameTime, FilterName:="GIF" 
    ActiveSheet.ChartObjects(1).Delete 
End Sub 
 
Sub SaveSheetCSV() 
    Dim fNameTable As String 
    fNameTable = ThisWorkbook.Path & "\table.csv" 
    Sheets(3).SaveAs fileName:=fNameTable, FileFormat:=xlCSV 
End Sub 
 
 
Sub DeleteCreatedSheets() 
    Application.DisplayAlerts = False 
    On Error Resume Next 
    Sheets(3).Delete 
    Sheets(2).Delete 
    On Error GoTo 0 
    Application.DisplayAlerts = True 
End Sub 

B.2.   Code - Settings Form 

 
Private Sub cmd_submit_Click() 
    test_acceleration = settings.inp_acceleration.Value 
    test_distance = settings.inp_distance.Value 
    test_time = settings.inp_time.Value 
    DataAnalysis.DataTests 
    settings.Hide 
    Kill (fNameAcceleration) 
    Kill (fNameTime) 
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End Sub 
 
 
Private Sub inp_acceleration_Change() 
    If IsNumeric(settings.inp_acceleration.Value) = True Then 
        test_acceleration = settings.inp_acceleration.Value 
        DataAnalysis.X_CreateAccelerationChart 
        DataAnalysis.X_CreateTimeChart 
        img_acceleration.Picture = LoadPicture(fNameAcceleration) 
        img_time.Picture = LoadPicture(fNameTime) 
    End If 
End Sub 
 
 
Private Sub inp_increment_Change() 
    increment_time = settings.inp_increment.Value 
End Sub 
 
Private Sub inp_time_Change() 
    If IsNumeric(settings.inp_time.Value) = True Then 
        test_time = settings.inp_time.Value 
        DataAnalysis.X_CreateTimeChart 
        img_time.Picture = LoadPicture(fNameTime) 
    End If 
End Sub 
 
Private Sub UserForm_Initialize() 
    settings.inp_increment.Value = increment_time 
    settings.inp_acceleration.Value = test_acceleration 
    settings.inp_distance.Value = test_distance 
    settings.inp_time.Value = test_time 
    img_acceleration.Picture = LoadPicture(fNameAcceleration) 
    img_time.Picture = LoadPicture(fNameTime) 
End Sub 
 
Private Sub UserForm_Terminate() 
    Kill (fNameAcceleration) 
    Kill (fNameTime) 
End Sub 
 

B.3.   Code - Distribution-Fitting.php 

 
<?php 
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function get_quartile($Array, $Quartile) { 
  $pos = (count($Array) - 1) * $Quartile; 
  
  $base = floor($pos); 
  $rest = $pos - $base; 
  if( isset($Array[$base+1]) ) { 
    $return_value = $Array[$base] + $rest * ($Array[$base+1] - $Array[$base]); 
  } else { 
    $return_value = $Array[$base]; 
  } 
  //echo $return_value."<br>"; 
  return $return_value; 
} 
 
 
$times = $_REQUEST['processing_times'];  
$times = explode('~',$times); 
sort($times); 
 
$quartile = array(); 
$quartile['0']=get_quartile($times,0); 
$quartile['.2']=get_quartile($times,.2); 
$quartile['.4']=get_quartile($times,.4); 
$quartile['.6']=get_quartile($times,.6); 
$quartile['.8']=get_quartile($times,.8); 
$quartile['1']=get_quartile($times,1); 
 
$distribution_text = "fivepointdistribution("; 
foreach ($quartile as $value) $distribution_text.="~".$value; 
$distribution_text.=")"; 
$distribution_text = str_replace("(~","(",$distribution_text); 
echo "<table><tr><td>".$distribution_text."</td></tr></table>"; 
?> 
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APPENDIX C. FLEXSIM DATA TRANSLATOR CODE 

 The “FlexSim Data Translator Code” allows FlexSim to translate the data output by the 

“Data Analysis Algorithm Tool Code” into the simulation software package. It includes two 

functions that make this possible. One is the function that creates the model, and that is called 

modelimport. The other function, fivepointdistribution, allows the use of the previously 

discussed and custom five-point distribution in FlexSim. The code for each function is written in 

FlexSim’s own language, FlexScript. 

C.1.   Code - FlexSim Function: ModelImport  

/**Custom Code*/ 
nodeinsertinto(model()); 
setname(last(model()), "ModelData"); 
treenode ModelData = node("/ModelData",model()); 
string fileName = filebrowse("*.csv","Model Data CSV",pdir());  
importtable(ModelData,fileName,0,0); 
int numberOfProcessors = content(ModelData); 
//create the processors 
for (int x=2; x<=numberOfProcessors; x++) { 
 createinstance(node("/fixedresources/Processor",library()),model()); 
 treenode processor = last(model()); 
 string processorName = 
concat("Processor",numtostring(getnodenum(rank(rank(ModelData,x),1)))); 
 double processorLength = getnodenum(rank(rank(ModelData,x),7)); 
 double processorAngle = getnodenum(rank(rank(ModelData,x),6)); 
 double processorXLoc = getnodenum(rank(rank(ModelData,x),2)); 
 double processorYLoc = getnodenum(rank(rank(ModelData,x),4)); 
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 string processorDistribution = concat("return 
",getnodestr(rank(rank(ModelData,x),11)),";"); 
 double processorMaxContent = getnodenum(rank(rank(ModelData,x),12)); 
 processorDistribution = stringreplace(processorDistribution,"~",","); 
 //adjust for bad positioning 
 processorYLoc = 
((processorLength*sin(degreestoradians(processorAngle)))/2)+processorYLoc; 
 processorXLoc = processorXLoc-((processorLength/2)-
((processorLength/2)*cos(degreestoradians(processorAngle)))); 
 //set everything 
 setname(processor, processorName); 
 setsize(processor, processorLength,.1,.1); 
 setrot(processor,0,0, processorAngle); 
 setloc(processor,processorXLoc,processorYLoc,0); 
 setnodestr(node(">variables/cycletime",processor),processorDistribution); 
 setnodenum(node(">variables/maxcontent",processor),processorMaxContent); 
} 
//create the sinks 
for (int x=2; x<=numberOfProcessors; x++) { 
 string flowString = getnodestr(rank(rank(ModelData,x),9)); 
 //this data is a string with the port to connect followed by the percentage of the inputs 
flow that goes to the current object 
 //cut the fluff part 
 if (stringlen(flowString)>0){ 
  flowString = stringcopy(flowString, 6,stringlen(flowString)-6); 
  int sep = stringsearch(flowString,"`",0); 
  string inputProcStr = stringcopy(flowString,1,sep); 
  int inputProc = stringtonum(inputProcStr); 
  double inputProb = 
stringtonum(stringcopy(flowString,sep+2,(stringlen(flowString)-sep)-1)); 
  createinstance(node("/fixedresources/Sink",library()),model()); 
  treenode newSink = last(model()); 
  setname(newSink, concat("Sink",numtostring(x))); 
  setloc(newSink, getnodenum(rank(rank(ModelData,x),3))+1, 
getnodenum(rank(rank(ModelData,x),5)),0); 
  treenode inProcessor = rank(model(),x+2); 
  contextdragconnection(inProcessor,newSink,"A"); 
  //add a label to the inProcessor with the amount of it that goes to this sink 
  addlabel(inProcessor,"Sink",inputProb); 
 } 
} 
//create the connnections 
for (int x=2; x<=numberOfProcessors; x++) { 
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 string flowString = getnodestr(rank(rank(ModelData,x),8)); 
 //this data is a string with the port to connect followed by the percentage of the inputs 
flow that goes to the current object 
 //cut the fluff part 
 int flowStringLen = stringlen(flowString); 
 flowString = stringcopy(flowString, 6,flowStringLen-5); 
 //go through the string making each connection 
 int found = 0; 
 string currentString = ""; 
 int sep = 0; 
 string inputProcStr = ""; 
 int inputProc = 0; 
 double inputProb = 0; 
 while (found>=0) { 
  found = stringsearch(flowString,"~",0); 
  if (found>0) { 
   currentString = stringcopy(flowString,1,found); 
  } 
  else { 
   currentString = flowString; 
   found=-1; 
  } 
  //this is now just a incoming connection and a probability, seperate those 
  sep = stringsearch(currentString,"`",0); 
  inputProcStr = stringcopy(currentString,1,sep); 
  inputProc = stringtonum(inputProcStr); 
  inputProb = 
stringtonum(stringcopy(currentString,sep+2,(stringlen(currentString)-sep)-1)); 
  //we should now have the input object and the probability to go to the current 
object from the input object 
  //make the connection 
  if (inputProc>=0) { 
   //it is a processor 
   treenode inProcessor = rank(model(),inputProc+4); 
   treenode outProcessor = rank(model(),x+2); 
   contextdragconnection(inProcessor,outProcessor,"A"); 
   addlabel(inProcessor,concat("Flow",numtostring(x)),inputProb); 
  } 
  else { 
   //it is a source 
   createinstance(node("/fixedresources/Source",library()),model()); 
   treenode newSource = last(model()); 
   setname(newSource, concat("Source",numtostring(x))); 
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   setloc(newSource, getnodenum(rank(rank(ModelData,x),2))-1, 
getnodenum(rank(rank(ModelData,x),4)),0); 
   setvarstr(newSource,"interarrivaltime","return 0;"); 
   //create connections 
   treenode outProcessor = rank(model(),x+2); 
   contextdragconnection(newSource,outProcessor,"A"); 
  } 
  //set the probability flow function 
   
