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ABSTRACT
A wide class of coupled-cluster methods is introduced, based on Arponen’s extended coupled-
cluster theory. This class of methods is formulated in terms of a coordinate transformation of the
cluster operators. The mathematical framework for the error analysis of coupled-cluster methods
based on Arponen’s bivariational principle is presented, in which the concept of local strong mono-
tonicity of the flipped gradient of the energy is central. A general mathematical result is presented,
describing sufficient conditions for coordinate transformations to preserve the local strong mono-
tonicity. The result is applied to the presented class of methods, which include the standard and
quadratic coupled-cluster methods, and also Arponen’s canonical version of extended coupled-
cluster theory. Some numerical experiments are presented, and the use of canonical coordinates
for diagnostics is discussed.
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1. Introduction

It is with delight that the authors dedicate this work to
Professor Jürgen Gauß on the occasion of his sixtieth
birthday. In the spirit of his pursuit of scientific rigour,
especially the attention to detail in coupled-cluster (CC)
theory, we here present a mathematical study of some
alternative formulations based on Arponen’s extended
CC (ECC) method [1,2]. The ECC method is defined in
terms of the critical points of an energy functional,

EECC(T,�) = 〈φ0, e�†
e−THeTφ0〉 , (1)
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where T and� are cluster operators in the usual sense of
CC theory. The well-known CC Lagrangian introduced
by Helgaker and Jørgensen [3] is obtained by expanding
e�†

to first order. In this sense, the standard CC approach
is an approximation to the ECC method.

We will study a collection of methods that gener-
alises this idea, defined by substitution of e�†

by a
Taylor polynomial of fixed degree n. This can be for-
mulated as a coordinate transformation of the cluster
amplitudes. A second class ofmodels is obtained by a fur-
ther coordinate transformation introduced by Arponen
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to ensure a certain linkedness structure of the energy
functional. We refer to these coordinates as canonical,
as the time-dependent Schrödinger equation takes the
form of Hamilton’s equations of motion in this case.
Thus, we obtain two hierarchies NC-ECC(n), using non-
canonical coordinates, and C-ECC(n) using canonical
coordinates. Our mathematical results imply that when
the cluster operators are not truncated, all these mod-
els are exact and equivalent to the time-independent
Schrödinger equation. Moreover, Galerkin approxima-
tions (i.e. generic truncation schemes that can approach
the untruncated limit) will converge under certain rel-
atively mild single-reference-type conditions. While the
methods discussed here are all expensive (for n>1),
we consider them as stepping stones towards produc-
ing competitive alternatives to standard CC theory that
alleviate deficiencies of the latter, such as the inability to
correctly break chemical bonds.

The various forms ofCCmethods are today among the
most widely used for wavefunction-based calculations
on manybody systems. The main idea stems from Hub-
bard’s exponential parameterisation of the wavefunction
based on cluster operators in manybody perturbation
theory [4], which was taken as starting point for ab initio
treatments by Coester and Kümmel for nuclear struc-
ture calculations in the 1950s [5,6]. The modern form
of standard CC theory was developed by, among oth-
ers, Sinanoğlu, Paldus and Cizek in the 1960s [7] and
the CC method with singles, doubles and perturbative
triples [CCSD(T)] today constitutes ‘the gold standard of
quantum chemistry’ due to its excellent balance between
computational cost and accuracy [8]. In nuclear struc-
ture calculations the same method has gained traction
in the last decade, providing excellent predictive power
for light to medium nuclei [9]. Coupled-cluster theory
has also been applied to superconductivity [10], lattice
gauge theory [11], and systems of trapped bosons such
as Bose–Einstein condensates [12]. These examples and
the cited works are by no means exhaustive, but serve to
illustrate the flexibility of the CC formalism.

In the early 1980s, Arponen introduced a novel con-
cept into CC theory, namely the bivariational princi-
ple [1,13], resulting in the ECC method [1,2,14], and
an interpretation of standard CC theory and ECC the-
ory as variational methods in a more general sense, i.e.
they are bivariational. However, the ECC method has
seen little use in chemistry due to its immense complex-
ity, even for truncated versions. In physics, on the other
hand, the ECC model has advantages over standard CC
theory that can make it very useful. To illustrate, the
ECC method correctly describes symmetry breaking in
the Lipkin–Meshkov–Glick quasispinmodel of collective
monopole vibrations in nuclei [13,15], in contrast to the

standard CC method, which cannot. For the electronic-
structure problem in quantum chemistry, the standard
CC model fails dramatically to reproduce dissociation
curves of even simple dimers like N2, while the ECC
method performs quite well [16,17]. Thus, we are of the
opinion that the ECCmethod is still worthwhile to study,
and approximate forms may still prove to be useful in
quantum chemistry.

The non-canonical and canonical hierarchies (N)C-
ECC(n) introduced in this article turn out to be equiv-
alent, and give identical predictions, when truncated
with an excitation-rank complete scheme. On the other
hand, the working equations are different and in fact
cheaper in the canonical case, albeit marginally. An
example is the NC-ECC(1)SD method, i.e. the standard
CCSD approach, and the C-ECC(1)SD method, which
are equivalent. We also raise the question about diagnos-
tics for practical calculations, and show some numerical
evidence that diagnostics can favourably be done using
canonical coordinates, even if the computations are done
in the usual manner using non-canonical variables.

Another well-known special case is NC-ECC(2), the
quadratic coupled-cluster (QCC) method introduced by
Van Vorhiis and Head-Gordon [18,19], whose canoni-
cal and non-canonical versions are equivalent in their
doubles-only approximation. We note that the asymp-
totic cost of QCCD is the same as CCSD, even if it is
a higher-order approximation to ECC. Furthermore, the
perfect-pairing (PP) hierarchy [20] of amplitude trunca-
tion schemes can be applied to ourmethods. The PP hier-
archy are approximations to the complete-active space
self-consistent field (CASSCF) method, including only
a tiny subset of even-rank amplitudes combined with
orbital optimisation, the latter which we disregard here.
The corresponding canonical and non-canonical formu-
lations (N)C-ECC(1)PPH are inequivalent. The n>1
versions could also be interesting in their own right, as
investigated by Byrd and coworkers in the case of the
QCC method [19].

