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Abstract — We apply a nonlinearly preconditioned, quasi-Newton framework to accelerate the numerical
solution of the thermal radiative transfer (TRT) equations. This framework was inspired by the unpublished
method that has existed for years in Teton, Lawrence Livermore National Laboratory’s deterministic TRT
code. In this paper, we cast this iteration scheme within a formal nonlinear preconditioning framework and
compare its performance against other iteration schemes in the framework. With proper choices of iteration
controls for the various levels of the solver, we can recover the standard linearized one-step method, a full
nonlinear Newton scheme, as well as the method in Teton.

In brief, the nonlinear preconditioning TRT scheme formally eliminates the material temperature equation
from the nonlinear system in a nonlinear analog of a Schur complement. This nonlinear elimination step
involves solving a decoupled nonlinear equation for each spatial degree of freedom and is therefore inexpen-
sive. By applying a quasi-Newton iteration scheme on the new system, we obtain a three-level iteration scheme
that is at least as efficient as commonly used TRT schemes. The new method allows full convergence to the
nonlinear backward Euler time-discretized system, increasing accuracy and robustness, while using a similar
number of linear iterations as the more common linearized one-step methods.

Keywords — Nonlinear accelerated inexact Newton method, nonlinear elimination, multigroup thermal
radiation transport.

Note — Some figures may be in color only in the electronic version.

I. INTRODUCTION

There have been many studies on applying nonlinear
solvers to the thermal radiative transfer (TRT) equations.1,2

Here, we discuss a new nonlinear preconditioning framework
for TRT that is inspired by our discrete ordinates solver
Teton.3,4 In this work, we apply the nonlinearly precondi-
tioned framework to the multigroup diffusion approximation
of TRT (Refs. 5, 6, and 7). However, the method more
generally applies to all forms of TRT, independent of spatial
and angular discretizations.

Given the need for an implicit time-stepping scheme,
a major algorithmic challenge is how to efficiently and
robustly solve the resulting nonlinear equations for the
updated temperature and radiation energy density.
Typically, the emission term is linearized with respect to
a current temperature approximation, which results in
a linear transport equation for the updated radiation energy
density that involves an effective scattering term.8 Solving
this nonlinear system requires performing multiple matrix
inversions (or transport sweeps) to fully converge the effec-
tive scattering term. This has given rise to the development of
efficient and robust solvers.8–11 Even with the use of efficient
multigroup linear solvers, the high expense of taking
a Newton step has led to the common practice of performing
a single Newton step for each time step. Unfortunately, not
fully converging the Newton iteration can result in unphysi-
cal violations of the maximum principle for realistic time
steps; see for example Ref. 12 and Sec. V.
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An alternative (unpublished) nonlinear iteration scheme
was developed by Nowak for discrete ordinates TRT.
Importantly, this scheme has approximately the same cost
as performing a single Newton step but fully converges the
nonlinear system. We recently learned that we could cast the
Teton algorithm as a specific variant within the nonlinear
elimination framework developed in Ref. 13. There are entire
families ofmore advanced nonlinear preconditioners14,15 that
will be the focus of future work. In particular, we use the
formalism in Ref. 13 to derive a three-level iteration scheme
that reduces to Nowak’s nonlinear elimination scheme, as
well as the more traditional one-step Newton scheme
described above, by an appropriate choice of iteration para-
meters within the iteration levels. We will explore these two
variants, along with three more in Sec. V.

We will start with an introduction to nonlinear elim-
ination in Sec. I.A, followed by a review of the thermal
radiation diffusion equations and the nonlinear system
formulation in Sec. II. We then proceed with a review
of a method that closely follows previous methods8,11,16

in Sec. III but cast it more explicitly in terms of
a standard Newton iteration in order to apply the non-
linear elimination more easily. The main new algorithm
where we apply nonlinear elimination to the multigroup
radiation diffusion system is described in Sec. IV. We
show some numerical results for two test problems in
Sec. V, followed by some conclusions in Sec. VI.

I.A. Review of Nonlinear Elimination

We start with a general review of the Newton method
and then review the nonlinear elimination method of
Lanzkron et al.13 before introducing the TRT equations.
Assume we have a coupled set of nonlinear equations we
would like to solve, namely,

f ðe;ϕÞ ¼ mðe;ϕÞ
rðe;ϕÞ

� �
¼ 0 ; ð1Þ

where e and ϕ are the independent variables and mðe;ϕÞ
and rðe;ϕÞ are two equations that describe the system.a

Within a Newton iteration scheme, a key step is to solve
the block linear system,

Je;eðel;ϕlÞ Je;ϕðel;ϕlÞ
Jϕ;eðel;ϕlÞ Jϕ;ϕðel;ϕlÞ

" #
δe
δϕ

� �
¼ � mðel;ϕlÞ

rðel;ϕlÞ

" #
;

ð2Þ

for the updates δe and δϕ and then compute the new state
using

elþ1

ϕlþ1

� �
¼ el

ϕl

� �
þ δe

δϕ

� �
; ð3Þ

where the superscript l indicates quantities are evaluated
at the last iteration and the Jacobian matrices are given by

Je;e ¼ qmðe;ϕÞ
qe

; Je;ϕ ¼ qmðe;ϕÞ
qϕ

ð4Þ

and

Jϕ;e ¼ qrðe;ϕÞ
qe

; Jϕ;ϕ ¼ qrðe;ϕÞ
qϕ

: ð5Þ

Note that the first subscript corresponds to one of the
equations, and the second subscript indicates the
derivative.

