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ABSTRACT 

Strain Path Effect on Austenite Transformation and  
Ductility in Q&P 1180 Steel  

 
Jeffrey Grant Cramer 

School of Technology, BYU 
Master of Science 

 
The ductility of Q&P 1180 steel was studied with regard to retained austenite 

transformation under different strain paths. Specimens were tested in uniaxial tension in a 
standard test frame as well as in situ in the scanning electron microscope (SEM).  Then digital 
image correlation (DIC) was used to compute the effective strain at the level of the individual 
phases in the microstructure. Stretching experiments were also performed using limiting dome 
height (LDH) tooling, where specimens were strained in both biaxial and plane strain tension.  
The experiments were done incrementally, for each strain path, and the retained austenite at each 
level of strain was measured using electron backscatter diffraction (EBSD).  Retained austenite 
levels in the uniaxial tension case dropped from an initial measured level of about 8% to about 
2% during an initial strain increment of 0.02, but then stabilized as the specimen was strained to 
0.1.  In the plane strain and biaxial tension cases retained austenite also dropped significantly 
during an initial strain increment of about 0.04, but then continued to decrease as the specimens 
were strained to failure.  Biaxial tension, in particular, was the most effective strain path for 
transforming retained austenite to martensite, resulting in a final volume fraction of 0.3% at an 
effective strain of 0.3. Retained austenite in the plane-strain tension case dropped at a faster rate 
than in the biaxial tension case, but finished at about 1% at a strain of 0.1.  The greatest limit 
strains were seen in the biaxial tension case, which may be partly explained by the more 
effective conversion of retained austenite than was seen in the uniaxial tension case. 
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1 INTRODUCTION 

 Background 

The purpose of this research is to characterize microstructure and ductility of TRIP-

assisted steels with electron backscatter diffraction (EBSD) in order to better understand the 

effect of the austenite – martensite phase transformation on ductility and strength. If 

microstructures can be identified which improve ductility for a given level of strength, then TRIP 

steels may be able to replace boron containing press hardening steels in some applications of the 

auto body structure, resulting in a savings of both time and money. 

1.1.1 Advanced High Strength Steels 

Advanced High Strength Steels (AHSS) are multi-phase steels consisting of martensite, 

bainite, and/or retained austenite (RA). AHSS are produced by controlling the cooling rate from 

the austenite or austenite plus ferrite phase, either on the runout table of the hot mill ( for hot 

rolled products) or in the cooling section of the continuous annealing furnace ( for cold rolled 

and coated products)(K. S. Choi, 2009). AHSS have increasingly been used in the auto industry 

because of the advantages of weight reduction and increased formability compared to other types 

of  high strength steels (Shaw, 2001). AHSS may be categorized based upon the strength 

properties, which vary between distributors. The threshold for defining an AHSS is roughly 

defined as: yield strength > 300 MPa and tensile strength  > 600 MPa (Kuziak, 2008).  
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The AHSS family includes Dual Phase (DP), Complex-Phase (CP), Ferritic-Bainitic 

(FB), Martensitic (MS), Transformation-Induced Plasticity (TRIP), Hot-Formed (HF), 

Quenching and Partitioning (Q&P) and Twinning-Induced Plasticity (TWIP). These first and 

second generation AHSS grades are uniquely qualified to meet the functional performance 

demands of certain parts. For example, DP and TRIP steels are excellent in the crash zones of the 

car for their high energy absorption. (WorldAutoSteel, 2017)  

1.1.2 TRIP Steels 

Transformation induced plasticity (TRIP) steels are one of the newest AHSS that the 

automotive industry has begun working with because of its good combination of strength and 

ductility. TRIP gain their formability from the transformation of retained austenite into 

martensite, (known as the TRIP effect), during deformation. A variant of TRIP, the Q&P steels 

good ductility is attributed to TRIP-assisted behavior of retained austenite during 

deformation.(De Moor, 2008). Understanding the evolution of the volume faction of retained 

austenite as the steel is deformed helps us understand the forming limits of the material and how 

best to use it in production.  

Much of the prior work on TRIP steels has focused on the effect of austenite 

transformation on room temperature ductility, via mechanical testing and evaluation of 

microstructure. More recently, DIC methods have been applied to the study of TRIP steels, 

where specimens are strained in situ and microstructure evolution is observed (Di Gioacchino, 

2013). EBSD has also been employed in order to better track the transformation of austenite 

during progressive straining of an in situ specimen. In the present work, both DIC and EBSD 

were used to study the microstructure of steels containing retained austenite, in order to 
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understand how the transformation of this phase can impact ductility for several different strain 

paths. 

1.1.3 Quenching and Partitioning Steels 

Currently the steel industry is developing the third generation AHSS with the goal of 

attaining the mechanical properties regime between first and second generation of AHSS at cost 

slightly higher compared to first generation (Grajcar, 2012). Q&P steels are part of this third 

generation.  