The remainder of the article is organised as follows:
In Section 2, we introduce the bivariational principle and
the mathematical setting of local analysis of CC meth-
ods. The key concept of our analysis is the notion of local
strong monotonicity of the flipped gradient of a smooth
bivariational energy functional (see Equation (7)). The
usefulness of this property is presented in Theorem 2.1,
where local uniqueness and quadratic error estimates
are established in a very general setting using Zaran-
tonello’s Theorem from nonlinear monotone operator
theory [21,22]. Next, Theorem 2.2 summarises the main
results of Ref. [23], where strong monotonicity is proven
for the non-canonical ECC method. For a recent review
on monotonicity in CC theory we refer to [24], where



MOLECULAR PHYSICS 3

this property is linked to spectral gaps of the systems
under study. Section 3 presents the idea of monotonicity-
preserving coordinate transformations. Our main result,
Theorem 3.1, is a change-of-coordinates result. When
combined with Theorems 2.1 and 2.2, the analysis of
(N)C-ECC(n) follows in Corollary 3.2. Our tools rely
heavily on the functional analytic formulation of clus-
ter operators and the Schrödinger equation developed by
Rohwedder and Schneider [25–27]. The results are for-
mulated in a qualitativemanner, in the sense that they are
indeed rigorous but depend on constants whose numer-
ical (or optimal) values are unknown. We leave further
quantitative investigations for future work. In Section 4,
we perform some numerical experiments to elucidate
some aspects of the (N)C-ECC(n) hierarchies, before we
finish with some concluding remarks in Section 5. All the
proofs of our results are presented in Appendix.

2. The non-canonical extended coupled-cluster
model

2.1. Bivariational principle

The starting point is a generalisation of the Rayleigh–Ritz
variational principle to operators that are not necessarily
self-adjoint (Hermitian in the finite-dimensional case).
For simplicity, we assume a real Hilbert spaceH. Given a
system Hamiltonian Ĥ : D(Ĥ) → H, where D(Ĥ) ⊂ H
is dense, we define a bivariate Rayleigh quotient, Ebivar :
H ⊕ H → R,

Ebivar(ψ , ψ̃) = 〈ψ̃ , Ĥψ〉
〈ψ̃ ,ψ〉 , 〈ψ̃ ,ψ〉 �= 0. (2)

Requiring the functional Ebivar to be stationary at
(ψ∗, ψ̃∗) with respect to arbitrary variations in the
two wavefunctions leads to the conditions 〈ψ̃∗,ψ∗〉 �= 0,
Ĥψ∗ = E∗ψ∗ and Ĥ†ψ̃∗ = E∗ψ̃∗, with E∗ = Ebivar(ψ∗,
ψ̃∗), i.e. the right and left eigenvalue problem for Ĥ.
If Ĥ is self-adjoint, the eigenfunctions are identical up
to normalisation. The introduction of two independent
wavefunctions therefore might seem to complicate mat-
ters. However, the bivariate Rayleigh quotient E allows
distinct approximations of ψ and ψ̃ , introducing more
flexibility for approximate schemes. Moreover, the state
defined is a (non-Hermitian) density operator, which is
unique,

ρ = |ψ〉 〈ψ̃ |
〈ψ̃ |ψ〉 .

When determined variationally, theHellmann–Feynman
theorem [28] gives well-defined physical predictions in
terms of ρ.

As is common in analysis of partial differential equa-
tions [29,30], we pass to a weak formulation, which in

this case is equivalent to the strong formulation outlined
above. Under the assumption that Ĥ is below bounded,
we can introduce a unique extension H : X → X ′ (dual
space), whereX ⊂ H is a dense subspace, aHilbert space
with norm ‖ · ‖X , continuously embedded in H. It fol-
lows thatH is continuously embedded inX ′, andwe have
a scale of spaces with dense embeddings, X ↪→ H ↪→
X ′. The operatorH is bounded (i.e. continuous), and sat-
isfies a Gårding estimate, i.e. for some α ≥ 0 and some
μ ∈ R,

〈ψ ,Hψ〉 ≥ α‖ψ‖2X + μ‖ψ‖2

for all ψ ∈ X . For the electronic-structure problem X
can be taken to be the space of square-integrable func-
tions with finite kinetic energy.

IfH is finite-dimensional, we can set X ≡ H, simpli-
fying matters a lot, and the reader may if she or he wishes
stick to this picture for simplicity, where all operators are
basically matrices. In the infinite-dimensional case, how-
ever, Ĥ is typically unbounded as an operator overH, and
the above construction is necessary.

Under the stated conditions, Ebivar : X ⊕ X → R

is a (Fréchet) smooth map away from the singular-
ity 〈ψ̃ ,ψ〉 = 0, and Taylor series exist and converge
locally, allowing a certain degree of intuition to be bor-
rowed from the finite-dimensional case. The right and
left Schrödinger equations are then ∂ψ̃Ebivar(ψ∗, ψ̃∗) = 0
and ∂ψEbivar(ψ∗, ψ̃∗) = 0, respectively. This is the bivari-
ational principle.

2.2. Exponential ansatz and the ECCmethod

The standard CCmethod is formulated relative to a fixed
reference φ0 ∈ X on determinantal form. By introducing
a cluster operator T = T1 + T2 + · · · with Tk containing
all excitations of rank k, i.e. of k fermions relative to φ0,
we have the exact parameterisation

ψ = eTφ0,

assuming intermediate normalisation, 〈φ0,ψ〉 = 1.
Since all excitations commute, the cluster operators

form a commutative Banach algebra under suitable con-
ditions which we now describe [25,26]. We expand the
cluster operators using amplitudes and basis operators,
i.e. T = ∑

μ∈I τμXμ, where Xμ excites a number n =
n(μ) of fermions in the reference into the virtual space,
i.e.