If one of the block matrices, Je;e; for example, is easy
to invert, we can use a Schur complement to reduce the
block linear system with two variables into a smaller
system with just one unknown, namely,

Jϕ;ϕ � Jϕ;eJ
�1
e;e Je;ϕ

� �
δϕ ¼ �rðel;ϕlÞ

þ Jϕ;eJ
�1
e;e mðel;ϕlÞ : ð6Þ

While this matrix is more complex, the reduction in
dimension can significantly speed up the method. In
fact, this is the basis of most grey and multigroup solvers;
see, for example, Refs. 8, 10, and 11. After δϕ has been
computed, δe can be recovered using

δle ¼ �J�1
e;e mðel;ϕlÞ þ Je;ϕ ϕlþ1 � ϕl

� �� 	
: ð7Þ

It stands to reason that if one of the blocks of the coupled
system is easy to invert at the linear step, it may also be
relatively cheap to solve the related nonlinear problem.
Nonlinear elimination, as presented in Ref. 13, can be
thought of as the nonlinear analog of a Schur comple-
ment, eliminating an unknown from the nonlinear system.
It does this by posing a different nonlinear system to
replace Eq. (1), namely,

f̂ ðϕÞ ¼ rðêðϕÞ;ϕÞ ¼ 0 ; ð8Þ

where êðϕÞ returns the solution mðê;ϕÞ ¼ 0 for a given ϕ.
Lanzkron et al.13 define the formal steps necessary ina Later, these will be the material and radiation balance equations.
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order to ensure that the solution of f̂ ðϕÞ ¼ 0 is the same
as f ðe;ϕÞ ¼ 0, and we direct the reader there for the
details. In this work, we outline the implications for our
multigroup radiation diffusion implementation. In order
to solve Eq. (8) using a Newton method, we introduce an
auxiliary variable δe and apply the chain rule to get

Je;eðê;ϕlÞ Je;ϕðê;ϕlÞ
Jϕ;eðê;ϕlÞ Jϕ;ϕðê;ϕlÞ
� �

δe
δϕ

� �
¼ � 0

rðê;ϕlÞ
� �

: ð9Þ

This is remarkably similar to Eq. (2) except that the
Jacobian matrix and the residual are evaluated at an
advanced state, and one of the residuals is exactly zero.

Another key principle of nonlinear elimination to keep
in mind is that the variable we eliminate is no longer an
independent variable in the algorithm; it is strictly a function
of the variable that was retained. Here, for example, anytime

ϕ is updated, we must solve mðê;ϕlÞ ¼ 0 for the updated ê.
Practically, this means there is one solve for ê before the
outer Newton iterations begin as well as one per Newton
step after ϕ has been updated. This takes the place of
computing the update δe using the linearized Eq. (7). The
full algorithm will be shown in more detail later within the
context of our multigroup radiation solver.

II. THE EQUATIONS

The multigroup radiation diffusion equations5

coupled to a material energy equation are

ρ
qe
qt

¼ �c
X
g

σa;gBg þ c
X
g

σa;gϕg þ Q ð10Þ

and

qϕg

qt
¼ � � c

3σt;g
�ϕg þ cσa;gBg � cσa;gϕg þ Sg ;

ð11Þ

with a boundary condition of

cαgϕg þ βg
c

3σt;g
n̂ � �ϕg ¼ γg ; ð12Þ

where

e = material specific internal energy

ρ = density

t = time

c = speed of light
σa;g = absorption opacity in group g

σt;g = total (absorption plus scattering) group
opacity

Bg = Planck function integrated17 over
group g

ϕg = radiation energy density in group g

Q = arbitrary material source

Sg = arbitrary radiation source for group g

αg, βg, γg = coefficients that determine the type of
boundary condition.

Most of the coefficients can depend on e, ρ, and ϕg in

the most general case, but here we will only consider
their dependence on e and ρ through the material tem-
perature Tðe; ρÞ. In particular, we have these dependen-
cies: σa;gðρ; TÞ, σt;gðρ; TÞ, and BgðTÞ.

There are several simplifying assumptions in the
system we make in this paper. First, without coupling to
hydrodynamics, the density is constant, so further time
dependence on the density will be ignored. Additionally,
we will ignore physical scattering such as Compton
scattering,5 which couples the radiation groups and mate-
rial equation through an additional inelastic scattering
process. This kind of scattering can be incorporated into
this method but has been omitted here for simplicity.

II.A. Nonlinear Function Formulation

If we discretize Eqs. (10) and (11) in time using the
backward Euler method, the nonlinear function we aim to
solve is

f

e

ϕ1

..

.

ϕG

2
66664

3
77775

0
BBBB@

1
CCCCA ¼

ρ
Δt e� en�1
� �þ c

P
g
σa;gBg � c

P
g
σa;gϕg � Q

1
Δt ϕ1 � ϕn�1

1

� �� � � c
3σt;1

�ϕ1 � cσa;1B1 þ cσa;1ϕ1 � S1

..

.

1
Δt ϕG � ϕn�1

G

� �� � � c
3σt;G

�ϕG � cσa;GBG þ cσa;GϕG � SG

2
66666664

3
77777775
¼ 0 : ð13Þ
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It is useful to define some notation, namely,

ϕ ¼ ϕ1 � � � ϕG½ � ; ð14Þ

mðe;ϕÞ ¼ ρ
Δt

e� en�1
� �þ c

X
g

σa;gBg

� c
X
g

σa;gϕg � Q ; ð15Þ

rgðe;ϕgÞ ¼
1

Δt
ϕg � ϕn�1

g

� �
� � � c

3σt;g
�ϕg

� cσa;gBg þ cσa;gϕg � Sg ; ð16Þ

and

rðe;ϕÞ ¼ r1ðe;ϕ1Þ � � � rGðe;ϕGÞ½ �T ; ð17Þ

where

ϕ = vector of unknowns for all the group
radiation energy densities

mðe;ϕÞ = residual of material energy conservation
equation

rgðe;ϕgÞ = residual of the radiation diffusion equa-
tion for group g.

