

Brigham Young University BYU ScholarsArchive

All Theses and Dissertations

2015-06-01

Void Modeling in Resin Infusion

Mark Wesley Brandley Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Industrial Engineering Commons

BYU ScholarsArchive Citation

Brandley, Mark Wesley, "Void Modeling in Resin Infusion" (2015). *All Theses and Dissertations*. 5460. https://scholarsarchive.byu.edu/etd/5460

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

Void Modeling in Resin Infusion

Mark Wesley Brandley

A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of

Master of Science

Andrew R. George, Chair Michael P. Miles David T. Fullwood

School of Technology

Brigham Young University

June 2015

Copyright © 2015 Mark Wesley Brandley

All Rights Reserved

ABSTRACT

Void Modeling in Resin Infusion

Mark Wesley Brandley School of Technology, BYU Master of Science

Resin infusion of composite parts has continually been reaching to achieve laminate quality equal to, or exceeding, the quality produced with prepreg in an autoclave. In order for this to occur, developers must understand the key process variables that go in to producing a laminate with minimal void content.

The purpose of this research is to continue efforts in understanding 1) the effect of process conditions on the resultant void content, with a focus on resin infusion flow rate, 2) applying statistical metrics to the formation, location and size of voids formed, and 3) correlation of these metrics with the local mechanical properties of the composite laminate.

The variation in dispersion and formation of micro-voids and macro-voids varied greatly between the rates of flow in which the infusion occurred, especially in the non-crimp carbon fiber samples. Higher flow rates led to lower volumes of micro-voids in the beginning section of the carbon fiber laminates with macro-voids being introduced approximately half-way through infusion. This was determined to have occurred with the decreasing pressure gradient as the flow front moved away from the inlet. This variation in void content per location on the laminate was more evident in the carbon fiber samples than the fiberglass samples.

Micro-voids follow void formation modeling especially when coupled with a pressure threshold model. Macro-void formation was also demonstrated to correlate strongly to void formation models when united with void mobility theories and pressure thresholds.

A quick decrease in mechanical properties is apparent after the first 1-2% of voids, signaling strength is mostly sensitive to the first 0-2% void content. A slight decrease in SBS was noticed in fiberglass laminates, A-F, as v_0 increased but not as drastically as represented in the NCF laminates, G and H. The lower clarity in the exponential trend could be due to the lack of samples with v_0 greater than 0% but less than 1%. Strength is not well correlated to void content above 2% and could possibly be related to void morphololgy.

Keywords: Mark Brandley, resin transfer molding, void formation, process optimization, out-ofautoclave, carbon fiber, vacuum infusion, resin infusion

ACKNOWLEDGEMENTS

I would like to thank Dr. Andrew George for all of his time, patience and efforts as he imparted his knowledge with me to develop this thesis and my love for composite materials processing. His excitement for the topic was contagious and encouraged me to continually strive to learn and do more.

The entire School of Technology faculty and Dr. Fullwood played a significant role in helping me complete this thesis and I appreciate each and every one of their efforts keeping me focused and lending a hand whenever needed.

My gratitude for Plasan Carbon Composites for supporting me through the final steps of my research and for sharing with me their expertise and wisdom gained in the field of composites processing development.

Lastly, my heart is full of gratitude for the support, patience and understanding of my family. Laci has supported me from the beginning and has been a key contributor to my success in this program. I am grateful for the sacrifices that my wife and child have made on my behalf along with my mother, father and sibling's encouragement as I fulfill my dreams. I truly appreciate everyone's support and efforts in understanding the importance of this research to me.

L	IST OI	F TABLES	vii
L	IST OI	F FIGURES	viii
1	Intr	roduction	1
	1.1	Problem Statement	
	1.2	Research Questions	4
	1.3	Hypothesis	4
	1.4	Methodology	4
	1.4.	1 Materials	4
	1.4.	2 Experimentation	5
	1.5	Delimitations and Assumptions	6
	1.6	Definitions and Terms	7
2	Lite	erature review	9
	2.1	Introduction	9
	2.2	Void Measurement Methods	9
	2.3	Void Formation Modeling	11
	2.4	Void Mobility Modeling	14
	2.5	Mechanical Effects of Voids	15
3	Exp	perimental Design	17
	3.1	Permeability Measurement	17
	3.1.	1 1D Permeability Measurements	17
	3.1.	2 3D Permeability Measurements	19
	3.2	Resin Transfer Molding and Laminate Preparation	
	3.2.	1 Tooling	

	3.2.2	Pressurization System	22
	3.2.3	Fiber Orientation and Sample Layup	22
	3.2.4	Resin System	23
	3.2.5	Infusion Process	23
	3.3 A	CAB Panels Processing	24
	3.4 S	ample Preparation and Laminate Layout	25
	3.5 V	oid Content Measurement	26
	3.5.1	Macro-Lens Photography	26
	3.5.2	Optical Microscopy	27
	3.5.3	Combustion	28
	3.5.4	C-Scan Attenuation	28
	3.6 S	hort-Beam Strength	29
4	Resea	rch Results and Analysis	31
	4.1 V	oid Measurement	33
	4.1.1	Macro-Lens Photography	33
	4.1.2	Optical Microscopy	35
	4.1.3	Microscopy and Combustion Comparison	38
	4.1.4	Ultrasound and Microscopy Correlation	39
	4.2 V	oid Formation, Movement and Dispersion	43
	4.2.1	Micro-void Formation and Dispersion	44
	4.2.2	Macro-void Formation and Dispersion	47
	4.3 N	Iechanical Characteristics	50
5	Concl	us io ns	57
	5.1 V	oid Measurement	58
	5.1.1	Microscopy	58

5.	1.2 Combustion and Microscopy Correlation	58
5.	1.3 Ultrasound and Microscopy Correlation	59
5.2	Void Modeling	60
5.	2.1 Micro-void Formation and Dispersion	60
5.	5.2.2 Macro-void Formation and Dispersion	60
5.3	Mechanical Characteristics	61
5.4	Hypothesis Validation	
REFE	CRENCES	64
APPE	INDICES	67
Annen	- L. A VOID MEASUDEMENTS	(0)
¹ uppen	IQIX A. VOID MEASUREMENTS	68
A.1	Microscopy v_0 Measurements for Laminates A-F	68 68
A.1 Appen	Microscopy v ₀ Measurements for Laminates A-F Microscopy v ₀ Measurements for Laminates A-F ndix B. SBS & ILSS REsults	
A.1 Appen B.1	Microscopy v_0 Measurements for Laminates A-F ndix B. SBS & ILSS REsults SBS Laminates A-F	
A.1 Appen B.1 B.2	Microscopy v ₀ Measurements for Laminates A-F mdix B. SBS & ILSS REsults SBS Laminates A-F ILSS Laminates G-H	
A.1 Appen B.1 B.2 Appen	Microscopy v_0 Measurements for Laminates A-F ndix B. SBS & ILSS REsults SBS Laminates A-F ILSS Laminates G-H ndix c. C-SCAN IMAGES	

LIST OF TABLES

Table	1-1: Laminate	Labeling	Method	.6
-------	---------------	----------	--------	----

LIST OF FIGURES

Figure	2-1: Dual-Scale Flow "Fingering": Along Stitching Fibers (Left) and in Between Tows (Right).	12
Figure	2-2: Void Formation by Location as Resulted to Filling Velocity (Left) and Optimum Velocity for Minimum Voids (Right), Reprinted from (LeBel 2014)	13
Figure	3-1:1D Permeability Test Fixture	17
Figure	3-2: 3D Permeability Test Fixture Displaying 3D Model (Left) and Flow Front During Infusion Experiment (Right).	20
Figure	3-4: RTM Tooling Tool-side A (Left) and Tool-side B (Right)	21
Figure	3-5: RTM Tool Configuration	24
Figure	3-6: Specimen Labeling and Sectioning	26
Figure	e 4-1: Infusion Flow-time Comparison	32
Figure	4-2: Trace Markers in Laminate. Initial Observation of "Tracers" (Left) and Highlighted (Middle). Attempt to Replicate with Mapped Dot Pattern (Right)	33
Figure	4-3: Macro-lens Photograph Successfully Analyzed in (George 2013) (Left) and of Fiberglass Laminates in this Study (Right)	34
Figure	4-4: Example Micrograph from Laminate H Showing Both High Micro-void and Macro-void Content.	35
Figure	4-5: Sample Micrographs from Fiberglass Laminates: High-Quality Polishing (Top) and Low Quality Polishing (Bottom)	36
Figure	4-6: Comparison of v_{0M} Between ACAB Carbon (Orange) and Fiberglass (Blue)	37
Figure	4-7: Combustion v_0 (Blue and Red Columns) vs. Microscopy v_{0M} (Green and Purple Columns) for Select Samples Close to the Vent from Laminates A and E	38
Figure	4-8: C-scans of laminate G by SICOMP (Middle) and ACAB (Right).	40
Figure	4-9: Local Macro-void (Left) and Micro-void (Right) v_0 vs. C-scan Attenuation for Laminates G (Blue) and H (Red), as well as for SICOMP Measurements (Solid Symbols) and ACAB Measurement (Hollow Symbols).	40
Figure	4-10: Laminate D C-scan Attenuation Compared to Macro-void Content Measured by Optical Microscopy.	42

Figure	4-11: Micro-void Formations and Modeling: Final Pressure Gradient (Red Line) Across Filled Regime's Length Just Before Shut-off of Over-Pressure. Cured Part's v_{0m} (Orange Dots) by Position Along Filled Regime, as Well as Predicted Formation of v_{0m} (Blue Dots) by Position. Grav Dotted Line	
	Represents Pressure Threshold for Complete Diffusion of Micro-Bubbles.	45
Figure	4-13: Lagging Flow Front	51
Figure	4-14: Local Measured Void Content (Total) vs. ILSS for Laminate A (Blue), Averaged Across Rows (left) and further split into Groups by Location in the Rows (Right). Right-side Graph Also Displays Data for laminate B (Red)	52
Figure	4-15: SBS Results (Left) and Average Macro-void v_0 of Each Laminate (Right)	53
Figure	4-16: SBS Results (MPa) vs. Nearest-Neighbor Distance (mm) Compared Between Laminate C (Blue Diamonds) and Laminate E (Orange Squares) with a Linear Fit of Each (Left) and Overall Correlation (Both Laminate C and E) of SBS vs. Nearest-Neighbor Distance (Right).	54
Figure	4-17: SBS vs. v_{0M} Microscopy; Error Bars Represent Standard Deviation Across Photos of that Sample. Trend Line is Linear Fit of All Data	55
Figure	4-18: SBS vs. v_{0M} (top): SBS of Left-side Samples (Blue Dots), SBS of Middle Samples (Orange Squares) and SBS Right-side Samples (Green Triangles). C-scan Attenuation vs. SBS Laminates C-F (Right): SBS Left-side Samples (Blue Diamonds), SBS Middle Samples (Orange Squares) and SBS Right-side (Grey Triangles).	56

1 INTRODUCTION

As composite materials become more and more prevalent in today's world, the ability to process them cheaper and faster while maintaining their key strength characteristics becomes increasingly important. The strength of a laminate not only depends on the design but how well each layer is consolidated together. Processes for constructing composite laminates focus on consolidation and the removal of volatiles and air that could be trapped in between the fibers. Voids, or air bubbles trapped in the cured laminate, greatly influence the overall mechanical characteristics of the laminate.

Currently the major process that consistently produces composite laminates with a homogenous void content of less than 2% is through high-pressure autoclave-prepreg processing. Although high pressures in an autoclave provide the energy to compact layers and remove voids, it comes at a steep cost. Autoclaves are notorious for lengthy processing times, expensive equipment and pre-impregnated material. All of these variables increase the cost of the product. The need to produce the same quality of laminate as an autoclave at a reduced cost is driving a large amount of research and development into out-of-autoclave (OoA) technologies. Much of this research has focused on resin infusion processes, particularly resin transfer molding (RTM).

Resin infusion (RI) processing covers a number of different processes that start with a dry fibrous reinforcement that is then infused with resin. In RTM, dry fibers are placed in an enclosed, matched mold and resin is infused into the fibers through a high-pressure system.

Other forms of resin infusion processing, such as vacuum infusion (VI), use vacuum pressure to pull the resin into the fibers rather than use over-pressure to inject the resin. The use of dry fibers reduces material costs, allows greater flexibility in preforming and material choice, and eliminates the need for costly freezers required by pre-impregnated fibers, i.e. prepreg.

Resin infusion processes are most often done without the assistance of an autoclave oven, thus resulting in a more cost effective and faster process than the autoclave-cure required by many prepreg materials. Decreased cost is attributed to the reduction in manual, hand layup processing through the use of "preforms", which reduces cycle time. A preform is multiple layers of dry fabric that are held together with a heat-activated binder. Multiple layers are placed in a preform die that is then heated, creating a preformed shape of the part. Thick parts can be built up quickly by simply adding more dry fiber during the preform process.

The goals of resin infusion processing research are to produce laminates of the same quality as autoclave processing – minimal voids and high fiber to resin ratios. Voids are formed during the process of resin infusion when the resin is infused into the fibers. As the resin flows in-between the fibers, air bubbles are occasionally trapped and frozen in place once the resin cures. These bubbles (voids) form areas that will increase the chances of crack initiation as well as crack propagation, which contribute to failure of the part. In composite laminates and void modeling there are two types of voids that are referred to: macro-voids and micro-voids. Macro-voids are defined as voids that form in between the tows, or rovings, in a laminate while micro-voids are those that form between the individual filaments that the tow is comprised of. The creation and final disposition of voids is difficult to determine but is essential in the creation of models that will accurately predict and characterize voids in RTM laminates.

1.1 Problem Statement

The lack of understanding to predict the cured-in-place void distribution and the void content's effects on the mechanical properties in a resin infused laminate is a major drawback in the realization of industry adopting resin infusion processing. The effects of voids on composite laminates constructed with autoclave-prepreg processes have already been extensively studied. These studies have enabled many models to be established that predict the mechanical properties of the laminate. The prediction of mechanical properties in autoclave-prepreg laminates is simplified given the typical homogeneous void distribution. A homogeneous void content in autoclaved laminates is typical due to the consistent pressure across the entire surface of the part during cure. Numerous papers and studies have shown that certain void percentage ($v_0(\%)$) gives certain shear or tensile properties, but few exist for the heterogeneous void distribution typical in RTM laminates.

The void distribution in resin infused laminates varies with resin movement from one end of the part to the other and the resultant pressure gradient along the flow path. The pressure gradient in resin infusion does not promote homogenous void formation like typical autoclave processes. Voids form at different rates as resin flows at varying velocities. The velocity of the resin depends on the pressure it is infused at along with the interaction of the resin with the fiber at the flow front, a phenomenon described by porous media fluid dynamics theory. To predict a part's final mechanical properties, the final cured part's void content must be known, including: concentration, size and distribution. Despite the progress in void formation modeling, no one can relate these variables to the final mechanical properties until bubble formation is coupled with bubble movement and dispersion before resin cure.

1.2 Research Questions

The purpose of this research is to understand the effect of processing conditions on the concentration, location and distribution of voids in a resin transfer molding composite laminate as well as the influence of those voids on the resulting mechanical properties.

1.3 Hypothesis

It is hypothesized that adjusting infusion pressure in RTM, which in turn alters the infusion velocity, to some optimum value, will result in a laminate with little to no void content comparable to autoclave-prepreg laminates. Many researchers have attempted void formation modeling but no one can relate these models to the final mechanical properties in the laminate.

Therefore, it is hypothesized that process conditions, like the flow-rate, can be related to prediction of void formation. As a result, process variables can be used to allow prediction of Short Beam Shear of composites made through RTM.

1.4 Methodology

1.4.1 Materials

Various fabric reinforcements were studied in this work. The fiberglass fabric studied is an unbalanced weave, JB Martin TG-15-N (with PPG roving). Two types of carbon fiber fabrics were utilized in the testing: 1) a generic aerospace-grade uni-directional (UD) weave with thin glass rovings woven in the weft direction and 2) a biaxial non-crimped fabric, VectorPly C-BX 1800. The JB Martin fabric laminates were cured with Rhino Epoxy 1411 with 4111 Hardener. The carbon UD weave was cured with Hexcel RTM-6 epoxy resin. The tooling for the fiberglass laminates was manufactured from aluminum 6061. The pressurization system was a homemade system made from a standard pressure pot and connected to house-supplied pressurized air. Two Memmert ovens were used for curing and moisture removal. Density testing prior to combustion testing was performed with a Mettler Toledo micro analysis scale along with a density kit for weighing submersed samples. Combustion samples were processed in a high-temperature gas furnace. Microscopy samples were polished with standard metallographic methods of successive grinding and polishing at decreasing grit sizes. Micrographs were imaged and analyzed using a Zeiss AxioObserver A1M microscope and a Sony SLTA77V-a77 Digital SLR camera.

1.4.2 Experimentation

Fiberglass laminates were prepared by RTM at 3 different infusion pressures: 0.75, 1.00, 1.20 Bar. The resin was infused into five layers of 400 x 300 mm fiberglass fabric. The pressure was monitored to maintain a constant pressure of the set value throughout the infusion. Once the resin reached the outlet, the inlet and vent tubes were immediately closed before oven treatment for cure.

Permeability of the fiberglass and carbon fiber fabrics was studied for the purpose of determining the coefficient of permeability, *K*, for equations, including Darcy's Law (Darcy 1856), to solve resin flow through the specified fabric. This was performed via vacuum infusion of a Newtonian fluid (canola oil) and timed to determine rate of flow at a given vacuum pressure through a specified thickness and orientation of fiber.

Non-destructive testing was performed via C-Scan Attenuation to provide a comparison set of data for void location. This data was compared to data gathered through microscopy analysis, combustion testing, as well as attempts of macro-lens photography methods developed in-house. This data will also provide data to assist in modeling the creation and movement of voids along the resin flow front during infusion. Mechanical properties of the cured laminate were tested through ASTM D 2344/D 2344M-00, Standard Test Method for Short-Beam Strength (SBS) of Polymer Matrix Composite Materials and Their Laminates. SBS tests were carried through on an Instron 5569A test structure with Bluehill operating software.

Infusions by RTM of the carbon UD weave were performed prior to this study by other laboratories, as well as c-scan measurement and interlaminar shear strength (ILSS) testing, but the resulting data was analyzed as part of this study. All laminates analyzed in this study are listed in Table 1-1.

Laminate	Infusion Pressure/Flow Rate	Material
Α	0.75 bar	Fiberglass
В	0.75 bar	Fiberglass
С	1.00 bar	Fiberglass
D	1.00 bar	Fiberglass
E	1.20 bar	Fiberglass
F	1.20 bar	Fiberglass
G	100 cc/min	Carbon UD weave
Н	400 cc/min	Carbon UD weave

Table 1-1: Laminate Labeling Method

1.5 Delimitations and Assumptions

The pressures chosen were not decided upon by calculation and determining optimal velocity for resin infusion. Rather, three infusion pressures were chosen given the capabilities of

the infusion equipment that represent a low, middle and high infusion range. Using the range of infusion pressures, conclusions may be drawn on the effects of resin infusion and its effect on void creation and movement. It is expected that void formation, quantities and movement will vary for each infusion pressure. Two types of material were tested and void models formed from the characteristics of each material. Each material will exhibit its own behavior under infusion environments.