Xμ = c†
a1ci1 · · · c†

ancin ,

where the ik are among the occupied orbitals ofφ0, and ak
among the unoccupied orbitals. The set I is the generic
set of amplitude indices. We introduce a Hilbert space
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V with norm ‖T‖ = ‖Tφ0‖X , which becomes a useful
space for formulating abstract CC theory. Fundamen-
tal results include that any T ∈ V is a bounded operator
on X , such that, e.g. exp(T) also is a bounded operator.
Moreover, T† is also a bounded operator, which means
that we can make sense of, e.g. exp(−T)H exp(T), and
that we can represent any intermediately normalisedψ ∈
X as ψ = eTφ0 with T ∈ V unique. Finally, all the ele-
ments of the algebra are nilpotent. The Banach algebra
structure on V allows CC theory to be rigorously formu-
lated in the full, infinite-dimensional case. This was the
approach taken in Ref. [23] for a first analysis of NC-ECC
theory.

Again, the finite-dimensional case may by kept in
mind: In this case, cluster amplitudes are simply finite-
dimensional vectors, and the existence of the exponential
parameterisation is a trivial result. There is no need to
introduce the norm ‖T‖, instead the Euclidean norm on
the amplitudes may be used.

Any ψ̃ normalised according to 〈ψ̃ ,ψ〉 = 1 can be
represented by introducing a second cluster operator
� = �1 +�2 + · · · , viz.,

ψ̃ = e−T†
e�φ0.

Inserting the parametrization ofψ and ψ̃ into the bivari-
ate Rayleigh quotient, we obtain the energy functional
EECC : V ⊕ V → R of the non-canonical ECC method,
given in Equation (1). This map is everywhere smooth,
and its critical points (T∗,�∗) are equivalent to the
Schrödinger equation and its dual: Under the assump-
tion that the eigenfunctions can be normalised accord-
ing to 〈φ0,ψ∗〉 = 〈ψ̃∗,ψ∗〉 = 1, ψ∗ and ψ̃∗ solve the
Schrödinger equation and its dual if and only if

∂EECC(T∗,�∗)
∂�

= 0 and
∂EECC(T∗,�∗)

∂T
= 0. (3)

Assuming that the eigenvalue E∗ = EECC(T∗,�∗) is non-
degenerate, (T∗,�∗) is easily seen to be locally unique.

2.3. Truncations andmonotonicity analysis

The non-canonical ECC energy is just one out of many
possible parameterisations of the exact bivariate Rayleigh
quotient Ebivar. In this section, we take a more abstract
approach and consider a general energy functional E :
V ⊕ V → R, obtained by some exact parameterisation
of (ψ , ψ̃) by means of the space V ⊕ V , i.e. by a pair
of cluster operators (T,�). We will discuss several such
functionals in Section 3, obtained from the NC-ECC
functional by coordinate transformations.

Only in rare cases can the amplitude equations (3)
be solved exactly. Introduce therefore a discretised space

Vd ⊂ V of finite dimension by truncating the amplitude
index set Id ⊂ I , that is, Td ∈ Vd if and only if

Td =
∑
μ∈Id

τd,μXμ ∈ Vd. (4)

The set Id is typically defined by the restriction of the
excitations to a finite virtual space (a finite basis), and
to a finite excitation rank (smaller than the number of
electrons). In the chemistry literature, the excitation hier-
archy for a given basis is traditionally denoted singles (S),
doubles (D), and so on. In the ECC literature, one typi-
cally speaks of the SUBn approximation, with n being the
maximum rank.

When the discrete space is established, we define
a discrete solution by the stationary conditions of the
restricted energy function Ed = E �Vd⊕Vd . The station-
ary equations take the form

∂E(Td∗,�d∗)
∂λμ

= ∂E(Td∗,�d∗)
∂τμ

= 0, (5)

for all μ ∈ Id.
It is not necessary to use the traditional truncation

scheme outlined here; any increasing sequence of sub-
spaces Vd ⊂ V , with d a parameter, that can approximate
elements inV arbitrarily well by increasing d can be used.
We let dist(v,Vd) be the distance from v to Vd mea-
sured with respect to the norm of V . Consequently, for
all v ∈ V we have dist(v,Vd) → 0 as d → +∞. Such a
sequence of spaces is referred to as a Galerkin sequence.
Other options than the traditional truncation schemes
are explicitly correlated methods [31] and complete-
active space methods [20,32,33] such as the PP hierarchy.

An often overlooked point in the physics literature is
the fact that convergence of the equations does not in gen-
eral imply convergence of their solutions. An important
question is therefore whether the discrete critical points
(Td∗,�d∗) converge to the exact critical points (T∗,�∗)
as d → +∞. This would imply that the energy converges
too, and in a quadratic manner due to the critical point
formulation.

Monotonicity is an important notion in connection
with the local analysis of the CC method and its
variations [23–27,34]. The use of monotonicity in the
analysis of the standard CC method was introduced
by Schneider and Rohwedder [25,27]. The intuition
behind (strict) monotonicity is that of an everywhere
(strictly) increasing (or decreasing) function. The func-
tion that one studies is typically a root problem such as
the CC amplitude equations f (T) = 0, where fμ(T) =
〈φμ, e−THeTφ0〉. Monotonicity allows the establishment
of locally unique solutions of the Galerkin problem and
is therefore important for the motivation of numerical
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implementations. As such it is a fundamental result of
the CC method’s practical usage in quantum chemistry.
It also connects spectral gaps, e.g. HOMO-LUMO gap,
to stability constants within the analysis [24]. (See also
the steerable CAS-ext gap connected to the tailored CC
method [35] that treats quasi-degenerate systems [36].)

The particular monotonicity property that is key for
this presentation is an even stronger version than that of
strict monotonicity, and is called strong monotonicity. It
is defined as follows: A finite-dimensional vector-valued
function F(Z) is locally strongly monotone near some Z∗
if for Z1,Z2 in a neighbourhood of Z∗ we have

〈F(Z1)− F(Z2),Z1 − Z2〉 ≥ η‖Z1 − Z2‖2, (6)

for some constant η > 0. (In the infinite-dimensional
case 〈·, ·〉 is the dual pairing, which then becomes an
infinite sum, see Ref. [23] for more details.)