II.B. Block Jacobian Operators

The block Jacobian operator for Eq. (13) is

Jðe;ϕÞ ¼

Je;e½ � Je;ϕ1
� � � Je;ϕG

� 	
Jϕ1;e

..

.

JϕG;e

2
64

3
75

Jϕ1;ϕ1
0 0

0 . .
.

0
0 0 JϕG;ϕG

2
64

3
75

2
6664

3
7775

¼ Je;e Je;ϕ
Jϕ;e Jϕ;ϕ

� �
; ð18Þ

where

Je;e ¼ ρ
Δt

þ c
cv

X
g

σa;g
qBg

qT
; Je;ϕg

¼ �cσa;g ; ð19Þ

Jϕg ;e ¼ � c
cv
σa;g

qBg

qT
; and

Jϕg ;ϕg
¼ 1

Δt
� � � c

3σt;g
�þ cσa;g ;

ð20Þ

and where cv ¼ qe
qT : We have ignored opacity derivatives,

but they could easily be incorporated. In fact, we will
continue the use of the notation for the Jacobian operators
throughout the paper, leaving them abstract, which has
several advantages. First, derivatives of the opacity with
respect to the radiation energy density or material energy
are easy to add and propagate through the entire algo-
rithm. The second advantage is that in our implementa-
tion, each of these terms is treated discretely, and we treat
them as matrix operators. Third, it makes the notation
much more compact. Note that only the Jacobian Jϕ;ϕ
contains spatial derivatives and is therefore more expen-
sive to invert; the Je;e Jacobian matrix only has local
coupling and is therefore easy to invert.

III. NEWTON ITERATION FORMULATION

Given the similarities between a standard Newton
iteration step, given by Eq. (2), and a Newton step with
nonlinear elimination applied, given by Eq. (9), we will
do a detailed review of the derivation for solving Eq. (13)
efficiently by closely following earlier work.8–11,16 Here,
we cast the previous work more explicitly as operations
within a standard Newton iteration so that it is easier to
see the modifications that applying nonlinear elimination
makes to the iteration scheme, shown in Sec. IV.

Inserting Eqs. (13) through (18) into Eq. (2), we get

Je;e Je;ϕ
Jϕ;e Jϕ;ϕ

� �
δe
δϕ

� �
¼ � mðel;ϕlÞ

rðel;ϕlÞ
� �

: ð21Þ

We first eliminate the material energy variable from the
linear system, which is easy to do since there are no spatial
operators in the material equation. We solve for δe symbo-
lically in Eq. (21) using a Schur complement to get

δle ¼ �J�1
e;e mðel;ϕlÞ þ Je;ϕδ

l
ϕ

h i
; ð22Þ

which is the application of the generic Eq. (7) to our
multigroup TRT system. We can then insert Eq. (22)
into the second row of Eq. (21) to get an equation for

δlf , namely,

Jϕ;ϕ � Jϕ;eJ
�1
e;e Je;ϕ

� �
δlϕ ¼ �rðel;ϕlÞ

þ Jϕ;eJ
�1
e;e mðel;ϕlÞ: ð23Þ

To connect this compact notation with previous work, we
take just one row of this matrix for group g,
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Jϕg ;ϕg
δϕl

g
� Jϕg ;eJ

�1
e;e

X
g0

Je;ϕg0δϕl
g0

¼ �rgðel;ϕl
gÞ þ Jϕg ;eJ

�1
e;e mðel;ϕlÞ ; ð24Þ

and then insert the definitions of δlϕg
¼ ϕlþ1

g � ϕl
g,

mðe;ϕÞ, and rgðe;ϕgÞ, as well as Jϕg ;ϕg
and Je;ϕg

, to get

1

Δt
ϕlþ1
g �� � c

3σt;g
�ϕlþ1

g þcσa;gϕlþ1
g þJϕg ;eJ

�1
e;e

X
g0

cσa;g0ϕlþ1
g0

¼ 1

Δt
ϕn�1
g þcσa;gBgþSgþJϕg;eJ

�1
e;e

ρ
Δt

el�en�1
� �þc

X
g0

σa;g0Bg0 �Q

 !
:

ð25Þ

All properties, T , Bg, σa;g, and σt;g; are evaluated using el

unless otherwise annotated. This is the same as Eqs. (6) and
(7) in Ref. 8. The rectangular operator Je;f collapses
a change in the multigroup energy density space into an
effect on the material energy equation, and the operator
Jf;eJ�1

e;e maps changes from the material energy equation to

the radiation diffusion equation space. This factor, Jf;eJ�1
e;e ,

is the same as the so-called Fleck factor in Eq. (4.1b) in Ref.
10 and the product of Eqs. (7c) and (7d) in Ref. 8.