1.6 Definitions and Terms

Flow processing – general term that refers to any composite laminating process that utilizes either vacuum- or over-pressure to infuse resin into dry fibers

Macro-void - bubble or air gap formed in between tows, or rovings during infusion

Micro-void – bubble or air gap formed between filaments inside a tow, generally smaller than a macro-void

Out-of-Autoclave – (OoA) refers to production of composite laminates without an autoclave that are capable of achieving similar properties to those that are produced in an autoclave

Preform – an assemblage of reinforcement plies shaped to be near the final shape of the product while only lacking resin cure

Race tracking - a situation when resin takes the path of least resistance and travels at a higher velocity then the resin flowing through the fiber bundles and typically reaches the resin outlet, which causes a disruption in the flow of the remainder of the infusion

Resin Transfer Molding – (RTM) is a composite molding pressure where over-pressure and typically vacuum work together to push and pull resin through a dry fiber preform

SBS – Short-Beam Strength

 v_F – refers to fiber volume content which is typically given as the volume of fiber divided by the total volume (including resin and voids)

 v_{0M} – macro-void volume content

 v_{0m} - micro-void volume content

 v_0 – Void volume content – similar to fiber content, this is measured as the volume of voids in a samples divided by the total volume of the sample.

Void - air bubbles that are trapped in a laminate after cure

2 LITERATURE REVIEW

2.1 Introduction

Recent research in the flow processing community has proposed a relationship between the flow-rate in resin infusion processes and void creation. This is a fluid mechanics approach to describing bubble formation by mechanical entrapment. These studies will not become useful to the simulation of resin infusion processes until this data of void formation can be paired with models for void mobility and predictions of final void distribution in an infused laminate. Additionally, void formation, mobility and final distribution needs to be studied along with the effects of such voids on a composites' mechanical performance.

This literature review will provide background on previous research performed regarding void formation, mobility and final distribution along with the "effects of defects" in composite laminates. The desire is that this research will contribute to providing a more detailed description of voids and describe their effects on the mechanical properties in resin infusion.

2.2 Void Measurement Methods

The simplest method in execution to measure v_0 is related to Test Method II in ASTM D3171. An approximate volume of all solids and voids is calculated by multiplying the measured thickness by the laminate's length and width. The weight of fiber comes from measurement of the weight of the dry preform before infusion. The weight of the resin is the

difference between the weight of the cured laminate and the dry preform. The actual volume of all solid components, fiber and resin, is then calculated from the densities of each component. The difference between these two volumes, with voids and without voids, is the volume of air.

This method gives an easily obtained bulk measurement of v_0 without the need for many tests of the same sample. It relies on many approximations: the individual densities of the components can be difficult to accurately measure, and the rounded edges and irregular thickness of the cured laminate depart from the assumed ideal geometry.

A more contained version of this method requires determining the density of a small sample as well as its mass of resin and fiber. The density is usually determined by either a pycnometer or weighing while immersed per ASTM D792. The sample volume is then determined from the sample mass and the density. ASTM D3171, Method I, is then followed by measurement of the constituent content masses through either digestion or combustion. Digestion methods involve dissolving the resin from a laminate sample. The sample's weight before digestion and the weight of the remaining fibers are compared with the samples pre-digestion density. This method entails little subjectivity, but the void size and location cannot be characterized and it requires the use of hazardous chemicals. Combustion works similarly to digestion and does not require the chemicals but has proven to cause errors with carbon fibers as carbon may char at the temperatures typically used to burn off the resin.

Optical microscopy of voids has been the most popular of v_0 measurement methods (Liu 2006, Cann 2008). A sample is cut from the laminate, polished and then examined under a microscope. Voids should appear as the darkest areas in a sample image from light microscopy. This enables an operator to perform a percentage calculation of dark versus light space to determine the void content. A gray-scale threshold must properly delineate the void areas. A

clear threshold definition of voids requires fine polishing of each sample. The polishing equipment available in many labs often limits the ability to use this method. Both intra-tow micro-voids and inter-tow macro-voids are difficult to delineate with an automated threshold algorithm as they represent a small percentage of the gray scale and are only slightly darker than the resin. Intra-tow micro-voids are particularly difficult to characterize, as they are small enough to resemble usual polishing artifacts and can be difficult to delineate from resin pockets.

Ultrasonic c-scan inspection is a non-destructive technique (NDT) to detect defects and has been used for v_0 measurement (Liu 2006). Optical microscopy results for void measurement can be reasonably correlated with data collected in ultrasound c-scan measurement processes. Ultrasound's non-destructive test method has gained appeal to determine void content in composite laminates. The local attenuation gathered from a c-scan measurement can be compared to a microscopy sample originating from the same location in the sample. The local attenuation increases in a roughly linear trend with increasing macro-void concentration, as the air porosity dampens the signal. This correlation serves as the basis of general ultrasound nondestructive testing of composites.

2.3 Void Formation Modeling

The reinforcement of most high-performance composite parts consists of several fiber bundles (i.e. tows, roving or yarns) held together in individual fabric plies. The resin flow in such a fabric can be described as dual-scale: having both a macro-scale and micro-scale. Similar to the two classifications of voids, the macro-scale flow is inter-bundle, while micro-scale flow is intra-bundle. Intra-bundle refers to interactions between the individual fibers themselves inside the bundle. The velocity of macro-flow is largely determined by the applied pressure gradient, while micro-flow velocity is largely determined by capillary forces due to the thousands of tightly packed fibers in each bundle (Ahlborn 2009). This often causes a nonuniform flow front, termed "fingering," referring to the different filling velocities in the bundles and between them (Figure 2-1).

Figure 2-1: Dual-Scale Flow "Fingering": Along Stitching Fibers (Left) and in Between Tows (Right).

In flow experiments, the flow-capacitance of the reinforcement, or permeability, has often shown to vary with filling velocity, which complicates flow simulation efforts (Kim 2007). If other conditions are the same, this difference in measured permeability is generally believed to be attributable to capillary forces arising from such dual-scale reinforcements usually used in resin infusion (Ahn 1991, Lai 1997). This capillary-induced difference in flow rates at the macro-scales and micro-scales has also been linked to the void formation by mechanical entrapment. Mechanical entrapment refers to the void formation process that occurs as the dry fiber preform is wetted through resin flow. With the increased importance of low porosity OoA manufacturing processes, and higher accuracy in filling simulation, these dual-scale effects have become the subject of many recent investigations.

Patel and others theorized and proved to a degree that low macro-flow velocities produce macro-bubbles between the fiber bundles. This occurs when micro-, i.e. capillary-flow outruns the macro-flow. In the opposite case, high macro-flow velocities produce micro-voids within the bundles (Patel 1996, Leclerc 2008). There then exists an optimum filling velocity for a particular fabric-matrix combination, which results in the minimum of both macro-voids and micro-voids (Figure 2-2). The optimal velocity is when the applied pressure gradient causes the macro-flows and micro-flows to travel at roughly the same speed, resulting in a uniform flow front across the two scales (LeBel 2014).

Figure 2-2: Void Formation by Location as Resulted to Filling Velocity (Left) and Optimum Velocity for Minimum Voids (Right), Reprinted from (LeBel 2014)

Determining the flow of resin through a fiber preform is required for modeling void formation and typically determined through application of Darcy's Law (equation 2-1):

$$v = \frac{\kappa}{\mu\phi} \nabla P \tag{2-1}$$

Darcy's law implies that the velocity of the resin flow is related to the permeability of the material, K, the viscosity of the resin, μ , the porosity of the material, ϕ , and the pressure gradient ∇P .

Many models to simulate such void formation have recently appeared including implementation of this to filling simulation for void minimization (Ruiz 2006, Garcia 2010,

Lawrence 2009). The experimental work to validate these void formation models have focused on either a priori or in situ evaluations of void generation. The a priori methods employ textile and fluid dynamics modeling to calculate analytical predictions of the optimum velocity (Gourichon 2006, Park 2011, Lee 2006, LeBel 2014). In situ methods investigate void generation at the flow front during infusion. This has been accomplished by: measuring pressure changes at different flow rates, comparison of flow-rates at the inlet and at the flow front or by light transmission, electrical conduction or thermal conduction (Verrey 2006, Gourichon 2006, LeBel 2012, Michaud 2007, Ravey 2013, Villiere 2013). Light transmission seems to be the most robust of these experimental methods for fiberglass but is impossible with opaque carbon fibers. It becomes increasingly difficult to measure void formation rates at varying pressures as well due to the availability of transparent tooling that is capable of being monitored while an infusion is taking place. Current trends point to higher pressure resin infusions that cannot be simulated without closed-molded tooling. Some of the aforementioned methods show only void formation in the outer ply and not through-thickness or between filaments. Large amounts of voids will be formed between the layers as compaction levels of fibers increases, also increasing chances of entrapment of bubbles.

2.4 Void Mobility Modeling

Despite the progress in void formation modeling, no one will be able to relate these models to the final mechanical properties until void formation is coupled with void movement and dispersion before resin gelation. Separate phenomena in void movement and dispersion have been addressed in fluid dynamics studies. For macro-voids formed by slow inter-bundle flow, the pressure gradient in the channel makes the smaller voids continue to move towards the flow front. Larger voids become trapped in the inter-bundle gaps until the rising pressure causes them to split or shrink – per the Ideal Gas Law – to a critical size where they can escape and flow quickly to the flow front where they dissipate and disappear (Patel 1996, Gourichon 2006, Park 2011).

Micro-bubbles formed by fast inter-bundle flow more likely remain stuck in the dense fiber bundle until the rising pressure makes them shrink or dissolve (Henry's Law for diffusion) to a critical size for mobilization, at which point they escape to the inter-two channels and also move quickly to the flow front (Lundstrom 1997). All voids moving within the inter-bundle gaps are impeded by fiber adhesion forces and mechanical obstructions like stitching threads (Lundstrom 2010). As the pressure increases throughout the infusion, the voids continue to shrink and dissolve into the resin, and there remains a small contribution to this diffusion by convection for the moving bubbles (Lundstrom 1997).

Few experimental studies exist with attempts at coupling these effects together and then coupling them to void formation models to predict the final void content (Lundstrom 2010, Frishfelds 2007). These attempts are hindered by the complexity of the approaches and the multi-disciplinary nature of the coupled models. Therefore, work remains to allow viable use of void prediction in filling simulation.

2.5 Mechanical Effects of Voids

In order to predict a part's final mechanical properties, the final cured part's void content must be known (i.e. void distribution, concentration, and size). Many experimental studies exist that relate mechanical properties to void content in composite laminates but these papers largely focus on voids formed through autoclave processed composite laminates. Homogenous pressure across the laminates surface creates an environment conducive to a consistent void content in any given section. Resin infused laminates vary in that the pressure gradient across the laminate varies given the flow front's position in the laminate and its distance from the infusion point.

Recent attempts to relate void content to mechanical properties for LCM laminates have been performed but lack depth and do not provide enough data relating the modeling of voids and void types to mechanical failure such as shear strength. In one such study, tensile data collected varied nicely with void content as suspected but only a single tensile sample was taken for each measurement point (LeBel 2014). Lack of repeatability for statistical analysis leaves little confidence in the results. Other studies clearly look at standard tensile tests and fail to measure bending strength of a laminate This paper presents an approach to understanding the final disposition of voids in a heterogeneous environment and their individual effects on the laminate's mechanical properties as well as whether this can be predicted given a laminate's fabric/matrix composition.

3 EXPERIMENTAL DESIGN

3.1 Permeability Measurement

3.1.1 1D Permeability Measurements

1D permeability is determined through a uni-directional flow infusion test. Fabric specimens in these experiments were cut to 200 x 100 mm and stacked 4 plies thick. Permeability tests were run at different fiber orientations: 0° , 90° , and 45° with all plies in each test in the same orientation. Once laminates were prepared, they were placed on a steel caul plate where a precise process was followed to promote proper permeability measurements (see figure 3-1).

Figure 3-1: 1D Permeability Test Fixture

Vacuum bagging "tacky-tape" was placed around the borders of the caul plate touching the edges of the fiber laminate so no air paths were present, preventing race tracking from occurring. After tacky-tape was in place, flow media was placed touching each end of the underside of the sample. The inlet side had an additional layer of flow media to bring resin to the topside of the laminate as well. A spiral cut inlet hose was placed on the flow media covering the width of the laminate and a standard hose was fed into the center of the spiral hose. A simple hose was placed on the opposite side of the laminate to provide vacuum.

A vacuum bag was then placed over top of the laminate making sure to prevent any creases which would also provide paths for race tracking to occur. Vacuum was pulled and measured to confirm that few enough leaks were present that a minimum of 5 mBar pressure was maintained inside the mold. Vacuum was turned off and timed to be sure no significant drop in vacuum over one minute time. Ambient pressure and pressure of vacuum were recorded as well as temperature. The next step was to limit the fluctuation in the vacuum bag height (mold thickness) that occurs as the resin flows into the laminate and lifts the bag. This fluctuation was controlled by snuggly clamping a large block of acrylic to the topside of the laminate and shimmed to provide equal thickness of the laminate. Three laminate thicknesses were tested: 2.04, 2.14 and 2.24 mm. A metric ruler was placed on the top of the acrylic to allow measurement of flow.

The inlet side was then connected to a cup of Canola Oil while constant vacuum was being pulled. A timer was started as soon as the "resin" reached the laminate. Time was recorded at each increment of 10 mm that the resin wet out the laminate. Caution must be taken with measurements as any variation in the angle the ruler is viewed could skew data. This was continued until the entire fabric sample was wet-out or until 30 minutes was reached, whichever

occurred first. This allows for determination of the K_x and K_y variables but not K_z . K_x represents the permeability of the fabric along the length or direction of infusion, while K_y references the permeability of the fabric perpendicular to the direction of the infusion. K_z relates to the throughthickness permeability of the material.

3.1.2 3D Permeability Measurements

A new method for K_z measurement was developed and presented along with the K_z results used in this thesis (George 2014). A two-part tool was constructed out of 300 x 300 x 100 mm acrylic blocks (see figure 3-2). The blocks were machined with an inlet hole with a fitting in the center in the tool with a vent hole located 70 mm from the center point. A silicone seal was attached around the perimeter of the 150 x 150 mm cavity to create an enclosed cavity. Holes for eight grade-8 bolts were drilled into the perimeter of the tool to compress seals and retain pressure in the vessel. The distance of separation and control of compression of material between tool halves A and B was determined by shims of predetermined thickness: 2.04 mm, 2.14 mm and 2.24 mm.

The outlet hole was sealed off for pressurization prior to infusion to test the sealing of the mold. For the test infusion, the vent was left open to the atmosphere, while the inlet was attached to the pressurized resin pot. Pressure was applied through a standard painting pressure vessel with a pressure gauge and valve to control applied pressures. A hose was placed in the pressure vessel and reached to a cup of canola oil. Tests were performed on both the fiberglass and carbon biaxial NCF fabrics with set ply counts and overall thicknesses.

Figure 3-2: 3D Permeability Test Fixture Displaying 3D Model (Left) and Flow Front During Infusion Experiment (Right).

The process was performed by placing the predetermined fiber into the cavity being cautious to not break the seal with any fibers that could lead to a leak of material. Tool temperature was then measured. The pressure vessel was set to 1 bar overpressure and checked via its gauge for leaks in tooling. When no leaks were present, the oil was released and allowed to flow into the tool. The timer was started once oil reached the fabric.

The optically clear mold material allows for observation of the resin permeating the fibers on the surface of the reinforcement stack, as well as when the resin touches the bottom surface after infusing through the entire thickness of the sample and reaches the underside of the tool. Once the oil reached the underside of the fabric the timer was stopped, the ellipse on the top surface (Figure 3-2) was marked and measured, and pressure was released.

3.2 Resin Transfer Molding and Laminate Preparation

3.2.1 Tooling

A mold cavity measuring 400 x 300 x 2 mm was machined into tool-side B out of 6061 aluminum (Figure 3-3). A 300 x 5 x 4 mm resin channel along both the inlet and outlet sides ensures an even resin flow front during infusion. Tool-side A contained an inlet and outlet machined at the center-point of the resin channel. Each hole was tapped to allow quick-connect fittings to secure 8 mm diameter tubing. A 4 mm channel around the outer edge of the tool contained a 5 mm silicone belt to seal the cavity. The two mold halves were secured with 16 grade-8, 9/16 inch bolts tightened in a sequenced pattern to guarantee consistent clamping pressure. The tool was sealed and released with Chem-Trend Chemlease release agent.

Figure 3-3: RTM Tooling Tool-side A (Left) and Tool-side B (Right)

3.2.2 Pressurization System

A pressurization system was manufactured using a standard 2.5-gallon air pressure paint tank. The paint tank was converted with a controllable pressure valve and inlets to accept the standard 12 mm diameter hoses.

3.2.3 Fiber Orientation and Sample Layup

Laminates were made by RTM with Hexcel RTM-6 and the generic carbon UD-weave by Applied Composites AB ACAB in Lynkoping, Sweden. The data retrieved from these panels was employed in this study. To compare void modeling between carbon and fiberglass, laminates were also made by RTM with the fiberglass fabric as part of this study.

Fiber orientation will have a large effect on the flow behavior of the resin as it contacts the fiber. Permeability of the material changes as the directionality of contact is altered. This also can change the amount of tortuosity in the resin path as the different shear forces of the fibers act upon the resin. All plies for the infusion process were oriented in the 0° orientation to simplify complexity of void movement simulation. Simulation becomes more complex as orientation of the fiber becomes more quasi-isotropic.

Reinforcement fabrics were measured and cut in 400 x 300 mm plies. Careful attention was given to ensure limited fiber strands were lost in the cutting process and transition from cutting table to mold cavity. Loss of fibers can decrease permeability and promote "race-tracking" and affect the flow of resin through the cavity. Five plies were stacked into the mold for each laminate, a number determined from the areal weight (0.518 kg/m²), fiber density (2,550 kg/m³), mold thickness (2 mm), and target v_F of typical vacuum infusion laminates with the same fabric (45 to 50%).

3.2.4 Resin System

Rhino 1411 epoxy resin with Rhino 4111 slow hardener was carefully measured given our calculations to determine the proper volume of resin needed. The desired volume was determined by first estimating the fiber volume in the RTM tool cavity. After this was calculated, the remaining volume of the tool cavity was determined to be resin. Volume of the one meter long hose was added to the predicted volume of resin. The density of the resin was multiplied by this volume to determine the mass of resin required for full infusion. A 100 gram buffer was added to the required resin content to ensure air was not introduced to the cavity during infusion.

The epoxy resin was mixed carefully to not introduce unwanted air into the mixture. After mixing for three minutes, the resin was placed in a vacuum chamber for five minutes to evacuate any air introduced during pour or mixture. The cup of epoxy was then placed into the infusion pressure chamber.

3.2.5 Infusion Process

Each infusion followed the same process. The tool cavity was sealed and the surrounding bolts were tightened to specifications following a provided tightening pattern. The pressure vessel connected to the RTM tool by a one meter long tube and an additional tube of random length was attached to the vent side of the tool (see figure 3-4). Pressure was then applied to the chamber and the vent hose was closed. The pressure gage was watched to verify there was no change in pressure over a one minute hold. Once the pressure system and tool passed pressurization tests, the cup of epoxy was placed into the chamber, the chamber was re-sealed, the inlet hose was clamped shut, and the vent hose was opened. Both ambient and tool temperature were recorded at this time.

Figure 3-4: RTM Tool Configuration

After the chamber was pressurized, the clamp was removed and resin allowed to flow to the tool. A stopwatch was started as soon as the resin hit the inlet of the tool and stopped once the resin reached the vent. The goal is to not vent the entrapped and formed bubbles but to hopefully trap them in place, so the pressure was immediately shut off and the inlet and outlet hoses clamped shut as soon as resin was seen in the outlet hose. The laminate was allowed to cure at room temperature for 12 hours, which was followed with a post-cure at 85°C for one hour. The composite laminate was then removed from the mold and prepped for testing.

3.3 ACAB Panels Processing

Two laminates were prepared at ACAB prior to my arrival on this project. ACAB produced two laminates, referred to as "G" and "H" in this report, in an 800 x 400 x 4 mm mold cavity. They were produced by RTM from an aerospace-grade carbon fiber unidirectional weave with a powdered binder and infused with RTM-6 epoxy resin with an industrial infusion

machine. The infusion machine pre-heated the mold and resin to 180°C and maintained temperature throughout the infusion.