  //take off the current part of the flowString 
  if (found>=0) flowString = stringcopy(flowString,found+2,(stringlen(flowString)-
found-1)); 
 } 
} 
//use the labels to create the flow probabilities 
string starter = "double randomnum = uniform(0.0, 100.0, 0);double total = 0.0;"; 
for (int x=2; x<=numberOfProcessors; x++) { 
 treenode proc = rank(model(),x+2); 
 double remaining = 1; 
 string flowCode = starter; 
 for (int y=1;y<=content(labels(proc));y++) { 
  if (stringsearch(getnodename(label(proc,y)),"Sink",0)>=0) { 
   double percentage = getlabelnum(proc,y)*100; 
   flowCode = concat(flowCode,"total += ",numtostring(percentage),";if 
(randomnum <= total) return ",numtostring(y),";");  
   remaining = 1-(percentage/100); 
  } 
  else { 
   double percentage = getlabelnum(proc,y)*100; 
   flowCode = concat(flowCode,"total += 
",numtostring(percentage*remaining),";if (randomnum <= total) return ",numtostring(y),";");  
  } 
 } 
 flowCode = concat(flowCode,"return 1;"); 
 switch_flexscript(getvarnode(proc,"sendtoport"),1); 
 setvarstr(proc,"sendtoport",flowCode); 
 buildnodeflexscript(getvarnode(proc,"sendtoport")); 
} 
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C.2.   Code - FlexSim Function: FivePointDistribution 

 
/**Custom Code*/ 
int quartile_end = duniform(2,6); 
int quartile_beg = quartile_end-1; 
double ran 
domnumber = uniform(parval(quartile_beg),parval(quartile_end)); 
return randomnumber; 
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APPENDIX D. FIVE-POINT DISTRIBUTION 

D.1.   Explanation 

The proposed “five-point distribution” is merely a collection of 5 uniform distributions 

that are used to approximate a more advanced statistical distribution. In order to create the 

distribution six percentiles in the data are found; 0, .2, .4, .6, .8, 1. For instance, assume the 

following was an observed data set: 

106, 110, 108, 100, 103, 101, 114, 102, 102, 103, 108, 100, 114, 105, 113, 104, 111, 104, 

104, 100, 114, 100, 101, 114, 110, 102, 100, 109, 119, 100, 107, 122, 106, 103, 103, 102, 101, 

102, 114, 114, 102, 110, 105, 100, 129, 107, 103, 111, 111, 113 

The six percentiles calculated would be the following: 

100, 101.8, 103, 107.4, 113, 129 

The probability density curve of the resultant distribution looks like what is seen in the 

figure on the following page. 
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To sample from this distribution two random numbers are then generated the first is a 

random number sampled from a uniform distribution between 0 and 1. That random number is 

then used to determine what range will be used for the second random number. In the example if 

.22 was our first random number, then the second random number would be sampled from a 

uniform distribution between 101.8 and 103. That number would then be the sample from the 

distribution.  

There are a few advantages and disadvantages to using this distribution. One advantage is 

the all-encompassing nature of the distribution. This distribution adapts to the dataset, so it can 

fit the distribution regardless of the skew or normality. This advantage also makes fitting data to 

the distribution very simple. Six quick calculations provide all the information that is necessary 

to create the distribution. One disadvantage of the distribution is that it is less precise than a 

better fitted distribution. It also would have difficulty with any data that has more than two 

modes, because using only five uniform distributions would not approximate a bimodal 
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distribution as effectively. This could be done by using more uniform (i.e. ten) distributions to 

represent the bimodal data. This would be using the same concept but use ten points instead of 

five.  
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