Furthermore, we need the concept of Lipschitz con-
tinuity: F is locally Lipschitz continuous with constant
L>0 if

‖F(Z1)− F(Z2)‖ ≤ L‖Z1 − Z2‖.
In particular, any (Fréchet) smooth function is locally
Lipschitz continuous, and so are all its derivatives.

The map F that we will study is the flipped gradient of
the general energy functionalE : V ⊕ V → R, defined as

F(T,�) = (∂�E(T,�), ∂TE(T,�)), (7)

or more compactly F(T,�) = R∂E(T,�), with R being
the map that exchanges the partial derivatives. The moti-
vation is as follows: If we consider the bivariate Rayleigh
quotient, ∂Ebivar is not locally strongly monotone, as
its critical points are saddle points. On the other hand,
the flipped gradient Fbivar = R∂Ebivar can be seen to be
locally strongly monotone near the ground state, given
that this ground state is non-degenerate with a nonzero
spectral gap to the remaining spectrum. It is natural to
expect that one can find conditions such that the flipped
gradient of the energy when expressed in new coordi-
nates is locally strongly monotone.

The following is a central result, adapting a result due
to Zarantonello [21,22] (points 1 and 2) to the present
notation and setting, and applied to the flipped gradient
of an energy functional (point 3).

Theorem 2.1 (General convergence and error esti-
mates): Let F : V ⊕ V → V ′ ⊕ V ′ be amap, and let U ⊂
V ⊕ V be an open ball containing a Z∗ such that F(Z∗) =
0.

Let Vd ⊂ V be a Galerkin sequence of subspaces with
Pd being the orthogonal projector onto Vd ⊕ Vd. Fur-
thermore, let Fd : Vd ⊕ Vd → V ′

d ⊕ V ′
d be the Galerkin

discretisation of F, i.e. Fd(Zd) = PdF(Zd).

Assume that F is locally strongly monotone with con-
stant η > 0 and Lipschitz continuous with constant L>0
on U. Then, the following holds:

(1) Z∗ is the only root in U.
(2) There is a sufficiently large d0, such that for any d >

d0, there exists Zd∗ ∈ Vd ⊕ Vd such that Fd(Zd∗) =
0. This root is unique in U and we have the follow-
ing error estimate (quasi-optimality of the discrete
solution):

‖Z∗d − Z∗‖ ≤ L
η
dist(Z∗,Vd ⊕ Vd). (8)

Let E : V ⊕ V → R, Z �→ E(Z) be a (Fréchet) smooth
energy functional. Let R be the flipping map as introduced
after Equation (7) and set F = R∂E , and E∗ = E(Z∗).

(3) For d > d0, the discrete Galerkin equations ∂Ed(Z∗d)
= 0 have locally unique solutions, and in addition to
the error estimate (8), we have the energy error

|E(Z∗d)− E∗| ≤ C‖Z∗d − Z∗‖2

≤ C
(
L
η

)2
dist(Z∗,Vd ⊕ Vd)

2. (9)

The proof is presented in Appendix. The error esti-
mate (9) shows that for (smooth) energy functionals with
a locally strongly monotone flipped gradient, the bivari-
ational method of discretisation behaves very similar to
the usual Rayleigh–Ritz variational method of discreti-
sation. As we enlarge the Galerkin space, the discrete
ground state converges, and the energy error is quadratic
in the error of the state. However, we cannot guarantee
convergence from above, but this is much less important
than actually having a quadratic error.

An interesting fact is that Brouwer’s fixed point
theorem [37] can be used to obtain a sufficient condition
for the constant d0, where quadratic convergence sets in,
namely

dist(Z∗,Vd0 ⊕ Vd0) <
δ

1 + L/η
, (10)

see Refs. [23,26]. The radius δ of the domain U in
Theorem 2.1 is unknown in general, and we see that
a small monotonicity constant η relative to L will be
severely detrimental for the convergence, as it forces d0
to be very large. On the other hand, in general one has
that η and the Lipschitz constant L are related by η ≤ L.
The optimal value of the right-hand side is therefore δ/2.

The following theorem summarises themain results of
Ref. [23], where the proof and more details can be found:
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Theorem2.2 (NC-ECCmonotonicity): Assume that the
system Hamiltonian Ĥ is self-adjoint, and that the ground
state of Ĥ exists, is non-degenerate, and that there is a spec-
tral gap γ > 0 between the ground-state energy E∗ and the
rest of the spectrum. Assume that the reference φ0 is such
that it is not orthogonal to the ground-state wavefunction.
Let Z∗ = (T∗,�∗) ∈ V ⊕ V be the corresponding critical
point of EECC, and assume that T∗ and �∗ are not too
large, i.e. that φ0 is a sufficiently good approximation to
ψ∗. Then, F = R∂EECC is locally strongly monotone near
Z∗ with a constant η = Cγ , for some C<1.

The consequence of Theorem 2.2, when combined
with Theorem2.1, is that the non-canonical ECCmethod
is convergent as the discrete cluster amplitude space Vd
approaches the untruncated limit. As already remarked,
we do not explicitly know the onset d0 of quadratic
convergence.

3. Monotonicity-preserving coordinate
transformations

3.1. A class of exact coupled-cluster models

In addition to the non-canonical ECC parameterisation,
Arponen also considered a second parameterisation of
the bra and ket wavefunctions, which gives equations
of motion for the time-dependent Schrödinger equation
that are canonical in the sense of Hamiltonian mechan-
ics [1,2]. (This must not be confused with the use of
canonical Hartree–Fock orbitals, which is unrelated.)
This parameterisation is given in terms of a coordinate
transformation θC−ECC : V ⊕ V → V ⊕ V as

(T,�) = θC−ECC(T′,�′), (11)

where�′ = �, and T = S(T′;�′) is defined by

QTφ0 = Qe−�
′†
T′φ0, Q = I − |φ0〉 〈φ0| . (12)

This function has inverse QT′φ0 = Qe�̃†Tφ0. (In Arpo-
nen’s work [2], the notation (T′,�′) = (�, �̃†) is used.)
The map θC−ECC is smooth and invertible with a smooth
inverse, and we therefore obtain a new exact energy
functional

EC−ECC = EECC ◦ θC−ECC,

with values

EC−ECC(T′,�′) = 〈φ0, e(�′)†e−S(T′;�′)HeS(T
′;�′)φ0〉 .

(13)
A remarkable consequence of this second parameterisa
tion is that it corresponds to retaining only those terms

in Equation (1) that can be represented by ‘doubly linked’
diagrams [1,2],

EC−ECC(T′,�′) = 〈φ0, e(�′)†(HeT
′
)Cφ0〉DL . (14)

The phrase ‘doubly linked’ means that every power of
(�′)† is connected to two T′ operators on its right, unless
it is connected directly to H. The subscript ‘C’ for ‘con-
nected’ is the usual connectedness criterion on contrac-
tions betweenH and powers ofT′ [8]. Thus, the canonical
coordinates represent a more compact representation in
that the resulting tensor contractions or diagrams in the
energy are identical to those obtained in the NC-ECC
energy (1), except for some diagrams that are explicitly
eliminated.

Similarly, for the standard CC method, Arponen
introduced the coordinate transformation θCC given by

(T,�) = θCC(T′,�′) = (T′, e�
′ − 1). (15)

We obtain the energy functional ECC = EECC ◦ θCC,
where

ECC(T′,�′) = 〈φ0, (1 + (�′)†)e−T′
HeT

′
φ0〉 , (16)

that is, the standard CC Lagrangian [3]. Incidentally, the
standard CC coordinates are also canonical.

The map θCC can be generalised to Taylor polynomi-
als. By setting

e� = (e�
′
)n ≡ 1 +�′ + 1

2
(�′)2 + · · · + 1

n!
(�′)n,

we can solve for � in terms of �′ by, e.g. considering
first the singles, then doubles, etc., giving a smooth map
Gn : V → V such that eGn(�

′) = (e�′
)n. In fact, since

the cluster operators are nilpotent, Gn(�
′) = ln[(e�′

)n],
where the logarithm is expanded in a (finite) Taylor series
around the identity. Similarly, we can solve for�′ in terms
of�, demonstrating that this map has an inverse, and in
fact that this inverse is smooth. We obtain a coordinate
transformation θn given by

(T,�) = θn(T′,�′) = (T′,Gn(�
′)), (17)

and the corresponding energy functional

ENC−ECC(n)(T′,�′) = 〈φ0, (e(�′)†)ne−T′
HeT

′
φ0〉 .

(18a)
Coordinate transformations form a group, and may thus
be composed. By combining θC−ECC(n) = θn ◦ θC−ECC,
we obtain an energy functional

EC−ECC(n)(T′,�′)

= 〈φ0, (e(�′)†)ne−S(T′;�′)HeS(T
′;�′)φ0〉 . (18b)

Since, in the NC-ECC energy functional (1), an expo-
nential e−�†

can be inserted after eT without changing
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the result, both of these hierarchies correspond to trunca-
tions of a Baker–Campbell–Hausdorff expansion at order
n, and are thus manifestly extensive.

3.2. Coordinate transformation theorem

Equations (18a) and (18b) represent two hierarchies of
exact parameterisations of the bivariate Rayleigh quo-
tient. It is therefore of interest to determine whether
they have locally strongly monotone flipped gradients.
To establish this, we study the effect on local strong
monotonicty of a coordinate transformation.

Theorem 3.1 (Coordinate transformations): Let E :
V ⊕ V → R be a smooth energy functional, let Z∗ be a
critical point, and assume that F = R∂E is locally strongly
monotone near Z∗ with constant η > 0. Let a smooth θ :
V ⊕ V → V ⊕ V with a smooth inverse be a given coor-
dinate transformation, and let Eθ = E ◦ θ be the energy
functional expressed in the new coordinates. Let W∗ =
θ−1(Z∗) be the corresponding critical point for Eθ , and let
Fθ = R∂Eθ be its flipped gradient. Let M∗ = ∂θ(W∗) be
the Jacobian at W∗. Then we have the following conclu-
sions:

(1) If M∗R = RM∗, then Fθ is locally strongly monotone
near W∗ with constant ‖M−1∗ ‖−2η.

(2) In the noncommuting case, if m∗ = M∗ − I is suffi-
ciently small, Fθ is locally stronglymonotone nearW∗
with constant

η′ = η‖M−1
∗ ‖−2 − C(I + ‖m∗‖)‖m∗‖,

where C is the constant from Theorem 2.1(3).

Theorem 3.1 tells us that if we create a new method
by changing coordinates in a sufficiently well-behaved
manner, the monotonicity of the flipped gradient of the
energy will be preserved. Hence, the new method will
be convergent in the sense of Theorem 2.1, if the origi-
nal method is. This gives us great flexibility in choosing
new cluster-operator parameterisations, since we already
know that non-canonical ECC is convergent. The inter-
ested reader can find the proof in the Appendix.

3.3. Monotonicity of (N)C-ECC(n)models

We apply Theorem 3.1 to the maps θn and θn ◦ θC−ECC
that define the NC-ECC(n) and C-ECC(n) models,
respectively. The conclusion is as follows (with proof
given in the Appendix):

Corollary 3.2: For any of the NC-ECC(n) or C-ECC(n)
models, the assumption that the ground-state critical point

W∗ = (T′∗,�′∗) is not too large together with a spectral gap
γ > 0 is sufficient to guarantee local strong monotonicity
of the flipped gradient of the energy, and hence a quasi-
optimal solution to the Galerkin problem and a quadratic
error estimate for the energy.

We note that our estimates are probably pessimistic for
some of themodels covered here. The analysis starts with
a givenmonotonicity constantη for theNC-ECC scheme,
depending on the spectral gap, and consistently produces
an η′ < η for the method obtained using the coordinate
change, worsening the error estimates. It may well be that
a direct analysis of the secondary method yields a better
η′. The assumptions on the Hamiltonian and reference
may also become milder. However, the important point
here is that Theorem 3.1 does guarantee that the new
method is convergent under some reasonable conditions.
For example, we have nowproven thatQCC theory [18] is
convergent if the reference is a sufficiently good approxi-
mation to the ground state, and using Equation (10) also
a basic means to study which truncations or Galerkin
schemes can be reasonable, at least in principle. It may
be interesting to see whether truncation schemes like the
PPhierarchywith orbital optimisation, also in a quadratic
n = 2 or higher formulation [19], can be further analysed
based on our results.

In the proof of Theorem 3.1 (see Appendix), it arises
naturally that the most favourable coordinate transfor-
mations are those that commute with the flipping map
R, since local strong monotonicity then follows with no
assumptions on the Jacobian of the map. The Jacobian
commutes with R if and only if

∂T
∂T′ = ∂�

∂�′ , and
∂T
∂�′ = ∂�

∂T′ , (19)

and one must assume that this holds at every point in
V ⊕ V , as one does not know a priori where the criti-
cal point is. It is not clear what such transformations in
general look like, and whether such transformations are
useful reparameterisations of the energy.

3.4. Properties of the canonical and non-canonical
schemes

The coordinate transformation θC−ECC as represented by
Equation (A7) is such that when applied to a cluster oper-
ator T′

k of rank k, it generates terms Tk′ with k′ ≤ k. The
same is true for the inverse map. Thus, if Vd is excitation-
rank complete, i.e. it contains all excitations of rank up to
and including some k>0, then the Galerkin discretisa-
tion of theNC-ECC(n)method commutes with changing
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coordinates via the coordinate map θC−ECC,

EC−ECC(n),d = ENC−ECC(n),d ◦ θC−ECC.

By inspection, one can also see that this holds for a
doubles-only truncation, sinceA(�′) = I in this case.We
obtain the following result:

Theorem 3.3 (Equivalence of canonical and non–
canonical coordinates): Let Vd be excitation-rank com-
plete or consist of doubles excitations only, and let n
be given. Then, the discrete solutions (T∗d,�∗d) and
(T′

∗d,�
′
∗d) of the NC-ECC(n) and C-ECC(n) methods,

respectively, are equivalent and related via θC−ECC, i.e.
T∗d = A(�′

∗d)T
′
∗d and�∗d = �′

∗d.

We stress that, if Vd is not excitation-rank complete, the
canonical and non-canonical parameterisations are not
equivalent. This would be the case for the PP hierarchy
of truncations [19,20].

According to the doubly linked structure of the
energy functional EC−ECC(n), see the discussion after
Equation (14), the amplitude equations for the canon-
ical case are cheaper, albeit by a small amount. More-
over, it is reasonable to expect that the canonical solution
(T′

∗d,�
′
∗d) is more compact compared to (T∗d,�∗d). We

investigate this claim numerically in Section 4.

4. Numerical results

4.1. Implementation

The (un-)truncated (N)C-ECC(n)SD Equations (18)
and (5), together with the untruncated coordinate trans-
formation Equation (A7) have been implemented in a
local full CI-based program, i.e. all intermediates are
expressed as vectors in the full CI basis. To this end, the
C-ECC(n) amplitudes are computed using transformed
NC-ECC(n) residual expressions [17]. The C-ECC(n)
amplitude equations are thus:

0 =
∑
ν∈I

〈φν , e−(�′)†φμ〉〈φ0, (e(�′)†)n[HS,Xν]φ0〉, (20a)

0 = 〈φμ, (e(�′)†)n−1HSφ0〉
−
∑
ν∈I

〈φμ,X†
νe

−(�′)†T′φ0〉〈φ0, (e(�′)†)n[HS,Xν]φ0〉,

(20b)

whereHS = e−S(T′;�′)HeS(T′;�′). The sparsity of the coor-
dinate transformation Equation (A7) has been exploited
throughout, e.g. only singles amplitudes are transformed
in the case where Vd contains only singles and dou-
bles. The coupled amplitude equations (20) are solved

iteratively starting from anMP2-guess, using an alternat-
ing scheme and applying DIIS convergence acceleration.
In all computations, residuals and energies were con-
verged to a threshold of 10−4 and 10−6 a.u., respectively.
The (N)C-ECC(1)SD and (N)C-ECC(∞)SD implemen-
tations are verified by reproducing the ‘CCSD’ and
‘ECCSD’ energies presented in [17].

4.2. Numerical experiments

The (N)C-ECC(n)SD and (N)C-ECC(n)DTmodels have
been studied numerically by investigating the poten-
tial energy curves of the hydrogen fluoride molecule
with interatomic distances 1.0 ≤ RH−F ≤ 3.5 (a0) in a
DZV basis set [17] and the nitrogen molecule with
1.5 ≤ RN−N ≤ 4.0 (a0) with a frozen core in a 6-31G
basis [38]. Additionally, the H8 model system with struc-
tural parameters 0.0001 ≤ α ≤ 1.0 in a minimal basis
set [32,39] is considered. For large distances R and small
α, respectively, these systems comprise significant mul-
tireference character, i.e. the weight of the Hartree–Fock
configuration in the full CI wave function, | 〈φ0,ψFCI〉 |2,
is fairly small. Thus, these species are good candidates to
study novel quantum chemical methods.

The energy curves of the canonical models C-
ECC(n)SD are identical to the non-canonical NC-
ECC(n)SD ones and are thus not presented here. How-
ever, the results differ if excitation-rank incomplete trun-
cation schemes are employed. For instance, in canonical
ECC(n)DT, singles amplitudes are effectively generated
from doubles and triples amplitudes, while these are
absent in the non-canonical model. This effect has been
studied on the potential curve of the HF molecule and is
depicted in Figure 1: The generation of singles amplitudes
entails that the canonical computation is lower in energy,
in particular towards the multireference region where
these contribute significantly to thewave function expan-
sion. This depends, however, on the role of the singles
amplitudes in the wave function: In test computations
on the H8 model system a different trend was observed,
consistent with the diminished importance of singles
in the wave function (vide infra). Therefore, we cannot
conclude that the canonical coordinates are consistently
better when unconventional truncations are used.

In order to investigate the effect of using different
coordinates in ECC(n)SD computations, we calculated
a set of CC diagnostics which are often used to assess
the quality of CC computations [40,41]. These are based
on the largest singular value (D1) and Frobenius norm
(T1) of the matrix representation of the singles ampli-
tudes. (Equivalently, T 2

1 = ‖τ∗1‖22/N, the sum of the
squares of the singles amplitudes, with N the num-
ber of correlated electrons.) Although diagnostics based
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Figure 1. Difference between a canonical and a non-canonical
ECC(n)DT computation for the potential curve of HF.

Figure 2. Comparison of CC diagnostics of the C-ECC(1)SD and
NC-ECC(1)SDmodel for the HF potential curve correlatedwith the
multireference character.

on doubles amplitudes are preferred, they are not as
available in implementations as are the singles-based
variants [42]. Additionally, we computed the diagnos-
tic ||τ∗||22/(||τ∗||22 + 1)which involves all the amplitudes.
This choice can be motivated from monotonicity argu-
ments and will be discussed in a forthcoming paper.

The values have been computed for truncation
schemes n = 1, 2,∞. Since the trends are very similar,
only the data for n = 1 is presented for HF and H8.
For N2, we focus on the results for n = 2, because the
quadratic model is well-known to be a better approxi-
mation to full CI compared to standard CCSD in this
case [16] (cf. line starting upper left with trianglemarkers
in Figure 4).We stress, that even if theNC-ECC(1)SDand
C-ECC(1)SD (which is standard CCSD) are equivalent,

Figure 3. Comparison of CC diagnostics of the C-ECC(1)SD and
NC-ECC(1)SDmodel for the H8 potential curve correlated with the
multireference character.

Figure 4. Comparison of CC diagnostics of the C-ECC(2)SD and
NC-ECC(2)SD model (lower set of five curves, almost on top of
each other) for the N2 potential curve correlated with the mul-
tireference character. The red curve shows diagnostics for NC-
ECC(1)SD, indicating the inferiority of this model in the multiref-
erence region.

the singles amplitudes in their respective parameterisa-
tions differ, producing different values for the diagnos-
tics. Figure 2 shows the diagnostics correlated with the
multireference character for the HF potential curve, in
Figures 3 and 4 values for the H8 model and the N2
molecule are shown, respectively. In both H8 and N2,
electron correlation is dominated by doubles amplitudes,
as can be seen from the small values of the singles-based
diagnostics. Since the reparameterisation of the ampli-
tudes in the canonical model does not affect the ampli-
tudes of highest excitation rank, the difference between



10 S. KVAAL ET AL.

the NC-ECC(n)SD and C-ECC(n)SD amplitude vectors
is negligible. This is different for the HF case. Here, the
amplitude norms of the canonicalmodels are consistently
smaller than the non-canonical variants, indicating that
the wave function parameterisation is more compact.

Our numerical experiments suggest, that for excita
tion-rank incomplete models, the canonical map gener-
ates effectively an excitation-rank complete parameteri
sation, but does not necessarily yield significantly better
results. Concerning the a priori excitation-rank complete
models, it has been found that the canonical parame-
terisation can be more compact compared to the non-
canonical one, a desired property for post-Hartree–Fock
methods. In particular, it may be useful to consider
using canonical coordinates for diagnostics, even for well-
established numerical codes using standard CC formal-
ism.

5. Concluding remarks

In this article, we formulated basic error estimates for
a class of exact models, defined in terms of replac-
ing, in Arponen’s ECC method, the exact exponential
e�†

of the dual cluster operator with an n-th Taylor
polynomial, the canonical C-NCC(n) models and the
non-canonical NC-ECC(n) models. The central result
was a coordinate-transformation theorem, Theorem 3.1,
that gives error estimates for any method that can be
described as a coordinate transformation of ECC theory.
Notably, these results guarantee asymptotically quadratic
error estimates for the ground-state energy of all models,
under certain mild conditions.

Apart from Theorem 3.1, a basically self-contained
mathematical framework for local error analysis of
coupled-cluster methods was presented. This was based
on Arponen’s bivariational principle and basic results
from nonlinear monotone operator theory, i.e. Zaran-
tonello’s theorem. Also central was our prior analysis of
Arponen’s extended coupled-cluster method in its non-
canonical formulation.

Themethods covered by our analysis include standard
CC theory, quadratic CC theory [18,19], the perfect-
pairing hierarchy [20] for approximatingCASSCF, also in
its quadratic version [19], and, Arponen’s canonical ECC
method. The computational cost of the (N)C-ECC(n)
methods truncated with the standard singles, doubles,
etc., scheme, are expensive: already the nonlinear terms
in (�†)2 pushes the cost beyond standard CC theory
when higher than doubles are considered. However, hav-
ing obtained exact mathematical characterisations of the
hierarchies of methods is an important first step in pro-
ducing cheaper and more reliable methods compared to
standard CC. One such approach could be similar to the

CC2 method of Christiansen and coworkers [43], where
the cost of CCSD is reduced from O(N6) to O(N5), N
being the system size.

The error estimates are not optimal for many meth-
ods. A direct analysis of canonical ECC would probably
provide themost optimistic analysis for all the C-ECC(n)
methods, due to the doubly linked structure and the
equivalence of excitation-rank complete Galerkin dis-
cretisations.

Finally, we performed some simple numerical exper-
iments, focusing on the possibility of using canonical
coordinates in place of the usual CC amplitudes when
doing diagnostic estimates onCCcalculations on systems
with multireference character. Our preliminary findings
support the hypothesis that the canonical coordinates
are more compact compared to the usual coordinates,
providing more accurate diagnostics.

An interesting extension of the present work would
be to study truncations where singles-amplitudes are
replaced by orbital rotations, either unitary or biorthog-
onal, as in the QCC and PP approaches, or the non-
orthogonal orbital optimised coupled-cluster method of
Pedersen and coworkers. [44]. Moreover, the complete-
active space coupled-cluster method by Adamowicz and
coworkers [32] fits the present scheme. It is also known
that quadratic CC and ECC in general are quite good
at reproducing multireference character, while standard
single-referenceCC is quite poor at this. Thus, amodified
analysis of the ECC method that includes multirefer-
ence assumptions, such as the steerable CAS-ext gap of
Ref. [34], could potentially lead to a deeper understand-
ing of how CCmethods generally behave in the presence
of static correlation.
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to ∂E(Z∗) = 0 and ∂Ed(Z∗d) = 0, respectively (note that R
commutes with Pd). Now, Taylor expanding E around Z∗ and
evaluating at Z∗d gives
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2
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By the smoothness of E , there exists a constant C′ such that

〈Z, ∂2E(Z∗)Z〉 ≤ C′‖Z‖2.
Further, the fact that on U we can control the higher-order
terms by the quadratic one, we have

|E(Z∗d)− E∗| ≤ C‖Z∗d − Z∗‖2.
Using Equation (8) gives the full statement in Equation (9) �

Proof of Theorem 3.1: WithF : V ⊕ V → V ′ ⊕ V ′ the flipped
gradient and X ∈ V ⊕ V , we obtain

〈X, F(Z)〉V⊕V ,V ′⊕V ′ = 〈RX, ∂E(Z)〉V⊕V ,V ′⊕V ′ .

In the sequel, we omit the specification of the spaces in the dual
pairing.

Let Z∗ ∈ V ⊕ V be such that ∂E(Z∗) = 0, i.e. F(Z∗) = 0.
Since F is smooth, local strong monotonicity of F is equiva-
lent to ∂F(Z∗) ∈ B(V ⊕ V ,V ′ ⊕ V ′) (the set of bounded linear
operators) being coercive, i.e. there exists an η∗ > 0 such that

�(X) = 〈X, ∂F(Z∗)X〉 ≥ η∗‖X‖2V⊕V ,

where �(X) is defined by the first equality. (The constant η in
Equation (6) approaches η∗ as the ball U given in Theorem 2.1
of the local strong monotonicity approaches a point.) To see
this, we find an expression for�(h) in terms of the energymap,

〈X, F(Z∗ + εX)〉 = 〈X, F(Z∗)+ εF′(Z∗;X)〉 + O(ε2). (A1)

Here F′(Z∗;X) is the directional derivative in the direction ofX
such that

〈X, ∂F(Z∗)X〉 = 〈X, F′(Z∗;X)〉

= d
dε

〈RX, ∂E(Z∗ + εX)〉 |ε=0

= 〈RX, ∂2E(Z∗)X〉 ,
where ∂2E(Z∗) ∈ B(V ⊕ V ,V ′ ⊕ V ′). By choosing ε small
enough, Equation (A1) and strongmonotonicity gives the coer-
civity claim. The logical implication also goes in the reverse
direction. (This will be used below.)

Recall that Eθ = E ◦ θ and that Fθ denotes the flipped gra-
dient of Eθ . We use that Fθ is locally strongly monotone at
W∗ = θ−1(Z∗) if and only if�θ is coercive, i.e.

�θ(X) = 〈X, ∂Fθ (W∗)X〉 ≥ ηθ‖X‖2,
for some ηθ > 0 and all X ∈ V ⊕ V . A straightforward appli-
cation of the chain rule now gives

�θ(X) = 〈M∗RX, ∂2E(Z∗)(M∗X)〉 ,
M∗ = ∂θ(W∗) ∈ B(V ⊕ V ,V ⊕ V).

We note that this is almost �(M∗X). Indeed,

�θ(X) = 〈RM∗X, ∂2E(Z∗)(M∗X)〉
+ 〈[M∗,R]X, ∂2E(Z∗)(M∗X)〉

= �(M∗X)+ 〈(M∗R − RM∗)X, ∂2E(Z∗)(M∗X)〉 .
(A2)

In particular, if M∗R = R∗M then the last term vanishes in
the utmost right-hand side of Equation (A2), and we obtain
monotonicity of Fθ but with a modified constant.

In the case whereM∗R �= RM∗, we writeM∗ = I + m∗, and
note thatM∗R − RM∗ = m∗R − Rm∗. We obtain,

�θ(X) ≥ η‖M∗X‖2 − ‖∂2E(Z∗)‖‖M∗‖‖m∗‖‖X‖2

≥
[
η‖M−1

∗ ‖−2 − C‖(1 + ‖m∗‖)‖m∗‖
]
‖X‖2. (A3)

Here, we used that θ has a smooth inverse, implying ‖M∗X‖ ≥
‖M−1∗ ‖−1‖X‖, and that ‖M∗‖ ≤ I + ‖m∗‖. �

Proof of Corollary 3.2: We consider the Jacobian of the coor-
dinate map, which on block form reads

∂θ(T′,�′) =
(
∂T
∂T′

∂T
∂�′

∂�
∂T′

∂�
∂�′

)
. (A4)

For the map θn (see Equation (17)), we first observe that by
definition,

e� = e�
′ + O(‖�′‖n+1),

from which it follows, by taking the logarithm and expanding
the logarithm around e�′

, which is a finite Taylor series,

� = �′ + O(‖�′‖n+1).

We obtain

∂θn(T′,�′) =
(
I 0
0 I + O(‖�′‖n+1)

)
. (A5)

For the map θn ◦ θC−ECC we have, using the chain rule,

∂θC−ECC(T′,�′) =
(
A(�′) ∂�′A(�′)T
0 I + O(‖�′‖n+1)

)
. (A6)

Here, A(�′) is the linear transformation on V such that
S(T′;�′) = A(�′)T′ (see Equation (12)), i.e.A(�′) can be
expressed in terms of the matrix representation of e−(�′)† ,

A(�′)T′ =
∑
μ,ν∈I

Xμ 〈φμ, e−(�′)†φν〉 〈φν ,T′φ0〉 . (A7)

We have A(�′) = I + O(‖�′‖), and ∂�′A(�′)T′ = O(‖T′‖).
For bothmaps, the Jacobian of the coordinate transformation at
the critical point W∗ = (T′∗,�′∗) becomes M∗ = I + m∗ with
m∗ = O(‖W∗‖). Applying Theorem 3.1(2), the local strong
monotonicity follows, and by Theorem 2.1, quasi-optimality of
the truncated solutions and a quadratic error estimate. �
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