Each laminate was injected at a predetermined velocity (flow rate). The infusion machine was set to 100 cm³/minute for laminate G. After half of the laminate length, or approximately 400 mm, the infusion machine reached maximum available pressure (2.25 bars gauge pressure – calibrated as the pressure above atmospheric pressure). The infusion was then continued as a constant-pressure infusion at that maximum pressure capacity of the machine. In RTM at constant pressure, the flow rate continually decreases as the flow front travels farther from the inlet, due to more of a pressure loss across the increasing size of the filled regime of the preform, the infusion machine was set to 400 cm³/minute for laminate H, but the maximum available pressure was reached after only a few centimeters of flow, thus the majority of the laminate was filled at constant pressure with a decreasing flow rate.

The applied pressure was turned off just before completion of filling for both laminates to ensure that the resin would cure with all formed voids still in the laminate. Both laminates were cured at 160°C and allowed to cool before removal from the mold.

3.4 Sample Preparation and Laminate Layout

Each laminate was cleaned with dish detergent and water followed by a wipe with isopropyl alcohol to remove remnants of release agent. The panel was then marked per the layout in Figure 3-5. Most of the samples were taken from the section of the laminate further from the inlet as void content concentration usually is highest further from the resin inlet due to the propensity of voids to move with the pressure gradient towards the vent. Samples set for SBS testing were mapped per ASTM D2344. Given the average sample thickness of 2.67 mm calculations were performed for length and width of the sample. SBS samples measured 16.0

mm x 5.33 mm x 2.67 mm. Microscopy and combustion samples were also measured to 16.0 mm x 7.00 mm x 2.67 mm. Samples were then cut on a standard tile saw with a six-inch diamond blade. A stop was set to assist in keeping sample width consistent.

11 110	9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 7 7	4	1/8 1-37 1-31	1111	1-194	12-1 12-1 12-1 12-1 12-1 12-1 12-1 12-1
iii		0					ž
	20 34 34 34	¥ # 7 #	-	2.4 2.41 2.41 2.44	2.15 2.15 2.15	an Late	100 100 100 100 100 100 100 100 100 100
100	0 - 1 - 1	c					*
lit me	*****	<u> </u>	1		12222	99	
12 me	******	****	+	* * * *	*****	1	********
11=	0-1-0 0-1-0 0-4-10	45 47 47 47 47 47 47 47 47 47 47 47 47 47	ę	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10333	-1000 -	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 3-5: Specimen Labeling and Sectioning

3.5 Void Content Measurement

3.5.1 Macro-Lens Photography

This process was developed during the development of this thesis work. It was developed as a non-destructive test method of quick measurement of void content in transparent laminates without the need of complex, expensive equipment. A photograph was taken of a defined area on both sides of each panel with a Sony SLTA77V-a77 Digital SLR camera with a macro lens.
Backlighting was provided from a standard photography light setup located in our Industrial Design program's studio. Each image was taken in RAW and developed in Adobe Photoshop.

Images analysis of all digital images was performed using Image-J, a freeware publicdomain Java-based program available on the Internet. The particle analysis tool in Image-J was utilized for its applicability to measure bubble areal coverage in a photo. This tool takes a binary image and looks for circular outlines. It then labels and catalogs each circle, measures its surface area and then calculates the image's total areal percent covered in circles. This method has been adapted by Andrew George at BYU from a process typically used for fiber count analysis.

A number of variables in Image-J are adjusted to properly focus the image including: gray-scale, shading, and brightness. The image is adjusted until the quality of the image allows recognition of bubbles without picking up other imperfections in the laminate. Image background noise from improper lighting is controlled through the particle analysis tool. The particle analysis tool is adjusted to define limits on size of particles detected as well as define the limits on the circularity of the detected particles. A minimum circularity specification is called out to filter out long black lines in binary images created from scratches in the laminate or fiber texture patterns. The image was then sharpened to define each circular area more clearly.

3.5.2 Optical Microscopy

To measure void content, the samples were sent back to Brigham Young University to be polished and analyzed. Each sample, measuring 16.0 x 6.00 mm, was placed in a capsule and embedded in epoxy resin. After the resin cured, the disks were removed and polished using standard metallurgy sample polishing procedures. The samples were ground with decreasing abrasive diamond wheels and slurries. Each sample was initially ground with a 125-micron wheel followed by a 10-micron wheel. They were then rough polished with a 9-micron lapping film. Afterwards, they were polished in a 0.3-micron alumina suspended in distilled water on a silk pad.

The polished samples were put under a Zeiss AxioObserver A1M microscope with a Sony SLTA77V-a77 Digital SLR attached to record images. Five images were taken along the length of the specimen and then analyzed with Image-J analysis software by computing the areal percentage of each image representing voids.

3.5.3 Combustion

The combustion process of measuring v_0 is related to Test Method II in ASTM D 3171. An approximate volume of all solids and voids is calculated by multiplying the measured thickness by the laminate's length and width. The weight of the fiber is retrieved from measurement of the weight of the dry preform before infusion. The weight of the resin is the difference between the weight of the cured laminate and the dry preform. The actual volume of all solid components (fiber and resin) is then calculated from the densities of each component. The difference between the two volumes, one with voids and the other without, is the volume of air.

3.5.4 C-Scan Attenuation

The ultrasound C-Scan measurement on the ACAB panels was performed by an operator at the Swedish Institute of Composites (SICOMP) (Operator "A") using a Sonatest RapidScan roller with a phased array (PA) transducer. The measurement was then repeated by another operator at ACAB (Operator "B") using an industry standard immersion tank, also with a PA transducer. An appropriate time-corrected gain (TCG) was determined separately by each operator, based on a nearly void-free laminate of the same thickness and fiber-resin combination. The ultrasonic absorption coefficient α (dB/mm) is the attenuation divided by the sample thickness.

The local attenuation at the same spot on each laminate was compared to results gathered from each 16.0×6.00 mm microscopy sample gathered after c-scan measurement. The local attenuation was compared against each sample's macro-void and micro-void volume percentage.

3.6 Short-Beam Strength

Short-beam strength testing was performed per ASTM D 3422/D 2344M-00 at Plasan Carbon Composites on an Instron 5569A running Bluehill software. The Instron was calibrated as of April 27, 2015. The test was run with the specified loading nose and supports. Each sample that was cut from the laminate was measured to the hundredth of a millimeter with a pair of six-inch calipers. No special conditioning was performed on the samples before testing other than being stored at temperature in the testing lab.

Specimens were inserted with tool side A surface facing upward equidistant between the side supports. The specimens were then loaded at a rate of 1 mm per minute. The loading was continued until either of the following occurred: 1) a load drop-off of 30%, 2) two-piece specimen failure, or 3) the head travel exceeds the specimen nominal thickness. Data was recorded mapping the load versus crosshead displacement. The maximum load, final load and the load at any obvious discontinuities in load-displacement data were recorded.

Short-beam strength was calculated per equation 4-1.

$$F^{sbs} = 0.75 \, \mathrm{x} \frac{P_m}{b \, \mathrm{x} \, h}$$
(3-1)

Short-beam strength is related to the maximum load observed during the test, N (lbf), the measured specimen width (mm), P_m , the measured specimen width (mm), b, and measured specimen thickness (mm), h. For each series of test methods, the average short-beam strength was determined as were the standard deviation and coefficient of variation (in percent) for each property.

4 RESEARCH RESULTS AND ANALYSIS

Fiberglass infusions were carried out through the above protocol and the initial data of processing parameters was analyzed. Varying infusion times were evident not only between separate pressures values but also within infusions performed at the same pressure value. Infusions performed at 1.00 Bar ranged from 2.01 minutes in Laminate C compared to 4:13 in Laminate D (see figure 4-1). Temperatures at infusion were only separated by 0.8°C, which would have little effect on change in pressure gradient or resin viscosity. The variation in pressure gradient is the applied pressure minus the atmospheric pressure on the vent. This variation does not change much over such a small difference in temperature. Previous studies have also shown that resin viscosity rarely has an effect on flow variation and may result in only a 2% increase in fill time where the variation in fill time in this sample of infusions ranged from 10-210% (George 2011). According to Darcy's Law (equation 2-1) the remaining variables in flow variation are permeability and porosity of the reinforcement.

The possibility that the resin was able to flow more quickly through the laminate could be related to the density of the fabric . The JB Martin fiberglass easily lost strands while handling which could promote race tracking and reduce areas of interference that slow resin flow. Fiber density could also lead to variation in fill time due to non-ideal packing of the reinforcement in the mold at the sample edges issuing an increase or decrease in resin flow. Another consideration for variation possibly demonstrated in this sample set could be the typical variation in permeability of the fabric. It has been found that permeability of the same reinforcement material can vary approximately 20% from test to test (Vernet 2014). This variation simply comes from micro-variation in the fiber architecture that causes high variation in flow-rate.

Figure 4-1: Infusion Flow-time Comparison

Traces of ink from marking the fiber for cutting were identified in Laminate D that appeared to represent the path of resin flow (see figure 4-2). It was visible that the markings flowed from the inlet-side and continued to fade towards the vent port following the expected 1D flow of resin with tracers fading towards the vent (orange dot in middle photo of figure 4-2). An interesting observation was, that despite a flow channel machined along the vent side of the preform, the tracer suggests that the flow is moving diagonally towards the actual vent port instead of uni-directionally towards the vent channel. The vent channel may have been too full of fibers to operate its intended function of ensuring linear flow. This suggests that the assumption of linear flow is invalid for these infusions and that void formation and flow modeling will be more complex than simple one-dimensional flow. The ability to track resin flow in a closed, metal tool has not been accomplished yet and this observation provided a possible method of tracking such flow. After noticing this phenomenon, tracers of different markers, permanent (same type used to mark dry fabric) and dry-erase markers were used to map a dot pattern on Laminate A to possibly provide evidence of flow path through the laminate. The results were inconclusive (flow path traces were not detectable) but research into other tracer materials would be a valuable path to evaluate in the future to assist in the mapping of flow in a closed-mold tool. In this instance tracers would have provided clarification on whether and where race-tracking or a lag in flow rate occurred.

Figure 4-2: Trace Markers in Laminate. Initial Observation of "Tracers" (Left) and Highlighted (Middle). Attempt to Replicate with Mapped Dot Pattern (Right).

4.1 Void Measurement

4.1.1 Macro-Lens Photography

The carbon laminates made by ACAB were not analyzable by macro-lens photography due to the opaque nature of the carbon fibers. Each fiberglass sample, however, was initially photographed for v_0 measurement through macro-lens photography void characterizations. In a

previous paper this method was developed and determined to offer comparable results between density/thickness measurements when compared to macro-lens photography samples of transparent materials such as glass fibers (George 2013). In this situation, however, either the higher fiber content or the fiber architecture was promoting excess levels of noise in the photo, with many of the rovings appearing as black lines. The frequency of such lines greatly convoluted the appearance of the bubbles; rendering particle analysis results obsolete (Figure 4-3). It was difficult to highlight the laminate with the proper lighting that would allow site of voids in the laminate, which in turn could be analyzed through the algorithm in Image-J software to determine v_0 throughout the laminate. These measurements were unable to be performed on these laminates.

Figure 4-3: Macro-lens Photograph Successfully Analyzed in (George 2013) (Left) and of Fiberglass Laminates in this Study (Right).

4.1.2 Optical Microscopy

For the carbon laminates G and H, sample polishing and microscopy was performed by SICOMP. Three micrographs were imaged of each sample cut from various locations in each laminate. The micrographs were then analyzed at BYU in Image-J; the areal percent of macro-voids and micro-voids was separately calculated for each image (figure 4-4)

Figure 4-4: Example Micrograph from Laminate H Showing Both High Micro-void and Macro-void Content.

For the fiberglass laminates A-F in this research project, void content was measured by optical microscopy for all samples. But only macro-void contents were measured, as micro-voids were too difficult to discern from polishing artifacts in several of the images. Figure 4-5 illustrates examples of fairly good polishing, in which both the macro-voids and micro-voids are evident, as well as an example micrograph where the polishing was not sufficiently high quality to measure micro-voids. Unfortunately, the majority of images were more like the latter than the former, so micro-void content measurement for this sample set will have to wait until future work can be done to improve polishing methods for these samples. Micro-void measurement,

such as that done with the ACAB carbon laminates (G, H) remains a difficult task in all void measurement methods due to their small size.

Figure 4-5: Sample Micrographs from Fiberglass Laminates: High-Quality Polishing (Top) and Low Quality Polishing (Bottom)

The data for the laminates G and H provided strong correlation with expected results per dual-scale flow theories. Areas under higher pressure with faster flow rate (close to the inlet) showed little porosity primarily consisting of micro-voids. As the flow front moved away from the inlet and the flow rate decreased, the introduction and growth of macro-void presence increased. Sample row 3 of laminate G contains less than 1.00% overall v_0 with 0.81% v_{0M} and

jumps to 2.00% overall v_0 and 1.56% v_{0M} in the neighboring sample set in row 4. This trend continues in laminate H but with the steady increase in v_0 beginning in row 5. The further from the inlet the resin flows, the lower the flow rate and higher void content.

Microscopy results for the fiberglass laminates did not show as drastic of a differentiation in void content as the flow front moved along the length of the panel (see figure 4-6). The difference of void content along the flow path is not as clear, even though a slightly lower porosity by the inlet is seen compared to by the vent. Averaging the v_{0M} of each laminates rows for both the ACAB carbon fiber laminates (orange) and fiberglass laminates (blue) showed a definitive change along the laminate in the ACAB panels and a much slighter trend in the fiberglass. Rows 3 and 4 peak the amount of v_{0M} and then it begins to slightly trail down. It is speculated that with the more porous material with wider tow gaps, the macro-bubbles not completely entrapped were able to escape through the flow front.

Figure 4-6: Comparison of v_{0M} Between ACAB Carbon (Orange) and Fiberglass (Blue).

Not only does the void content differ between the two reinforcement types, but the appearance and shape of the voids vary. The ACAB panels' tightly packed architecture have no

circular voids as seen in the "looser" fiberglass samples (figure 4-5). The ACAB panels display voids that are deformed by this tight reinforcement packing that tend to be long, thin macrovoids between plies and small in comparison to tow size. The fiberglass reinforcement was not as tightly packed and had less compaction of air bubbles, allowing them to appear more circular and large compared to roving size.

4.1.3 Microscopy and Combustion Comparison

Void measurement via combustion were completed on laminates A and E and compared to the results found through microscopy void measurement. The results are found in figure 4-7 where a comparison for each panel, its row and the process of measurement is compared. It is clear that there are large discrepancies between the two measurements but the microscopy method only measured the volume of macro-voids, whereas the combustion samples measured both macro- and micro-voids. Therefore, measured void content will be higher.

Figure 4-7: Combustion v_{θ} (Blue and Red Columns) vs. Microscopy $v_{\theta M}$ (Green and Purple Columns) for Select Samples Close to the Vent from Laminates A and E.

It is difficult to determine how accurate each method is to one another without a true analysis of micro-voids. Simply re-polishing the microscopy samples could yield clearer samples where micro-voids can be read and included in prediction of overall void content. Both processes have their weaknesses and strengths. The combustion process is typically only used on glass substrates since it leaves a residue on carbon substrates which then interfere with weight measurements. Combustion sampling provides a void measurement of a sample throughout its volume whereas microscopy predicts what the through-volume void content is by analyzing one side. Microscopy yields quicker results than the tedious process of combustion and provides more useful information though including: void location, shape, and distribution within a sample.

4.1.4 Ultrasound and Microscopy Correlation

Initial ultrasound measurements were performed on Laminate G and Laminate H. These ultrasound measurements had already been taken on these laminates at ACAB and the attenuation data was used as a comparison to measurements taken on a similar unit at SICOMP. Re-measurement was carried through to 1) provide data for verification of NDT equipment and 2) validate repeatability of such test methods. Data analysis and comparison of ultrasound results was performed at Brigham Young University (BYU).

Figure 4-8 displays Laminate G as well as its c-scans by both operators. It is clear to see a large area of low porosity covering the top half (by the inlet) of the laminate, that begins to transform into a strip of high attenuation as the scans approached the flow front. The local attenuation of each microscopy sample was extracted from the c-scans and compared against the samples macro-void (v_{0M}) and micro-void (v_{0m}) measurements determined from optical microscopy testing. These results are shown in figure 4-9, which displays a roughly linear increasing trend in ultrasound attenuation with increasing macro-void concentration.

39

Figure 4-8: C-scans of laminate G by SICOMP (Middle) and ACAB (Right).

Figure 4-9: Local Macro-void (Left) and Micro-void (Right) v_{θ} vs. C-scan Attenuation for Laminates G (Blue) and H (Red), as well as for SICOMP Measurements (Solid Symbols) and ACAB Measurement (Hollow Symbols).

The graph of percent micro-void content compared to attenuation surprisingly lacked correlation with rising attenuation. There are no micro-voids in the low attenuation sections and the areas with micro-voids produce no reasonable correlation. Considering that c-scan resolution is in the order of size of micro-voids, it suggests that all attenuation is being provided from the presence of macro-voids and the equipment struggles to notice micro-voids. The comparison of micro-voids simply shifts points to the right with growing v_{0m} without adding attenuation. A direct comparison of micro-voids to macro-voids was not able to be performed since no samples contained a significant reading of micro-voids along with no macro-voids, i.e. any sample with micro-voids also contained a significant amount of macro-voids (e.g. Figure 4-4). Without samples like these, it is not probable to determine what attenuation reading is only caused by micro-voids. This implies that the correlation in figure 4-9 would be convoluted if attenuation was correlated to the entire panel's overall void content (both micro- and macro-) as is typically done. If micro-voids do not produce further attenuation, then c-scan correlation should be only compared to macro-void content.

Variation between attenuation data collected at ACAB versus the data collected at SICOMP is most likely attributed to the particular TCG sizing chosen by each. A linear trend line represented in macro-void versus c-scan attenuation graphed on the left of figure 4-9 corresponds to laminate G as measured at ACAB. The resultant attenuation in micro-void c-scan measurements shows an increased range without any measured micro-voids followed by a wide range of attenuation for the different concentrations of measured micro-voids. This is suspected to be in part of the limitations of resolution in c-scan equipment, where the ultrasound wavelengths are too large to pick up the micro-voids in a composite laminate.

A relationship between c-scan attenuation and macro-void volume percent in the fiberglass panels was not as straightforward as the carbon fiber data. The c-scan attenuation shows a checkerboard pattern of high variation in attenuation. This is attributed to the fiber architecture where its fabric pattern caused a change in attenuation during scanning. This complicated the data by giving a general range of 30-50% attenuation across the surface area

41

(see figure 4-10). This high local variation in attenuation would lead to a high variation in prediction of local void content in the specified area.

Figure 4-10: Laminate DC-scan Attenuation Compared to Macro-void Content Measured by Optical Microscopy.

In order to collect data on c-scan attenuation for the fiberglass laminates each panel was overlaid with a transparent map of the sample labeling and sectioning scheme to match up the c-scan to location of samples. From here each sample was highlighted with a box. This allowed one to look at the area and subjectively choose a percent attenuation. There is a lot of discrepancy here which leads to uncertainty in the data where a sample's percent attenuation does not correlate well with measured v_0 from both combustion and microscopy. Some samples show large amounts of attenuation but only 1% v_0 , which high attenuation should signal higher void content. This lack of a clear correlation between c-scan attenuation and void content was noticed through all of the fiberglass panels. When graphed, the other laminates showed almost no slope in linear fits to the data, or the slope was slightly negative, implying an error in the measurement method.

