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Peeling of metal foil from a compliant substrate
M. S. Islam a and K. S. Alfredssonb

aDepartment of Mechanical Engineering, Blekinge Institute of Technology, Karlskrona, Sweden;
bDepartment of Engineering Science, University of Skövde, Skövde, Sweden

ABSTRACT
Large displacement peel was studied for cases where
a compliant substrate leads to a large value of the root rota-
tion. An existing simplified beam model to calculate the peel
fracture energy was modified to allow for a kinematic hard-
ening beam model of the foil. The steady-state peel force and
the root rotation were used as input data to the resulting
analytical beam model. Test results from the literature were
analysed. A more elaborate finite element model was also
studied, using cohesive elements for the interface layer
between the foil and the substrate. The cohesive zone para-
meters used were the fracture energy, the cohesive strength
and a shape parameter. An optimization scheme for the cohe-
sive zone parameters was developed and optimized against
experimental steady-state peel force and root rotation. The
optimization scheme was effective to characterize the cohesive
parameters. The method yields similar values of fracture
energy for the two peel angles, with the one for 180� being
slightly higher than for 90�. The difference in fracture energies
for different peel angles suggests that the fracture energy can
be mode dependent.
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1. Introduction

During the last decade finite element (FE) simulation has beenmorewidely used in
packaging industry to facilitate development in the early design phase. FE models
are producing accurate prediction at application level in different length scales.[1]

Specifically, thin flexible laminates which are important in liquid food industry are
experimentally and numerically studied by many authors.[2–7] To begin with, it is
necessary to know material properties for constituents of laminate. Additionally,
the cohesive properties of the interface between layers are important and it was the
focus of the present study. Specifically, adhesion between an aluminium foil (Al-
foil) and low-density polyethylene (LDPE) film is studied. Several existing studies
addressed the interface of similar material laminates.[2,8,9]

The peel test is a simple setup, which makes it one of the most widely
studied test methods used to assess the adhesion between two layers of a thin
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flexible laminate. Despite the simple test geometry, the evaluation of an
experiment in terms of the fracture energy is not always as easy. The task
does not become easier if a complete set of cohesive properties is requested.
In an early contribution, Rivlin[10] presented a method to determine the
fracture energy from a steady-state peel test. The method was based on
a model where the peel arm was assumed to be inextensible and to have
a small resistance to bending. For this case, the fracture energy can be
determined by measurement of the peel force and the peel angle. This
work was later[11] extended to allow for a linearly elastic peel arm. With
this model, also the elastic modulus is needed to determine the fracture
energy. Later works have considered more elaborate models for an extensible
peel arm having a small resistance to bending, cf. e.g.[12,13] From knowledge
of the peel angle, the peel force and the stress–strain curve of the peel arm
material, the fracture energy is determined in a straightforward manner. For
cases where the bending resistance is not negligible and the material is
elastic-plastic, one needs to consider also the plastic energy dissipated due
to elastic-plastic loading, unloading and reversed plastic loading. Moreover,
one also needs to consider the equilibrium equations in order to know the
deformation field from which the plastic energy dissipation is determined.
A method to achieve this for an elastic perfectly plastic material was devel-
oped in Aravas et al.[14] The method was further developed in Kinloch
et al.[2] by modelling the material in the peeling arm according to a linear
isotropic hardening rule. In the present study, a similar solution for linear
kinematic hardening is presented. This is believed to be a more accurate
model for a peeling arm in the form of a metal foil. Many other authors[15–20]

have studied plastic energy dissipated in the peel arm for different thin
laminates.

The modelling of the interaction between the peel arm and the substrate is
often performed using cohesive zone models. Analytical solutions for peel are
presented in e.g. Lu et al.[21] and Begley et al.[22] Through development of
cohesive elements in FE-codes, the cohesive modelling technique has become
more versatile. The peeling behaviour for the case of an elastic peel arm was
studied in Sauer[23] using a van der Waals adhesion model for the cohesive
behaviour. Other work[19,20,24,25] studied plastically deforming peel arms. Use
of a bi-linear cohesive law was the most popular choice. A bilinear model has
effectively two parameters; the fracture energy and the cohesive strength. In
some studies[19,24,25], the cohesive strength is arbitrarily chosen. In the
current study, a trapezoidal cohesive law is assumed, by which an additional
shape factor is introduced. FE-simulations show that, for the present case, the
peeling behaviour is governed not only by the fracture energy, but also by the
cohesive strength and the shape factor.

Although FE-simulations of delamination using cohesive zone modelling is
fairly standard, the experimental determination of cohesive laws is certainly
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more challenging. For comparatively stiff adherends, test geometries allowing
for purely elastic deformation can be designed. This makes it possible tomeasure
the energy release rate (ERR) as a function of cohesive deformations. Cohesive
relations are then obtained by differentiation of experimentally obtained ERR
with respect tomeasured cohesive deformations, cf. e.g. Andersson and Stigh [26]

and Leffler et al.[27] The method also works for plastically deforming adherends,
provided that the plastic loading is monotonically increasing, cf. Stigh et al.[28] In
Nilsson[29], a similar method is proposed for 90� peel. However, the method
requires the peel arm to be elastic. Thus, the method is not applicable for peeling
of thin laminates, as cohesive separation of the layers is often associated with
plastic loading, elastic unloading and reversed plastic loading of the layers.

An optimization scheme can be useful to identify cohesive parameters with
some confidence. In Lee et al.,[30] the authors used design of experiment and
the kriging metamodel to optimize cohesive strength by comparing peel
simulation and experimental force response at few key points. Cohesive
parameter set of fracture energy and cohesive strength was optimized in
Xu et al.[31] using a genetic algorithm (GA). In the current study, an artificial
neural network (ANN) inside a GA was successfully adopted for the optimi-
zation, similar to earlier studies in different contexts.[32,33]

The present article is organized as follows: The two different models used
are briefly described in Section 2. A beam theory solution, for a linear
kinematic hardening peel arm material model, is presented in Section 3.
The finite element model and the optimization procedure to determine
cohesive properties is outlined in Section 4. Experimental observations
from the literature are recapitulated in Section 5. In Section 6, the experi-
ments are evaluated in terms of fracture energy and other cohesive properties
using the methods described in Sections 3 and 4. The results are discussed
and the paper ends with some conclusions.