III.A. Grey Acceleration

Equation (23) can be expensive to solve because it is
large (coupling all groups together) and can be ill-
conditioned for large time steps or large opacities. Without
physical scattering, each of the radiation groups is only
coupled via the absorption and reemission through the
material; any information about the radiation spectrum is
lost once it is converted into material energy. This fact is
exploited in many numerical methods to develop efficient

solvers.8,10 Inserting δlϕ ¼ ϕlþ1 � ϕl into Eq. (23), we get

Jϕ;ϕ � Jϕ;eJ
�1
e;e Je;ϕ

� �
ϕlþ1

¼ Jϕ;ϕ � Jϕ;eJ
�1
e;e Je;ϕ

� �
ϕl � rðel;ϕlÞ

þ Jϕ;eJ
�1
e;e mðel;ϕlÞ : ð26Þ

Following Refs. 8 and 11, we split the solution into two
components,

ϕlþ1 ¼ ϕ? þ ϕy ; ð27Þ

where we choose ϕ? to be the solution to a system where
the group-to-group scattering term is lagged and therefore
easier to solve, namely,

Jϕ;ϕϕ? ¼ Jϕ;ϕϕy � rðel;ϕlÞ þ Jϕ;eJ
�1
e;e mðel;ϕlÞ : ð28Þ

For one group, Eq. (28) expands and simplifies to

1

Δt
ϕ?
g � � � c

3σt;g
�ϕ?

g þ cσa;gϕ?
g ¼ �Jϕg;eJ

�1
e;e

X
g0

cσa;g0ϕl
g0

þ 1

Δt
ϕn�1
g þ cσa;gBg þ Sg þ Jϕg ;eJ

�1
e;e

ρ
Δt

el � en�1
� �þ c

X
g0

σa;g0Bg0 ðTlÞ � Q

 !
:

ð29Þ

If we then insert ϕlþ1 ¼ ϕ? þ ϕy into Eq. (26) and sub-
tract Eq. (28), we get

Jϕ;ϕ � Jϕ;eJ
�1
e;e Je;ϕ

� �
ϕy ¼ Jϕ;eJ

�1
e;e Je;ϕ ϕ? � ϕl

� �
;

ð30Þ

or for just one group, we get

Jϕg ;ϕg
ϕyg � Jϕg ;eJ

�1
e;e

X
g0

Je;ϕg0ϕ
y
g0

¼ Jϕg ;eJ
�1
e;e

X
g0

Je;ϕg0 ϕ?
g0 � ϕl

g0

� �
: ð31Þ

This is no easier to solve than our original problem Eq.

(26). Physically, ϕy represents the photons that have been
absorbed and then reemitted by the material within this
Newton step.b Inspecting the right side of Eq. (31), the
sum over groups eliminates the detailed information of
the spectral error (groupwise error) that was made, and
the reemitted photons represented by ϕ have the same
spectrum, or relative magnitude between the groups, for
any source term. This suggests that if we could approx-
imate the spectral shape somehow, it would be possible to
average the multigroup Eq. (31) for one unknown. In fact,
this has been the study of many papers,8,11 and we con-
tinue to closely follow those derivations.

b In methods that only do one Newton step, we often think of this
as the absorption and reemission for the entire time step.
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We can define a group sum of the correction term,

ϕy ¼Pg ϕ
y
g , and a prolongation operator that recovers

the group values, namely,

ϕyg ¼ ςgϕ
y : ð32Þ

Formally, if we insert Eq. (32) into Eq. (31) and sum over
groups, we get

X
g

Jϕg ;ϕg
ςg �

X
g

Jϕg ;eJ
�1
e;e

X
g0

Je;ϕg0 ςg0

" #
ϕy

¼
X
g

Jϕg ;eJ
�1
e;e

X
g0

Je;ϕg0 ϕ?
g0 � ϕl

g0

h i" #
: ð33Þ

Some approximation so that we can easily estimate ςg is

needed in order to make using Eq. (33) practical. Morel
et al.8 use an infinite medium solution to Eq. (31) to compute

ςg �
σa;g

qBg
qT

1
Δtþcσa;gP

g0

σa;g0
qBg0
qT

1
Δtþcσa;g0

: ð34Þ

Because we form discrete Jacobian matrices from Eqs. (19)
and (20) and perform all operations on the block matrices, it
was difficult to interpret how to apply Eq. (34) in this
context. Instead, we first ignore the group-to-group cou-
pling and solve

Jϕg ;ϕg
ϕ̂g ¼ Jϕg ;eJ

�1
e;e

X
g0

Je;ϕg0 ϕ?
g0 � ϕl

g0

� �
ð35Þ

for ϕ̂g. We can think of ϕ?
g as the portion of photons of the

final solution that have not been absorbed and reemitted,

which is often called the uncollided flux. In that light, ϕ̂g

can be thought of as the first-collided photons, whose
spectrum should be the same as subsequent generations.
We then compute the scaling pointwise by computing

ςg �
ϕ̂gP

g0
ϕ̂g0

: ð36Þ

Each time a grey solve of Eq. (33) for ϕy is needed in the
algorithm, we first solve Eq. (35), compute a spectrum
using Eq. (36), and then compute a new group-collapsed
matrix to use when solving Eq. (33).

Once ϕ? and ϕy have been computed, we compute

ϕlþ1 using

ϕlþ1
g ¼ ϕ?

g þ ςgϕ
y : ð37Þ

With our final estimate of ϕlþ1
g , we can then compute the

material update using

elþ1 ¼ el � J�1
e;e

ρ
Δt

el � en�1
� �þ c

X
g

σa;gBg � c
X
g

σa;gϕlþ1
g � Q

" #
:

ð38Þ

III.B. The Nonlinear Multifrequency Grey Algorithm

We now assemble the details presented in this section into
the full iteration scheme for the standard Nonlinear
Multifrequency Grey (NLMFG) iteration, shown in
Algorithm 1. This is similar to Algorithm 1 in Ref. 8,
but we also include the obvious extension of adding an
outer loop to take multiple Newton steps, instead of just
one, in order to fully converge the nonlinear system.

Algorithm 1: NLMFG: Nonlinear Multifrequency-Grey
iteration

l ¼ 0;

set ϕl ¼ ϕn�1;
// Outer nonlinear iteration to converge Eq. (13)
repeat

// Multigroup linear iteration to converge Eq. (25)
repeat
solve for ϕ?

g using Eq. (29);

compute ςg by solving Eqs. (35–36);

solve for a grey correction ϕy using Eq. (33);

compute the ϕlþ1
g ¼ ϕ?

g þ ςgϕ
y;

until
P

g ϕ
lþ1
g � ϕl

g




 


 < εGj
P

g ϕ
lþ1
g j;

solve for an updated elþ1 by using Eq. (38);
l ¼ l þ 1;

Until elþ1 � el


 

 < εejelþ1j;

Variants of this algorithm are possible, such as not fully
converging either the outer or the inner loops. These var-
iants will be explained and their efficacy explored in Sec. V.
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IV. NONLINEAR ELIMINATION APPLIED TO MULTIGROUP
RADIATION DIFFUSION

We will now follow the outline in Sec. I.A and apply it
specifically to our multigroup radiation system in Eq. (13).
This section is the main new work of this paper. Because of
the similarity between the Newton step needed to solve the
full system f ðe;ϕÞ using Eq. (2) and the reduced system

f̂ ðϕÞ ¼ f ðêðϕÞ;ϕÞ using Eq. (9), we use the results from
Sec. III but exploit the fact that mðê;ϕÞ ¼ 0 to simplify
several of the equations. Doing this also leads to some
insights into how the method works.

The full linearized multigroup system in Eq. (23)
becomes

Jϕ;ϕ � Jϕ;eJ
�1
e;e Je;ϕ

� �
δlϕ ¼ �rðel;ϕlÞ ; ð39Þ

or equivalently, the expanded Eq. (25) becomes

1
Δt ϕ

lþ1
g � � � c

3σt;g
�ϕlþ1

g þ cσa;gϕlþ1
g þ Jϕg ;eJ

�1
e;e

P
g0
cσa;g0ϕlþ1

g0

¼ 1
Δt ϕ

n�1
g þ cσa;gBg þ Sg þ Jϕg ;eJ

�1
e;e

P
g0
cσa;g0ϕl

g0 :

ð40Þ

Note that only the absorption term is corrected for the
reemission in this new method. The acceleration of the
nonlinear elimination removes the need to scale the emis-

sion in the Newton step. As we converge, ϕlþ1
g � ϕl

g, and

the pseudoscattering terms vanish from Eq. (40).
The multigroup solve for ϕ?

g in Eq. (29) reduces to

1
Δt ϕ

?
g � � � c

3σt;g
�ϕ?

g þ cσa;gϕ?
g ¼ 1

Δt ϕ
n�1
g þ cσa;gBg þ Sg :

ð41Þ

Moving the work of the pseudoscattering to the grey
equation in addition to performing the nonlinear elimina-
tion has transformed Eq. (29) back into a straightforward
evaluation of the original Eq. (16). The grey acceleration
step Eq. (33) does not change since it is only correcting
for lagging the effective scattering term, which is the
same in both cases.

The final Nonlinear Multifrequency Grey iteration
with Nonlinear Elimination (NLMFG-NE) method is out-
lined in Algorithm 2 and is remarkably similar to
Algorithm 1. The key difference is that there is
a nonlinear solve for the material energy equation initi-
ally and at the end of each Newton step instead of the
update to the material energy using Eq. (38).

Algorithm 2: NLMFG-NE: Nonlinear Multifrequency
Grey iteration with Nonlinear Elimination

l ¼ 0;

set ϕl ¼ ϕn�1;

solve for el using mðel;ϕlÞ ¼ 0 using Eq. (15);
// Outer nonlinear iteration to converge Eq. (13)
repeat

// Multigroup linear iteration to converge Eq. (40) (or
Eq. (25))
repeat
solve for ϕ?

g using Eq. (41) (or Eq. 29);

compute ςg by solving Eqs. (35–36);

solve for a grey correction ϕy using Eq. (33);

compute the ϕlþ1
g ¼ ϕ?

g þ ςgϕ
y;

until jPg ϕ
lþ1
g � ϕl

gj < εGj
P

g ϕ
lþ1
g j;

solve Eq. (15) for an updated elþ1;
l ¼ l þ 1;

until jelþ1 � elj < εejelþ1j;

Algorithm 1 could almost be written in terms of
Algorithm 2 with the proper choices of iteration controls
when solving for ê in mðê;ϕÞ ¼ 0. In fact, Eq. (38) is just
one iteration of a Newton method to solve Eq. (15). The
main difference that cannot be resolved by a clever setting
of tolerances is that in the nonlinear elimination method,
there is one nonlinear solve for ê using Eq. (15) before the
outer Newton iterations begin, while in Algorithm 1 there is
no such application of Eq. (38) before the main loop.

Also note that either Eq. (25) or Eq. (40) along with Eq.
(29) or Eq. (41) can be used in this iteration scheme. If you
already had a method to solve Eq. (13) using a standard
Newton iteration implemented with a variant of Algorithm
1, it can be accelerated easily with this method. In practice,
we use Eqs. (25) and (29). In addition to simplifying our
implementation, we have also noticed more robustness given
that the nonlinear elimination is only applied approximately
so that mðê;ϕÞ � 0.

In Sec. III.A, we saw how the grey acceleration is used
to accelerate the convergence of the absorption and reemis-
sion of photons within the Newton step. This absorption and
reemission appear in the linear Newton step and can be
applied in a linear manner, but the grey acceleration does
nothing to accelerate the emission and reabsorption. The
nonlinear elimination is exactly targeted at the emission and
reabsorption component of the Newton iteration. But, since
the emission term is fundamentally nonlinear through the
Planck function, it requires a nonlinear method in order to
address it. This implies that if nonlinear elimination is used,

NONLINEAR ELIMINATION APPLIED TO RADIATION DIFFUSION · BRUNNER et al. 7

NUCLEAR SCIENCE AND ENGINEERING · VOLUME 00 · XXXX 2020



we must fully converge the nonlinear problem; a one-step
Newtonmethod is insufficient. One of the major reasons for
this is that energy is only conserved between the radiation
and material equations at full convergence of the nonlinear
system. The emission term cσa;gBg is evaluated using two
different states in Eq. (41) and after solving Eq. (15) for the
updated ê in the nonlinear acceleration step; upon conver-
gence in the outer Newton iterations, these become the
same.

V. RESULTS

We will now test the different algorithm variations on
two test problems. These problems are based on the
radiation flow down a pipe used by Morel et al.8 The
first variant is a zero-dimensional problem where the
radiation and material start out of equilibrium. This pro-
blem allows us to study the temporal convergence of the
different algorithms. The second problem is a radiation
flow problem to show that the method works in multiple
dimensions as well.

The methods outlined in Algorithm 1 and 2 allow for
various choices of how many iterations are performed for
each loop. Fully converging the outer loop gives the exact
solution to the nonlinear time and space discretized system.
Alternatively, just one outer iteration can be performed. If
the time steps are small enough, this can be fast, but there is
a stability constraint on this approximate solution to the
nonlinear equations that can be violated. The linear system
at each Newton iteration can be fully converged, or it can be
approximately solved with just one multigroup iteration in
an inexact Newton method. The final option is whether or
not to apply the nonlinear elimination.

Not all combinations of these options yield desirable
methods. Without nonlinear elimination, in order to con-
serve energy, either the outer Newton or inner linearized
multigroup system must be fully converged. With nonlinear

elimination, the outer Newton iterations must be converged
in order to conserve energy. Table I lists the variations we
studied and provides shorthand monikers as well as the
solver tolerance values for each level of the algorithm.
The general spirit behind the choices of tolerances is that
the innermost loops are converged the tightest and that the
relative tolerances get looser with each level. For the pro-
blems run here, fairly tight tolerances were chosen. Not
shown in Table I is the tolerance on the inner nonlinear
solves for mðê;ϕÞ ¼ 0, which is set to εNE¼ 10�12.
A tolerance of infinity means exactly one step was taken.
For each diffusion matrix solve, we used the sparse direct
linear solver UMFPACK (Ref. 18), so there is no tolerance
control on each linear solve.

For any given spatial mesh and time step size, there is
some discretization error. The Linear Multifrequency Grey
(LMFG) method injects additional error relative to any of
the other methods since it does not attempt to fully con-
verge the nonlinear system. We will see that this leads to
the LMFGmethod needing smaller time steps than the fully
converged methods to achieve the same solution quality.

We will measure the expense of each method in terms
of the number of linear iterations it performs on the multi-
group system in order to solve Eqs. (29) and (35), and Eq.
(33) once. For our ten group problems here, this means 21
mesh-sized diffusionmatrices to solve. These methods trade
doing more inner linear iterations for doing more outer
iterations. We assume the other work, including solving
Eq. (15) for the nonlinear elimination variants, is negligible.

Both problems use a common form for the material
properties but use different coefficients. Our material model
has a simple proportional relationship between the specific
internal energy and the material temperature, namely,

e ¼ cvT ; ð42Þ

where cv is known as the specific heat. The opacity has
the following form:

TABLE I

Monikers for Algorithm Variations and Tolerances

Name Outer Newton, εe Inner Multigroup, εG
Nonlinear
Elimination

LMFG: Linear Multifrequency Grey 1 10�11 Algorithm 1
NLMFG: Nonlinear Multifrequency Grey 10�10 10�11 Algorithm 1
NLMFG-NE: NLMFG iteration with Nonlinear Elimination 10�10 10�11 Algorithm 2
INMFG: Inexact Newton Multifrequency Grey 10�10 1 Algorithm 1
INMFG-NE: INMFG with Nonlinear Elimination 10�10 1 Algorithm 2
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σa;g ¼ σt;g ¼ ρCTAð�νgÞB ; ð43Þ

where �νg ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
νgνgþ1

p
is the group-averaged photon

energy, evaluated at the geometric average of the group
bounds defining group g.

V.A. Infinite Medium Equilibration Problem

The first problem is an infinite medium problem where
the radiation field starts hotter than the material, and then the
two fields come into equilibrium. Thismocks up the temporal
behavior within a zone that is being heated by neighboring
zones in multidimensional problems. The initial radiation
field has a Planckian distribution at Trad ¼ 0:3 keV, and the
material starts at Tmat ¼ 0:001 keV, where 1 keV =
11604518:12 K. The density is ρ = 0.05 g/cm3 = 50 kg/m3.
The material specific heat is cv ¼ 0:01 jerk/g·keV, where 1
jerk = 109 J. The speed of light is c = 299:792458 cm/shake
(sh) = 299792458 m/s, and 1 s = 108 sh. For the opacity
model, we set C ¼ 10, A ¼ �1, and B ¼ �3. We use ten
logarithmically spaced groups with bounds (in kilo-electron-
volts) of (5� 10�3, 5� 10�2:6, 5� 10�2:2, 5� 10�1:8,
5� 10�1:4, 5� 10�1, 5� 10�0:6, 5� 10�0:2, 5� 100:2,
5� 100:6, and 5� 101). The time step size Δt was held
fixed for a given run, and we ran multiple simulations redu-
cing the time step to check for temporal convergence starting
at Δt¼ 10�2 sh down to Δt¼ 10�7 sh by factors of 10. The
problem was run out to t ¼ 0:02 sh.

Figure 1 shows the temperature histories for this
problem for the LMFG and fully converged nonlinear
methods; all variations that fully converge the outer non-
linear loop get the same results. For large time steps, the
LMFG method is not stable and shows violations of the

maximum principle. This has been explored extensively
in the context of Implicit Monte Carlo; see, for example,
Ref. 12. The largest time step with a stable LMFG solu-
tion is Δt¼ 10�6 sh, and it does not appear converged
until at least Δt¼ 10�7 sh. On the other hand, fully con-
verging the outer nonlinear iterations is always stable, if
inaccurate. The solution appears converged at Δt¼ 10�5

sh, which is larger than where LMFG is stable.
For the solutions at Δt¼ 10�5 sh and Δt¼ 10�6 sh,

we plot the total number of multigroup linear iterations in
Fig. 2. Generally, the LMFG method is the cheapest by
this metric, but that ignores the solution quality shown in
Fig. 1. Fully converging both the outer Newton and inner
linear system (NLMFG) is clearly the most expensive,
which was also observed by Brown and Woodward1 and
Lowrie.2 Doing an inexact Newton step with only one
inner linear multigroup solve also performs better. The
nonlinear elimination variants NLMFG-NE and Inexact-
Newton Multifrequency Grey with Nonlinear Elimination
(INMFG-NE) performed better than the unaccelerated
versions. Once the initial transient has passed, INMFG-
NE has the same cost as LMFG. This is the true value of
this method. It rapidly converges to the fully converged
nonlinear solution when necessary, and it automatically
transitions to an algorithm with the same cost as LMFG
when the time steps are small enough for that method to
work reasonably well.

Table II shows the cumulative number of linear iterations
for each method needed to get to the goal time of t ¼ 0:02 sh
for the different time step sizes. By far the most effective way
to reduce iterations and run time is to increase the time step
size, as long as the solution is accurate. Also, note that
INMFG-NE has the best performance for all the fully con-
verged nonlinear solutionmethods, for the given discrete time

(a) (b)

Fig. 1. Temperature with two of the iteration methods. All of the fully converged nonlinear methods get the same solutions, so
only one is shown. The stability limits of LMFG are clearly violated for large time steps. Solid lines are the radiation temperature,
and dashed lines are the material temperature.
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and space system. In fact, even when LMFG is stable and
producing reasonable results, INFMG-NE costs at most 40%
more. Note that for Δt > 10�6 sh, LMFG gives unphysical
solutions, so these low iteration counts are not meaningful.

V.B. Two-Dimensional Radiation Flow

We now test the methods on a multidimensional pro-
blem based on the one in Ref. 8 with one slight modifica-
tion. Here, we will run in Cartesian X,Y coordinates while
the original version used cylindrical R,Z coordinates.

Figure 3 shows the overall geometry together with sam-
ple solutions for the radiation and material temperatures. The
problem is defined on a rectangle from 0cm < x < 7cm and
0cm < y < 1cm. The mesh has uniform zone zones of 0:1
cm except in the y direction between 0:5cm < y < 0:6cm,
where at y ¼ 0:5 cm, the zone size was 0:001 cm. Each
successive zone was 1:47392 times bigger than the previous
zone for a total of ten zones across this region.

The material in the region y < 0:5 cm has a density of
ρ ¼ 0:01 g/cm3, and for y > 0:5 cm, the density is
ρ ¼ 2:0:g/cm3. The specific heat is cv ¼ 0:05 jerk/g·keV.
The opacity model coefficients are C ¼ 10, A ¼ �0:5, and

B ¼ �3. There are ten radiation groups with group bounds
in kilo-electron-volts of (10�4, 10�3:5, 10�3, 10�2:5, 10�2,
10�1:5, 10�1, 10�0:5, 100, 100:5, and 101).

Reflecting boundary conditions were applied on all
boundaries, except on the left at x ¼ 0 cm and for y < 0:5
cm, where an isotropic incoming flux injected energy into the
problem. For the reflecting boundaries, the coefficients in Eq.
(12) are αg ¼ 0, βg ¼ 1, and γg ¼ 0. The incoming flux

boundary source linearly increases from Tsource ¼ 0:05 keV
to Tsource ¼ 0:5 keVover the range 0 < t < 2 sh and remains
constant after the initial ramp. For the coefficients in Eq. (12),
this implies αg ¼ 1=2, βg ¼ 1, and

γgðtÞ ¼ 2Bg max 0:5; ð0:5� 0:05Þ=2tð Þð Þ : ð44Þ

We tested the algorithms with three different time step sizes
of Δt ¼ 0:001 sh, Δt ¼ 0:01 sh, and Δt ¼ 0:1 sh. The goal
time is t ¼ 5 sh, which is shorter than the goal time of 20 sh
in Ref. 8. At Δt ¼ 0:1 sh, the LMFG method is unstable and
showed overheating in the material much like in the infinite
medium problem. This can be seen in Fig. 4. All of the
methods that fully converge the nonlinear system get the

(a) Δ t = 10–6 sh (b) Δ t = 10–5 sh

Fig. 2. Linear iterations per time step, as measured by doing one solve for each of the diffusion equations in Eqs. (29), (35), and (33).

TABLE II

Cumulative Linear Iterations to Reach t ¼ 0:02 sh in the Infinite Medium Problem.

Δt (sh) LMFG NLMFG NLMFG-NE INMFG INMFG-NE

10�7 276 242 488 653 476 482 412 338 400 183
10�6 40 000 71 009 60 841 50 170 40 602
10�5 4000 10 534 9107 6351 5469
10�4 400 1502 1404 845 775
10�3 40 233 226 128 124
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same, more physically realistic, solution. To more quantita-
tively demonstrate this, the radiation and material tempera-
tures along the line y ¼ 0:2 cm are shown at t ¼ 1 sh for
several methods and time step sizes in Fig. 5. It is clear that
the problem is not converged in time at the larger time step
size, but the fully converged solutions are capturing the

timescale of theMarshak wave traveling through the material
reasonably well.

The per time step linear iteration counts are shown for the
Δt ¼ 0:01 sh in Fig. 6. For this problem,we see again that the
INMFG and INMFG-NE methods outperform the NLMFG
and NLMFG-NE methods. The nonlinear elimination only

Fig. 3. Geometry of the two-dimensional radiation flow problem. There is a low-density material surrounded by a high-density
material, with a symmetry plane at y ¼ 0. The top half shows the material temperature at t ¼ 1 sh, and the bottom half shows the
radiation temperature at the same time but reflected about the x-axis. See Fig. 5 for a more quantitative view of the temperatures.

Fig. 4. Material temperature at Δt ¼ 0:1 sh. The unstable LMFG method is on top. All of the other methods that fully converge
the nonlinear system produce the solution on the bottom.

Fig. 5. The material and radiation temperatures in the
pipe problem at t ¼ 1 sh along the line y ¼ 0:2 cm. The
solutions of LMFG and INMFG-NE are shown for Δt ¼
0:1 sh and of INMFG-NE for Δt ¼ 0:001 sh.

Fig. 6. The number of linear iterations per time step for
each of the different methods at Δt ¼ 0:01 sh. Note that
the nonlinear elimination variants only marginally
improve the unaccelerated methods for this problem, so
the curves are nearly the same.
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marginally improves the convergence in this problem. The
cumulative total number of iterations to reach the end time of
t ¼ 5 sh is shown in Table III. This demonstrates that for
a variety of time step sizes, INMFG-NE has marginally more
cost than LMFG at increased stability and accuracy. In fact,
given the particular tolerances selected, it appears that the first
iteration of the nonlinear methods was just above the toler-
ance level; slightly loosening the toleranceswould havemade
the nonlinearmethods converge in just one iteration too. Fully
converging both the inner and outer iteration loops in
NLMFG and NLMFG-NE is dramatically more expensive,
which mirrors the previous observations in Refs. 1 and 2.
Note that for Δt ¼ 0:1 sh, LMFG gives unphysical solutions.

VI. CONCLUSIONS AND FUTURE WORK

We recently discovered that we could apply the non-
linear elimination method in Ref. 13 to describe the
algorithm in our discrete ordinates TRT code Teton.
This has led to a mathematical framework for describing
a family of accelerated nonlinear solution methods. By
proper choices of tolerances at various levels of the new
framework, we can recover the standard LMFG method
in Refs. 8 and 11, the (previously unpublished) algorithm
in Teton that we call Inexact-Newton Multifrequency-
Grey with Nonlinear Elimination (INMFG-NE), as well
as several other algorithms.

The INFMG-NE method’s efficacy is due to three
key algorithmic components. First, a standard grey accel-
eration step significantly speeds up convergence of the
absorption and reemission of photons within a Newton
iteration. Second, the new nonlinear elimination step
effectively accelerates the emission and reabsorption
within a Newton step. Because the emission is fundamen-
tally nonlinear through the Planck function, it must be
handled with a nonlinear method. Third, combining the
grey acceleration and nonlinear elimination steps with an
inexact Newton method allows only a single multigroup
linear iteration per Newton step to be robust. All three in

combination makes fully converging the nonlinear system
practical.

In two test problems, we find (unsurprisingly) that
fully converging the nonlinear system (with a given space
and time discretization error) allows for larger time steps
and better accuracy than the linearized one-step method
LMFG. We also find that the traditional NLMFG method,
which fully converges both the multigroup linear system
for each Newton step and the outer nonlinear iterations, is
prohibitively expensive. By combining the three accel-
eration techniques that make up INMFG-NE, we find that
we can compute a fully converged nonlinear solution
with very nearly the same cost as converging only the
inner multigroup linear system in the LMFG method,
particularly given that the increased robustness and accu-
racy of the fully converging nonlinear system allows for
larger time steps. The INMFG-NE method seamlessly
transitions from doing more iterations where needed for
large nonlinear excursions to an algorithm with the cost
of the LMFG method when the problem could be robustly
linearized.

In the future, we plan to formally apply this method
to the full Boltzmann transport equation, including inelas-
tic Compton scattering. We are also excited to investigate
the nonlinear preconditioning literature13–15 for additional
methods that may be more effective for solving the ther-
mal radiation transport equations.
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