Laminate D did show that as void content of macro-voids in the sample increased, so did the c-scan attenuation. The linear trend line displayed in the graph of figure 4-10 displays a roughly linearly increasing trend in the data and given more data points could more strongly represent this relationship. This relationship is not as prevalent as the carbon fiber samples, but it does continue to validate the effectiveness of c-scan attenuation to determine a quick, NDT value of void content in a sample.

4.2 Void Formation, Movement and Dispersion

Modeling of void formation was performed on the carbon fiber samples from an end result working backwards method rather than attempting to simulate void formation during infusion. This is an inverse-estimation method (IEM) similar to that previously used in permeability fitting (George 2011). This void modeling method includes fitting the relationship between flow rate and micro-/macro-void formation to void movement and dispersion models as well as the final void distribution data measured through experiment. In other words, the process used here was to conjecture at models for these relationships and compare our prediction to our actual measurements of final voids while iterating the void formation models until they approximate the true final void content. Such modeling has only been thus-far attempted with the carbon laminates made by ACAB as more information concerning both macro- and micro-void contents was available. In these laminates, voids were purposefully left in the final laminate by stopping the infusion before the flow front reached the vent. This allowed the bubbles that were in the resin to become trapped as voids. Micro-voids and macro-voids are analyzed separately.

4.2.1 Micro-void Formation and Dispersion

Predicting micro-bubble formation required evaluating a number of variables that are present during the infusion and comparing the resultant characteristics of the laminate to models predicting formation and dispersion. Recent publications on void prediction tend to model bubble formation as a volumetric percentage of the composite material which is a linear function of the natural log of the modified capillary number (see equation 4-1) (LeBel 2014, Gueroult 2012).

$$v_0(\%) = A \ln\left(\frac{\mu v}{\gamma cos\theta}\right) + B \tag{4-1}$$

In this equation, the capillary number is determined by the formula contained in the parentheses. The resin's viscosity, μ , flow velocity, v, surface tension, γ , and contact angle, θ predict the capillary number. *A* and *B* are fitting constants for the bubble formation model. Previous findings, both unpublished work at SICOMP and published works, were used to determine the surface tension of epoxy, the contact angle of epoxy on carbon fibers, and resin viscosity for RTM-6 over time and temperature. The flow velocity was determined from the infusion equipment at ACAB, measuring the infusion flow rate every 2 seconds.

Figure 4-11 displays data gathered from laminate G which was infused at 100 cm³/min. The orange dots represent the v_{0m} measured through optical microscopy for each sample along the length of the infused panel. Through evaluation of this dispersion, the only area showing any considerable micro-void concentration was the last 20% of the laminate length along the flow path. The final pressure gradient representing the length of the infusion from inlet to flow front is represented by the red line and the left axis. This displays the resin pressure gradient at the moment before the over-pressure was shut-off and the mold was vented to atmospheric pressure.

Figure 4-11: Micro-void Formations and Modeling: Final Pressure Gradient (Red Line) Across Filled Regime's Length Just Before Shut-off of Over-Pressure. Cured Part's $v_{\partial m}$ (Orange Dots) by Position Along Filled Regime, as Well as Predicted Formation of $v_{\partial m}$ (Blue Dots) by Position. Gray Dotted Line Represents Pressure Threshold for Complete Diffusion of Micro-Bubbles.

This reveals a 10-17 cm zone at the end of the laminate where the only micro-voids are apparent in the cured laminate. An assumption is made at this point. Lundstrom predicts in his paper, "Measurement of void collapse during transfer moulding", that the dominant mechanism for change in intra-tow micro-voids has been proven to be diffusion (1997). Through Henry's Law, as the pressure in a fluid is increased, more gas is able to dissolve into a fluid. In the case of an infusion, the applied pressure is acting on the bubbles that are not able to escape through the flow front. Bubbles will continue to shrink, per the ideal gas law, and disappear into the resin solution. The large pressure acting on the laminate near the inlet is why few micro-voids are found near this point in RTM infusions. The fiber architecture of the NCF carbon fiber contains fiber tows that are so tightly packed it is predicted that micro-voids are not able to escape and become entrapped where they are formed as the flow front passes that location (Lundstrom 2010).

This leaves the only remaining mechanism for micro-void dispersion after formation – diffusion. From here it is assumed that there is a pressure threshold where all micro-voids will

dissolve. When looking at the graphed location of micro-voids and related to the pressure where they begin to be seen, we are able to predict that micro-voids will be dissolved into solution at pressures above 0.4 bar. This pressure threshold is represented in figure 4-11 as the grey dashed line. It is therefore assumed that all micro-voids at a higher pressure then the threshold will dissolve into the resin. Only after the pressure drops below this point will micro-voids begin to appear.

If we assume that none of the micro-voids move after formation and the remaining dissolve at the threshold pressure of 0.4 bars, then we can fit the micro-void formation curve (blue dots in figure 4-11) to the experimental (orange dots) for the last two locations. Guess values for the two fitting variables, A and B, were taken from a similar model fitted to experimental infusions done with unidirectional fiberglass infused with silicone oil and applied to the same model as in equation 4-1. Surprisingly, the fitted model from the glass and silicone oil agreed well with the two experimental data points in this study for a UD weave of carbon fiber and RTM-6 without any further fitting iterations. The fitted constants used are A = 2.9 and B = 21.8.

This model allows for change in viscosity over time which is demonstrated in the slow climb in predicted micro-void formation over the first $\sim 40\%$ of the flow length. There also appears to be an inflection point at ~ 280 mm where the infusion machine reached its maximum allowable pressure. The flow rate continued to drop from this point on, thus decreasing the predicted micro-void formation by equation 4-1.

According to the model a large amount of micro-voids were formed during infusion, but only few remained entrapped in the resin. This implies that all of these air bubbles are diffused into molecules and dissolved in the resin. An assumption is made that the small diffused

46

molecules of air constituents continue to travel with the flow of the resin and only become detectable once pressure drops below the threshold. In this case, this would occur once the mold was vented when infusion was cut-off.

The void formation models that were used in this research showed strong correlation with actual micro-void formation. The model represents that all voids formed but does not show what happens to the voids after formation. It has been determined that the majority of these micro-voids are dissolved as pressures above the threshold are reached. As the pressure decreases other dissolved micro-voids traveling along the flow front will come out of solution. It is assumed that these come out as nano-voids that are unable to be measured with standard microscopy procedures. Further research will need to be done to determine whether these nano-voids have any effect on mechanical characteristics.

It can be concluded that micro-void formation follows the model developed by Breard but that model only considers the formation of such voids. It does not predict what becomes of them and whether or not they will remain in the laminate or if they will escape or dissolve as seen in these trials. This model will need to be coupled with pressure threshold predictions in order to fully predict void behavior.

4.2.2 Macro-void Formation and Dispersion

According to previous work, macro-voids form a bell-curve distribution based on size in part to the variation in inter-bundle gap sizes (Frishfelds 2008). Smaller macro-voids formed in larger inter-tow gaps tend to move along with the flow front and escape while larger voids become trapped and form a cylindrical shape, similar to those seen in Figure 4-4. These voids are held in place due to the drag forces from the surrounding fibers (Lundstrom 2010). As the pressure gradient behind them continues to increase, they too are affected by the Ideal Gas Law

and begin to shrink until the threshold pressure is reached and they are able to escape or split (Frishfelds, 2008). This phenomenon was witnessed in the permeability infusions performed where visible bubbles were trapped either between tows or by stitching and gradually they would either begin to shrink or split and then race to the flow front and be evacuated in the air.

Figure 4-6 demonstrates the measured v_{0M} (orange dots) compared to the model of macro-void formation along the length of the infusion (blue dots). With the assumption that since the fitted parameters to tests using silicone oil and fiberglass used for micro-void formation agreed so well to this study, that study's results for fitting the macro-void formation model would be a reasonable guess to apply here as well. The fitted parameters for macro-void formation from that study were A = -4.9 and B = -28.1. Review of the graph below shows that little to no macro-voids are predicted to have been formed along the first half of the infusion due to the high flow velocity which would preferentially form micro-voids instead. No macro-voids were experimentally observed in samples from that first half of the laminate (orange dots). After the maximum machine pressure is reached, the flow slows down and the predicted macro-void formation increases (blue dots) at about 30 cm flow-length. But significantly less macro-voids than predicted to be formed were observed at sample locations in those areas close to the vent, implying that the pressure threshold was great enough to dissolve many of the bubbles or shrink them to a size that could easily escape. The difference between the orange and blue plots are the macro-voids that were small enough to escape. The macro-voids that were too large to escape, and have not shrunk enough to achieve mobility at the end of the infusion, are the macro-voids seen in the orange plot.

Figure 4-12: Macro-void Formation Modeling: Cured Part's $v_{\partial M}$ (Orange Dots by Position Along Filled Regime, as Well as Predicted $v_{\partial M}$ (Blue Dots) by Position.

In summary, the rate of macro-void formation appears to increase as the overall pressure and flow rate decrease across the laminate. Bubbles of all sizes continue to form but the amount of pressure available to shrink the bubbles to a critical size is also decreasing. It is possible that if the pressure gradient was such that it remained high enough to compress voids that over time the laminate would reach equilibrium and all bubbles would be dissolved into solution. This would require another set of tests that could be performed in the future. As seen through the test, the predicted macro-void formation far exceeds the measured void content but the model shows strong correlation to actual macro-void formation, especially when coupled with void mobility models. This could be attributed to the continuous pressure acting on the macro-voids formed behind the flow front that is able to shrink the bubbles to critical size and allow them to move quickly between the tows towards the flow front and escape. Breard's model shows strong correlation of void formation when coupled with void mobility theory. Overall void formation when coupled with an optimal flow velocity as displayed in figure 2-2 could be irrelevant if pressure threshold is considered and enough pressure is available to minimize voids. This, however, could become counterintuitive as higher pressure systems come at an increased cost, leaving lower cost processing still in need of an optimized flow rate.

49

4.3 Mechanical Characteristics

Previous literature correlating mechanical properties with local void content have mostly been performed with prepreg materials. As mentioned previously, these materials and autoclave processing cure under homogenous applied pressure. These mechanical properties are more easily predicted when the panel has a homogenous void content. It is hoped that a given local void content can produce the same mechanical properties in a laminate produced with the same resin and reinforcement whether it is made from prepreg or not. The difficulty in providing this ability in RI applications is the variation in local pressures and complexity of the different materials being used.

As opposed to prepreg processing, RI produces parts that are non-homogenous given the pressure gradient within the mold. Therefore, it is not possible to look at the v_0 of a panel as a whole. Void content will vary as distance and location from the infusion point changes. Instead of a holistic approach to mechanical properties of a RI laminate, one needs to section the panel and test at different lengths throughout the volume of the laminate. Each of these samples will vary and contain increased void density while others will have lower local void densities.

The testing of the carbon panels was run by SICOMP following ILSS DIN 2563. The results were averaged across each row (taken perpendicular to flow direction). By taking the samples from a perpendicular row, it is assumed that homogeneity remain constant across all samples at a given distance from the inlet in one-dimensional flow. In other words, for 1D flow testing, the local flow rate should be the same anywhere in the *y*-direction for a given *x*-direction flow length. A uniform flow across both the *x*- and *y*-directions did not occur in these laminates and the panels did not have perfectly homogenous flow. Observations of the c-scan and cured laminate clearly depict this as the resin flow front is seen lagging on the rights side of the panel

(see figure 4-13). This could be owing to micro-textile variation or irregular binder concentrations.

Figure 4-13: Lagging Flow Front

As each row's samples were observed, it could be suspected that non-linear flow fronts would provide different void formation amounts along a row of samples. Samples from the slower-flow right side of the panel were thus analyzed separately and then the remaining samples in each row were grouped together. Separating these two flow fronts provided a much clearer correlation of ILSS versus void content (see figure 4-14). The graph on the left depicts the correlation of this data before separation of samples (all samples in each row averaged together) for laminate G while the right demonstrates a clearer trend for laminate G (blue dots) when separating the slower flow samples from the other samples in each row. Figure 4-14 also shows the effect of variation in flow velocity. The data for laminate H ILSS vs. void content is depicted in red on the right graph.

There is a quick decrease in properties after the first 1-2% of voids. Laminate H showed higher levels of ILSS before failure which could be due to the higher infusion flow rate. Laminate H depicts increased areas of lower void content as well. It is suspected that the higher flow rates implemented in Laminate H should produce increased volumes of micro-voids than macro-voids per the dual-scale models illustrated in figure 2-2.

Figure 4-14: Local Measured Void Content (Total) vs. ILSS for Laminate A (Blue), Averaged Across Rows (Left) and Further Split into Groups by Location in the Rows (Right). Right-side Graph Also Displays Data for Laminate B (Red).

It is predicted that mechanical performance can be increased by simply injecting at a higher flow rate rather than constraining a process to an optimal flow rate to minimize the combination of micro- and macro-voids. The higher flow rate would then create the large volumes of micro-voids that are thought to contribute less to mechanical failure. Yet-unpublished results by colleagues suggest that fatigue is more sensitive to macro-void content than micro-void content. It is suspected that small voids within a sample are not sufficiently large to cause crack-initiation or propagation (Sisodia 2014). When comparing the ILSS to v_0 , similar curves were evident for both macro- and micro-void percentage, but the ILSS sample in this case

is compared to a sample that has both macro- and micro-voids, so there is no way to determine from these results which type of void is contributing to the loss in ILSS. Future studies must focus on imaging of actual crack imitation and propagation to clarify the effects of voids of differing size and location (Sisodia 2014).

When the same principles were applied to the fiberglass infusions, the results were not as conclusive. Comparisons of SBS results as a whole from one panel to another showed little to no differentiation in SBS at different infusion pressures (see figure 4-15). Laminate C showed less attenuation in ultrasound scans than the other laminates, and had almost the second lowest macro-void content but displayed a peculiar peak in SBS in Row 5. The void content in Row 5 of laminate C is slightly greater than Row 5 of laminate E yet demonstrated a higher SBS measurement. In order to determine why this result is seen in the data, void morphology was analyzed to determine if this factor may be related to the mechanical performance of a laminate.

Figure 4-15: SBS Results (Left) and Average Macro-void v_{θ} of Each Laminate (Right).

Void micro-photographs were analyzed in a model developed by Fullwood (Fullwood 2013) that measures the length and height of each void, its area, and then produces a metric that determines an average distance between voids, termed "nearest-neighbor distance." This data was only collected on macro-void morphology and distance from one another. When the two

laminates were compared together there was little difference noticed between these metrics. The increase in SBS results for Row 5 in laminate C suggested some difference in void distribution or morphology due to the little variation in void content. Row 5 laminate C displayed a further distance to its nearest-neighbor with an average distance of 0.91 mm versus laminate E's distance of 0.80 mm (see figure 4-16). When graphed together, an apparent upward trend in SBS is seen as distance between voids increases. This can be attributed to an increased force needed for a crack to propagate to the nearest weak area or void. The cause for the larger spacing between voids in Row 5 laminate C compared to laminate E is unknown. There was also a slight correlation that displayed an increase in SBS with increasing sphericity of the voids but the profile only yielded a very slightly increasing slope. Further accumulation of data would be required to verify this relationship between effects of voids and void shape.

Figure 4-16: SBS Results (MPa) vs. Nearest-Neighbor Distance (mm) Compared Between Laminate C (Blue Diamonds) and Laminate E (Orange Squares) with a Linear Fit of Each (Left) and Overall Correlation (Both Laminate C and E) of SBS vs. Nearest-Neighbor Distance (Right).

In order to verify the effects of v_0 on the mechanical properties a direct comparison is needed. This comparison was performed on the middle samples taken from each laminate (A-F) and graphed in a similar manner that the laminates G and H were (see figure 4-16). This graph shows a slight decrease in SBS as v_0 increased but not as drastically as represented in the laminates G and H. The lower clarity in the exponential trend could be due to the lack of samples with v_0 greater than 0% but less than 1%. Potentially if there were samples of the same material, dimensions and processing methods but with lower v_0 there would be a more straightforward relationship as predicted and seen previously. It can be concluded that strength is not well correlated to void content above 2% and could possibly be related to void morphology. It is difficult to fit a curve when the error bars are all over the graph width as represented in figure 4-16, which demonstrates the difficulties of optical void measurement, to represent an entire sample when only one surface of the volume is measured. And the error may be lower once micro-voids are included in the results as were done for the carbon laminates.

Figure 4-17: SBS vs. v_{0M} Microscopy; Error Bars Represent Standard Deviation Across Photos of that Sample. Trend Line is Linear Fit of All Data.

Each method of void measurement has determined a different void content in the end. Comparing the trends of macro-void measurement via microscopy versus SBS shows a slightly declining trend; as void content increases, SBS decreases (see figure 4-17). In contrast, when comparing percent attenuation from c-scan measurements, SBS shows a slightly increasing trend. The accuracy of void measurement and local attenuation measurement plays a significant role in the refinement of comparisons between mechanical properties and void location and percent. It is predicted that with more time and better polished microscopy samples where a micro-void measurement could be taken, a more defined trend would appear and correlate more closely with hypothesized relationships between void content and SBS.

Figure 4-18: SBS vs. $v_{\theta M}$ (top): SBS of Left-side Samples (Blue Dots), SBS of Middle Samples (Orange Squares) and SBS Right-side Samples (Green Triangles). C-scan Attenuation vs. SBS Laminates C-F (Right): SBS Left-side Samples (Blue Diamonds), SBS Middle Samples (Orange Squares) and SBS Right-side (Grey Triangles).

% Attenuation

5 CONCLUSIONS

As composite materials become more and more prevalent in today's world, the ability to process them cheaper and faster while maintaining their key strength characteristics becomes increasingly important. The lack of understanding to predict the cured-in-place void distribution and the void content's effects on the mechanical properties in a resin infused laminate is a major drawback in the realization of industry adopting resin infusion (RI) processing.

An understanding of the effects of defects in prepreg composite laminates has already been studied and enabled the application of composite materials in a number of industries. With a push in automotive to produce lighter, more efficient vehicles, RI processes provide a path to reduce cost in composite processing while achieving great strength-to-weight benefits. Therefore, the demand for tools to model and predict the mechanical characteristics of a RI laminate continues to increase.

The purpose of this research is to understand the effect of processing conditions on the concentration, location and distribution of voids in a resin transfer molding composite laminate as well as the influence of those voids on the resulting mechanical properties.

5.1 Void Measurement

5.1.1 Microscopy

The void content and dispersion differs between the two reinforcement types as well as the appearance and shape of the voids varies through microscopy analysis. The ACAB panels' tightly packed architecture contains no circular voids as seen in the "looser" fiberglass samples (figure 4-5). The ACAB panels display voids that are deformed by this tight reinforcement packing that tend to be long, thin macro-voids between plies and small in comparison to tow size. The fiberglass reinforcement was not as tightly packed and had less compaction of air bubbles, allowing them to appear more circular and large compared to roving size.

5.1.2 Combustion and Microscopy Correlation

It is difficult to determine how accurate each method is to one another without a true analysis of micro-voids which the microscopy samples in this paper were not analyzed for. Both processes have their weaknesses and strengths. The combustion process works well on fiberglass but leaves a residue on carbon substrates which then interfere with weight measurements. Combustion sampling provides a void measurement of a sample throughout its volume whereas microscopy predicts what the through-volume void content is by analyzing one side. Microscopy yields quicker results than the tedious process of combustion and provides more useful information including: void location, shape, and distribution within a sample.

5.1.3 Ultrasound and Microscopy Correlation

It is clear to see a large area of low porosity covering the top half (by the inlet) of the laminate, that begins to transform into a strip of high attenuation as the scans approached the flow front. A direct comparison of micro-voids to macro-voids was not able to be performed since no samples contained a significant reading of micro-voids along with no macro-voids, i.e. any sample with micro-voids also contained a significant amount of macro-voids. The resultant attenuation in micro-void c-scan measurements shows an increased range without any measured micro-voids followed by a wide range of attenuation for the different concentrations of measured micro-voids. This is suspected to be in part of the limitations of resolution in c-scan equipment, where the ultrasound wavelengths are too large to pick up the micro-voids in a composite laminate.