2. Models of laminate

The materials tested are the constituent of liquid food packaging with multiple
layer of films and foils (Figure 1). The most widely used packaging materials in
liquid food packaging industries are LDPE, Al-foil and paper board. Each of the
layers of a package has its own role. For example, the paperboard, which is
considerably thicker than the other layers, bears the load when the package is
filled, folded and gripped, while the Al-foil isolates the liquid inside from light
and diffusion.[8] The outer decor layer of LDPE protects the paper and print on
it frommoisture-related damage. It is important that the inside layer which is in
contact with the product inside does not react or dissolve with it and contam-
inate the product during its expected lifetime. LDPE layers are used to serve this
purpose. The layers are combined together in several steps. The Al-foil is
produced by thinning Al-sheets by rolling them several times. Also, during
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the manufacturing process, LDPE is extruded and rolled with other layers. The
laminate of LDPE film and Al-foil are most important among the layers. The
adhesion between them dictates the load carrying capacity and allowable strain
in the laminate. This makes the study of adhesion between them very important
in packaging applications and many previous works have addressed this
phenomenon.[3,4,6,7,34–37]

Firstly, a simplified analytical beam theory model of this multi-layered
packaging material was considered for the peel study in this work. This
model is depicted in the left lower part of Figure 1. The decoration layer,
paperboard layer and laminate layer are modelled as a rigid base. The
aluminium layer, inside adhesion layer and inside layer are considered as
a single layer peel arm (Figure 1). The peel arm was assumed to be repre-
sented by only stand-alone aluminium layer. It was motivated by the assump-
tion that the LDPE part in the peel arm does not play an important role in
the peeling process due to its low Young’s modulus and higher ductility. The
deformation of the substrate is assumed to be concentrated to the interface
between the Al-foil and the laminate LDPE-layer.

Secondly, a corresponding FE-model was considered, cf. the lower right
part of Figure 1. The Al-foil was modelled with beam elements and
cohesive elements modelled the interface between the Al-foil and the
laminate LDPE-layer. The top face of the cohesive elements was connected

Figure 1. Liquid food packaging and models of laminate.
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to the beam elements of Al peel arm by beam connectors. This is needed
since the nodes of the beam elements are located at the centroid of the
beam.

The beam theory solution presented in Section 3 and the FE-model
described in Section 4.1 were both used to evaluate the experimental results
given in Section 5. The beam theory solution was used first, to get an
estimate of the fracture energy. These results were then used as a starting
point in the calibration of the cohesive parameters of the FE-model. The
results of this procedure are presented in Section 6.

3. Beam theory solution

In Aravas et al.,[14] a method to evaluate the fracture energy from a peel test
was proposed. The method was based on large displacements and the assump-
tion that the peel arm deformed in bending as a perfectly plastic material. The
method was further developed in Kinloch et al.[2] by modelling the material in
the peeling arm according to a linear isotropic hardening rule. Here, a similar
solution for linear kinematic hardening is presented, cf. Figure 2b. This is
believed to be a more accurate model for a peeling arm in the form of a metal
foil.

As in Aravas et al.[14] and Kinloch et al.,[2] it is here assumed that plasticity
due to bending of the peeling arm is dominant, i.e. plasticity due to stretch-
ing of the peeling arm is not included. This assumption can be inappropriate
for small values of the peel angle, θ. However, for the experimental settings
studied in the present work, the assumption is appropriate.

Steady-state crack propagation is considered. The fracture energy, Gc, is
formed as

Figure 2. (a) Geometry of peel test. (b) Kinematic hardening stress–strain relation of foil material.
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Gc ¼ Ge � Gp (1)

where Ge is the energy release rate
1 (ERR) for the present loading configuration,

if all points of the system are subjected to monotonically increasing loading. As
shown in Kinloch et al.,[2] elastic unloading and reverse plastic loading can take
place in the peeling arm. Thus, in such cases, the plastic energy dissipation rate,
Gp, must be subtracted from Ge to achieve the fracture energy.

In Appendix A, the J-integral is used to derive Ge. With the assumption of
small elastic strain at the loading point of the peeling arm

Ge ¼ P
b

1� cos θð Þ (2)

where b is the out-of-plane width. Figure 3a depicts the deformation of the
peeling arm under steady-state crack propagation. Consider a point, O,
located far to the right of the crack tip. At this point the foil is undeformed,
i.e. both the bending moment and the curvature are zero. As we move to the
left of point O, elastic bending of the foil is experienced and a cohesive zone
is formed. At some point, A, within the cohesive zone, the bending stress in
the foil has reached the elastic limit, σy, cf. Figure 2b. As we move further to
the left, the foil is plastically deformed and the bending moment increases.
Following the methodology in Kinloch et al.,[2] the maximum bending
moment is assumed to be reached at the current position of the crack tip,
denoted B in Figure 3a.

To the left of the crack tip, the foil is unloaded from a plastic state.
Between points B and C, the unloading is elastic. To the left of point C, the
unloading involves reverse plasticity. At point D, located far from the crack

Figure 3. (a) Bending deformation of peeling arm. (b) Resulting relation between bending
moment M and curvature, 1=R.

1The energy released for a unit increase of the crack length.
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tip, the peeling arm is straightened by the tensile peel force. This means
that the curvature is zero at point D. The points O, A, B, C and D are
indicated in Figure 3b, where the bending moment, M, is shown as
a function of the curvature, 1=R, where R is the radius of curvature due
to bending. During steady-state crack propagation, a material point in the
foil will experience the entire history of events displayed in Figure 3b. This
means that the energy dissipated due to plastic deformation is proportional
to the area AOABCD in Figure 3b. As described in Kinloch et al.,[2] this
means that the plastic energy dissipation rate is given by,

Gp ¼ AOABCD

b
(3)

The specific form of the moment–curvature plot (Figure 3b) for a linear
kinematic hardening foil is derived in Appendix B. In order to determine the
plastic energy dissipation, Gp, the conditions at the crack tip, B, must be known.
Here, a modified version of the solution in Kinloch et al.[2] is proposed. The
solution is based on large displacement beam theory for the deformation of the
peeling arm. As shown in Kinloch et al.,[2] the bending deformation of the
peeling arm (from point B to point D in Figure 3a) is governed by

ADCBF ¼ P 1� cosðθ� θBÞ½ � (4)

where θB is the rotation at the crack tip (root rotation), cf. Figure 3a. The
area ADCBF depicted in Figure 4 is a function of the curvature at the crack
tip, 1=RB. In the following, a normalized version of the curvature is used,

k ¼ Rp

R
(5)

Rp ¼ h
2�y

(6)

where Rp is the curvature at first yield. Thus, in Equation (4), ADCBF on the
left-hand side is a function of kB and the right-hand side is a function of θB.
In Kinloch et al.,[2] the deformation of the foil to the right of the crack tip
(Figure 3a) is estimated from a model consisting of a linear elastic beam on
a linear elastic foundation, where the stiffness of the foundation is given by
the transverse stiffness of (half of) the foil. This leads to a linear relation
between θB and kB. Attempts have been made to accomplish a similar solu-
tion for the present case, by considering the compliant substrate as an elastic
foundation. However, due to substantial plastic strain in the foil and large
root rotations, such a linear model has proven to be unsuccessful. Instead,
the value of the root rotation, θB, is obtained from experimental observations.
Thus, kB is the only unknown and can be solved from Equation (4).
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As mentioned previously, the present solution considers plastic deforma-
tion due to bending of the foil only. For small values of the peel angle, θ,
plasticity due to stretching of the peel arm can be important. The smaller the
value of θ, the smaller the values of θB and kB. This means that the solution
may be inappropriate for small values of kB. However, for the sake of
completeness, the solution for all values of kB is presented here. As shown
in Appendix C, the solution consists of three separate cases:

Case 1: For 0< kB < 1 peeling involves only elastic bending of the foil, i.e.
no plastic dissipation is involved, Gp ¼ 0. For this case, points B and
A coincide and points C and D coincide with point O. Thus, the area
ADCBF in Figure 4 is of triangular shape. As shown in Appendix C,
Equation (4) takes the form,

k2B ¼ 6P
E�2ybh

1� cosðθ� θBÞ½ � (7)

after a minor rearrangement.
Case 2: For 1< kB < 2 peeling involves elastic-plastic loading and elastic

unloading, but no reverse plasticity. This means that, also for this case, ADCBF

is triangular. As shown in Appendix C, Equation (4) takes the same form as

Figure 4. Definition of area ADCBF in Equation (4).
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for Case 1 above. That is, Equation (7) applies also for Case 2. The plastic
energy dissipation rate2 of Equation (3) takes the form,

Gp

Gn
¼ ð1� αÞ k2B

3
þ 2
3kB

� 1

� �
(8)

where

Gn ¼ 1
2
Eh�2y (9)

is used as a normalizing factor.
Case 3: For kB > 2 reverse plastic deformation is involved. As shown in

Appendix C, Equation (4) takes the form,

ð1� αÞ 6kB þ 8
kB

� 12

� �
þ αk2B ¼ 6P

E�2ybh
1� cosðθ� θBÞ½ � (10)

and the plastic energy dissipation rate of Equation (3) takes the form,

Gp

Gn
¼ ð1� αÞ 2kB þ 10

3kB
� 5

� �
(11)

Summing up, the procedure to calculate the fracture energy is as follows:
Equations (7) and (10) are separately solved numerically for kB. The two
roots are denoted kB1 and kB3, respectively. If 0< kB1 < 1, Case 1 applies and
Gp ¼ 0. If 1< kB1 < 2, Case 2 applies and Gp is given by Equation (8) with
kB ¼ kB1. If kB1 > 2, Case 3 applies and kB3 > 2. Gp is calculated from Equation
(11) with kB ¼ kB3. The fracture energy is finally calculated using Equations
(1 and 2).

4. Optimization of cohesive parameters

A FE-model of the peel test was used in order to obtain more detailed
information about the cohesive parameters of the interface in the Al-LDPE
laminate. The FE-simulations were performed on the θ ¼ 90� and θ ¼ 180�

geometries used in the experimental setup, cf. Section 5. The input para-
meters of a trapezoidal cohesive law were optimized to the experimental
results in terms of the steady-state peel force and root rotation. An ANN was
trained based on simulation results and integrated inside a GA optimization
code in search of an optimal cohesive parameter set (optimum Gc, σc0 and r).

2Note that Gp in Equation (8) differs slightly from Equation (11) in Kinloch et al.[2] Since Case 2 does not involve any
reverse plasticity, they should be equal. It is noted that, in Equation (8) for all values of α, Gp ! 0 when kB ! 1,
as expected. This is not the case for Equation (11) in Kinloch et al.[2].
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4.1. FE-modelling of peel

The peel setup was modelled using beam elements for the Al-foil and zero
thickness cohesive elements for the interface between the Al-foil and the
LDPE-film. Connector elements were used to connect the beam elements
and the cohesive elements, cf. Figure 1. The results of this simplified model
have been compared to a more detailed FE-model, where all layers present as
described in Section 2 and modelled with 2D elements. The two models show
comparable results, which motivates the use of the computationally less
expensive beam model. For the beam theory solution described in Section 3,
the maximum curvature and bending moment were assumed to be reached at
the current position of the crack tip. For the FE-model, no assumption
regarding the position of the maximum curvature is made. However, θB
denotes the rotation at the crack front also for the FE-model.

The dimensions of the FE-model were chosen as small as possible, still
capable of achieving steady-state conditions. The peel arm length in the
initial configuration was 4 mm and the length of the portion of the Al-foil
connected to ground through cohesive elements was 1 mm. The element
length in these two portions of the model were 4 µm and 1 µm, respectively.
The out-of-plane thickness was 15 mm. Beam elements of Timoshenko type
was used (Abaqus element type: B21). An elastic-plastic constitutive model
based on Hooke’s law, von Mises linear kinematic hardening, was used to
model the Al peel arm. The details of the model are described in Section 5.

The cohesive elements (Abaqus element type: COH2D4) of the interface
were modelled with a trapezoidal cohesive law. A trapezoidal cohesive law
was advantageous over a commonly used bi-linear law in this case as the size
of the plateau (Figure 5) can control the softening and hence root rotation.
This was important in the optimization scheme as it could decouple peel
force and root rotation to some extent. A short description of the cohesive

Figure 5. Definition of a trapezoidal cohesive law and the effect of the change in the parameter r.
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law is given here for the case of pure normal separation, i.e. no shear
separation. The normal cohesive separation is denoted δ and the normal
cohesive stress σc. The key cohesive input parameters in Abaqus[38] were the
fracture energy (Gc), the interfacial strength (σc0), the initial stiffness (c) and
a ratio (r) governing the shape of traction–separation relation, cf. Figure 5.
The ratio is defined as,

r ¼ δ2 � δ1
δ3

(12)

For a given set of Gc, σc0 and c, the effect of the ratio r is as demonstrated in
Figure 5.