The process to create Q&P steel consists in quenching from the austenite region to below 

the martensite start temperature, followed by a partitioning treatment to enrich the remaining 

austenite with carbon, thereby stabilizing it to room temperature (John G Speer, 2005). The fact 

that carbon has migrated from the martensite to surrounding austenite phases also reduces the 

relative hardness between the phases and will improve the ability of the material to distribute 

strain more effectively at the level of the microstructure. 

1.1.4 Plastic Strain Mapping with Digital Image Correlation (DIC) 

DIC is an image analysis method that can determine strain patterns on the surface of 

objects under load. This method has been used to study, quantitatively, the plastic deformation at 

the level of the microstructure, such as in the case of stainless steel (Di Gioacchino, 2013). DIC 

image analysis relies on a random pattern on the surface in order to track changes in the pattern 

between images taken at different strain levels. Sometimes an etched microstructure can be used 

as the pattern, but in other cases sufficient resolution can only be obtained when an artificial 

speckle pattern is applied to the surface of interest. A new approach that was tried during the 

course of this research is the use of a forescatter detector (FSD), which can provide high-contrast 
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images of an unetched specimen during an EBSD scan.  This would provide the advantage of 

having a good correlation between the strain pattern from DIC and the underlying microstructure 

data emerging from analysis of the EBSD data. 

1.1.5 Forming Limit Diagram 

The forming limit diagram (FLD) is used in a practical manner to help engineers predict 

when the strain levels in a complex stamping are in the danger zone and apt to provoke a split 

failure during production. The FLD is generated experimentally by straining sheets under 

different strain paths, while simultaneously using circle grid analysis or DIC to measure surface 

strains until failure. The strains that occur just prior to necking are termed “limit” strains. The 

locus of points generated by many experimental measurements, under different strain paths, 

create a boundary above which a sheet would be expected to fail, and below which the sheet 

would be expected to be safe (Handbook, 2006). In this research project, the limit strains in Q&P 

1180 steel sheet were measured and plotted on a graph of major strain versus minor strain, thus 

generating an FLD.  

 Hypotheses 

The primary hypotheses to be tested during this research project are as follows, relating to 

a Q&P 1180 sheet alloy: 

1. Conversion of retained austenite to martensite will be dependent on plastic strain level, 

and will be a non-linear function of strain. 
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2. Conversion of retained austenite to martensite will be dependent on strain path, where 

greater levels of restraint in forming boundary conditions will result in greater 

conversion of retained austenite.  

 Delimitations 

This research was focused on characterizing Q&P 1180 sheet steel. Other similar alloys have 

different phase morphologies, which could be compared and contrasted to the behavior of the 

current alloy.  But this research did not explore or evaluate other AHSS.  

1.4 Definitions of Terms 

AHSS – Advanced High Strength Steel. Steels that have an ultimate tensile strength of 550    

MPa or above are considered AHSSS 

TRIP steel – Transformation induced plasticity Steel 

RA – Retained Austenite 

Q&P 1180 – A TRIP steel with an ultimate strength of 1180 MPa or 171 ksi. 

DIC – Digital image correlation 

EBSD – Electron backscatter diffraction 

FLD – Forming Limit Diagram 

FIB – Focused Ion Beam 

SEM – Scanning electron microscope is a type of electron microscope that produces images 

of a sample by scanning it with a focused beam of electrons. 

Wire EDM– Electrical discharge machining is a manufacturing process in which electrical 

discharges are used to cut out desired shapes 
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UTS – Ultimate Tensile Strength is the capacity of a material or structure to withstand loads 

tending to elongate 

  

.
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2 LITERATURE REVIEW 

 Introduction 

The drive to manufacture cars with better fuel efficiency has long been a difficult technical 

problem for the auto industry, but especially in the last decade as more regulations are put into 

place mandating certain standards. The use of advanced high strength steels (AHSS) has 

increased within the automotive industry in order to meet these regulations. Transformation 

induced plasticity steels (TRIP) are one of the newest AHSS the automotive industry has begun 

working with because of its good combination of strength and ductility. This is a major 

advantage of TRIP steels because it allows them to be used to form more complex parts than 

typical AHSS (Kwon, 2010).  

 Advanced High Strength Steels 

With increasing mandates and requirements for passenger safety, vehicle performance and 

fuel economy, the steel industry has increased development of AHSS. However, AHSS 

formability is not sufficient to form the complex shapes that are needed for some parts of the 

body-in-white (BIW) structure. Over the past 20 years, steel alloys have undergone a great deal 

of research and development especially in obtaining a good balance of strength and formability 

(Kuziak, 2008). 
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These steels are characterized by improved formability and crash worthiness compared to 

conventional steel grades. A comparison of conventional steels and AHSS can be seen in Figure 

1 (Shaw, 2001). First generation and second generation of AHSS consists of dual phase steels, 

complex phase steels, and TRIP steels. 

2.2.1 TRIP Steels 

 Bainitic steels were developed in order to attain a good combination of strength and 

ductility, beyond what was possible with DP steels. These alloys have a smaller contrast in 

hardness between the various phases present in the microstructure than is true with DP steels (S. 

H. Choi, 2014; Sadagopan, 2003). When retained austenite is combined with bainite, ferrite, and 

some martensite the resulting material is referred to as transformation induced plasticity (TRIP) 

steel, where the volume fraction of retained austenite can reach 20% (Grajcar, 2012). Lower alloy 

Fig 1-Total Elongation (%EL) vs. Ultimate Tensile Strength (UTS)  



9 

versions of this material are called TRIP-aided bainitic ferritic (TBF) steel if the retained austenite 

portion of the microstructure is smaller, usually about 10% or less (Bhadeshia, 2002). TBF steels 

have slightly more carbon and significantly more silicon than DP steels. The higher silicon content 

is needed to minimize the formation of cementite during the transformation of austenite to bainite 

(Krauss, 2015). Chemistry and thermomechanical processing give TBF steels a microstructure 

composed of bainitic-ferrite laths, with finely dispersed retained austenite in between the laths 

(Miura, 2008). When TBF steel is deformed plastically, much of the retained austenite transforms 

to martensite, thereby increasing the hardening rate and overall formability of these alloys, 

compared to DP steels having similar levels of tensile strength. In addition to the beneficial effect 

of austenite transformation to martensite, TBF steel ductility is increased because the tendency for 

strain localization around hard phases in the microstructure is lower than for DP steel, where its 

ability distribute strain across different phases in the microstructure is greater. The TBF alloys 

have a little more ductility than equivalent DP steels, as measured by total elongation in a tension 

test, and they also have a higher work hardening rate. For example, TBF 980 has a strain hardening 

exponent (n) of 0.22, versus 0.15 for DP 980 (Kimura, 2011). Higher n correlates to better strain 

distribution in a press forming operation, where complex strain paths are typical.  

  The volume fraction of retained austenite in the final microstructure is mostly determined 

by the amount of silicon and carbon content of the TRIP steel. AHSS such as dual phase (DP) 

and TRIP steels are being increasingly used in the automotive industry because they exhibit 

higher strength and ductility compared to other high strength steels (Kwon, 2010). Research and 

Development on these steels have been mainly focusing on how to utilize the microstructure 

containing the phase transformation products such as retained austenite. Strain mapping using 
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Micro DIC and electron backscatter diffraction (EBSD) allows us to better understand the 

microstructure of these steels. 

2.2.2 Quenching and Partitioning Steels 

Q&P steels show promise as a third Gen AHSS because they maintain a high amount of 

retained austenite (RA) through a unique process. This process begins with the complete 

austenitization of the steel. It then proceeds with the quenching of the steel below the martensite 

start (Ms) temperature but above the martensite finish (Mf) temperature. A final step of 

partitioning the carbon from the supersaturated martensite to the remaining austenite by either 

keeping it at the quench temperature (one-step) or raising the temperature slightly (two-step) is 

then taken (Edmonds, 2006), (Clarke, 2008), and (J. G. Speer, 2014). “The microstructure of 

commercial Q&P steels is composed primarily of martensite (50–80%) formed during 

quenching, and ferrite (20–40%) formed from the austenite phase during slow cooling, as well as 

dispersed retained austenite (5–10%) stabilized by carbon enrichment during 

partitioning.”(Wang, 2013) The increased amount of carbon in the retained austenite allows it to 

remain when the metal is then cooled to room temperature (Santofimia, 2011). This high amount 

of metastable retained austenite, which transforms to martensite when adequately strained, 

contributes significantly to the resulting metal’s transformation induced plasticity (TRIP) effect. 

This effect allows it to have both the necessary high strength and high ductility properties that 

contribute to its ability to be formed. While this is not a new concept, as TRIP steels have been 

around for several decades (Blondé, 2012), the fact that the Q&P process can produce these 

types of metals at a reduced cost is quite promising (de Diego-Calderón, 2016).Various 

microstructures, and hence mechanical properties, can be obtained by varying the parameters.  

(De Knijf, 2015) “Evolution of the volume fraction of retained austenite is generally divided into 
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two stages: a rapid decrease at low strains (stage I) and more sluggish decrease at high strains 

(stage II). Retained austenite is distributed both as thin films and as larger blocky regimes. It is 

clear that the retained austenite fraction decreases with increased strain, and the remaining 

austenite particles are mostly the finer ones” (Wang, 2013). 

 

 
 

 Plastic Strain Mapping with Digital Image Correlation 

 Digital Image Correlation (DIC) is an image analysis method that can determine surface 

strain maps of objects under load. DIC measures the shifts in patterns that are printed onto the 

surface of the objective to be studied.  The changes in the pattern are used to determine surface 

strains.  When applied to images from the scanning electron microscope (SEM) this method has 

been used to study, quantitatively, the plastic deformation at the microstructural scale of 

polycrystalline materials.(Di Gioacchino, 2013). Understanding the deformation mechanisms in 

polycrystalline materials, it is necessary to observe the microstructure in situ during stretching of 

the material.  

 Forming Limit Diagram 

The forming limit diagram (FLD) is used in a practical manner to help engineers predict 

when the strain levels in a complex stamping are in the danger zone and apt to provoke a split 

failure during production. The FLD is generated experimentally by straining sheets under 

different strain paths, while simultaneously using circle grid analysis or DIC to measure surface 

Table 1 Composition of Q&P 1180 
Supplier Grade C Mn Si Cr Mo Ni Ti AL Nb V B Cu S P

BAO
1180 Q&P -
Uncoated

0.19 2.8 1.6 0.01 0.002 0.008 0.004 0.04 <.001 0.002 0.0003 0.01 0.001 0.006
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strains until fracture. The strains that occur just prior to fracture are termed “limit” strains. The 

locus of points generated by many experimental measurements, under different strain paths, 

create a boundary above which a sheet would be expected to fail, and below which the sheet 

would be expected to be safe (Handbook, 2006). In this research project, the limit strains on 

TRIP assisted steel sheet were measured and plotted on a graph of major strain versus minor 

strain, thus generating an FLD. Specimens were subsequently stretched to different strain levels 

along three different strain paths: uniaxial tension, plane strain tension, and biaxial tension. 

Portions of each specimen were cut, mounted, and polished in order to perform EBSD scans on 

the strained material. Levels of retained austenite were calculated from scan data for each strain 

level and strain path, in order to determine whether strain path has an effect on austenite 

transformation, all other things equal. 
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3 RESEARCH METHODOLOGY 

 Sample Prep and Polishing Micro-Tensile Test Specimens 

The material evaluated was 1.25 mm Q & P 1180 steel provided by industrial partner 

General Motors R&D. Dog-bone-shape micro-tensile test specimens were cut out using a wire 

EDM keeping the tensile axis parallel to the rolling direction.  The mini tensile specimens were 

polished on one side so that scans could be done in situ. The tensile stage had a load limit of 

about 800 N, so in addition to polishing for microscopy the specimens had to be reduced in 

thickness to about 0.4 mm to stay under the load limit during plastic straining. Specimen 

thickness was reduced by mounting specimens onto steel pucks in order to maintain an even 

thickness during grinding. 

 

 
Fig 2-Dimensions of Micro-Tensile Specimens Fig 3-Specimens Mounted on Steel Pucks  
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Specimens were first ground down to 0.45 mm thickness using 240 grit paper, and then polished 

in the following order:  grits 400, 600, 800, 1200, and 1200 fine. The specimens were removed 

from the metal pucks and electropolished using freshly prepared electrolyte with a composition 

of 25 ml perchloric acid and 75 ml butanol in 125 ml methanol at 20 V and 10 °C for 20 seconds.  

 Marking Samples 

 
Specimens were marked with an array of points using a focused ion beam (FIB) to 

distinguish between samples, to better locate areas of interest, and to return to the same location 

after each tensile pull. The FIB’d array is made with 400 micron spacing and a variety of patterns 

to quickly orient in the microscope (Figure 4) and to easily return to the same area after each 

tensile pull. The FIB’d areas are also used to line up each scan after every pull as seen in Figure 

5. This allows for better tracking in DIC software and to track the transformation as the specimen 

is being pulled.  

 
 

 

Fig 5-FSD Image of FIB’d Area Fig 4-FIB’d Pattern With “#’ Replaced With Sample # 
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 EBSD and Images of Micro-Tensile Test Specimens 

After samples had been properly polished, they were painted with silver paint, a 

conductive medium, which helps in obtaining better EBSD scans and FSD images. The samples 

were then placed in the clamps of the stage of Sandia design (Figure 7) and securely fastened, 

making sure that the gauge length was properly centered (Figure 6).  

After securing the specimen in the stage, areas of interest were scanned after repeated 

interrupted tensile pulls, thus allowing for images to be obtained at each strain increment. FSD 

images and EBSD scans were performed on unetched specimens, in order to correlate 

microstructure-level strains to fractions of austenite transformation, at each level of specimen  

 
 

strain. The EBSD data were acquired on a square scan grid using an accelerating voltage of 20 

kV, a working distance of 17 mm, tilt angle of 60 (with 10-degree tilt built into the clamps on the 

stage) at a magnification of 8000X, a scan size of 17.5x17.5 µm2, and a step size of 80 nm. 

Scanning the same area over and over again causes carbon deposition and decreases the quality 

of the scans which limits the number scans to 4 or 5 in each area.  

When diffraction patterns are indexed there can be several possible orientations which 

match the diffraction bands in the pattern. OIM analysis software ranks these orientations (or 

Fig 7-in situ Stage of Sandia Design Fig 6-Micro-Tensile Specimen in the in situ Stage 



16 

solutions) using a voting scheme. The confidence index value is then based on the results of this 

voting scheme and ranges from 0 to 1, where 0 represents no votes for an orientation and 1 

represents 100% of the votes. In a sample study done by OIM, it was found that 99.5% of the 

points in a steel with both ferrite (bcc) and austenite (fcc) phases were indexed correctly when 

the confidence index was only 0.10 (OIM, 2016)  

With each consecutive scan, carbon deposition by the beam increased. This increase in 

carbon buildup decreased the quality of the scan and caused the number of mis-indexed patterns 

to increase. Since the resulting noise was indexed as austenite, an artificial increase in the 

amount of austenite was reported, which was contrary to the expected decrease in austenite as it 

transformed with increasing strain. Therefore, in order to eliminate patterns that were mis-

indexed, scans were cleaned using OIM Analysis software to simply remove patterns with a 

confidence index less than 0.05.  

 DIC Image Processing of Micro-Tensile Test Specimens 

FSD images were taken using the forescatter detector on the S-Feg XL30 FEI but also 

created using EDAX Prias software that uses the phosphor screen as a forescatter detector. FSD 

images were processed using Ncorr, an open source DIC software to generate strain maps 

(Blaber, 2015). EBSD scans were processed by EDAX OIM software to understand the 

material’s crystallography and how it changes as the material is strained under different 

conditions. The strain maps and EBSD scans were then compared to evaluate how the 

microstructure affects material ductility.  

Furthermore, a manually DIC procedure was implemented based upon the positional 

measurement of several pairs of features in the microscope image at each scan step. The result of 
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this verification process for the sample strain level was to determine that the actual sample strain 

lagged behind the assumed macroscopic strain due to slippage of the sample in the grips on the 

first strain step. Subsequent strain increases approximately followed the assumed macroscopic 

strain step. The reported values of macroscopic strain in the subsequent sections are therefore an 

overestimate of local strain, but a reasonable estimate of strain increments after the initial step. 

 Sample Prep and Polishing FLD Samples 

In order to create the forming limit diagram biaxial, plane strain, and tensile tests were 

performed on specimens of normal size (ie. blanks of the order of 200mm per side for the press 

forming, and tensile specimens of the order of 200mm long). An Interlaken hydraulic press was 

used for plane strain and biaxial tension experiments, with standard limiting dome height (LDH) 

tooling, including a 100mm diameter punch.  The press had a maximum clamp load of 334kN 

and maximum punch load of 223 kN.  Tooling with small lockbeads was used to restrain the 

blanks, where the beads were small enough to prevent breaking the sheet, but large enough to 

provide restraint, as seen in Figure 8.  

 
 

 
Fig 8-Tooling Used for Plane Strain and Biaxial Tension Experiments 
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Strain was measured by coating the surface of each specimen with a white paint suited 

for bonding to bare metal.  Black paint was then applied to the specimen surface to give a 

random speckled pattern.  An Aramis Digital Image Correlation (DIC) (Systems, 2011) system 

was used to measure the surface strains during testing.  

For biaxial tension, sheets that were 200mmx200mm were used to create a fully clamped 

specimen. For the plane strain specimens, the standard procedure of testing different blank 

widths (Figure 9) and plotting punch failure height versus width was performed, with the width 

corresponding to the minimum height being chosen. This is to determine the conditions that 

result in a plane-strain fracture, in this case, the width that provided a plane strain fracture was 

70mm.  

 
 

 
Sheets were strained to fracture in uniaxial tension, plane strain tension, and biaxial 

tension. Then the displacement that resulted in fracture in each case was used to compute 

incremental displacements of 25%, 50%, and 75% to fracture (in terms of displacement 

boundary condition, not strain) for each strain path. Then specimens were cut from each sheet 

and mounted in bakelite, where the rolling direction (RD), transverse direction (TD), and normal 

direction (ND) of the sheet were represented (three small portions of the sheet cut from the 

appropriate location), as seen in Figure 11. The bakelite specimens were polished in the 

Fig 9-Samples With Different Widths to Determine Plane Strain Condition  
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following order:  grits 240, 400, 600, 800, 1200, 3 micron diamond paste, and 1 micron diamond 

paste. The specimens were then put in a vibramat polisher with 0.04 micron colloidal silica for 

two hours.  

 
 

 

 EBSD Images of FLD Samples 

After FLD samples were mounted and polished, they were painted with silver paint, a 

conductive medium, which helps in obtaining better EBSD scans. The EBSD data were acquired 

on a square scan grid using an accelerating voltage of 20 kV, a working distance of 17 mm, tilt 

angle of 70 at a magnification of 6500X, a scan size of 25x25 µm2, and a step size of 80 nm. 

Samples were scanned to determine the percentage of austenite at each level of failure. 

 

Fig 11-Diagram of Samples Mounted in Bakelite Fig 10-Biaxial Specimen Strained to Fracture 
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4 RESEARCH RESULTS AND DISCUSSION 

 Uniaxial Tension Results 

The sheet material to be evaluated was 1.25mm Q&P 1180 steel, produced by Baosteel 

(and provided by General Motors).  Tension testing of this material provided an approximate 

yield strength of 1000 MPa and ultimate tensile strength of 1180-1220 MPa.  Total elongations 

averaged about 15% for three tension tests. Engineering stress-strain curves for this material are 

shown in Figure 12. An extensometer was not used, so elongation is approximate. Full size 

ASTM E8 specimens were employed. 

 

 
 
 

Fig 12-Tension Testing Results for 1.25mm Thick Q&P 1180 Steel 
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4.1.1 Scan Images & Cleanup 

With each consecutive scan, carbon deposition by the beam increased. This increase in 

carbon buildup decreased the quality of the scan and caused the number of mis-indexed patterns 

to increase. Since the resulting noise was indexed as austenite, an artificial increase in the 

amount of austenite was reported, which was contrary to the expected decrease in austenite as it 

transformed. Therefore, in order to eliminate patterns that were mis-indexed, scans were cleaned 

using OIM Analysis software to simply remove patterns with a confidence index less than 0.05.  

Table 2 shows the results of this procedure. 

This procedure removes the small pixelated dispersion of ‘austenite’ that appears due to 

mis-indexing of the EBSD data as the strain increases, and results in a consistent reduction in 

austenite percentage with strain, as can be seen in the following sets of images. Further 

confirmation that the carbon buildup is causing this noisy data is achieved by repolishing the 

samples, as discussed in the subsequent section. 

An additional source of uncertainty in the percentage of austenite within the sample comes 

from potential transformation of the austenite during the application of fiducial markers using a 

focused ion beam. This is also discussed in the next section. 

 
 
Table 2 RA % at Different Strain Levels With & Without Confidence Index Cleanup 

  True 
Strain 

No clean up 
austenite % 

CI > .05  
Total Fraction austenite % 

EP 5 Area 1 0.0 0.0 7.3 4.7 
EP 5 Area 1 0.4 0.039 6.8 3.6 
EP 5 Area 1 0.6 0.058 7.4 3.4 
EP 5 Area 1 0.8 0.077 7.9 2.4 
EP 5 Area 1 1.0 0.095 9.8 2.1 
EP 5 Area 1 1.2 0.113 11.9 2.3 
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 In situ Tensile Testing 

From the resulting EBSD scans and corresponding amounts of RA at each strain level, it is 

apparent that the austenite is indeed transforming as the sample is strained. This transformation 

can be seen in the phase maps in Figure 14-19 (red is austenite and green is ferrite/martensite) as 

the austenite grains decrease in size or disappear entirely. As expected, the image quality 

decreases in the regions where the austenite transforms. Such a decrease in IQ can be attributed 

to the formation of martensite, which is notorious for having poor image quality due to a large 

amount of dislocations. In Figure 13 show phase maps at 6% strain (left image) and 8% strain 

(right image) overlaid on Image Quality maps with several austenite grains highlighted. Notice 

the austenite grains diminishing in size and the resulting image quality being lower after apparent 

transformation. Additionally, from the graphs in Figure 20 of both Instron and in situ results, it 

can be seen that most of the austenite transformation occurs in the first 4% of strain, and begins 

to level off at higher strains. 

 

Fig 13-Phase Map Overlaid on Image Quality Map at 6% and 8% Strain  



23 

 
Fig 14-Phase Maps and PRIAS FSD Image for 0% Macro Strain  

 
 

 
Fig 15-Phase Maps and PRIAS FSD Image for 4% Macro Strain  

 
 

 
Fig 16-Phase Maps and PRIAS FSD Image for 6% Macro Strain  
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Fig 17-Phase Maps and PRIAS FSD Image for 8% Macro Strain  

 
 
 

 
Fig 18-Phase Maps and PRIAS FSD Image for 10% Macro Strain  

 
 
 

 
Fig 19-Phase Maps and PRIAS FSD Image for 12% Macro Strain  



25 

The results obtained in this study can also be compared to previous results obtained by 

Wang and Speer for austenite percentage at different levels of strain (Wang, 2013). Figure 20 

compares their room temperature results for Q&P 980 with the results from this study.  

 

 
With regard to the initial amount of RA for both in situ and ex-situ tensile tests, it is 

important to note that the values reported via EBSD were far below the expected amount of 

approximately 15-20%. There are a few possible explanations for this discrepancy. First, the RA 

content in the Wang and Speer study was found using XRD, which tends to be more precise for 

phase identification than EBSD (Cakmak, 2015; De Knijf, 2014). EBSD quite often can miss 

much of the small RA grains that XRD does not, causing it to show a smaller percentage than 

expected; this can also be aggravated by mis-indexing of the phases, as discussed in the previous 

section. Second, because the samples had to be mechanically polished, it is suspected that some 

of the austenite transformed due to the strains caused during the polishing steps (Ennis, 2017). 

Finally, the scan areas typically incorporated the fiducials made with the FIB. This is important 
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to note because it has been found that the ions used to mill the surface also cause RA 

transformation of the area being milled (Babu, 2016; Basa, 2014; Knipling, 2010). 

Unfortunately, it was necessary to scan around the fiducials to enable DIC and better tracking of 

grains. It is not known, however, how much of the RA in the vicinity of the fiducials had 

transformed previous to EBSD scanning, which means that the reported RA percentages could 

easily lower than expected. A summary of this analysis is shown in Table 3 but should be noted 

that it represents a single scan at each distance. Future effort will be directed at confirming these 

initial results. 

 
 

Table 3 Austenite Percentage at Different Distances Away From FIB Mark 

 No 
cleanup 

CI >.05 
Cleanup 

Around FIB marking  0.089 0.049 
50 micron away 0.088 0.055 
100 micron away 0.111 0.072 

 
 

Additionally, as mentioned earlier, carbon deposition on the scan area increased each 

time the area was scanned, which causes a decrease in scan quality. While confidence index 

values were used to determine how accurately a pattern was indexed, as pattern quality became 

worse, indexing them was too difficult to determine any phase at all. Therefore, as the scans 

progressed to each strain increment and the overall pattern quality decreased, some of the phase 

content was lost. This could easily explain why the austenite percentage continued to decrease 

for the in situ samples when compared to the ex-situ Instron samples which were scanned only 

once, removing the problem of carbon buildup. 
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To help solve the problem of determining how much the reported transformation that 

occurred was due to carbon deposition, the samples were lightly polished, after being strained, 

with 0.01um colloidal silica for approximately 60 seconds to remove the carbon layer over the 

scan areas. The sample was then scanned again and close to the original scan quality was 

obtained (see Figure 21). The resulting austenite reported from the same scan area was 1.7% 

after removing low CI points, which lines up quite well with the final percentage of the ex-situ 

sample.  

 

 Forming Limits of Q&P 1180 

Experimental strain paths were measured using DIC on sheets that were stretched under 

biaxial tension, plane-strain tension, and uniaxial tension.  Plots of the strain paths, and 

associated DIC strain maps just before necking (left image) and just before fracture (right 

image), are shown in Figure 22-24 for each case.  

The plots show that biaxial tension and uniaxial tension strain paths are consistent.  For 

plane-strain tension, the initial strains are slightly positive biaxial, then tend toward plane strain, 

then later become a bit more uniaxial in nature. But all of these plots have terminal strains that 

are much greater than the “limit” strain of the material, because they include strain values that 

occur after necking. 

Fig 21-Scan Area at 14% Macro Strain Before & After Removing Carbon Layer  
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Fig 22-Strain Path from DIC Measurements for Biaxial Tension Specimen 
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Fig 23-Strain Path from DIC Measurements for Plane-Strain Specimen 
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Fig 24-Strain Paths from DIC Measurements Uniaxial Tension Specimen. 
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To determine the true limit strains from the DIC strain data, the strain rate was computed 

at the eventual fracture location, for all of the data from each test, using the following approach: 

𝜀𝜀1̇ (𝑗𝑗) =  𝑑𝑑𝜀𝜀1
𝑑𝑑𝑑𝑑

≈  𝜀𝜀1 (𝑗𝑗+1)− 𝜀𝜀1 (𝑗𝑗−1)
2𝜏𝜏

    (1) 

where 𝜀𝜀1̇   is the strain rate in the major direction, 𝜀𝜀1 is true strain in the major direction, τ is the 

period between frames, and j is the frame number from the DIC analysis (Min, 2017). In this 

case, the period between frames was approximately 1 second. Plots of strain rate vs time for each 

strain path are shown in Figure 25-27.   

 

 

 
 

 

  

Fig 25-Strain Rate for Biaxial Tension to Identify Onset of Necking 

Fig 26-Strain Rate for Plane-Strain Tension to Identify Onset of Necking 
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When the strain rate increases rapidly and diverges from a best-fit line of the linear portion 

of the curve, then the onset of necking is considered to have occurred (for the strain rate of the 

jth frame at the point of divergence). The corresponding true major strain at the jth frame is then 

taken as the limit strain for the material, for the particular strain path imposed. Using these limit 

strains, along with the strains measured for various increments of stretching along each strain 

path, the forming limit curve was generated for 1.2mm Q&P 1180, as shown in Figure 28. Each 

data point represents a specimen, and each path required 4 specimens 

 

 
 

Fig 27-Strain Rate for Uniaxial Tension to Identify Onset of Necking 

Fig 28-Forming Limit Diagram for Q&P 1180 With Corresponding Strain Paths 
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 After the stretching experiments were completed, specimens were cut from the sheets and 

mounted for EBSD analysis. Percent retained austenite was measured by EBSD as a function 

effective strain.  Three measurements of retained austenite were performed for each strain level, 

as can be seen in Figure 29-31. In this case, the three measurements were not on separate 

specimens. Each strain level had three separate scans in different areas on the surface of each 

specimen. 

 

 
 

 

Fig 29-Percent RA as a Function of Effective Strain for Biaxial Tension 
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 Strain Path Effect on Austenite Transformation 

DIC strains were measured for each specimen, resulting in the FLD shown in Figure 28. 

Because the limit strains were different for each strain path, the plots in Figure 29-31 reflect this.  

For example, the biaxial tension case exhibited the highest level of strain at fracture, and the 

Fig 30-Percent RA as a Function of Effective Strain for Plane-Strain Tension 

Fig 31-Percent RA as a Function of Effective Strain for Uniaxial Tension  
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corresponding strain increments for the 25%, 50%, and 75% displacements are associated with 

higher strain levels than the plane-strain or uniaxial tension cases (hence the reason for different 

strain levels on the plots).  For biaxial tension, it appears that most of the retained austenite was 

converted to martensite in the first strain increment, dropping from about 8% (volume fraction) 

in the base material to about 2% in the specimen deformed to an effective strain of 0.05 (Figure 

29). For the plane-strain case, the first strain increment dropped the retained austenite content to 

between 2 and 3% (Figure 30). And for uniaxial tension, the first strain increment resulted in a 

retained austenite content of about 2% (Figure 31). However, for greater levels of strain beyond 

the first increment, the retained austenite levels continued to drop in both the biaxial and plane-

strain tension cases, but not in the uniaxial tension case.  In the latter case it appears that the 

conversion of austenite to martensite saturated at the first strain increment. The biaxial tension 

case appears to be the most “effective” in the conversion of retained austenite, dropping to about 

0.3% in the third strain increment, compared to about 0.9% for plane-strain tension and about 2% 

for uniaxial tension. The corresponding thinning strains for this last strain increment were -0.36 

for biaxial tension, -0.11 for plane-strain tension, and -0.082 for uniaxial tension. Thinning 

combined with in-plane stretching appears to convert austenite more completely in the biaxial 

case than in the other two cases; this may be contributing to the greater level formability seen in 

the biaxial tension case compared to plane strain tension, or even uniaxial tension. 
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5 CONCLUSIONS  

 Summary  

The intent of this research has been to study the effect of strain level and strain path on 

austenite transformation in a 1.2mm thick Q&P 1180 steel sheet material.  

The data provide evidence to confirm both of the hypotheses that were posed:  

transformation of RA is a non-linear function of strain, with the bulk of the austenite 

transforming to martensite during the first small increments of deformation.  For example, in the 

uniaxial tension virtually all of the conversion happened after an effective strain of just 0.02.  In 

biaxial tension and plane strain tension the bulk of the conversion happened after an effective 

strain of 0.05, but then additional transformation occurred at a slower rate with increasing strain. 

While another material was not studied for comparison, it is likely that conversion rate is 

affected by phase morphology and chemistry. Perhaps it would be beneficial if a microstructure 

could be designed to promote a more even conversion of austenite with strain level. 

When comparing the current results with those of Speer, discussed in section 4, the 

general trend of the transformation is similar. Therefore, this study confirms the findings 

presented in Speer’s study. However, in addition to simply confirming the previous study, the 

current study also displays the capability of EBSD with regards to in situ phase tracking. While 

XRD can return accurate phase contents, it cannot report on local phase and microstructure, both 
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of which are available through EBSD. Furthermore, EBSD allows for easy addition of FSD scans 

that can be used to compute local strain paths. 

In terms of forming limits under different strain paths, biaxial tension was the most 

“effective” at transforming retained austenite to martensite as the sheets were stretched to failure.  

Plane strain was slightly less effective, but the rate of transformation was greatest for this case, 

which is consistent with its limit strain being the lowest of the three strain paths.  Uniaxial 

tension was the least effective, which can be correlated with thinning strains.  The three strain 

paths are rank ordered in the following way with respect to thinning strain near failure:  biaxial 

tension > plane strain tension >uniaxial tension.  Uniaxial tension provides the least restraint, 

with respect to forming boundary conditions, because it can freely deform along the major strain 

direction, while contracting in the minor strain and thickness strain directions. Having the ability 

to contract in the minor strain direction delays thinning strains until fracture occurs.  In other 

words, it isn’t possible to achieve a uniform thinning strain in uniaxial tension as low as the ones 

that were seen in biaxial or plane strain tension.  Therefore, it appears that the strain paths that 

maximize thinning strains during uniform straining are the ones that result in the greatest levels 

of austenite conversion.  This observation will likely be important as other morphologies and 

chemistries are studied in steels containing retained austenite, and then compared to steels 

without it, because not all steels have greater limit strains in biaxial tension than in uniaxial 

tension.  The efficiency of conversion of retained austenite may partly explain the high level of 

biaxial tension formability in Q&P 1180. 
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 Recommendations 

The FIB, used to mark the samples to line up each scan after every pull and for better 

tracking in DIC software, causes transformation of retained austenite in the region of interest. 

Further work should be done in developing a method in which lining up each scan after each pull 

does not involve microindenting or fibbing of the sample.  

There are a number of testing and analysis methods that might be employed which were 

outside the scope of this study. Various microstructures affect the mechanical properties of the 

material; therefore, understanding the microstructural characteristics is useful in optimizing the 

steel’s mechanical properties. The deformation stability of RA in TRIP steels is influenced by 

following factors: (i) the grain size of RA; (ii) the local carbon content in RA ; (iii) the 

morphology; (iv) the crystallographic orientation of RA relevant to the loading direction; and (v) 

the constraining effect exerted by surrounding phases on RA. (Li, 2016) Researching these 

different factors and how they affect RA transformation in Q&P steels will help in further 

optimizing the formability of this material. 
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