A lack of a clear correlation between c-scan attenuation and void content was noticed through all of the fiberglass panels. When graphed the other laminates showed almost no slope in linear fits to the data, or the slope was slightly negative, implying an error in the measurement method. Laminate D did show that as void content of macro-voids in the sample increased, so did the c-scan attenuation. This relationship is not as prevalent as the carbon fiber samples, but it does continue to validate the effectiveness of c-scan attenuation to determine a quick, NDT value of void content in a sample.

5.2 Void Modeling

5.2.1 Micro-void Formation and Dispersion

According to the model a large amount of micro-voids were formed during infusion, but only few remained entrapped in the resin. This implies that all of these air bubbles are diffused into molecules and dissolved in the resin. An assumption is made that the small diffused molecules of air constituents continue to travel with the flow of the resin and only become detectable once pressure drops below the threshold. In this case, this would occur once the mold was vented when infusion was cut-off.

As the pressure decreases other dissolved micro-voids traveling along the flow front will come out of solution. It is assumed that these come out as nano-voids that are unable to be measured with standard microscopy procedures. Further research will need to be done to determine whether these nano-voids have any effect on mechanical characteristics. It can be concluded that micro-void formation follows the model developed by Breard but that model only considers the formation of such voids. It does not predict what becomes of them and whether or not they will remain in the laminate or if they will escape or dissolve as seen in these trials. This model will need to be coupled with pressure threshold predictions in order to fully predict void behavior.

5.2.2 Macro-void Formation and Dispersion

The rate of macro-void formation appears to increase as the overall pressure and flow rate decrease across the laminate. Bubbles of all sizes continue to form but the amount of pressure available to shrink the bubbles to a critical size is also decreasing. It is possible that if the pressure gradient was such that it remained high enough to compress voids that over time the

laminate would reach equilibrium and all bubbles would be dissolved into solution. This would require another set of tests that could be performed in the future. As seen through these test, the predicted macro-void formation far exceeds the measured void content. This could be attributed to the continuous pressure acting on the macro-voids formed behind the flow front that is able to shrink the bubbles to critical size and allow move quickly between the tows towards the flow front and escape. Breard's model shows strong correlation of void formation when coupled with void mobility theory. Overall void formation when coupled with an optimal flow velocity as displayed in figure 2-2 could be irrelevant if enough pressure is available to minimize voids.

5.3 Mechanical Characteristics

There is a quick decrease in mechanical properties after the first 1-2% of voids. Higher levels of ILSS before failure could be due to the higher infusion flow rate. Depictions in carbon fiber laminates show an increased area of lower void content as well in laminates infused at higher rates. It is suspected that the higher flow rates should produce increased volumes of micro-voids than macro-voids per the dual-scale models illustrated in figure 2-2.

When comparing the ILSS to v_0 , similar curves were evident for both macro- and microvoid percentage, but the ILSS sample in this case is compared to a sample that has both macroand micro-voids, so there is no way to determine from these results which type of void is contributing to the loss in ILSS. Future studies must focus on imaging of actual crack imitation and propagation to clarify the effects of voids of differing size and location.

A slight decrease in SBS was noticed in laminates A-F as v_0 increased but not as drastically as represented in the laminates G and H. The lower clarity in the exponential trend could be due to the lack of samples with v_0 greater than 0% but less than 1%. Potentially if there were samples of the same material, dimensions and processing methods but with lower v_0 there would be a more straightforward relationship as predicted and seen previously. It can be concluded that strength is not well correlated to void content above 2% and could possibly be related to void morphology.

When graphed together, an apparent upward trend in SBS is seen as distance between voids increases. This can be attributed to an increased force needed for a crack to propagate to the nearest weak area or void. There was also a slight correlation that displayed an increase in SBS as the voids were more spherical in shape but could not be completely ruled as true with the data acquired. Further accumulation of data would be required.

Each method of void measurement has determined a different void content in the end. Comparing the trends of macro-void measurement via microscopy versus SBS shows a slightly declining trend; as void content increases, SBS decreases (see figure 4-17). In contrast, when comparing percent attenuation from c-scan measurements, SBS shows a slightly increasing trend. The accuracy of void measurement and local attenuation measurement plays a significant role in the refinement of comparisons between mechanical properties and void location and percent. It is predicted that with more time and better polished microscopy samples where a micro-void measurement could be taken, a more defined trend would appear and correlate more closely with hypothesized relationships between void content and SBS.

5.4 Hypothesis Validation

The hypothesis was not able to be validated, that application of different driving pressures would result in any significant difference in measured void content or resulting mechanical properties. Thus the data failed to reject the null hypothesis. Void formation was not affected by this range of injection pressure in the fiberglass laminates and failed to show strong correlation between void content and mechanical properties. Despite the alteration in injection
pressures the flow rates results may have been more similar than intended due to irregular flow in the mold due to race-tracking.

REFERENCES

- Ahn, K. J., J. C. Seferis, and J. C. Berg. "Simultaneous measurements of permeability and capillary pressure of thermosetting matrices in woven fabric reinforcements." *Polymer composites* 12.3 (1991): 146-152.
- Ahlborn, H. Characterization of binder application on carbon fibre non-crimped fabric: permeability and flow modeling. Diss. University of Stuttgart, 2009
- Cann, M. T., D. O. Adams, and C. L. Schneider. "Characterization of fiber volume fraction gradients in composite laminates." *Journal of composite materials* 42.5 (2008): 447-466.
- Darcy, H. Les Fontaines Publiques De La Ville De Dijon. Paris: Dalmont, 1856.
- Dungan, F. D., and A. M. Sastry. "Saturated and unsaturated polymer flows: microphenomena and modeling." *Journal of Composite Materials* 36.13 (2002): 1581-1603.
- Frishfelds, V., A. Jakovics, and T. S. Lundström. "Automatic recognition and analysis of scanned non-crimp fabrics for calculation of their fluid flow permeability." *Journal of reinforced plastics and composites* 26.3 (2007): 285-296.
- Frishfelds, V., T. S. Lundström, and A. Jakovics. "Bubble motion through non-crimp fabrics during composites manufacturing." *Composites Part A: Applied Science and Manufacturing* 39.2 (2008): 243-251.
- Fullwood, D. T., Gerrard, D. D., George, A. R., and Halverson, D. M. "Dispersion metrics for composites – a machine learning based analysis." *Proceedings of SAMPE Tech – Conference and Exhibition*, Wichita (USA), October 21-24, (2013).
- García, J. A., et al. "An efficient solver of the saturation equation in liquid composite molding processes." *International journal of material forming* 3.2 (2010): 1295-1302.
- George, A., Dart, R., Brandley, M., Zsiros, J. "Quick measurement of void content in fiberglass reinforced composite materials." *Proceedings of SAMPE Tech Conference and Exhibition*, Wichita (USA), October 21-24, (2013).
- George, A. Optimization of resin infusion processing for composite materials: simulation and characterization strategies. Diss. University of Stuttgart, 2011.

- George, A., Brandley, M., Dart, R., Peterson, C. "Characterization and optimization of optical 3D wetting measurements of through-thickness permeability." *Proceedings of 12th International Conference on Flow Processes in Composite Materials*, Twente (Netherlands), July 14-16, (2014.)
- Gueroult, S., L. Bizet, & J. Breard. "Experimental determination of void formation and transport in the RTM process." *Proceedings of ICCM19*, Montreal, Canada (2013): 2218-27.
- Gourichon, B., C. Binetruy, and P. Krawczak. "A new numerical procedure to predict dynamic void content in liquid composite molding." *Composites Part A: applied science and manufacturing* 37.11 (2006): 1961-1969.
- Kim, S. K., and I. M. Daniel. "Observation of permeability dependence on flow rate and implications for liquid composite molding." *Journal of composite materials* 41.7 (2007): 837-849.
- Lai, Y.H., B. Khomami, and J. L. Kardos. "Accurate permeability characterization of preforms used in polymer matrix composite fabrication processes." *Polymer Composites* 18.3 (1997): 368-377.
- Lawrence, J. M., V. Neacsu, and S. G. Advani. "Modeling the impact of capillary pressure and air entrapment on fiber tow saturation during resin infusion in LCM." *Composites Part A: Applied Science and Manufacturing*40.8 (2009): 1053-1064.
- LeBel, F., et al. "Experimental characterization by fluorescence of capillary flows in the fiber tows of engineering fabrics." *Open Journal of Inorganic Non-metallic Materials* 2012 (2012).
- LeBel, F., et al. "Prediction of optimal flow front velocity to minimize void formation in dual scale fibrous reinforcements." *International journal of material forming* 7.1 (2014): 93-116.
- Leclerc, J. S., and E. Ruiz. "Porosity reduction using optimized flow velocity in Resin Transfer Molding." Composites Part A: Applied Science and Manufacturing 39.12 (2008): 1859-1868.
- Liu, L., Z. S. Guo, and B. M. Zhang. "Experimental investigation of porosity and its effects on interlaminar shear strength in composite laminates." *Int SAMPE Sym* 51 (2006): 1-7.
- Lundstrom, T. S., B. R. Gebart, and C. Y. Lundemo. "Void formation in RTM."*Journal of Reinforced Plastics and Composites* 12.12 (1993): 1339-1349.
- Lundström, T. S. "Measurement of void collapse during resin transfer moulding." *Composites Part A: Applied Science and Manufacturing* 28.3 (1997): 201-214.

- Lundström, T. S., V. Frishfelds, and A. Jakovics. "Bubble formation and motion in non-crimp fabrics with perturbed bundle geometry." *Composites Part A: Applied Science and Manufacturing* 41.1 (2010): 83-92.
- Michaud, V., et al. "Capillary phenomena in liquid composite moulding."*1CD-ROM proceedings* of the Sixtennth International Conference on Composite Materials, July 8-13, 2007, Kyoto, Japan: A giant step towards environmental awareness: from green composites to aerospace. Kyöto, 2007.
- Park, C. H., et al. "Modeling and simulation of voids and saturation in liquid composite molding processes." *Composites Part A: Applied Science and Manufacturing* 42.6 (2011): 658-668.
- Patel, N., and L. J. Lee. "Modeling of void formation and removal in liquid composite molding. Part II: Model development and implementation." *Polymer Composites* 17.1 (1996): 104-114.
- Ravey, C., E. Ruiz, and F. Trochu. "Determination of the optimal impregnation velocity in Resin Transfer Molding by capillary rise experiments and infrared thermography." *Composites Science and Technology* 99 (2014): 96-102.
- Ruiz, E., et al. "Optimization of infusion flow rate to minimize micro/macro-voids formation in resin transfer molded composites." *Composites science and technology* 66.3 (2006): 475-486.
- Sisodia, S., et al. "Effects of voids on quasi-static and tension fatigue behaviour of carbon-fibre composite laminates." *Journal of Composite Materials*(2014): 0021998314541993.
- Vernet, N., et al. "Experimental determination of the permeability of engineering textiles: Benchmark II." Composites Part A: Applied Science and Manufacturing 61 (2014): 172-184.
- Verrey, J., V. Michaud, and J-AE Månson. "Dynamic capillary effects in liquid composite moulding with non-crimp fabrics." *Composites Part A: Applied Science and Manufacturing* 37.1 (2006): 92-102.

APPENDICES

APPENDIX A. VOID MEASUREMENTS

	left v	s middle vs right comp	arison					
	Infusion Pressure		left (sample 4)	middle (sample 12)	right (s	ample 21)
Laminate	(bar)	row	average	st deviation	average	st deviation	average	st deviation
Α	0.75	1	1.37	0.74	1.07	0.55	3.23	1.67
		2	3.17	3.60	1.97	1.06	3.23	1.01
		3	1.70	0.72	4.47	1.99	2.57	2.25
		4	2.53	1.24	4.57	1.72	2.20	0.50
		5	3.83	0.40	6.97	2.00	1.33	0.61
		6	5.57	1.94	3.43	1.78	2.31	0.77
В	0.75	1	1.70	1.51	0.80	0.85	3.80	1.40
		2	2.17	1.68	4.70	1.51	2.37	1.88
		3	2.53	2.08	4.33	2.20	3.93	0.45
		4	2.67	0.95	6.03	1.42	2.00	1.18
		5	2.17	1.72	3.40	3.44	2.43	1.12
		6	1.57	0.15	4.23	2.87	0.00	0.00
С	1.00	1	2.77	1.88	2.67	0.92	2.73	0.38
		2	2.17	0.21	3.47	1.15	2.57	0.64
		3	2.13	1.34	7.97	4.86	1.33	0.51
		4	1.17	0.47	5.93	3.81	2.80	1.05
		5	2.87	0.98	0.00	0.00	1.53	0.64
		6	2.20	1.35	0.47	0.25	0.00	0.00
D	1.00	1	1.10	0.85	2.90	1.59	2.23	1.61
		2	1.80	1.54	4.30	2.34	1.43	0.98
		3	1.23	0.57	3.90	1.30	3.53	0.78
		4	3.90	2.69	2.70	1.08	3.17	0.47
		5	2.73	1.72	3.53	0.93	3.77	0.81
		6	2.23	0.75	6.63	2.59	7.90	2.72
E	1.20	1	3.53	0.35	2.17	1.57	2.47	1.01
		2	0.63	0.31	1.73	0.65	1.90	0.87
		3	1.27	0.31	2.70	2.35	3.33	2.48
		4	1.90	1.80	2.20	1.15	3.23	1.81
		5	2.13	0.83	2.90	0.62	4.77	0.90
		6	1.90	0.26	2.70	0.89	2.57	0.21
F	1.20	1	0.57	0.35	0.50	0.61	2.30	1.83
		2	1.27	1.55	2.07	1.61	3.03	1.55
		3	1.37	0.47	4.40	1.65	5.07	0.97
		4	3.80	2.45	2.50	2.09	3.93	1.11
		5	5.80	1.76	3.83	1.21	1.30	0.61
		6	4.17	0.97	3.83	1.50	2.60	0.44

A.1 Microscopy v_{θ} Measurements for Laminates A-F

A.2 Microscopy v_{θ} Measurements for Laminates G-H

	Ave	eraged by	row		Position				
Laminate:			ILSS	sd-ILSS	(along flow)	v0	v0-error	Runar v0	Runar-error
ACAB	Flow Rate		tau (N/mm2)	tau (N/mm2)	mm	%	%	%	%
G	100cc/min	1	41.24	0.648882238	35	0.32%	0.39%	0.18%	0.07%
		2	40.34	0.749957989	203	0.14%	0.11%	0.06%	0.04%
		3	37.82	0.598161031	448	0.89%	0.85%	0.65%	0.17%
		4	36.71	0.416784009	471.2	2.00%	1.74%	1.77%	0.29%
		5	36.68	0.760403514	494.4	2.76%	2.75%	2.72%	0.53%
		6	34.37	0.245613613	553	5.73%	0.58%	6.20%	0.34%
		7	34.46	0.689155314	665	4.17%	0.28%	5.33%	0.32%
		Micro	v0	v0-error		Macro	v0	v0-error	
			%	%			%	%	
		1	0.05%	0.07%		1	0.27%	0.32%	
		2	0.01%	0.01%		2	0.13%	0.12%	
		3	0.07%	0.12%		3	0.81%	0.73%	
		4	0.44%	0.60%		4	1.56%	1.16%	
		5	0.53%	0.71%		5	2.22%	2.04%	
		6	2.69%	0.83%		6	3.04%	0.38%	
		7	1.55%	0.17%		7	2.62%	0.11%	

Laminate:		TOTAL	ILSS	sd-ILSS	Flow L	v0	v0-error	Runar v0	Runar-error
ACAB	Flow Rate		tau (N/mm2)	tau (N/mm2)	mm	%	%	%	%
н	400cc/min	1	43.47	0.422655094	30	0.13%	0.06%	0.00%	0.00%
		2	44.02	0.47869515	160	0.01%	0.01%	0.00%	0.00%
		3	42.61	0.487382925	290	0.00%	0.00%	0.00%	0.00%
		4	42.43	0.836942321	360	0.02%	0.02%	0.00%	0.00%
		5	41.45	0.903208701	400	1.57%	0.24%	0.37%	0.18%
		6	38.24	0.321818708	440	4.49%	0.43%	2.42%	0.23%
		7	36.94	0.294276496	548	6.30%	0.55%	12.26%	0.49%
		Micro	v0	v0-error		Macro	v0	v0-error	
			%	%			%	%	
		1	0.02%	0.01%		1	0.12%	0.05%	
		2	0.00%	0.00%		2	0.01%	0.01%	
		3	0.00%	0.00%		3	0.00%	0.00%	
		4	0.00%	0.00%		4	0.02%	0.02%	
		5	0.39%	0.11%		5	1.18%	0.20%	
		6	1.50%	0.20%		6	2.99%	0.39%	
		7	3.39%	0.39%		7	2.90%	0.57%	

	Injection		fib+res	Mresin	Mfiber	Vresin	Vfiber	vf	Vair	v0	vf (correct)
Laminate	Pressure (bar)		g	g	g	сс	сс	%	сс	%	%
Α	0.75	45	0.49821	0.20809	0.29012	0.176947	0.111585	38.67%	0.008789	2.96%	37.53%
		4 20	0.52131	0.20271	0.3186	0.172372	0.122538	41.55%	0.01352	4.38%	39.73%
		55	0.47221	0.19215	0.28006	0.163393	0.107715	39.73%	0.016807	5.84%	37.41%
		5 13	0.57563	0.23815	0.33748	0.202509	0.1298	39.06%	0.026081	7.28%	36.22%
		5 20	0.39327	0.1632	0.23007	0.138776	0.088488	38.94%	0.013731	5.70%	36.72%
		65	0.48318	0.18984	0.29334	0.161429	0.112823	41.14%	0.020973	7.10%	38.22%
		6 13	0.59643	0.23947	0.35696	0.203631	0.137292	40.27%	0.022871	6.29%	37.74%
		6 21	0.41492	0.15791	0.25701	0.134277	0.09885	42.40%	0.012942	5.26%	40.17%
E	1.2	45	0.52553	0.2195	0.30603	0.18665	0.117704	38.67%	0.017633	5.48%	36.56%
		4 20	0.52085	0.21066	0.31019	0.179133	0.119304	39.98%	0.018153	5.73%	37.68%
		55	0.53918	0.22516	0.31402	0.191463	0.120777	38.68%	0.0156	4.76%	36.84%
		5 13	0.63691	0.2615	0.37541	0.222364	0.144388	39.37%	0.019325	5.01%	37.40%
		5 20	0.49012	0.19397	0.29615	0.16494	0.113904	40.85%	0.015366	5.22%	38.72%
		65	0.5339	0.21488	0.31902	0.182721	0.1227	40.17%	0.016613	5.16%	38.10%
		6 13	0.54991	0.22126	0.32865	0.188146	0.126404	40.19%	0.016386	4.95%	38.20%
		6 21	0.45933	0.1791	0.28023	0.152296	0.107781	41.44%	0.018424	6.62%	38.70%