The separations defining the cohesive law are expressed in the input
parameters according to Equations (13–15)

δ1 ¼ σc0
c

(13)

δ2 ¼ δ1 þ rδ3 (14)

δ3 ¼ 2Gc

ð1þ rÞσc0 (15)

To respect the condition δ1 < δ2 < δ3, r should be within the following limit,

0< r<
1� A
1þ A

(16)

A ¼ σ2c0
2cGc

(17)

In Abaqus, the cohesive law is defined through a damage variable, D. This
means that the cohesive response is written as

σc ¼ ð1� DÞcδ (18)

For the present trapezoidal cohesive law, the damage evolution, for
a monotonically increasing δ, takes the form,

D ¼
0 for 0 � δ � δ1

1� σc0
cδ for δ1 � δ � δ2

1� σc0
cδ

δ3�δ
δ3�δ2

for δ2 � δ � δ3
1 for δ � δ3

8>><
>>: (19)
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In Abaqus, the input data are given as tabular values of D as a function of
δ � δ1. Multiple points of values between the δ1 to δ2 and δ2 to δ3 ranges
were necessary for a smooth simulation response.

The cohesive separation in the peel test is predominantly normal separa-
tion, i.e. only small shear separation is encountered. In the cohesive model, it
is assumed that the traction–separation relation for pure shear separation is
the same as for pure normal separation. For mixed mode loading, a damage
initiation criterion of the cohesive element was chosen as quadratic nominal
stress (Abaqus type: QUADS). The damage evolution and hence the fracture
energy is defined to be independent of the mode mix.

At the end of the simulation, the steady-state peel force response was
recorded. Measurement of the root rotation involved an evaluation of the
steady-state displacement field. First the damage variable, D (In Abaqus:
SDEG), was requested along the line of cohesive elements, cf. the solid line in
Figure 6. The cohesive zone is identified as the regionwhere 0<D< 1. The crack
tip was identified as the point in the cohesive zone whereD reaches unity, cf. the
circle in Figure 6. The dashed line in Figure 6 shows the variation of the
(normalized) rotation of the beam element nodes along the horizontal direction.
The root rotation was obtained as the rotation of the beam element node
connected to the cohesive element node located at the crack tip.

When using the FE-model to evaluate the experiments, the steady-state peel
force, P, and the steady-state root rotation, θB, are used as input data. The three
parameters, Gc, σc0 and r, of the cohesive law are optimized to achieve the input
values of P and θB. The fact that P is known means that Ge is known according
to Equation (2). In order to determine the fracture energy, Gc, the plastic energy
dissipation rate, Gp, must be determined, cf. Equation (1). In the evaluation of
experiments (optimization), knowledge of the value of θB, is used to determine
the parameters of the cohesive laws and eventually Gp. In order for this method
to be successful, there must exist a correlation between θB and Gp. To this end,
a numerical study was performed to illustrate the correlation. In that study, the
cohesive strength, σc0, and the shape parameter, r, are varied, while the fracture
energy, Gc, is held constant. The steady-state peel force is recorded and Ge is
calculated according to Equation (2). Equation (1) is used to calculate
Gp ¼ Ge � Gc. The results are shown in Figure 7, where Gp=Gc is plotted as
a function of σc0 for two different values of r, cf. the solid and dashed curves. As
seen, for a given value of r, Gp varies considerably with σc0. For a given value of
σc0, the value of r will also affect the value of Gp, but to a lesser extent. This
shows that Gp is highly dependent on the shape of the cohesive law. It can also
be seen from Figure 7 that θB is highly dependent on σc0 and r, cf. the dotted
and dash-dotted curves. The general trend is that, the higher the values of σc0
and r, the smaller the value of θB and the larger the value of Gp. Thus, Gp and θB
are correlated, which motivates the use of θB as a means to estimate Gp.
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The simulation/optimization process was set such that MATLAB could
automatically take the cohesive parameters and make the calculations for
input data, write the input file, read the necessary outputs, make the calcula-
tions for root rotation, take decision (optimize) based on simulation results
and finally update the input file again until a desired accuracy was reached.

4.2. Optimization framework

The optimization framework of this study was divided into three sequential
steps and is summarized in Figure 8. The method of using an ANN inside
a GA was successfully adopted. A narrow range of the input parameters were

Figure 6. Identification of crack tip and root rotation. Horizontal axis represents horizontal
coordinate x along the cohesive elements, normalized by foil thickness h. Crack tip is located
at x ¼ 0. Cohesive data used in simulations: Gc ¼ 62 J=m2, σc0 ¼ 4:5 MPa, r ¼ 0:7.
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selected for further exploration by ANN and GA, cf. Table 3 in Section 6.
These values were based on the fracture energy estimate obtained with the
beam theory solution described in Section 3, followed by a coarse exploration
by FE-simulation (step 1 in Figure 8).

4.3. Training the ANN

A well trained and validated ANN can replace the necessity of additional costly
FE-simulations. The chosen ranges of cohesive parameter inputs (Gc, σc0, r)
represents the design space (DS) (Table 3). FE-simulation outputs (peel force
and root rotation) at points in the DS (that corresponds to sets of three input
cohesive parameters) were generated. In order to select the distribution of simula-
tion input variables in the DS, the Latin hypercube sampling method[39] was used.
Such 30 different peel simulation input sets representing 30 points in the DS and

Figure 7. Normalized plastic energy dissipation rate, Gp, and root rotation, θB, as functions of
cohesive strength, σc0. Fracture energy used in simulations: Gc ¼ 62 J=m2.
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corresponding outputs were found to be sufficient for initial training of the ANN.
Latin hypercube samplingmethod is good for generating a small yet representative
sample of cases.[40] The trained network was hoped to behave as a close enough
function to output the steady-state peel force and root rotation response when any
set of cohesive parameters is called by. A three-layered feed forward ANN with
back propagation can be used to train any non-linear relationship with arbitrary
accuracy.[41] Hence, an input layer with three neurons, one hidden layer with six

Figure 8. Optimization framework.
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neurons and an output layer with two neurons were adopted. For 30 training
simulations with chosen inputs and output numbers, six hidden layer neurons
were checked to be ideal in the present case. This is more than the maximum
recommended hidden layer neuron number,

Nh ¼ Ns

βðNi þ NoÞ (20)

according to Hagan.[42] Here, Ni= number of input neurons, No = number of
output neurons, Ns = number of samples in training data set and β = an
arbitrary scaling factor usually between 2 and 10. Training, validation and
testing ratio of 85/100, 10/100 and 5/100 were used respectively. Levenberg-
Marquardt backpropagation algorithm in MATLAB optimization toolbox
was found to increase the accuracy of ANN predictions. This ANN training
procedure is depicted in step 2 of Figure 8.

The simulation cases were run in Abaqus 6.14 with an Intel Xeon proces-
sor workstation (6 cores, 2.50 GHz). For beam element model, 30 peel
simulations (90� or 180�) took about 10 hr to complete. When simulation
results were checked with a more detailed 2D FE-model, several times higher
simulation time was required.

4.4. Optimization by the genetic algorithm (GA)

GA is a gradient-free optimization method for global optimization which is
based on stochastic approaches. This is an efficient method for non-linear,
non-differentiable objective functions.[32,43] GA requires a large number of
function evaluations which is a major limitation if the function evaluation
involves time costly simulations.[32] Like in this study, performing that
much simulation can be an obstacle. One solution to this problem is to
replace the simulation by a well trained ANN. The optimization objective
was set to minimize the sum of the mean square difference between ANN
output values and experimental values (peel force and root rotation),

error ¼ 1P2
k¼1 objðkÞ½ �2

X2
i¼1

net Ij
� �� 	ðiÞ � objðiÞ� 	2

(21)

where, obj is the objective values for peel force (obj(1)) and root rotation (obj(2))
(Table 1). Ij is a set of cohesive input parameters where I1 is fracture energy (Gc),
I2 is interfacial strength (σc0) and I3 the ratio (r). The function net Ij

� �� 	
is

Table 1. Experimental steady-state peel force and root rotation.
Peel angle Steady-state force (N) Root rotation

90° 1.38 58°
180° 1.18 79°
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expected to produce simulation alike peel force and root rotation for given input
set Ij from the trained ANN, net. Finally, the squared sum of the differences
between net responses and objectives are normalized by the sum of the square of
both objectives to obtain a relative error.

This classical aggregative method, which combines all objectives into
a weighted sum was used to get a singular optimum solution. GA code from
MATLAB Optimization Toolbox[44] was implemented. Scattered type crossover
and Gaussian mutation function was adopted. The termination criterion was set
to an average change in fitness value less than 1e�7. The ranges of variables used
for optimization were as presented in Table 3.

The new set of optimized parameters after every GA evaluation were used for
additional FE-simulation to test the prediction of the current ANN. If this new
simulation results were found to be acceptable the optimization procedure was
stopped and if not, the new simulation result was added to the ANN training data
set and the network was re-trained. Always the default MATLAB weights and
biases were used for consistent training of the ANNwith additional simulations in
this step. New prediction of optimized cohesive input set from the ANNwas again
tested by FE-simulation and the procedure was repeated until a desired accuracy
was obtained, cf. step 3 of Figure 8. After 10 iterations, optimum cohesive para-
meters for 90� peel were found and results are presented in Section 6. Similarly,
optimum cohesive parameters for 180� peel simulation are obtained. Optimized
cohesive parameter sets for 90� and 180� peel were different by some margin.
Finally, a common cohesive parameter set that satisfies 90� and 180� peel objectives
was sought. It took minimization of the summation of the error functions for 90�

and 180� peel.

5. Test results

Peeling of Al-foil away of LDPE-film was performed at the laboratory of Division
of Structural Mechanics, Lund University, Sweden, and were reported in Bruce
andHolmqvist.[8] An Instron tensile testingmachine was used to perform the peel
tests. The laboratory environment was controlled at 23°C and 50% humidity for
24 hr before specimen preparation and peel testing. Peel specimens were cut into
15 mm wide strips. For convenience of mounting the specimens, the paperboard
that is attached to the laminate during actual package production is kept intact.[8]

Three peel angles were studied; 0�, 90� and 180�. The test setup for peeling of 180�

and 90� tests are illustrated in Figure 9. The 0� peel test was reportedly not possible
to complete because the Al-foil failed before the adhesion could be separated due
to the foil stresses becoming too large. Results on peel force response and root
rotation for 90� and 180� peel were reported in Bruce and Holmqvist.[8] The
results are also given here. Figure 10 shows the force-displacement response.
A summary of the steady-state peel force and root rotation is given in Table 1.
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The measurement of the rotation at the crack front, θB, is indicated in
Figure 11. The root is defined as the point where the foil separates from the
substrate. Note that the substrate exhibits a residual deformation for the
points where peeling has taken place. An on-screen protractor was used to
measure the root rotation angles from the digital photographs.

It should be noted that the peel arm visible in Figure 11 consists of the
aluminium layer, the inside LDPE layer and the inside adhesion layer, cf.
Figure 1. The variation of thickness of the peel arm, especially in Figure 11b, is

Figure 10. Force-displacement response for peel of Al-foil from LDPE.[8] (a) θ ¼ 90� and (b)
θ ¼ 180�.

Figure 9. Experimental setup for peel test.[8] (a) θ ¼ 180� and (b) θ ¼ 90�.
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due to deformation of the inside LDPE layer. The inside LDPE layer is located on
the compressed side of the peel arm, which leads to an increase of the thickness
due to the Poisson’s effect. This increase in thickness is larger near the root where
the curvature is large.

In order to evaluate the peel experiments, the stress–strain relation for the Al-
foil is needed, cf. Sections 3 and 4. Tensile testing of the 6.3 µm thick Al-foil was
performed in the work presented in Sharif and Majeed.[45] Due to anisotropy
inherited during the production process of the substrates and lamination, the
final laminate is anisotropic. The tensile test data were obtained from the
machine direction (rolling direction during production). In subsequent analysis
of peel test data, all the materials were treated as homogeneous and isotropic
with the properties obtained for the machine direction.

Figure 12 shows the stress–strain curve. Analysis of the initial linear elastic
part gives an elastic modulus3 of E ¼ 55 GPa. The Poisson’s ratio of the specific

Figure 12. Stress–strain relation from Al-foil tensile test[45].

Figure 11. Root rotations from experiments.[8] (a) θ ¼ 90� and (b) θ ¼ 180�.

3The value of E differs considerably from bulk values. The reason for the discrepancy is that the thickness of the foil
is less than the normal size of aluminium crystals, cf. Andreasson et al.[3].
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Al-foil has been reported to be 0.3.[45] The yield stress of Al-foil was σy ¼ 63
MPa. For strains higher than 0.008, a behaviour close to linear hardening is
displayed, cf. Figure 12. The linear hardening parameter is estimated to
α ¼ 0:012, cf. Figure 2. Unfortunately, the Al-foil fails at a relatively small
value of the strain, i.e. about 0.014. This is due to local failure emanating from
small cracks at the edges of the foil. The strain due to bending of the foil during
the peel tests, is higher than 0.014. In lack of information about the stress–strain
relation at higher values of the strain, linear hardening is assumed also for strains
higher than 0.014.

6. Results and discussion

The methods described in Sections 3 and 4 are here used to evaluate the peel
experiments reported in Bruce and Holmqvist[8] and in Section 5.

In the beam theory solution of Section 3, the experimental values of the
steady-state peel force, P, the steady-state root rotation, θB, and the peel angle,
θ, are used as the input data. The results for the two different peel angles are
given in Table 2. For both peel angles, the normalized root curvature kB > 2, i.e.
reverse plastic deformation is encountered. This means that Case 3 in Section 3
is used to calculate kB and the plastic dissipation rate, Gp. The method yields
similar values of fracture energy, Gc, for the two peel angles, with the one for
θ ¼ 180� being slightly higher than for θ ¼ 90�.

Based on the estimated fracture energy in Table 2 and a coarse exploration
by FE-simulation (step 1 in Figure 8), a narrow range of the input parameters
were selected for further exploration by ANN and GA, cf. Table 3.

Through the FE-optimization scheme presented in Section 4, the fracture
energy (Gc), interfacial strength (σc0) and the cohesive displacement ratio (r)
of a trapezoidal cohesive law were estimated. The peel root rotation in
addition to the steady-state peel force was considered as optimization objec-
tive. The use of two objectives, increased the chance of the optimum cohesive
parameters to be more unique. A common set of values for (Gc), (σc0) and (r)
could not be achieved that satisfied both the 90� and the 180� test results very

Table 2. Evaluation results for beam model.

θ P (N) θB kB Ge (J/m2) Gp (J/m2) Gc (J/m2)

90� 1.38 58� 31 92 13 79
180� 1.18 79� 157 157 71 86

Table 3. Ranges of variables used for optimization.
Variable Lower bound Upper bound Unit

Gc 55 80 (J/m2)
σc0 3 6 (MPa)
r 0.3 0.7 (−)
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closely, cf. Table 4 and Figure 13. However, when the cohesive parameters
were optimized for a single peel angle individually, a close agreement of peel
steady-state force and root rotation was achieved between FE-simulation and
experimental results cf. Table 4 and Figure 13. The optimized Gc for 180�

peel in this case was higher than that for 90� peel; similar to the analytical
estimation, cf. Table 2.

The cohesive model used here is defined to have a mode-independent
fracture energy. The FE-simulations show that the case of 180� is associated
with a larger part of the fracture energy being related to shear separation than
for the case of 90�. Several earlier studies in different laminates reported
shear fracture energy to be more than that of for normal fracture.[46–48] Thus,
the difference in Gc for different peel angles, suggests that the fracture energy
can be different in normal and shear mode of fracture.

It is noted fromTables 2 and 4 that higher fracture energies are predicted with
the beam theory solution than for the FE-solution. This discrepancy is due to
differences in the estimated plastic energy dissipation rate,Gp. The source of this
discrepancy is the assumption of the beam theory model, that the curvature and
bending moment are maximum at the crack front. This assumption is justified
for a rigid substrate. However, the FE-solution shows that, for the present
compliant substrate, the point of maximum curvature is located well inside the

Figure 13. Optimized simulation force response compared with experiments.

Table 4. FE peel response from optimized cohesive parameters.

Optimization θ Gc (J/m2) σc0 (MPa) r (-) P (N) θB

90� 90� 58 4.2 0.45 1.38 58�

180� 180� 69 5.7 0.68 1.19 78�

90� and 180� 90� 60 5.7 0.30 1.46 56�

90� and 180� 180� 60 5.7 0.30 1.08 79�
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cohesive zone, cf. Figure 14. Due to the direction of the peel force, this behaviour
is more pronounced for 90� peel than for 180� peel. The effect of the fact that the
maximum curvature is located ahead of the crack tip is depicted in Figure 15,
where the moment–curvature history is shown for the beam theory solution
(solid curve) and the FE-solution (dashed curve), respectively. The points
corresponding to the crack tip are denoted B and B0, respectively. The relation
between the two curves can be explained by considering Equation (4). The root
rotations, θB and θB0 , are equal for the two solutions. Also, the peel force, P, is the
same for both solutions. Hence, the right-hand side of Equation (4) is the same
for the two solutions. According to Equation (4), this means that the two curves
in Figure 15 are related such that the areas ADBF and ADB0F0 are equal.

Asmentioned above and seen in Figure 15, the fact that themaximumcurvature
is located inside the cohesive zone, means that the plastic energy dissipation rate,
Gp, is underestimated by the beam theory solution, cf. Figure 3. This issue has
previously been addressed in Kawashita et al.[49] where the curvature is measured

Figure 14. Normalized curvature and bending moment in peel arm from FE-model. Data plotted
as function of horizontal coordinate in undeformed configuration.
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using an experimental method based on high resolution digital photography. The
point of maximum curvature was found to be located inside the cohesive zone and
that point was defined as an effective crack tip. Themeasuredmaximum curvature
was used to find the plastic energy dissipation rate and ultimately the fracture
energy.

In the present study, a different path is taken in that the root rotation is
measured and defined as the rotation of the actual crack tip. This method
does not require high resolution digital photography. From optimization of
the FE-model, the cohesive parameters are determined using the steady-state
peel force and root rotation. Based on the above, we may also conclude that
the beam theory solution may well be used to obtain an estimate of the
fracture energy, but that the more elaborate FE-solution is needed to obtain
more reliable values of the fracture energy. Moreover, the FE-solution pro-
vides additional information about the cohesive properties.

7. Conclusions

In this work, peeling of a metal foil from a compliant substrate is studied. To this
end, two supplementing models, analysing test results from steady-state peel, are
introduced. The input data from steady-state peel test results are the peel force and
the root rotation. The first model is based on large displacement beam theory and
provides analytical expressions for the fracture energy associated with peel. It is
a modification of the method developed in Kinloch et al.[2] Themethod presented
here is based on a linear kinematic hardening model of the peel arm, unlike the
linear isotropic hardeningmodel used in Kinloch et al.[2] As in Kinloch et al.[2] it is
assumed that the curvature and bendingmoment in the peel arm aremaximum at

Figure 15. Normalized bending moment vs normalized curvature for beam theory solution (solid line)
and FE-solution (dashed line). Data for 90� peel.
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the crack tip. The second model is a finite element (FE) model, where beam
elements are used to model the peel arm and the substrate is modelled using
cohesive elements. With this model, the properties of a trapezoidal cohesive law
are extracted from test data. Besides the fracture energy, the properties consist of
the cohesive strength and a shape parameter. A method to determine the cohesive
properties is developed. In the method, an ANN is trained based on simulation
results and integrated inside a GA optimization code.

The twomethods are used to analyse data from tests where an aluminium (Al)
foil is peeled from a LDPE film. The tests are conducted using the peel angles 90�

and 180� and have previously been reported in Bruce and Holmqvist.[8] The
more detailed FE-model revealed that the maximum curvature and bending
moment is located ahead of the crack tip, inside the cohesive zone. Thus, the
assumption of the analytical model introduces errors, which leads to an under-
estimation of the plastic energy dissipation rate. Thus, the fracture energies
determined with the analytical model are slightly higher than for the FE-
model. Both methods indicate that the fracture energy is slightly higher for the
180� peel angle than for 90�. This indicates that the fracture energy is mode-
dependent. Reported orders of magnitude of the fracture energy and cohesive
strength are 60–70 J=m2 and 5 MPa, respectively.
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Appendix A: Energy release rate

This is a generalization of the derivation made in Nilsson[29] to the case of an arbitrary peel
angle, θ. In Nilsson,[29] the special case θ ¼ π=2 was studied. Figure 16a shows the unde-
formed configuration and the current loading and Figure 16b the deformed configuration
and the current loading. The energy release rate can be calculated using the path independent
J-integral, evaluated along the counter-clockwise integration path, C, in the undeformed
configuration. For large displacements,[50]

J ¼
ð
C

Wδ1j � Pji
@ui
@X1

� �
NjdC (A1)

where W is the strain energy density, δij is the Kronecker delta, Pij is the first Piola-Kirchhoff
stress tensor and Ni is the normal vector in the undeformed configuration. Further,

@ui
@Xj

¼ Fij � δij (A2)

Fij ¼ @xi
@Xj

(A3)

where Fij is the deformation gradient tensor. The stress vector for the current load on the
undeformed configuration is given byTi ¼ PjiNj. Thismeans that Equation (A1) can bewritten as
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J ¼
ð
C

WN1 � Ti
@ui
@X1

� �
dC (A4)

Thus, only the parts of C having either N1�0 or a non-zero Ti contributes, for this case only
the loaded end of the foil where

N1 ¼ �1 (A5)

T1 ¼ �P cos θ=bh (A6)

T2 ¼ P sin θ=bh (A7)

The deformation gradient is formed using polar decomposition,

Fij ¼ RikUkj (A8)

where Rik is the rotation tensor and Ukj is the right stretch tensor. For the present case, with
a coordinate system aligned with the peeling arm, cf. Figure 16a,

Rij ¼
cos θ sin θ 0
� sin θ cos θ 0

0 0 1

0
@

1
A (A9)

Uij ¼
λ1 0 0
0 λ2 0
0 0 λ3

0
@

1
A (A10)

where λi are stretches; λ1 in the direction of the peeling arm, λ2 perpendicular to the peeling
arm and λ3 out of the plane. Inserting Equations (A9) and (A10) into Equation (A8) and
comparing the result with Equations (A2) and (A3) yields

@u1
@X1

¼ λ1 cos θ� 1 (A11)

@u2
@X1

¼ �λ1 sin θ (A12)

Now, Equations (A5–A7), (A11) and (A12) are inserted into Equation (A4), resulting in,

J ¼ P
b

λ1 � cos θð Þ � hW (A13)

where λ1 and W are evaluated at the loading point. The stretch is defined as λ1 ¼ 1þ �a,
where �a is the engineering strain.

Figure 16. (a) Current load on undeformed configuration. Integration path for J-integral. (b)
Current load on deformed configuration.
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The present study is confined to cases where no plastic deformation takes place at the
uniaxially loaded end of the peel arm. That is, �a < �y and hW ¼ P�a=2b. Equation (A13)
then takes the form,

J ¼ P
b

1þ �a
2
� cos θ


 �
(A14)

For small peel angles, the term including �a is important. Here, the peel angle, θ, is assumed
to be large enough to ensure that 1� cos θ> > �a=2. Under these conditions the energy
release rate takes the simple form,

Ge ¼ P
b

1� cos θð Þ (A15)

The assumptions made regarding the size of �a is also motivated by the fact that the method
to determine the plastic energy dissipation rate, Gp, is based on the neglection of plastic strain
due to stretching of the peeling arm.

Appendix B: Moment–curvature relations

The bending normal stress in the foil is denoted by σ and is defined as a function of the
distance y from the neutral axis, i.e. σ ¼ σðyÞ. The resulting bending moment,

M ¼ 2b

ðh=2
0

σðyÞydy (B1)

can be represented in normalized form, m, according to

m ¼ M
Mp

(B2)

where

Mp ¼ 1
4
bh2E�y (B3)

is the collapse moment for a non-work hardening material (α ¼ 0). Introduction of the
normalized coordinate,

ζ ¼ 2y
h

(B4)

and the normalized stress,

�σ ¼ σ

E�y
(B5)

means that the normalized bending moment in Equation (B2) takes the form,

m ¼ 2

ð1
0

�σðζÞζdζ (B6)

For a foil subjected to pure bending deformation, the strain distribution is linear through the
thickness of the foil,
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� ¼ y
R

(B7)

where R is the radius of curvature due to bending. The curvature of the bended foil is defined
as 1=R. A normalized curvature, k, is defined in Equation (5). From Equations (B7) and (5), it
follows that

�� ¼ �

�y
¼ kζ (B8)

For monotonic loading (increasing �), the stress–strain relation can be written as

σ ¼ E� for � < �y
E�yf ð�=�yÞ for � > �y

�
(B9)

Here, a bilinear stress–strain relation is used,

f ð�=�yÞ ¼ 1� αþ α�=�y (B10)

Thus, for monotonically increasing k, the normalized stress is given by

�σðζÞ ¼ kζ for 0 < kζ < 1
f ðkζÞ for kζ > 1

�
(B11)

where

f ðkζÞ ¼ 1� αþ αkζ (B12)

Thus, the stress–strain relation σð�Þ shown in Figure 2 is translated to �σðkζÞ
The loading-unloading sequence is divided into four stages related to Figure 3b: (i) Elastic

loading between points O and A. (ii) Plastic loading from point A to point B. (iii) Elastic
unloading between points B and C. (iv) Reverse plastic deformation from point C to D.

(i) Elastic loading (OA): According to Equation (B11), the entire foil is elastically
deformed for k< 1, i.e.

�σðζÞ ¼ kζ for 0 < ζ < 1 (B13)

The normalized bending moment follows from Equation (B6)

mOAðkÞ ¼ 2k
3 for 0 < k < 1 (B14)

(ii) Elastic-plastic loading (AB): When k is monotonically increased beyond k ¼ 1,
a plastic zone is formed starting at the outer fibres of the foil. For a given value of
k, the current interface between the elastic and plastic zones is situated at ζ ¼ 1=k, cf.
Equation (B11). Thus, according to Equation (B11), the stress distribution reads

�σðζÞ ¼ kζ for 0< ζ < 1=k
f ðkζÞ for 1=k< ζ < 1

�
(B15)

The normalized bending moment follows from Equation (B6),

mABðkÞ ¼ 2αk
3

þ ð1� αÞ 1� 1
3k2

� �
(B16)

(iii) Elastic unloading (BC): As the normalized curvature, k, is decreasing from the
maximum value, kB, at point B, all points in the foil are elastically unloading. The
interface between the elastic and plastic zones is situated at ζ ¼ 1=kB. The stress
distribution is given by
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�σðζÞ ¼ kζ for 0 < ζ < 1=kB
f ðkBζÞ þ ðk� kBÞζ for 1=kB < ζ < 1

�
(B17)

The normalized bending moment follows from Equation (B6)

mBCðkÞ ¼ 2k
3
þ ð1� αÞ 1� 2kB

3
� 1
3k2B

� �
(B18)

This solution is valid until reverse plastic deformation is initiated at the outer surface of the
foil. For the kinematic hardening model employed here, the condition for this is
�σðζ ¼ 1Þ ¼ f ðkBÞ � 2. With Equation (B17) the value of k at the onset of reverse plasticity is

kC ¼ kB � 2 (B19)

(iv) Reverse elastic-plastic unloading (CD): As the curvature is decreased below kC, there
are three different zones through the thickness of the foil: (a) the elastic core,

0< ζ < 1=kB, (b) the zone of elastic-plastic unloading, 1=kB < ζ <�ζ, and (c) the zone
of reverse plasticity, �ζ < ζ < 1. For a specified value of k, the position of the interface
between zones (b) and (c) is given by

�ζ ¼ 2
kB � k

(B20)

For a given position, ζ, reversed plasticity starts at the following value of the curvature,

�k ¼ kB � 2
ζ

(B21)

With these new entities, the stress distribution is written as

�σðζÞ ¼
kζ for 0< ζ < 1=kB

f ðkBζÞ þ ðk� kBÞζ for 1=kB < ζ <�ζ
f ðkBζÞ � 2þ ðk� �kÞαζ for �ζ < ζ < 1

8<
: (B22)

and the normalized bending moment follows from Equation (B6)

mCDðkÞ ¼ 2αk
3

þ ð1� αÞ 8

3ðk� kBÞ2
� 1
3k2B

� 1

 !
(B23)

The four moment–curvature relations, mOAðkÞ, mABðkÞ, mBCðkÞ and mCDðkÞ are used in
Appendix C.

Appendix C: Dissipated energy due to plastic bending

From Equation (3) and Figure 3, the plastic energy dissipation rate can be expressed as

Gp ¼ 1
b

ð
M d

1
R

� �
(C1)

where the integration is performed over the entire deformation history. By use of Equations.
(5), (8) and (B2),

Gp

Gn
¼
ð
mðkÞdk (C2)

For Case 2 (1 < kB < 2),
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Gp

Gn
¼
ð1
0

mOAðkÞdkþ
ðkB
1

mABðkÞdkþ
ð0
kB

mBCðkÞdk (C3)

With mOA, mAB and mBC from Appendix B, Equation (8) follows.
For Case 3 (kB > 2),

Gp

Gn
¼
ð1
0

mOAðkÞdkþ
ðkB
1

mABðkÞdkþ
ðkC
kB

mBCðkÞdkþ
ð0
kC

mCDðkÞdk (C4)

With mOA, mAB, mBC and mCD from Appendix B, Equation (11) follows.
The area ADCBF in Figure 4 is mathematically expressed as

ADCBF ¼
ðMB

MD

dM
R

(C5)

It may be expressed in terms of the normalized bending moment, m, defined in Equation
(B2),

ADCBF

bGn
¼
ðmB

mD

kðmÞdm (C6)

where Gn is defined in Equation (9).
For Case 1 and Case 2 (see Section 3), the area is triangular and the slope of DCB is

m0ðkÞ ¼ 2=3, Thus,

ðmB

mD

kðmÞdm ¼ 1
2
m0ðkÞk2B ¼ k2B

3
(C7)

which by use of Equation (C6) is inserted into Equation (4). This results in Equation (7).
For Case 3, it follows from Equation (3) and Figures 3 and 4,

ðmB

mD

kðmÞdm ¼ Gp

Gn
þmBkB �

ð1
0

mOAðkÞdkþ
ðkB
1

mABðkÞdk
0
@

1
A (C8)

where mOA and mAB are given in Appendix B. By use of Equations (4) and (C6), Equation
(10) follows.
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