A.3 Combustion v_{θ} Measurements for Laminates A & E

APPENDIX B. SBS & ILSS RESULTS

B.1 SBS Laminates A-F

LAMINATE:	Α							
INJ Date	12/3/2014							
INJ PRESSURE	0.75	Bar						
						Maximum Flexure load	Modulus (Automatic)	Short Beam Strength
Sample #	Width	Thickness	Load	SBS		(N)	(MPa)	
11	5.03	2.45	775.017	47.1670183	Maximum	829.49384	4668.62033	47.16702
12	5.29	2.49	759.413	43.2398592	Minimum	678.90918	678.51303	38.33479
13	5.40	2.49	764.513	42.6435185	Mean	776.8179	1842.13847	43.85517
16	5.31	2.55	796.825	44.1356486	Standard Dev	42.01598	1536.45715	2.0238
17	5.29	2.54	817.271	45.6181809	Coefficient of	5.40873	83.40617	4.61474
18	5.24	2.55	778.462	43.6945442				
19	5.25	2.60	817.673	44.9270879				
110	5.26	2.60	812.867	44.5781113	 			
111	5.06	2.61	795.208	45.1596929				
114	5.20	2.60	817.271	45.3367788				
115	5.23	2.60	829.494	45.7508825				
116	5.18	2.62	804.56	44.4619647				
117	5.23	2.55	803.444	45.182994				
118	5.31	2.53	755.695	42.1883723				
119	5.25	2.53	678.909	38.3347826				
122	5.24	2.44	729.758	42.8074162				
123	5.17	2.42	735.715	44.1026784				
124	5.19	2.41	710.629	42.61081				
Sample #	Width	Thickness	Load	SBS				
21	5.20	2.56	707.699	39.8718637	Maximum	903.38568	3974.1413	44.62692
22	5.19	2.60	657.229	36.5289573	Minimum	657.22852	83.13992	36.52893
23	5.13	2.64	749.938	41.5303252	Mean	799.9924	1909.67304	41.8868
26	5.14	2.73	800.14	42.7662804	Standard Dev	65.2664	1453.91342	1.98561
27	5.26	2.74	826.547	43.0122846	Coefficient of	8.15838	76.13415	4.74042
28	5.27	2.76	788.158	40.6401081				
29	5.27	2.86	873.595	43.4705119				
210	5.29	2.87	903.386	44.626934				
211	5.22	2.85	844.545	42.5763763				
214	5.25	2.85	834.254	41.8172431				
215	5.29	2.86	893.073	44.2717325				
216	5.25	2.88	885.055	43.9015377				
217	5.28	2.75	781.398	40.3614669				
218	5.24	2.71	769.603	40.6469008				
219	5.26	2.71	758.035	39.8837042				
222	5.32	2.61	785.279	42.4163318				
223	5.29	2.56	765.156	42.375576				
224	5.26	2.56	776.774	43.2643551				

LAMINATE:	Α							
INJ Date	12/3/2014							
INJ PRESSURE	0.75	Bar						
						Maximum Flexure load	Modulus (Automatic)	Short Beam Strength
Sample #	Width	Thickness	Load	SBS		(N)	(MPa)	
31	5.21	2.62	723.183	39.7347475	 Maximum	906.03986	3683.85365	46.24682
32	5.21	2.64	821.976	44.8207119	 Minimum	703.19482	355.10066	38.94978
33	5.19	2.67	833.945	45.1356866	 Mean	811.85822	1638.22732	42.57065
36	5.36	2.74	805.352	41.1274376	 Standard Dev	59.96349	1358.8256	2.53532
37	5.35	2.76	772.709	39.2477143	Coefficient o	7.38596	82.94487	5.95556
38	5.37	2.78	775.288	38.9498011				
39	5.26	2.82	848.837	42.9191105				
310	5.16	2.83	866.704	44.5139288				
311	5.26	2.82	906.04	45.811423				
314	5.25	2.85	867.127	43.4650125				
315	5.21	2.81	902.744	46.2468153				
316	5.27	2.82	872.026	44.0079333				
317	5.24	2.72	813.694	42.8175867				
318	5.26	2.89	816.069	40.2628541				
319	5.06	2.69	739.398	40.7414741				
322	5.23	2.58	703.195	39.0854974				
323	5.26	2.56	745.99	41.5497638				
324	5.21	2.51	799.173	45.8343019				
Sample #	Width	Thickness	Load	SBS				
41	5.29	2.62	795.271	43.034766	 Maximum	896.80383	4124.1893	46.97192
42	5.28	2.63	798.725	43.1388805	 Minimum	707.96509	471.1	39.24693
43	5.32	2.64	822.584	43.9264354	 Mean	811.63959	1817.77085	43.09675
46	5.24	2.70	740.354	39.2469254	 Standard Dev	53.66919	1303.48601	2.03873
47	5.29	2.72	776.538	40.476169	Coefficient o	6.61244	71.70794	4.73059
48	5.28	2.74	796.814	41.3079587				
49	5.29	2.79	855.845	43.4907108				
410	5.33	2.78	896.804	45.3927815				
411	5.20	2.79	842.918	43.5751654				
414	5.29	2.77	862.63	44.1519999				
415	5.25	2.82	886.513	44.9094732				
416	5.28	2.79	870.133	44.3005152				
417	5.25	2.67	844.106	45.1635099				
418	5.30	2.66	805.511	42.8524081				
419	5.28	2.65	760.971	40.7896119				
422	5.19	2.55	707.965	40.1204239				
423	5.09	2.53	736.455	42.8912966				
424	5.19	2.49	809.364	46.971934				

LAMINATE:	Α								
INJ Date	12/3/2014								
INJ PRESSURE	0.75	Bar							
						I	Maximum Flexure load	Modulus (Automatic)	Short Beam Strength
Sample #	Width	Thickness	Load	SBS			(N)	(MPa)	
51	5.23	2.57	784.696	43.7852557	Maxin	num	929.36993	4658.08788	89.77877
52	5.25	2.61	815.443	44.6328955	Minim	num	765.50879	212.76676	40.04545
53	5.26	2.61	822.067	44.9099143	Mean		829.9547	2459.27434	45.92086
56	5.20	2.68	770.747	41.4796391	Standa	ard Dev	45.86848	1629.95743	11.11007
57	5.32	2.67	771.155	40.7174009	Coeffi	icient o	5.52662	66.27798	24.19394
58	5.31	2.70	765.509	40.0454593					
59	5.21	2.74	821.359	43.1525036					
510	5.18	2.73	854.645	45.3267534					
511	5.25	2.73	884.339	46.2762428					
514	5.59	2.73	895.841	44.0268631					
515	5.63	2.72	929.37	45.5168935					
516	5.65	2.70	838.678	41.23294					
517	5.64	2.62	822.603	41.751411					
518	5.57	2.62	862.216	44.3119492					
519	5.65	2.59	846.483	43.3841699					
522	5.64	2.55	852.52	44.4576554					
523	5.66	2.53	780.693	40.8888218					
524	5.41	2.49	820.815	45.6993408					
Sample #	Width	Thickness	Load	SBS					
61	5.23	2.52	663.461	37.7549964	Maxin	num	871.26233	4665.27586	46.70832
62	5.41	2.52	781.984	43.0191004	Minim	num	663.46136	752.11707	37.75502
63	5.38	2.54	851.038	46.7083175	Mean		805.29823	2975.56487	43.61932
66	5.16	2.6	781.286	43.6765429	Standa	ard Dev	53.89571	1499.79251	2.23749
67	5.41	2.59	773.787	41.41767	Coeffi	icient o	6.69264	50.40362	5.12959
68	5.42	2.61	792.429	42.0128197					
69	5.24	2.65	833.095	44.9964893					
610	5.29	2.63	855.148	46.0989599					
611	5.28	2.66	862.47	46.0563696					
614	5.24	2.66	767.619	41.3041848					
615	5.27	2.61	827.748	45.1344631					
616	5.37	2.63	819.33	43.5101005					
617	5.75	2.56	835.949	42.5925102					
618	5.81	2.58	845.226	42.2900572					
619	5.72	2.55	871.262	44.7995681					
622	4.81	2.48	732.88	46.0783985					
623	5.3	2.48	755.237	43.0940163					
624	5.78	2.47	845.421	44.412938					

LAMINATE:	В							
INJ Date	12/4/2014							
INJ PRESSURE	0.75	Bar						
						Maximum Flexure load	Modulus (Automatic)	Short Beam Strength
Sample #	Width	Thickness	Load	SBS		(N)	(MPa)	
11	5.17	2.58	760.912	42.7844002	Maximum	874.02594	4690.82184	46.84504
12	5.33	2.57	809.732	44.3345427	Minimum	745.50165	617.04959	41.55913
13	5.32	2.58	806.216	44.0535933	Mean	814.11121	2330.4932	44.47736
16	5.28	2.63	803.401	43.3914297	Standard Dev	37.84942	1463.01428	1.41076
17	5.32	2.64	818.38	43.7019395	Coefficient of	4.64917	62.77702	3.17186
18	5.31	2.63	806.68	43.3223776				
19	5.28	2.69	855.39	45.1688704				
110	5.32	2.69	874.026	45.8059298				
111	5.34	2.69	867.983	45.3188568				
114	5.26	2.68	834.932	44.421358				
115	5.18	2.68	834.294	45.0729341				
116	5.17	2.68	858.314	46.4603121				
117	5.33	2.59	764.948	41.5591067				
118	5.34	2.58	821.152	44.701681				
119	5.22	2.56	834.666	46.8450296				
122	5.26	2.49	745.502	42.689885				
123	5.28	2.50	787.798	44.76125				
124	5.10	2.45	769.675	46.1989796				
Sample #	Width	Thickness						
21	4.90	2.54	745.026	44.8955086	Maximum	864.66034	4085.22403	45.75471
22	5.29	2.56	790.084	43.7561289	Minimum	714.46008	459.54241	39.49912
23	5.31	2.58	723.557	39.6113629	Mean	794.91107	2432.6581	42.80006
26	5.27	2.63	837.494	45.3186124	Standard Dev	50.42657	1389.15601	2.05087
27	5.26	2.64	743.853	40.1752614	Coefficient o	6.34367	57.10445	4.79175
28	5.43	2.67	766.182	39.635297				
29	5.24	2.73	852.854	44.7138453				
210	5.23	2.71	864.66	45.7546937				
211	5.33	2.74	859.741	44.1520761				
214	5.24	2.74	854.988	44.6621302				
215	5.34	2.74	857.3	43.9442713				
216	5.32	2.70	810.364	42.3122389				
217	5.42	2.65	800.835	41.8176043				
218	5.32	2.63	790.563	42.3770155				
219	5.25	2.59	788.582	43.4959735				
222	5.32	2.55	714.46	39.4991154				
223	5.33	2.54	765.919	42.4309916				
224	5.34	2.49	741.836	41.843554				

LAMINATE:	В							
INJ Date	12/4/2014							
INJ PRESSURE	0.75	Bar						
						Maximum Flexure load	Modulus (Automatic)	Short Beam Strength
Sample #	Width	Thickness	Load	SBS		(N)	(MPa)	
31	5.27	2.59	795.146	43.6915813	Maximum	857.73114	4382.47237	46.74468
32	5.23	2.59	707.129	39.1524063	Minimum	707.12854	616.38495	39.11076
33	5.31	2.58	794.343	43.4865655	Mean	789.40946	2471.37183	42.66711
36	5.22	2.65	832.248	45.1229668	Standard	Dev 40.07009	1405.31674	2.17276
37	5.35	2.65	787.986	41.6850291	Coefficier	nt of 5.07596	56.86383	5.09236
38	5.40	2.64	806.535	42.4313447				
39	5.27	2.69	856.214	45.2981737				
310	5.36	2.71	857.731	44.2872067				
311	5.33	2.71	753.237	39.1107738				
314	5.24	2.70	741.589	39.312394				
315	5.35	2.70	838.529	43.5373313				
316	0.00	0.00						
317	5.32	2.61	763.949	41.2642058				
318	5.40	2.59	777.375	41.6867761				
319	5.31	2.59	783.484	42.7264795				
322	5.36	2.53	766.369	42.3851653				
323	5.34	2.51	775.928	43.4177895				
324	5.04	2.49	782.169	46.7446572				
Sample #	Width	Thickness						
41	5.19	2.56	693.396	39.1413024	Maximum	867.34473	3994.6884	47.65875
42	5.30	2.58	834.03	45.7453927	Minimum	693.39648	649.95758	37.95114
43	5.27	2.59	867.345	47.6587627	Mean	790.83482	1722.43094	42.9062
46	5.14	2.63	743.426	41.2458389	Standard	Dev 52.67484	1320.31874	2.5886
47	5.35	2.63	791.651	42.197381	Coefficier	nt of 6.66066	76.65438	6.03317
48	5.35	2.64	864.461	45.9038339				
49	5.34	2.67	843.35	44.3625594				
410	5.36	2.67	789.513	41.3756184				
411	5.29	2.67	800.284	42.4950617				
414	5.32	2.68	761.611	40.0634223				
415	5.32	2.67	830.562	43.8541227				
416	5.33	2.67	851.715	44.8866391				
417	5.32	2.59	720.115	39.1969003				
418	5.32	2.58	801.25	43.782239				
419	5.33	2.56	815.801	44.8413132				
422	5.21	2.52	735.572	42.0192396				
423	5.30	2.49	731.405	41.5665492				
424	5.10	2.47	759.538	45.2213622				

LAMINATE:	В							
INJ Date	12/4/2014							
INJ PRESSURE	0.75	Bar						
						Maximum Flexure load	Modulus (Automatic)	Short Beam Strength
Sample #	Width	Thickness	Load	SBS		(N)	(MPa)	
51	5.37	2.58	888.589	48.1025616	Maximum	888.58887	4179.37426	48.10255
52	5.25	2.58	847.822	46.9447398	Minimum	695.55328	440.1553	39.45685
53	5.28	2.60	820.116	44.8052885	Mean	803.95065	2010.25609	43.84806
56	5.34	2.61	790.995	42.5650588	Standard Dev	52.5043	1486.1183	2.46439
57	5.37	2.65	846.746	44.626647	Coefficient o	6.53079	73.92681	5.6203
58	5.34	2.64	859.156	45.7075672				
59	5.34	2.64	782.129	41.6096889				
510	5.35	2.65	770.994	40.78614				
511	5.31	2.65	819.096	43.6571794				
514	5.35	2.64	855.273	45.415941				
515	5.31	2.64	832.205	44.5238936				
516	5.28	2.63	802.677	43.3523267				
517	5.30	2.58	719.377	39.4568341				
518	5.34	2.56	807.288	44.2902914				
519	5.33	2.55	819.4	45.2157598				
522	5.32	2.49	714.13	40.4322176				
523	5.15	2.47	695.553	41.0097677				
524	5.24	2.43	799.695	47.1029474				
Sample #	Width	Thickness						
61	5.38	2.59	847.61633	45.6224432	Maximum	850.95062	4228.24557	46.58254
62	5.23	2.59	801.45654	44.3751452	Minimum	588.05432	726.48854	32.90508
63	5.33	2.59	752.32605	40.8733647	Mean	752.79107	2072.73378	41.37266
66	5.27	2.61	777.59149	42.3995883	Standard Dev	87.94259	1406.15257	4.36456
67	5.34	2.6	850.95062	45.967514	Coefficient o	11.6822	67.84048	10.54937
68	5.33	2.59	806.80249	43.8330328				
69	5.29	2.61	789.33972	42.8774591				
610	5.31	2.61	844.6593	45.7096402				
611	5.29	2.61	810.15369	44.0080878				
614	5.13	2.6	828.42389	46.5825399				
615	5.29	2.61	791.51093	42.9954007				
616	5.29	2.61	766.58032	41.6411533				
617	5.37	2.56	659.47577	35.9787322				
618	5.29	2.55	732.58319	40.7307456				
619	5.3	2.53	588.29901	32.905083				
622	5.28	2.47	588.05432	33.8179932				
623	5.45	2.44	607.76935	34.2778623				
624	5.38	2.41	706.6463	40.87559				

ΙΔΜΙΝΔΤΕ·	C							
INJ Date	9/16/2014							
INJ PRESSURE	1	Bar						
						Maximum Flexure load	Modulus (Automatic)	Short Beam Strength
Sample #	Width	Thickness	Load (N)	SBS		(N)	(MPa)	
11	5.19	2.59	525.20	29.3031781	Maximum	139.64374	9114.43077	76.91624
12	5.15	2.63	795.26	44.0358448	Mean	98.71662	6694.02619	52.83281
13	5.12	2.63	802.28	44.6847523	Standard Deviation	21.07767	2524.83786	11.0473
16	5.02	2.71	751.13	41.4097117	Minimum	50.3142	1074.73105	28.9689
17	5.16	2.71	777.64	41.7081438				
18	5.12	2.73	788.92	42.3314625				
19	5.21	. 2.78	793.31	41.0793783				
110	5.26	2.79	854.69	43.6799338				
111	5.09	2.79	844.47	44.5988339				
114	5.07	2.78	908.69	48.3531459				
115	5.20	2.79	881.30	45.5593466				
116	5.16	2.80	875.94	45.4702554				
117	5.25	2.77	846.15	43.6383187				
118	5.10	2.75	786.51	42.0591444				
119	5.14	2.77	812.07	42.7770442				
122	5.15	2.70	867.61	46.7964401				
123	5.22	2.69	825.76	44.1052429				
124	5.24	2.65	493.41	26.6498992				
Sample #	Width	Thickness						
21	LOST	LOST			Maximum	154.22508	8562.83282	74.70519
22	5.16	2.71	946.44	50.7617137	Mean	114.10894	6519.78478	57.47907
23	5.08	2.74	947.05	51.0291719	Standard Deviation	26.78998	1817.71194	12.50369
26	5.11	2.82	894.56	46.5587396	Minimum	36.63587	1962.54286	19.63739
27	5.14	2.81	882.12	45.8055409				
28	5.23	2.84	900.36	45.4626781				
29	5.14	2.95	830.45	41.0763371				
210	5.18	2.93	881.83	43.5758924				
211	5.09	2.94	833.81	41.7889219				
214	5.1	2.94	838.05	41.9194678				
215	5.09	2.92	830.921	41.9295658				
216	5.11	2.92	852.09	42.8293971				
217	5.21	2.86	907.73	45.6890662				
218	5.17	2.86	899.86	45.6434716				
219	5.29	2.83	838.24	41.993878				
222	5.15	2.78	939.38	49.209576				
223	5.17	2.76	945.86	49.7150681				
224	5.09	2.72	335.72	18.1865032				

LAMINATE:	С	1						
INJ Date	9/16/2014							
INJ PRESSURE	1	Bar						
						Maximum	Modulus	Short Beam
						Flexure load	(Automatic)	Strength
Sample #	Width	Thickness	Load (N)	SBS		(N)	(MPa)	
31	5.22	2.7	759.16	40.3978821	Maximum	133.37642	8724.33969	67.51982
32	5.14	2.72	933.31	50.0671993	Mean	101.25027	5988.57654	52.53466
33	5.1	2.73	907.56	48.8882245	Standard Deviation	20.27503	2302.40581	9.35411
36	5.18	3 2.8	884.32	45.7282819	Minimum	41.66687	1656.88176	23.25431
37	5.12	2.8	869.08	45.4665527				
38	5.15	2.83	881.02	45.3370098				
39	5.15	2.87	824.04	41.8137749				
310	5.06	2.88	847.95	43.640275				
311	5.08	3 2.87	841.10	43.2675451				
314	5.08	2.86	832.04	42.9511384				
315	5.1	. 2.86	867.40	44.6009358				
316	4.98	2.86	884.33	46.5671076				
317	5.19	2.77	861.83	44.9607688				
318	5.08	2.78	866.42	46.0131245				
319	5.05	2.74	881.44	47.7763605				
322	5.07	2.7	914.80	50.1204799				
323	5.08	2.64	917.11	51.2881398				
324	5.03	2.62	408.61	23.254291				
Sample #	Width	Thickness						
41	5.11	. 2.68	717.26	39.281187	Maximum	124.32302	8423.93111	67.08049
42	5.09	2.71	927.20	50.413643	Mean	104.7556	5993.91383	54.85056
43	5.15	2.72	873.54	46.7702741	Standard Deviation	20.98022	2559.34579	10.5698
46	5.04	2.78	901.02	48.2302908	Minimum	45.00225	1095.94139	24.91145
47	5.15	2.78	911.99	47.7746909				
48	4.96	i 2.79	876.00	47.4766411				
49	5.17	2.83	802.06	41.1142361				
410	5.16	5 2.84	841.44	43.064148				
411	5.19	2.83	813.06	41.5173921				
414	5.04	2.84	818.27	42.8753249				
415	4.12	2.83	838.42	53.9312241				
416	5.04	2.83	845.85	44.4774314				
417	5.12	2.73	871.81	46.7786852				
418	5.11	. 2.73	873.29	46.9500118				
419	5.03	2.71	891.40	49.0452671				
422	5.01	2.65	909.05	51.3528415				
423	5.14	2.63	889.14	49.3298849				
424	5.13	2.59	441.32	24.911434				

LAMINATE:	С							
INJ Date	9/16/2014							
INJ PRESSURE	1	Bar						
						Maximum Elexure load	Modulus (Automatic)	Short Beam
Sample #	Width	Thickness	Load (N)	SBS		(N)	(MPa)	otrengtil
51	5.14	2.65	769.14	42.3504148	Maximum	1141.35681	4456.59032	61,80187
52	5.12	2.68	886.587	48.4593816	Minimum	498.32919	316.08756	28.23822
53	5.13	2.7	1141.357	61.8018735	Mean	930.82049	2860.37686	49.89967
56	5.04	2.76	981.519	52.9200634	Standard Deviation	159.23443	1398.4898	8.05771
57	5.06	2.74	1071.658	57.9717478	Coefficient of Variation	17.10689	48.8918	16.14782
58	5.21	2.77	1122.546	58.3375139				
59	5.07	2.82	800.968	42.0164505				
510	5.11	2.83	904.774	46.9238934				
511	5.05	2.81	976.43	51.6065325				
514	5.09	2.8	1117.833	58.8250596				
515	5.08	2.83	814.903	42.5125379				
516	5.1	2.81	1056.627	55.297624				
517	5.17	2.73	1069.289	56.8202542				
518	5.08	2.72	896.548	48.6633714				
519	5.13	2.7	877.406	47.50953				
522	5.16	2.66	907.295	49.5767945				
523	5.14	2.61	861.56	48.1662865				
524	5.15	2.57	498.329	28.2382041				
Sample #	Width	Thickness						
61	5.06	2.63	587.717	33.1225109	Maximum	1052.88733	4351.42022	55.85254
62	5.04	2.65	919.901	51.656615	Minimum	320.97919	509.90428	18.6203
63	5.13	2.72	904.792	48.6321809	Mean	795.52024	1211.81703	43.26254
66	5.11	2.71	883.855	47.8687509	Standard Deviation	157.8633	1110.24539	8.26533
67	5.16	2.74	1052.887	55.8525187	Coefficient of Variation	19.84403	91.61824	19.10505
68	5.09	2.72	994.836	53.8922195				
69	5.15	2.74	856.208	45.5074764				
610	5.2	2.77	754.231	39.2719557				
611	5.05	2.82	838.397	44.1540447				
614	5.06	2.76	843.584	45.3033167				
615	5.18	2.76	771.223	40.4578122				
616	5.05	2.76	816.456	43.9332759				
617	5.17	2.69	714.756	38.5457278				
618	5.07	2.68	750.52	41.426742				
619	5.11	2.64	689.13	38.3122443				
622	5.19	2.58	/43.262	41.6309316				
623	5.05	2.56	8/1.943	50.5845645				
624	5.09	2.54	800.206	40.42068/5				

LAMINATE:	D							
INJ Date	11/16/2014							
INJ PRESSURE	1	Bar						
						Maximum Flexure load	Modulus (Automatic)	Short Beam Strength
Sample #	Width	Thickness	Load kgf)	SBS		(N)	(MPa)	
11	5.17	2.58	762.83905	42.8927539	Maximum	867.9469	4013.92458	46.12127
12	5.47	2.58	799.50372	42.4888249	Minimum	663.15674	466.67953	37.29203
13	5.12	2.59	796.16467	45.0292217	Mean	783.09241	2476.28621	42.81565
16	5.06	2.69	787.10309	43.3700661	Standard Dev	47.92302	1332.90729	2.21335
17	5.15	2.68	795.79095	43.243241	Coefficient o	6.11971	53.82687	5.16949
18	5.16	2.67	783.5014	42.6520665				
19	5.06	2.72	785.97571	42.8302853				
110	5.11	2.73	852.38647	45.8262441				
111	5.17	2.73	867.9469	46.121267				
114	5.18	2.72	724.6908	38.5758361				
115	5.19	2.71	782.82886	41.7437483				
116	5.14	2.72	768.76776	41.2405456				
117	5.43	2.68	841.65845	43.3773012				
118	5.11	2.73	823.88007	44.2936749				
119	5.02	2.66	759.6272	42.6654585				
122	5.11	2.61	663.15674	37.2920316				
123	5.07	2.58	741.01099	42.4872133				
124	4.99	2.56	758.83063	44.5518359				
Sample #	Width	Thickness			Maximum	920.96368	4053.78301	46.88663
21	5.23	2.65	850.47949	46.0232777	Minimum	761.84454	128.541	39.77885
22	5.15	2.69	848.70367	45.9470713	Mean	844.25428	1768.25936	43.6552
23	5.11	2.7	829.94653	45.1155974	Standard Dev	35.22779	1315.2566	2.095
26	5.02	2.79	761.84454	40.7961991	Coefficient of	4.17265	74.38143	4.79898
27	5.13	2.8	856.85675	44.7398052				
28	5.2	2.82	843.27423	43.1298195				
29	5.2	2.92	859.47931	42.4532062				
210	5.2	2.92	854.33069	42.1988947				
211	5.14	2.92	856.84137	42.8169492				
214	5.12	2.92	920.96368	46.2009552				
215	5.14	2.91	896.33685	44.9444848				
216	5.14	2.92	850.0946	42.4798085				
217	5.15	2.86	839.95966	42.7707071				
218	5.16	2.84	824.36017	42.1900677				
219	5.24	2.79	802.80035	41.1844553				
222	5.15	2.72	794.93549	42.561509				
223	5.12	2.72	847.55682	45.6447908				
224	5.12	2.68	857.81281	46.8866318				

LAMINATE:	D							
INJ Date	11/16/2014							
INJ PRESSURE	1	Bar						
						Maximum Flexure load	Modulus (Automatic)	Short Beam Strength
Sample #	Width	Thickness	Load kgf)	SBS		(N)	(MPa)	
31	4.88	2.62	777.00891	45.5791424	Maximum	874.49261	3974.70642	55.63233
32	5.12	2.64	806.948	44.7747248	Minimum	762.20837	372.06094	40.63319
33	5.11	2.68	832.20862	45.576165	Mean	817.11365	2154.21564	44.50139
36	5.17	2.76	773.07074	40.6331858	Standard Dev	37.18213	1225.277	3.29001
37	5.14	2.76	811.5011	42.9020629	Coefficient o	4.55042	56.8781	7.39304
38	5.07	2.78	814.64117	43.3485787				
39	5.09	2.84	862.34265	44.74093				
310	0	EATEN						
311	5.19	2.86	861.01263	43.5048218				
314	5.19	2.85	874.49261	44.34097				
315	0	EATEN						
316	5.09	2.85	852.79883	44.0905196				
317	5.14	2.76	855.8291	45.245575				
318	5.12	2.76	833.42401	44.2331867				
319	5.14	2.72	789.77161	42.3672971				
322	5.2	2.64	762.20837	41.6416286				
323	5.12	2.6	768.02222	43.2704826				
324	5.14	2.58	798.53778	45.162077				
Sample #	Width	Thickness						
41	4.88	2.63	754.40326	44.084838	Maximum	868.18365	6745.88491	82.37952
42	5.11	2.63	838.37531	46.7867733	Minimum	754.40326	448.49567	41.6789
43	5.13	2.65	803.76874	44.343415	 Mean	808.1147	2940.99151	45.92352
46	5.06	2.73	768.83252	41.7426335	 Standard Dev	31.04792	1697.47879	9.20077
47	5.11	2.73	821.62042	44.1721909	 Coefficient o	3.84202	57.71791	20.03499
48	5.1	2.74	786.20892	42.1967003				
49	5.02	2.8	818.39783	43.6680686				
410	5.15	2.82	868.18365	44.8349334				
411	5.01	2.8	805.14551	43.0467018				
414	5.13	2.81	863.81482	44.9426037				
415	5.18	2.86	823.28619	41.678905				
416	5.07	2.8	792.19073	41.8528492				
417	5.15	2.72	823.65216	44.0990234				
418	5.14	2.74	828.42493	44.1164686				
419	5.15	2.7	808.91803	43.6309617				
422	5.11	2.62	773.34491	43.3223796				
423	5.14	2.59	782.59735	44.0896604				
424	5.02	2.56	784.89929	45.8069649				

LAMINATE:	D							
INJ Date	11/16/2014							
INJ PRESSURE	1	Bar						
						Maximum Flexure load	Modulus (Automatic)	Short Beam Strength
Sample #	Width	Thickness	Load kgf)	SBS	 	(N)	(MPa)	
51	5.12	2.58	826.45239	46.9233961	 Maximum	865.22546	4102.0973	46.9234
52	5.06	2.62	790.56427	44.7246178	 Minimum	754.62878	266.3702	41.45022
53	5.09	2.63	799.99341	44.8202363	 Mean	797.88257	2040.14406	43.59327
56	5	2.7	771.32013	42.8511183	 Standard Dev	26.83103	1192.20254	1.48432
57	5.17	2.69	768.61426	41.4502236	 Coefficient of	3.36278	58.43717	3.40494
58	5.12	2.7	765.74933	41.54456				
59	5.09	2.74	808.22815	43.4637197				
510	5.11	2.77	791.7395	41.9510569				
511	5.03	2.78	813.82886	43.6497308				
514	5.17	2.76	865.22546	45.476908				
515	5.21	2.75	826.75519	43.2780592				
516	5.1	2.78	796.16138	42.1160273				
517	5.16	2.69	810.71863	43.80558				
518	5.19	2.69	816.8089	43.8795421				
519	5.14	2.66	780.5705	42.8182232				
522	5.14	2.6	754.62878	42.3504628				
523	5.11	2.59	780.95587	44.2554838				
524	5.13	2.56	793.57123	45.3199944				
Sample #	Width	Thickness						
61	5.13	2.56	837.82153	47.8470812	Maximum	837.82153	4496.01921	47.84708
62	5.16	2.57	807.62207	45.6758478	Minimum	708.05121	783.86498	40.92185
63	5.18	2.59	825.25378	46.1338035	Mean	779.585	2742.70696	43.51456
66	5.04	2.64	745.1792	42.0036977	Standard Dev	33.73515	1354.5049	1.69356
67	5.15	2.66	800.87799	43.8468861	Coefficient of	4.32732	49.3857	3.89193
68	5.13	2.65	789.51678	43.5571433				
69	5.14	2.7	779.79608	42.1420277				
610	5.17	2.7	789.85486	42.4379357				
611	5.11	2.68	806.65051	44.1764672				
614	5.19	2.69	787.84198	42.323419				
615	5.11	2.73	761.16272	40.9218468				
616	5.15	2.69	777.47076	42.0906681				
617	5.15	2.63	790.77948	43.7878556				
618	5.19	2.62	798.8114	44.0592265				
619	5.04	2.61	741.74988	42.2909756				
622	5.06	2.53	731.18506	42.8368507				
623	5.1	2.53	752.90472	43.7633527				
624	4.84	2.53	708.05121	43.3670669				

LAMINATE:	E							
INJ Date	11/29/2014							
INJ PRESSURE	1.2	Bar						
						Maximum Flexure load	Modulus (Automatic)	Short Beau Strength
Sample #	Width	Thickness	Load	SBS		(N)	(MPa)	
11	4.75	2.50	700.75098	44.2579566	Maximum	798.15991	4255.60624	45.1550
12	5.00	2.53	744.81079	44.1587425	Minimum	692.86816	372.14703	34.2048
13	4.99	2.53	731.76849	43.4724285	Mean	761.74512	2956.97014	43.27
16	5.01	2.57	740.30701	43.1223357	Standard Deviation	34.23605	1448.53343	2.4619
17	5.05	2.57	748.75629	43.2690386	Coefficient of Variation	4.49442	48.98708	5.6893
18	5.14	2.61	788.23621	44.0670541				
19	5.05	2.66	781.09613	43.6106676				
110	5.01	2.67	777.20074	43.5758113				
111	4.99	2.66	793.80219	44.8529874				
114	4.98	2.70	783.39728	43.6968585				
115	4.96	2.69	787.30841	44.256004				
116	4.91	2.70	798.15991	45.1550074				
117	5.06	2.68	791.80914	43.7921697				
118	5.04	2.67	777.73248	43.3460674				
119	4.98	2.65	792.00623	45.0105837				
122	5.08	2.61	773.89807	43.7764769				
123	5.93	2.59	700.45648	34.2048715				
124	5.05	2.55	768.79224	44.7753197				
Sample #	Width	Thickness						
21	4.97	2.62	692.86816	39.9074692	Maximum	923.11853	3237.69525	46.7240
22	5.06	2.66	781.77686	43.5624123	Minimum	729.56824	338.40635	39.224
23	5.06	2.69	767.28906	42.2782958	Mean	813.35618	1628.63546	42.9893
26	4.82	2.78	743.42615	41.6109147	Standard Deviation	59.60823	1048.45486	1.9982
27	5.11	2.79	792.80353	41.7063069	Coefficient of Variation	7.32867	64.37628	4.6482
28	5.08	2.80	762.48773	40.2042884				
29	5.05	2.93	860.25641	43.6043867				
210	5.03	2.94	864.62311	43.850322				
211	5.11	2.94	890.55438	44.458364				
214	4.94	2.93	885.08075	45.8616409				
215	5.04	2.94	923.11853	46.7240915				
216	5.09	2.97	842.3161	41.7890149				
217	5.08	2.85	834.95221	43.2528082				
218	5.01	2.82	796.52332	42.2836943				
219	5.00	2.79	729.56824	39.2240989				
222	5.00	2 72	848,2937	45.86363				
2-22	4 75	2.72	736 3327	42,9014974				
224	5.14	2.71	767 65234	41 6399733				

LAMINATE:	E							
INJ Date	11/29/2014							
INJ PRESSURE	1.2	Bar						
						Maximum Flexure load	Modulus (Automatic)	Short Beam Strength
Sample #	Width	Thickness	Load	SBS		(N)	(MPa)	
31	5.05	2.63	784.63043	44.3077079	Maximum	855.50586	4119.18102	44.9722
32	5.08	2.64	765.08325	42.7860622	Minimum	716.64813	379.84647	38.48643
33	5.09	2.67	741.50732	40.9211342	Mean	789.77679	2134.33056	42.65634
36	5.13	2.75	828.53821	44.0477517	Standard Deviation	45.78248	1212.12429	1.87808
37	5.12	2.76	838.14801	44.4839085	Coefficient of Variation	5.79689	56.79178	4.40282
38	5.05	2.79	844.84778	44.9722016				
39	5.05	2.86	844.47778	43.85227				
310	5.10	2.86	832.63849	42.8135793				
311	5.07	2.86	839.66901	43.4305566				
314	4.95	2.86	741.79993	39.2985765				
315	5.03	2.85	796.617	41.6771476				
316	5.06	2.83	855.50586	44.8071478				
317	5.06	2.76	716.64813	38.4864308				
318	5.04	2.73	760.97504	41.4799756				
319	4.85	2.72	749.58276	42.6157573				
322	5.10	2.66	762.22888	42.140031				
323	5.10	2.62	733.70502	41.1823653				
324	5.09	2.58	779.37927	44.5115405				
Sample #	Width	Thickness						
41	5.12	2.62	774.83356	43.3209961	Maximum	813.58368	4077.78939	44.09611
42	5.07	2.63	766.72705	43.1259168	Minimum	707.17688	527.93338	39.91261
43	5.07	2.67	795.89941	44.0961045	Mean	768.05118	2408.52256	42.24535
46	5.06	2.72	759.27075	41.3750481	Standard Deviation	28.78592	1297.41783	1.31624
47	5.07	2.74	801.02112	43.2460761	Coefficient of Variation	3.74792	53.86779	3.11572
48	5.07	2.75	791.77887	42.5916552				
49	4.84	2.82	794.20654	43.6415586				
410	5.07	2.83	813.58368	42.5274259				
411	4.93	2.81	787.75433	42.6480151				
414	5.00	2.81	744.71289	39.7533571				
415	5.05	2.80	789.36371	41.8686551				
416	4.98	2.80	757.39832	40.7378614				
417	5.06	2.71	743.97479	40.6911229				
418	4.94	2.69	707.17688	39.9126063				
419	5.01	2.68	735.60297	41.0896288				
422	5.12	2.61	783.6261	43.9804519				
423	5.07	2.58	736.86511	42.2495017				
424	5.02	2.54	741.12518	43.5928636				

LAMINATE:	E							
INJ Date	11/29/2014							
INJ PRESSURE	1.2	Bar						
						Maximum Flexure load	Modulus (Automatic)	Short Beam Strength
Sample #	Width	Thickness	Load	SBS		(N)	(MPa)	
51	4.98	2.60	718.71332	41.630753	Maximum	873.91846	4561.83943	57.89729
52	5.05	2.60	764.57025	43.6730912	Minimum	686.36139	403.8268	37.86612
53	5.05	2.63	777.37518	43.8980074	Mean	780.19367	1867.75017	43.98289
56	5.10	2.70	738.31671	40.2133284	Standard Deviation	55.15979	1389.89292	4.35546
57	5.04	2.72	725.17004	39.673606	Coefficient of Variation	7.07001	74.41535	9.90263
58	5.09	2.72	762.31995	41.2963685				
59	5.07	2.78	873.91846	46.5028341				
510	5.09	2.79	848.58734	44.8162822				
511	4.95	2.76	851.62671	46.7515761				
514	5.05	2.77	809.30273	43.3911461				
515	5.05	2.75	866.02771	46.7701734				
516	5.05	2.75	742.98242	40.1250632				
517	5.08	2.66	810.27429	44.9725976				
518	5.08	2.65	762.8313	42.4991439				
519	5.13	2.65	686.36139	37.8661255				
522	5.06	2.57	797.85046	46.0149679				
523	5.00	2.54	790.32684	46.6728449				
524	4.99	2.52	716.93091	42.7599789				
Sample #	Width	Thickness						
61	5.05	2.56	722.18536	41.8965826	Maximum	848.75708	4897.64177	47.07639
62	5	2.56	725.60168	42.5157234	Minimum	690.98761	490.50444	39.26066
63	5.07	2.58	768.14655	44.04308	Mean	769.70088	2855.0407	43.75249
66	5	2.64	690.98761	39.2606597	Standard Deviation	43.51994	1563.23061	2.19579
67	5.05	2.65	720.00586	40.3515333	Coefficient of Variation	5.65414	54.75336	5.01866
68	5.1	2.66	745.91254	41.2379777				
69	4.99	2.7	788.56323	43.8968621				
610	5.07	2.69	808.20239	44.4448203				
611	5.1	2.7	848.75708	46.2285991				
614	5.14	2.69	795.5799	43.1548555				
615	5.07	2.69	826.15381	45.4320082				
616	5.09	2.68	805.85461	44.3062896				
617	5.03	2.6	775.81976	44.491881				
618	5.03	2.57	803.25415	46.6029204				
619	4.94	2.56	793.79578	47.0763881				
622	5.18	2.52	749.28601	43.0505384				
623	5.05	2.47	774.48322	46.5677168				
624	5.05	2.46	712.02631	42.9863747				

LAMINATE:	F								
INJ Date	12/2/2014								
INJ PRESSURE	1.2	Bar							
							Maximum Flexure load	Modulus (Automatic)	Short Beam Strength
Sample #	Width	Thickness	Load	SBS			(N)	(MPa)	
11	5.09	2.56	733.7326	42.2319691	Maximum	1	838.76086	4200.42177	47.48712
12	5.11	2.55	668.21368	38.4605549	Minimum		668.21368	685.12404	38.46055
13	5.10	2.56	710.25409	40.8004418	Mean		759.56431	1802.00048	43.2733
16	4.90	2.61	809.75043	47.4871235	Standard	Deviation	47.44202	1199.7569	2.28708
17	5.14	2.63	804.98901	44.6614015	Coefficier	nt of Variation	6.24595	66.57917	5.28519
18	5.10	2.64	784.31799	43.6897276					
19	5.08	2.67	780.76807	43.1726129					
110	5.07	2.67	800.48016	44.3498969					
111	5.05	2.69	796.0072	43.9475432					
114	4.94	2.68	744.01849	42.1486092					
115	5.07	2.66	838.76086	46.6455076					
116	5.03	2.67	824.76166	46.0585733					
117	5.11	2.58	739.08752	42.04521					
118	5.07	2.57	741.005	42.6521884					
119	5.14	2.55	692.20856	39.6090959					
122	5.07	2.48	744.98962	44.4377279					
123	5.15	2.48	735.56812	43.1941818					
124	5.11	2.45	723.24451	43.3270804					
Sample #	Width	Thickness							
21	5.05	2.71	764.26746	41.883789	Maximum	I	882.22528	4063.57916	44.76209
22	5.07	2.70	725.26129	39.73599	Minimum		707.18109	171.39492	39.73599
23	5.07	2.74	753.47821	40.679297	Mean		795.43793	1946.12422	42.1994
26	5.04	2.84	802.50977	42.0496819	Standard	Deviation	55.93947	1411.89794	1.4026
27	5.05	2.84	797.88373	41.7245013	Coefficier	nt of Variation	7.03254	72.54922	3.32374
28	5.09	2.85	826.69769	42.7410656					
29	5.08	2.93	832.02881	41.9245389					
210	5.08	2.93	869.35779	43.8054838					
211	5.02	2.93	844.36487	43.0546519					
214	5.10	2.92	882.22528	44.4311684					
215	5.04	2.90	872.32367	44.7620931					
216	5.08	2.90	822.8775	41.8923517					
217	5.12	2.77	816.04401	43.1544032					
218	5.05	2.75	807.38599	43.6032038					
219	5.02	2.72	743.75653	40.8525748					
222	5.08	2.61	707.18109	40.0025506					
223	5.03	2.57	715.20898	41.4947463					
224	5.09	2.55	735.03003	42.4725546					

LAMINATE:	F							
INJ Date	12/2/2014							
INJ PRESSURE	1.2	Bar						
						Maximum Flexure load	Modulus (Automatic)	Short Beam Strength
Sample #	Width	Thickness	Load	SBS		(N)	(MPa)	
31	5.07	2.67	838.01483	46.4294722	Maximum	842.29272	4640.42938	46.42947
32	5.11	2.70	808.02899	43.9241678	Minimum	710.37085	118.84687	39.49079
33	5.05	2.74	761.32343	41.2656336	Mean	792.79476	1826.70731	42.41302
36	5.01	2.79	802.01587	43.0330667	Standard Deviation	30.69274	1406.04398	2.06816
37	5.14	2.81	799.75018	41.5284929	Coefficient of Variation	3.87146	76.9715	4.87624
38	5.19	2.83	778.24451	39.7396041				
39	5.11	2.87	815.63464	41.7113387				
310	5.10	2.89	813.49805	41.3951786				
311	5.09	2.88	802.81067	41.0737286				
314	5.11	2.86	804.23474	41.2721563				
315	5.05	2.87	802.62219	41.5335594				
316	5.08	2.88	772.18713	39.5847241				
317	5.13	2.76	842.29272	44.6167429				
318	5.03	2.73	789.66803	43.1295758				
319	4.96	2.72	710.37085	39.4907894				
322	5.05	2.61	778.37286	44.2911608				
323	5.04	2.59	757.61908	43.5293183				
324	5.10	2.54	793.61694	45.9481786				
Sample #	Width	Thickness						
41	5.01	2.66	823.64111	46.3532208	Maximum	858.5603	4716.96914	46.60068
42	5.06	2.68	833.54395	46.1003748	Minimum	707.04675	418.13829	41.09521
43	5.07	2.70	802.36438	43.9603539	Mean	803.54178	3049.96552	44.035
46	5.09	2.76	845.85834	45.1577229	Standard Deviation	42.91444	1282.02723	1.80009
47	5.06	2.79	846.30811	44.9609052	Coefficient of Variation	5.34066	42.03415	4.08787
48	5.09	2.79	826.2337	43.6357236				
49	5.03	2.84	820.50134	43.0778712				
410	5.05	2.83	829.0719	43.5086537				
411	5.06	2.84	789.53888	41.206519				
414	5.03	2.83	858.5603	45.2353178				
415	4.96	2.80	838.67395	45.2912919				
416	5.02	2.79	798.39819	42.7536194				
417	5.04	2.69	823.0285	45.5295462				
418	5.01	2.67	761.63776	42.7032317				
419	5.00	2.65	726.01544	41.0952136				
422	5.04	2.55	707.04675	41.2608981				
423	5.00	2.53	755.09808	44.7686609				
424	5.01	2.50	778.23138	46.6006814				

LAMINATE:	F							
INJ Date	12/2/2014							
INJ PRESSURE	1.2	Bar						
						Maximum Flexure load	Modulus (Automatic)	Short Beam Strength
Sample #	Width	Thickness	Load	SBS		(N)	(MPa)	
51	4.92	2.57	817.37347	48.4823402	Maximum	853.1601	4296.39782	48.48234
52	5.06	2.58	834.71655	47.9545771	Minimum	710.59595	283.73776	41.20255
53	5.05	2.62	789.19849	44.735762	Mean	786.66967	2010.21902	44.20119
56	5.08	2.68	788.4126	43.4326485	Standard Deviation	43.1289	1515.25954	1.99822
57	5.07	2.68	801.50494	44.2409774	Coefficient of Variation	5.48247	75.37783	4.52075
58	5.08	2.69	750.72144	41.2025495				
59	5.06	2.72	778.90253	42.4448455				
510	5.04	2.73	792.56445	43.2018822				
511	5.11	2.73	843.30646	45.338082				
514	5.02	2.72	797.62695	43.8115342				
515	5.09	2.72	848.38281	45.9585626				
516	5.11	2.71	853.1601	46.2063442				
517	5.07	2.62	787.01654	44.4360935				
518	5.04	2.61	768.23083	43.8007908				
519	5.05	2.60	744.64099	42.53471				
522	4.93	2.55	735.38531	43.8721698				
523	5.03	2.53	710.59595	41.8789211				
524	5.12	2.50	718.31366	42.088691				
Sample #	Width	Thickness						
61	5.05	2.51	794.55591	47.013288	Maximum	896.33044	4611.37602	47.01329
62	5.14	2.53	774.22217	44.6522375	Minimum	702.8996	341.45923	35.9385
63	0	0	0		Mean	772.69622	2213.25211	42.20811
66	5.01	2.6	710.22223	40.8925743	Standard Deviation	47.6002	1584.90898	3.0235
67	5.05	2.61	736.85089	41.9284676	Coefficient of Variation	6.16027	71.60996	7.16331
68	5.15	2.62	803.93384	44.6861617				
69	5.13	2.66	770.237	42.3337401				
610	5.04	2.65	754.76868	42.383686				
611	4.94	2.65	776.35205	44.478194				
614	4.81	2.64	744.61902	43.9791048				
615	4.98	2.64	770.66248	43.9634949				
616	5	2.63	809.85193	46.1892736				
617	6.34	2.57	841.06586	38.714075				
618	5.73	2.56	702.8996	35.9385021				
619	5.84	2.53	741.33484	37.6307008				
622	5.78	2.49	770.96594	40.1762382				
623	5.65	2.45	736.96289	39.9293601				
624	6.46	2.44	896.33044	42.6488244				

B.2 ILSS Laminates G-H

Laminate:									max load k	comments	avg b	sd b	avg w	sd w	IILSS
ACAB	Flow Rate		b1	b2	b3	w1	w2	w3	kN		mm	mm	mm	mm	tau (N/mm)
G	100cc/min	1-4	19.3	19.25	19.28	4.03	4.02	4.01	4.516		19.27667	0.025166	4.02	0.01	43.71
		1-5	18.99	18.86	18.73	4.03	4.03	4	4.067		18.86	0.13	4.02	0.017321	40.23
		1-6	19.05	19.02	19.04	3.98	3.97	4.03	4.112		19.03667	0.015275	3.993333	0.032146	40.57
		1-9	19.12	19.14	19.17	3.99	3.99	4.03	4.058		19.14333	0.025166	4.003333	0.023094	39.71
		1-10	19.26	19.28	19.28	3.98	3.99	4.01	4.229		19.27333	0.011547	3.993333	0.015275	41.21
		1-11	19.35	19.36	19.36	4.01	4.03	4.06	4.376		19.35667	0.005774	4.033333	0.025166	42.04
		2-4	19.85	19.86	19.89	3.98	3.99	4	4.09		19.86667	0.020817	3.99	0.01	38.70
		2-5	19.89	20.11	20.1	3.95	3.94	3.98	4.504	double	20.03333	0.124231	3.956667	0.020817	42.62
		2-6	20.04	20.06	20.12	3.9	3.93	3.95	4.389	double	20.07333	0.041633	3.926667	0.025166	41.76
		2-9	20.08	20.13	20.09	3.92	3.97	3.91	4.069		20.1	0.026458	3.933333	0.032146	38.60
		2-10	20.1	20.14	20.09	3.94	3.94	3.97	4.332		20.11	0.026458	3.95	0.017321	40.90
		2-11	20.03	20.04	20.03	4.03	4.02	3.98	4.224	double	20.03333	0.005774	4.01	0.026458	39.44
		3-4	20	20.01	20	4.03	4.02	4	3.77		20.00333	0.005774	4.016667	0.015275	35.19
		3-5	20	20.02	20.03	3.97	3.97	4.01	4.043		20.01667	0.015275	3.983333	0.023094	38.03
		3-6	20.02	20.03	20.04	3.94	3.95	3.94	4.051		20.03	0.01	3.943333	0.005774	38.47
		3-9	20	20.01	20.01	3.93	3.93	3.95	4.096		20.00667	0.005774	3.936667	0.011547	39.00
		3-10	20	19.99	20	3.95	3.95	3.97	4.026	double	19.99667	0.005774	3.956667	0.011547	38.16
		3-11	19.96	19.97	19.97	4	3.98	3.98	4.038	double	19.96667	0.005774	3.986667	0.011547	38.05
		4-4	19.88	19.83	19.72	4	4.01	4.01	3.723		19.81	0.081854	4.006667	0.005774	35.18
		4-5	20.03	20.02	19.99	4.01	4	3.97	3.974		20.01333	0.020817	3.993333	0.020817	37.29
		4-6	20.02	20.03	20.02	3.98	3.98	3.95	3.83		20.02333	0.005774	3.97	0.017321	36.14
		4-9	20.04	20.05	20.04	3.93	3.96	3.99	4.003		20.04333	0.005774	3.96	0.03	37.83
		4-10	20.01	20.03	20.03	3.97	3.97	3.96	3.914		20.02333	0.011547	3.966667	0.005774	36.96
		4-11	20	20.03	20.01	3.99	4.02	3.97	3.928	double	20.01333	0.015275	3.993333	0.025166	36.86
		5-4	19.98	19.96	19.84	4	4	4.02	3.558	double	19.92667	0.075719	4.006667	0.011547	33.42
		5-5	19.97	20.04	20.09	3.98	3.98	3.99	3.949		20.03333	0.060277	3.983333	0.005774	37.11
		5-6	20.01	20.04	20.02	3.96	3.95	3.97	3.977	double	20.02333	0.015275	3.96	0.01	37.62
		5-9	19.98	20	19.99	3.98	3.95	3.95	3.928	double	19.99	0.01	3.96	0.017321	37.22
		5-10	19.95	19.96	19.97	3.98	3.99	3.95	3.858		19.96	0.01	3.973333	0.020817	36.48
		5-11	19.94	19.95	19.94	3.98	3.98	4.01	4.058		19.94333	0.005774	3.99	0.017321	38.25
		6-4	20.06	20.04	20.07	4.04	4.04	4.06	3.776		20.05667	0.015275	4.046667	0.011547	34.89
		6-5	19.88	19.94	19.97	3.99	3.98	4.02	3.679		19.93	0.045826	3.996667	0.020817	34.64
		6-6	20	20	19.98	3.96	3.96	3.96	3.591	smooth	19.99333	0.011547	3.96	5.44E-16	34.02
		6-9	19.97	19.97	20	3.95	3.96	3.98	3.63	uble+smoo	19.98	0.017321	3.963333	0.015275	34.38
		6-10	19.95	19.95	19.97	3.98	3.97	4	3.693	uble+smoo	19.95667	0.011547	3.983333	0.015275	34.84
		6-11	19.96	20	19.96	4.01	4.03	4.01	3.58		19.97333	0.023094	4.016667	0.011547	33.47
		7-4													
		7-5													
		7-6													
		7-9	19.63	19.63	19.63	3.98	3.97	3.97	3.442	not saved	19.63	0	3.973333	0.005774	33.10
		7-10	19.68	19.69	19.69	3.97	3.99	4.02	3.666	double	19.68667	0.005774	3.993333	0.025166	34.97
		7-11	19.91	19.81	19.78	4.03	4.02	4	3.751	double	19.83333	0.068069	4.016667	0.015275	35.31

Laminate:								r	max load k	comments	avg b	sd b	avg w	sd w	IILS	S
ACAB	Flow Rate		b1	b2	b3	w1	w2	w3	kN		mm	mm	mm	mm	tau (N/r	mm2)
н	400cc/min	12	19.87	20.07	20	4.1	4.04	4.06	4.722		19.98	0.101489	4.066667	0.030551	43.5	59
		13	20.1	20.09	20.1	4.04	4.04	4.13	4.733		20.09667	0.005774	4.07	0.051962	43.4	10
		14	20.27	20.32	20.3	4.03	4.01	4.01	4.721		20.29667	0.025166	4.016667	0.011547	43.4	13
		16	20.53	20.49	20.5	4.01	4.02	4.02	4.648		20.50667	0.020817	4.016667	0.005774	42.3	32
		17	20.6	20.58	20.6	4.05	4.02	4.03	5	after this	20.59333	0.011547	4.033333	0.015275	45.1	15
		18	20.61	20.62	20.63	4.06	4.05	4.06	4.786		20.62	0.01	4.056667	0.005774	42.9) 1
		22	19.82	19.84	19.81	3.99	3.99	3.99	4.726		19.82333	0.015275	3.99	0	44.8	31
		23	19.67	19.68	19.69	3.96	3.97	3.96	4.362	double	19.68	0.01	3.963333	0.005774	41.9) 4
		24	19.63	19.61	19.63	3.93	3.94	3.93	4.562		19.62333	0.011547	3.933333	0.005774	44.3	33
		26	19.57	19.56	19.57	3.95	3.94	3.95	4.588		19.56667	0.005774	3.946667	0.005774	44.5	56
		27	19.5	19.49	19.45	3.97	3.97	3.97	4.521		19.48	0.026458	3.97	0	43.8	34
		28	19.13	19.15	19.19	4.04	3.98	4.01	4.571		19.15667	0.030551	4.01	0.03	44.6	53
		32	19.91	19.92	19.92	3.96	4.02	4.02	4.432		19.91667	0.005774	4	0.034641	41.7	12
		33	19.89	19.96	19.89	3.95	3.95	3.94	4.346		19.91333	0.040415	3.946667	0.005774	41.4	17
		34	19.84	19.86	19.85	3.91	3.95	3.94	4.632		19.85	0.01	3.933333	0.020817	44.4	19
		36	19.77	19.78	19.77	3.94	3.93	3.92	4.463		19.77333	0.005774	3.93	0.01	43.0	7נ
		37	19.78	19.79	19.79	3.94	3.95	3.97	4.412		19.78667	0.005774	3.953333	0.015275	42.3	30
		38	19.81	19.83	19.83	3.99	4.02	3.97	4.495		19.82333	0.011547	3.993333	0.025166	42.5	59
		42	19.93	19.94	19.94	3.96	3.96	3.99	4.392	double	19.93667	0.005774	3.97	0.017321	41.6	52
		43	19.87	19.89	19.88	3.94	3.94	3.97	4.486		19.88	0.01	3.95	0.017321	42.8	35
		44	19.83	19.82	19.82	3.92	3.93	3.93	4.136	double	19.82333	0.005774	3.926667	0.005774	39.8	35
		46	19.77	19.77	19.79	3.92	3.96	3.95	4.425		19.77667	0.011547	3.943333	0.020817	42.5	56
		47	19.78	19.78	19.79	3.94	3.95	3.95	4.386		19.78333	0.005774	3.946667	0.005774	42.1	13
		48	19.81	19.84	19.86	3.96	3.98	3.96	4.782		19.83667	0.025166	3.966667	0.011547	45.5	58
		52	19.88	19.89	19.89	3.98	4	3.96	4.667		19.88667	0.005774	3.98	0.02	44.2	22
		53	19.68	19.71	19.75	4	3.94	3.95	4.114		19.71333	0.035119	3.963333	0.032146	39.4	49
		54	19.5	19.5	19.5	3.92	3.92	3.96	3.968		19.5	0	3.933333	0.023094	38.8	30
		56	19.65	19.64	19.65	3.94	3.93	3.94	4.266		19.64667	0.005774	3.936667	0.005774	41.3	37
		57	19.67	19.68	19.68	3.98	3.96	3.95	4.411		19.67667	0.005774	3.963333	0.015275	42.4	12
		58	19.73	19.75	19.75	4.02	4.02	3.97	4.468		19.74333	0.011547	4.003333	0.028868	42.4	10
		62	19.96	19.95	19.96	4	4.05	3.97	4.175	smooth	19.95667	0.005774	4.006667	0.040415	39.1	16
		63	19.85	19.91	19.89	4.01	3.99	3.97	3.942		19.88333	0.030551	3.99	0.02	37.2	27
		64	19.81	19.8	19.81	3.96	3.98	3.94	4.008		19.80667	0.005774	3.96	0.02	38.3	33
		66	19.86	19.81	19.78	3.95	3.95	3.97	3.95		19.81667	0.040415	3.956667	0.011547	37.7	78
		67	19.75	19.74	19.8	3.96	3.96	4.01	4.082	smooth	19.76333	0.032146	3.976667	0.028868	38.9) 5
		68	19.83	19.82	19.81	3.99	3.98	4.04	4.018	smooth	19.82	0.01	4.003333	0.032146	37.9	98
		72	19.89	19.9	19.91	4.02	4.03	4.05	3.993	smooth	19.9	0.01	4.033333	0.015275	37.3	31
		73	19.87	19.9	19.88	4	4.02	4.03	3.903		19.88333	0.015275	4.016667	0.015275	36.6	55
		74	19.8	19.78	19.82	3.98	3.98	3.99	3.99		19.8	0.02	3.983333	0.005774	37.9) 4
		76	19.72	19.74	19.75	3.99	3.97	3.97	3.892		19.73667	0.015275	3.976667	0.011547	37.1	19
		77	19.69	19.69	19.67	4	4.01	4.01	3.807		19.68333	0.011547	4.006667	0.005774	36.2	20
		78	19.6	19.62	19.61	4.02	4.03	4.02	3.825	smooth	19.61	0.01	4.023333	0.005774	36.3	36

APPENDIX C. C-SCAN IMAGES

C.1 C-Scan Images Laminates C-F

Laminate C:

Laminate D:

Laminate E:

Laminate F:

