
Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2018-06-01

Isolation of Temporary Storage in High
Performance Computing via Linux Namespacing
Steven Tanner Satchwell
Brigham Young University

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Science and Technology Studies Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Satchwell, Steven Tanner, "Isolation of Temporary Storage in High Performance Computing via Linux Namespacing" (2018). All
Theses and Dissertations. 6873.
https://scholarsarchive.byu.edu/etd/6873

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F6873&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F6873&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F6873&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F6873&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F6873&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=scholarsarchive.byu.edu%2Fetd%2F6873&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/6873?utm_source=scholarsarchive.byu.edu%2Fetd%2F6873&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

Isolation of Temporary Storage in High-Performance Computing

via Linux Namespacing

Steven Tanner Satchwell

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Chia Chi Teng, Chair
Joseph Jones Ekstrom
Derek Lloyd Hansen

School of Technology

Brigham Young University

Copyright © 2018 Steven Tanner Satchwell

All Rights Reserved

ABSTRACT

Isolation of Temporary Storage in High-Performance Computing
via Linux Namespacing

Steven Tanner Satchwell
School of Technology, BYU

Master of Science

Per job isolation of temporary file storage in High Performance Computing (HPC)
environments provide benefits in security, efficiency, and administration. HPC system
administrators can use the mount_isolation Slurm task plugin to improve security by isolating
temporary files where no isolation previously existed. The mount_isolation plugin also increases
efficiency by removing obsolete temporary files immediately after each job terminates. This
frees valuable disk space in the HPC environment to be used by other jobs. These two
improvements reduce the amount of work system administrators must expend to ensure
temporary files are removed in a timely manner.

Previous temporary file removal solutions were removal on reboot, manual removal, or
removal through a Slurm epilog script. The epilog script was the most effective of these,
allowing files to be removed in a timely manner. However, HPC users can have multiple
supercomputing jobs running concurrently. Temporary files generated by these concurrent or
overlapping jobs are only deleted by the epilog script when all jobs run by that user on the
compute node have completed. Even though the user may have only one running job, the
temporary directory may still contain temporary files from many previously executed jobs,
taking up valuable temporary storage on the compute node. The mount_isolation plugin isolates
these temporary files on a per job basis allowing prompt removal of obsolete files regardless of
job overlap.

Keywords: bind mounts, mount namespaces, Slurm, supercomputing, HPC, temporary storage

ACKNOWLEDGEMENTS

Many thanks to Ryan Cox, Operations Director for the Fulton Supercomputing Lab

(FSL), and other FSL members for providing supercomputing resources and valuable insight on

Slurm configurations.

A special thanks to my graduate committee for their continued guidance and insight on

presenting a meaningful contribution work to the industry. My committee and other BYU IT

faculty support extended beyond my thesis as well. My thanks to them in helping me find student

employment to help meet my financial needs throughout my graduate career. I also extend my

thanks to BYU and other IT program donors for additional financial support through scholarship.

Finally, thanks to my family for their patience, encouragement, and love through my

pursuit of higher education. Their faith in my abilities has been a driving force in my life for as

long as I can remember.

iv

TABLE OF CONTENTS

TABLE OF CONTENTS ... iv

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

Introduction ... 1

Problem Statement ... 4

Hypotheses ... 4

Justification .. 5

Delimitations .. 5

Literature Review .. 6

High Performance Computing ... 6

Simple Linux Utility for Resource Management ... 6

Unix File Systems .. 8

Bind Mounts ... 9

Pluggable Authentication Modules .. 10

Linux Namespaces ... 10

Overhead of OS-level Virtualization.. 11

A Historical Perspective of Linux Namespaces ... 12

OS-level Virtualization Security .. 13

Related Work.. 14

Methodology .. 16

Isolation Components ... 16

PAM Namespace Module .. 18

Slurm Task Plugin .. 19

Slurm Epilog Script .. 23

Implementation .. 25

PAM, mount_isolation, Epilog Conglomerate ... 26

Multiple Temporary Directories... 26

Reentrant Functions.. 28

Temporary Subdirectory .. 28

v

 Recursive Removal of Job Directory ... 29

 PAM Session Module .. 30

 Unit and Integration Testing .. 31

 Slurm Repository Contribution .. 32

 Gathering Data ... 32

 Implementation Data ... 34

 Development Environment Data .. 34

 Production Environment Data .. 37

5.2.1 Saved Disk Space .. 38

5.2.2 Files Removed .. 38

5.2.3 Overlapping Jobs .. 40

 Data Delimitations.. 42

5.3.1 Linux du .. 42

5.3.2 User Variance.. 42

 Theoretical Improvement ... 42

 Discussion and Conclusion .. 47

 Future Work ... 48

REFERENCES ... 50

APPENDICES .. 52

Appendix A. Source Code for Simulated Data... 53

Appendix B. Source Code for Mount_Isolation Task Plugin .. 63

Appendix C. Source Code for PAM_Mount_NS_Adopt ... 79

vi

LIST OF TABLES

Table 2-1: Current Namespaces .. 11
Table 4-1: Job Testing Combinations ... 32
Table 5-1: Overlapping Jobs (epilog) ... 34
Table 5-2: Overlapping Jobs (mount_isolation plugin) .. 35
Table 5-3: Epilog vs Plugin Comparison Over Time ... 36
Table 5-4: Data Gathered .. 38

vii

LIST OF FIGURES

Figure 1-1: User Job Scenarios ... 2
Figure 3-2: Get the User ... 20
Figure 3-3: Directory Preparation ... 20
Figure 3-4: User Directory Permissions ... 21
Figure 3-5: Job Directory Permissions ... 21
Figure 3-6: Bind Mount .. 23
Figure 3-7: Remove Temporary Job Files .. 24
Figure 4-1: Read slurm.conf for Multiple Temporary Directories ... 27
Figure 4-2: Directory Structure with Additional Subdirectory ... 29
Figure 4-3: Adopt User into Mount Namespace ... 31
Figure 4-4: Epilog Flow Chart .. 33
Figure 5-1: Job Script.. 35
Figure 5-2: Data Removed per Cluster ... 39
Figure 5-3: Files Removed per Cluster ... 39
Figure 5-4: Data to Files Relationship .. 40
Figure 5-5: Overlapping Job Comparison... 41
Figure 5-6: Average Overlap per User.. 41
Figure 5-7: Example Node Configuration .. 43
Figure 5-8: Total Jobs per User .. 45
Figure 5-9: Effect of User-p on GB-hours Wasted ... 45
Figure 5-10: GB-hours Wasted Based on User-p and Wasted Space Parameters 46

1

 INTRODUCTION

System administrators of Slurm managed High Performance Computing (HPC) sites are

concerned about the privacy and utilization of temporary space. Users can unintentionally expose

their information by assigning incorrect permissions to temporary files. Additionally, those

temporary files may occupy scarce file space longer than necessary. There is no Slurm specific

solution to this problem. Temporary files are not removed until the supercomputing node upon

which the files reside is rebooted. Alternatively, system administrators can manually remove

these temporary files, or a Slurm epilog script can be written to remove them. Although the

epilog script is preferable to manual removal, it still has its drawbacks. Linux marks which files

are owned by a user, but the script can’t distinguish which files belong to a job. The epilog script

cannot remove temporary files until all jobs launched by a user have completed, or else risk

removing temporary files still in use by a user’s active job.

Consider two types of users, A and B (see Figure 1-1). User A launches jobs consistently,

but never has overlapping jobs. The epilog script can effectively remove temporary files as each

job terminates, as shown by the blue lines. User B has overlapping jobs. Because the epilog

script can’t differentiate which files belong to which job, all temporary files generated by jobs 1-

5 remain on the supercomputer until there are no more overlapping jobs for that user. The typical

2

HPC user has a combination of overlapping, and non-overlapping jobs. When jobs overlap,

temporary disk space may be occupied indefinitely by non-active jobs.

Figure 1-1: User Job Scenarios

As an example, consider an HPC user, John. John has two jobs executing on compute

node m81. Job 1 has created 15GB of temporary files. Job 2 has only created 3KB of temporary

files. All temporary files for jobs created by John are stored in a user directory within /tmp, in

this case /tmp/john (see Figure 1-2). Job 1 terminates without removing its temporary files.

Job 2 continues executing for an additional 7 days. Slurm is unable to determine that the 15GB

of temporary files belong to Job 1 and not Job 2, so it must wait 7 days until all of John’s jobs on

3

the compute node have terminated. If John launches a third job, job 3, with a runtime of 7 days

on compute node m81 right before job 2 terminates, the 15 GB of temporary files from job 1

won’t be removed until almost 14 days after job 1 terminated. If John continues launching new

jobs on compute node m81, Job 1’s 15 GB of temporary storage may occupy valuable node local

temporary space indefinitely.

Figure 1-2: Per User Directory Structure

The Simple Linux Utility for Resource Management (Slurm) job scheduler can place an

indefinite sequence of HPC jobs from one user on the same compute node, each job generating

gigabytes of temporary files that the job often fails to remove when it terminates. Slurm cannot

distinguish which temporary files belong to which job because all jobs share a common

temporary directory. Since temporary files are tagged by their owner user id, a user’s temporary

files can only be removed once all the user’s jobs on a compute node have terminated. This

means if a user consistently has overlapping jobs, completed job temporary files cannot be

removed until all jobs launched by that user have completed. Not only does this consume scarce

temporary disk space, but those temporary job files could be accessible to other users on the

HPC cluster, depending on the permissions of the files.

4

 Problem Statement

Current multiuser Slurm managed HPC environments have two challenges: isolation of

temporary files, and removal of temporary files. The removal of temporary files is solved by

system administrators in one of three ways: manual removal, removal on reboot, and removal by

Slurm epilog script. All three of these solutions don’t remove temporary files in an efficient

manner and can leave temporary files occupying disk space long after the job that created them

has terminated. None of these solutions address the isolation of those temporary files.

Building isolated temporary storage will increase security by isolating temporary job files

where no isolation previously existed and reduce temporary file storage space by allowing

removal of those files by administrators as HPC jobs complete. Isolated temporary storage will

be implemented in the form of a Slurm task plugin, mount_isolation. The mount_isolation plugin

will use Linux Mount Namespaces and Bind Mounts to isolate temporary files by user and job

id, allowing the prompt removal of completed job temporary files. This will save disk space and

increase security (isolation of files) between users. The amount of disk space saved by the

mount_isolation plugin will vary depending on user submitted jobs, and how administrators

currently remove temporary files. Security will be improved regardless of these variables by

isolating files where no isolation previously existed. Giving each job its own mounted /tmp

directory within a private namespace will allow administrators to remove files immediately upon

job termination.

 Hypotheses

Hypothesis 1 (H1): The mount_isolation plugin will save scarce temporary disk space in

Slurm managed HPC environments.

5

Hypothesis 2 (H2): The mount_isolation plugin will increase security by isolating

temporary files from other users and other jobs in Slurm managed HPC environments.

 Justification

Disk space in HPC environments is a valuable resource that needs to be continuously

balanced and cleaned up. Removing temporary files as soon as they are no longer needed helps

keep disk space free for other uses. Utilizing bind mounts on top of the Linux mount namespace

allows temporary files to be cleaned up on a more consistent basis.

 Delimitations

While many HPC environments are managed by Slurm, there are many others that use

different resource management software. This thesis does not delve into how/if alternative

resource management software deals with this problem, however it is important to note that

because this solution uses Linux mount namespaces and bind mounts, it can be adapted to work

in any Linux environment. Data gathered for this thesis is gathered from the BYU Fulton

Supercomputing Center over a period of 1 month. Results may vary depending on when data is

gathered, type of jobs submitted to the scheduler, and HPC environment. While these results may

vary, this solution will always improve temporary file isolation and space removal.

6

 LITERATURE REVIEW

 High Performance Computing

HPC uses parallel processing to execute scientific programs that require more processing

power than consumer computing devices. HPC is essential to solving computationally intensive

problems in areas such as finite element analysis, molecular modeling, weather prediction, and

materials science. Massive HPC processing power is typically organized in one of two

configurations. One configuration is distributed computing, where hundreds or thousands of

computers are connected over the network. Each computer receives a small piece of the

processing job, computes a local result, and finally submits the report back over the network to a

central server. A more common HPC configuration is a high-density cluster of processors,

typically in data centers, that intercommunicate frequently to cooperatively complete processing

tasks. Historically, distributed configurations such as Folding@home or Genome@home have

issued small independent tasks to participating remote compute nodes (Larson, 2009), while

institutional supercomputer clusters are built to solve scientific problems which require large,

frequent intercommunication between compute nodes during computation.

 Simple Linux Utility for Resource Management

High-density HPC clusters are commonly managed by Slurm, an open source cluster

workload manager. On the November 2013 top500 list (Top 500, 2013), Slurm was used by 5 of

7

the top 10 largest systems, including the number one system. Just in those top 10 systems, Slurm

manages over 5.7 million cores (Slurm Workload Manager, 2013). Slurm is responsible for

resource allocation (usually compute nodes) to multiple users. Slurm provides a framework for

users to submit jobs and monitor progress of programs running on computed nodes allocated to a

user’s active jobs. Large HPC machines experience more job requests for resources than there

are resources available for assignment. Slurm manages resource request conflicts by creating

queues of pending jobs. When one user’s job finishes and returns its compute resources to the

unscheduled resource pool, Slurm reallocates those resources to jobs in the pending job queue

and starts new jobs on the cluster that now has sufficient resources to execute. The queue is

ordered by job priority which considers many factors such as job age, job size, and partition

requested. If the resources for a top priority job are unavailable, Slurm uses a technique called

backfill (Jaspal, 1996) to calculate how many smaller, lower priority jobs can start and finish

until resources are available for the larger, top priority job. Using backfill, resources are

maximally utilized while a large job waits to launch.

Slurm configuration information in the slurm.conf file defines compute nodes,

partitions, enabled plugins, prolog scrips, and epilog scripts. For large HPC clusters, node and

partition configurations can be separated into their own configuration files. Node and partition

configuration files contain details such as name, time limit of jobs, processors on each node,

amount of real memory, number of sockets, and cores per socket. Slurm prolog and epilog scripts

allow the cluster administrator to perform setup and teardown tasks before and after the

execution of the user job. Epilog scripts are particularly useful for cleaning up temporary files

once a compute job terminates.

8

 Unix File Systems

Unix style operating systems provide a global visible directory to running programs for

temporary file storage. The global temporary directory, /tmp, is systematically cleaned up by

the operating system. The OS typically purges files at boot or after files have reached a

configured age. These temporary space cleanup strategies don’t match the life cycle

characteristics of HPC jobs. Many HPC jobs calculate results by processing input data through a

pipeline of parallel programs. While traversing a pipeline of different software packages, HPC

jobs store intermediate results in temporary files. Some HPC jobs can run for weeks or months

and must maintain access to their temporary files for the duration of the job. However, as soon as

a job terminates, its temporary storage may be cleaned up immediately. Due to the job

parallelism on HPC nodes, temporary file storage is a scarce resource that needs to be managed.

However, the overlap of multiple jobs owned by the same user, running on the same compute

node obfuscates which files are safely deleted and which files are still in use.

A file system defines how an operating system views, names, and places files logically on

a disk or partition for storage (Wirzenius, 1993). Different file system formats are used across

many operating systems. Each file system differs in their file naming conventions, maximum file

size, filename length, and characters available for filenames. Common file systems include FAT,

NFTS, EXT4, HFS+. Windows operating systems typically use NTFS, while Linux OSs use a

variety of file systems. File systems of different types can be mounted within each other. For

example, a Linux OS can mount an ISO CD file system under a directory present in the EXT4

root file system. The ISO file system on a CD-ROM device is mounted at the /mnt/cdrom

directory within the EXT4 root file system as follows: mount /dev/cdrom /mnt/cdrom.

In this case, a CD-ROM (file system type iso9660) is mounted to the /mnt file system allowing

9

the OS to read files located on the CD. A typical Linux installation consists of many file systems

mounted inside a global root file system.

 Bind Mounts

The Linux file system follows the File system Hierarchy Standard (FHS). All Linux file

systems, both physical and virtual, are mounted within the root (/) hierarchical directory tree.

Linux mounts are further enriched by bind mounts, which allow a file system to be bound to

different directory paths within the same hierarchical root directory tree (Kerrisk, MOUNT(2)

Linux Programmer's Manual, 2018). For example, a user’s home directory /home/userA can

be bind mounted to also appear at file path /Users/userA. Because of bind mounting, the

/home/userA and /Users/userA directory paths map to the same physical directory. File

changes in any of the locations where the file path is mounted are visible to all other bind mounts

providing the same files. By default, bind mounts don’t allow path traversal through external file

systems mounted within the source of the bind mount. If a CD-ROM device is mounted within

/home/user/my_cd then the directory my_cd will contain directories on the CD-ROM.

However, the /Users/userA/my_cd path will appear as empty because external file systems

mounts are not preserved within a bind mount. An additional bind mount for each external file

system is needed to map the my_cd directory into the /Users/userA directory. Different

types of bind mount options can be specified when the mount is created. The mount can be

marked as shared, private, slave, or bindable. A shared mount makes it possible to create mirrors

of that mount allowing mounts and umounts within one mirror to propagate to all other mirrors.

A slave mount specifies one-directional propagation of changes from master to slave. A private

mount has no ability to propagate changes. Unbindable mounts cannot be cloned using the bind

10

operation. These types can also be changed after the mount has been created and can be set up to

change the mount type recursively under a given mount point. The default mount type is private.

Bind mounts are beneficial in many applications, allowing the reorganization of file systems to

meet user needs. Pluggable Authentication Modules (PAM) is an example of one management

system that system administrators can use to configure bind mounts to meet user needs.

 Pluggable Authentication Modules

PAM (Geisshirt, 2007) was introduced in 1995 to help system administrators manage

user authentication and setup of user environments. PAM modules are used to provide the

following services: authentication, account management, session management, and password

management. Prior to PAM, system administrators had to manage many user databases

associated with various applications. Application developers can use PAM for authentication in

applications instead of having to create custom authentication schemes. This is particularly

useful because of compatibility between PAM and many other UNIX style operating systems.

PAM enables applications to authenticate by means of a single API that interfaces with a variety

of backend authentication services. PAM can be configured both globally, and on a per service

basis. Global PAM configuration will be used by default unless a service specific PAM

configuration file exists.

 Linux Namespaces

Linux namespaces were created to provide a layer of abstraction between global system

resources and the processes that use them. It allows a process within a namespace to have its own

isolated instance of a system resource. Linux namespaces are not new; the implementation of the

first namespace, the mount namespace, was in 2002 (Kerrisk, Namespaces in operation, part1:

11

namespaces overview 2013). Since that time, available Linux namespaces have expanded to

seven (see Table 2-1) (Kerrisk, NAMESPACES(7) Linux Programmer's Manual 2018). Note that

the mount namespace has a generic constant of CLONE_NEWNS because as the first namespace

to be implemented, no one had considered that there would be other types of namespaces in the

future.

Table 2-1: Current Namespaces

Namespace Constant Isolates

Cgroup CLONE_NEWCGROUP Cgroup root directory

IPC CLONE_NEWIPC System V IPC, POSIX message queues

Network CLONE_NEWNET Network devices, stacks, ports, etc.

Mount CLONE_NEWNS Mount points

PID CONE_NEWPID Process IDs

User CLONE_NEWUSER User and group IDs

UTS CLONE_NEWUTS Hostname and NIS domain name

Before the implementation of the mount namespace, the only alternative was to use a

chroot() system call. Just as chroot allows any directory to be seen as the root of the file

system, the mount namespace provides a more flexible and secure tool to achieve a similar task.

Other types of namespaces can be used to independently modify other system resources

(Ridwan, 2014).

 Overhead of OS-level Virtualization

Virtualization in HPC environments was avoided due to overhead until the rise of

container-based virtualization. In 2013, a study was done to compare HPC performance of three

12

different container-based virtualization products (Xavier, 2013). The study hypothesized that

container-based virtualization used in HPC environments can allow better resource sharing and

creation of custom environments while having little impact on the overall performance of the

HPC cluster. They experimented in both single and multi-node environments. Performance was

measured using the NAS Parallel Benchmarks (NPB), a well-known HPC benchmark. Security

was measured using the Isolation Benchmark Suite (IBS). Using these tools, the overall

performance of each virtualization solution was split into the following categories: computing

performance, memory performance, disk performance, network performance, performance

overhead, and isolation. It was found that all three container-based virtualization solutions

showed near native performance of CPU, memory, disk, and network resources.

Although this study doesn’t specifically address namespaces, it does prove that container-

based virtualization solutions that use namespaces have little effect on the overall performance of

the HPC environment. The authors concluded that container-based virtualization solutions were

subpar when it came to the isolations of the systems, however my research will be using

namespaces specifically to achieve this isolation, rather than relying on container-based solutions

which have a far broader objective.

 A Historical Perspective of Linux Namespaces

An article written in 2006 provides a unique perspective for why namespaces were

needed (Biederman, 2006). The author discusses the problem in HPC of moving jobs between

nodes. Because global identifiers are not unique between machines, it becomes difficult to move

jobs without errors. One solution that had been commonly used was isolation via chroot jails.

The problem is, general purpose implementations of jails had not been merged into the mainline

13

Linux kernel. Namespaces are the proposed implementation of jails that allow isolating specific

system resources. To successfully implement namespaces, about 7% of the mainline Linux

kernel would need to be touched. The article then goes over ten proposed namespaces, many of

which have now been implemented.

When this article was written, mount namespaces were the only namespaces merged into

the mainline Linux kernel. However, at the time, there were still several issues with

implementing a mount namespace, one of which was the restricted ability to create bind mounts.

The discussion on PID namespaces was fascinating as it allowed a view into some of the issues

that had to be overcome to implement PID namespaces into the Linux kernel. From within a

namespace it is a simple concept, however outside the namespace problems become more

complex. For example, how should a process outside of the default namespace be displayed in

/proc. The hierarchical nature of process organization was also an issue. This made having

parent/child relationships difficult when a process has a separate PID within its namespace. The

proposed solution was a struct containing the PID namespace, and a PID pointer.

 OS-level Virtualization Security

An analysis of the security of OS-level virtualization technologies examined the isolation

of containers between other containers and the host (Reshetova, 2014). It was determined that to

have a secure OS-level virtualization container, a set of security requirements are needed:

separation of processes, file system isolation, device isolation, IPC isolation, network isolation,

and resource management. Container compromise, denial of service, and privilege escalation are

prevented when these requirements are met. Each of these requirements were described in depth,

14

however because separation of processes and file system isolation are most relevant to this

thesis, I will refrain from reviewing the other requirements.

Separation of processes is necessary to distinguish processes running in the containers

from those running on the host. Because PID namespaces are part of the mainline Linux kernel,

it is ideal for accomplishing the separation of processes. PID namespaces provide a way to

control the ability of processes to see and interact with one another. Additionally, PID

namespaces provide an element of virtualization, allowing processes in different PID

namespaces to have the same PID. In addition to the PID namespace, the authors also discuss the

usefulness of user namespaces in this section. User namespaces are also part of the mainline

Linux kernel. It helps prevent privilege escalation by allowing root users elevated privileges only

in that namespace and not on the host.

File system isolation is also achieved using a mainline Linux kernel namespace, mount.

Mount namespaces by themselves are not a security measure, as mount namespaces inherit the

view of file system mounts from their parent and thus have access to all parts of the file system.

Two mainline Linux kernel commands are often used to solve this problem: chroot, and

pivot_root. Both commands essentially change the location of root within each namespace.

 Related Work

Search for previous related work uncovered a GitHub code repository where an

implementation provided temporary file storage segmented by job id. This implementation

lacked the improved security of isolation by user account as well as job id that our solution

provides (Chrissamuel, 2016) (Fossing, 2015). Additionally, our plugin has added functionality

to isolate multiple temporary file directories such as /dev/shm. The task plugin

15

mount_isolation will not only isolate temporary files, but automatically remove them as the job

terminates, reducing administrator involvement. While we chose to implement our Slurm plugin

using the Slurm Task plugin architecture, we could just as easily have implemented our

improvements to temporary space isolation using the Slurm Plug-in architecture for Node and

job (K)control (SPANK) instead (SPANK - Slurm Plug-in Architecture for Node and job

(K)control, 2018).

16

 METHODOLOGY

 Isolation Components

Using Linux kernel namepaces and PAM modules, temporary files were separated into

bind mounted directories for each user. System administrators used a PAM module,

pam_namespace.so, to setup a user environment at login specific to that user. The

pam_namespace.so module created a mount namespace for the user, allowing a specific user’s

data to be grouped together into that hierarchy (Hallyn, 2007). A Slurm job epilog script deleted

files -- on a per compute node basis -- only when all the user jobs on a compute node had

terminated. Each user’s supercomputing job can generate gigabytes of temporary data in the

limited temporary storage space of a compute node. Compute nodes with 24-32 cores commonly

execute many different users' jobs concurrently. Running jobs concurrently on a compute node

maximized utilization of available compute resources. However, running multiple jobs on a

compute node places pressure on scarce shared temporary storage resources of the node.

Our implementation takes the form of a new Slurm task plugin, mount_isolation, that

isolates temporary file space on a per job and a per user basis in a root user visible directory

/tmp/<user>/<job_id>. The /tmp/<user>/<job_id> directory is presented to the

compute job session as /tmp and to user login sessions as /tmp/<job_id>. With temporary

files isolated on a per job basis, obsolete temporary files can be purged via a Slurm epilog script

as each job completes, immediately freeing shared temporary file space for other jobs.

17

Our implementation isolates temporary files by creating mount namespaces for individual

jobs with bind mounted job id directories in addition to existing segregation of jobs by username.

Upon creation of a new job, a new mount namespace is created in which a job specific temporary

storage directory, /tmp/<user>/<job_id>, is mounted into the /tmp directory. Consider

the example in the introduction where a user, John, has two jobs executing on compute node

m81. Upon creation of job 1, a new mount namespace is created and the directory structure

/tmp/john/job1_id is built. As job 1 runs, its 15GB of temporary files are stored in the

/tmp/john/job1_id directory. Similarly, when John launches job 2, a second mount

namespace is created as and the directory structure /tmp/john/job2_id is built. Job 1

terminates and job 2 continues running for an additional 7 days. Instead of keeping the first job’s

15GB of temporary files, Slurm can now delete all temporary files belonging to job 1 by

removing the /tmp/john/job1_id directory without impacting temporary files belonging to

job 2 (/tmp/john/job2_id). This distinction between job temporary files is possible

because they are separated into individual job directories. John can now launch additional jobs,

creating new mount namespaces and directory structures /tmp/<user>/<job_id> for each

job (see Figure 3-1). As jobs complete, individual temporary job files will be deleted, freeing

temporary file system space for other jobs. In addition, when a user logs onto a compute node, a

new mount namespace is created, and bind mounted as /tmp/<user>. This new bind mount

will allow users to see their isolated job files within their own namespace as /tmp/<job_id>

directories, while the root user will see them in /tmp/<user>/<job_id>. Per job mount

namespaces will allow removing obsolete temporary files when the job completes, rather than

after all of John’s jobs have terminated on that compute node.

18

Figure 3-1: Per Job Directory Structure

The new implementation breaks down into three parts. First, because

pam_namespacing.so already isolates files based on user, that part of the current implementation

remains in place. Second, to further isolate files by job id, a new Slurm task plugin, based on the

task none plugin, creates each job mount namespace and job id directory structure. The final part

of implementation alters the current Slurm epilog script to delete temporary files by job id

directory rather than by user directory.

 PAM Namespace Module

The pam_namespace PAM module sets up a private session namespace for each user on

login. As part of this process, the module also sets up poly-instantiated directories based on

username. Because implementation of the mount_isolation Slurm plugin, described below, uses

the same username as part of its structure, the pam_namespace module can be used to create the

username bind mounts. With the job_id directory structure set up within the username directory,

the logged in user will be able to see all their running jobs in their /tmp directory.

19

 Slurm Task Plugin

To implement the isolation of the job files, a new Slurm plugin must be created. Several

plugin options were available, but those options were narrowed to a Slurm task plugin, or a

SPANK plugin. A task plugin would be part of Slurm, while a SPANK plugin can be built

without access to the Slurm source code. SPANK plugin code can be run at nearly any point in

the Slurm process, while the task plugin is specific to when tasks are run (SPANK - Slurm Plug-

in Architecture for Node and job (K)control, 2018). Because a task plugin was specifically called

as tasks are run, we decided to place our implementation in a task plugin. Additionally, Ryan

Cox of the Fulton Supercomputing Center, one of our partners on the project, suggested using a

task plugin.

The new task plugin, mount_isolation, is enabled in slurm.conf as follows:

TaskPlugin=task/mount_isolation. Task plugins in Slurm have predefined functions

that run at various stages of the job life cycle. The new isolation implementation will be called

from the task_p_pre_launch_priv function, which is run with root privileges before the

job is launched. Root privileges allow the new isolation plugin to build the necessary directory

structure in /tmp and alter permissions of those directories. The central portion of our new

implementation occurs inside a function we created, called isolate. User id, group id, and job id

are passed into isolate as parameters as follows: isolate(job->uid, job->gid,

job->jobid);.

The Slurm job structure is provided as an argument to task_p_pre_launch_priv

function. Initialization of helper variables for the isolate function appear at the start of the

function. These variables are used to create the needed directory structure and alter the

permissions of that structure. Using the uid passed in from task_p_pre_launch_priv, a

20

passwd struct containing user account information is retrieved from the system. This passwd

structure, pw, is used to retrieve the username of the user that launched the job (see Figure 3-2).

This username will be used later to create the /tmp/<user> directory.

Figure 3-2: Get the User

The job id is converted to a string and added to the job path (see Figure 3-3). This will be

used later to create the /tmp/<user>/<job_id> directory.

Figure 3-3: Directory Preparation

The isolate function will then begin building the needed directory structure by first

checking to see if /tmp/<user> exists. If /tmp/<user> does not exist, it is created. To

create the directory, the path needs to be constructed first (see Figure 3-4).

struct passwd* pw = getpwuid(uid);

char* uname = pw->pw_name;

char job_id_str[22];

sprintf(job_id_str, "%d", job_id);

char* tmp_path = "/tmp/";

char* job_path = malloc(strlen(tmp_path) +

strlen(uname) + strlen(job_id_str) + 2);

21

Figure 3-4: User Directory Permissions

The newly created directory is then altered to have correct user and group permissions.

These permissions are set based on the uid and gid (user and group id) passed into the isolate

function from task_p_pre_launch_priv. A similar process is used to create the

/tmp/<user>/<job_id> directory. The job path is altered to include the path to the job_id

as well as the username. The directory is created, and permissions are set using the uid and gid

passed into the isolate function from task_p_pre_launch_priv (see Figure 3-5).

Figure 3-5: Job Directory Permissions

Now that the directory structure is in place, mount work needs to be done before our new

mount namespace can be implemented. By default, all mounts are private. The plugin alters the

existing root mount to make it a shared (MS_SHARED) mount rather than a private mount as

follows: mount("", "/", NULL, MS_REC|MS_SHARED, NULL);. This change is

strcpy(job_path, tmp_path);

strcat(job_path, uname);

mkdir(job_path, 0700);

strcat(job_path, "/");

strcat(job_path, job_id_str);

mkdir(job_path, 0700);

lchown(job_path, uid, gid);

22

done recursively (MS_REC) so that any mounts within the root file system are also shared

(Kerrisk, MOUNT(2) Linux Programmer's Manual, 2018).

Now when the new mount namespace is created, any mounts or umounts within the root

file system will propagate to the new namespace. Next, the new mount namespace is created via

unshare(CLONE_NEWNS), allowing the job process to have a private copy of its namespace

that is not shared with any other process (Kerrisk, UNSHARE(2) Linux Programmer's Manual,

2018). Note that the CLONE_NEWNS flag specifies the new namespace will be a mount

namespace. The job process will no longer share its root directory, current directory, or umask

with any other process.

Before making the final mount of the job_id, the root mount needs to be altered to ensure

any new mounts made in the newly created namespace don’t propagate back to the original root

mount. This is done by marking the mount as a slave mount as follows: mount("", "/",

NULL, MS_REC|MS_SLAVE, NULL);. A slave mount will receive any added mounts or

umounts from the original namespace, but not vice versa.

Finally, the <job_id> directory is bind mounted to the user’s /tmp directory. All files

saved by the job in /tmp will be visible from the job mount namespace in /tmp and from the

root mount namespace in /tmp/<user>/<job_id>. These isolated temporary files will be

visible in the job owner’s namespace as /tmp/<job_id>. Memory used for the job_path is

also freed to prevent memory leaks (see Figure 3-6).

23

Figure 3-6: Bind Mount

Throughout the process above, the plugin checks for possible errors on each command.

As specified for task plugins, errors return SLURM_ERROR, while success is returned as

SLURM_SUCCESS. On a successful run through the entire isolate function, a return value of

SLURM_SUCCESS is sent back to the task_p_pre_launch_priv function.

The current isolation of these files accounts for different users taking advantage of

supercomputing capabilities. The new solution is to isolate temporary files per user and per job

so that they can be deleted immediately following termination of the job. Isolating temporary

files will allow removal of files when the job completes, rather than when all the user’s jobs on a

compute node complete. System administrators can remove temporary files after a job completes

using a Slurm task epilog script. This isolation also adds a layer of security for each user; private

per job namespaces prevent other users from accessing the files.

 Slurm Epilog Script

The epilog script is final part of my implementation. The current method of removing

temporary files is to use the epilog script to check for user jobs still running. Since the new task

plugin isolated files on a per job basis, this check no longer needs to take place. Now the epilog

script can simply delete the job_id directory as soon as the job completes (see Figure 3-7). The

remove statement in the script accounts for the multiple temporary directories used by the Fulton

Supercomputing center (/dev/shm and /tmp). The script then removes the job id directory created

mount(job_path, "/tmp", NULL, MS_BIND, NULL);

free(job_path);

24

by the mount_isolation plugin. Slurm specific variables are used in the script to accomplish this,

namely: SLURM_JOB_USER, SLURM_JOB_ID, and SLURM_JOB_UID.

Figure 3-7: Remove Temporary Job Files

rm –rf {/dev/shm,/tmp}/userns/”$SLURM_JOB_USER”/$SLURM_JOB_ID

pkill -9 –u “$SLURM_JOB_UID”

25

 IMPLEMENTATION

The process of implementing the mount_isolation plugin was an iterative process

involving the director of BYU’s Fulton Supercomputing Center, Ryan Cox. Through each

iteration, the methodology was changed to meet the needs of the BYU Fulton Supercomputing

Center, more fully reflect the coding style of Slurm, and add functionality. This section will

explain and outline the changes that were made.

Many of these changes were necessary because of some invalid assumptions or failure to

get full instructions of what was expected of the plugin.

Invalid Assumption 1 (IA1): The only function of the mount_isolation plugin is to isolate

temporary directories on a per job basis. Setup of the user directory, and removal of temporary

files will be handled by the administrator. This invalid assumption led to changes described in

sections 4.1 and 4.5.

IA2: The only temporary directory utilized by the BYU Fulton Supercomputing Center is

the default /tmp directory. This invalid assumption led to changes described in section 4.2.

IA3: Supercomputing users see the isolated job id directory in their temporary directories.

This invalid assumption led to changes described in section 4.6.

26

IA4: The mount_isolation plugin will work on the live supercomputing system in the

same way it functions in my development environment. This assumption led to a plethora of

small changes to the mount_isolation plugin.

Other changes described in this section weren’t due to invalid assumptions, but due to

personal preference of the BYU Fulton Supercomputing Center. These changes, while specific to

BYU, helped make this solution more beneficial to HPC system administrators.

 PAM, mount_isolation, Epilog Conglomerate

To reduce work required by HPC administrators, the original three-part plan described in

the methodology section was reduced to a single plugin: mount_isolation. Because not all

systems use the pam_namespace.so PAM plugin, the methodology was changed to allow the

mount_isolation task plugin to be useful to the widest possible range of users. The plugin no

longer relies on the pam_namespace.so PAM plugin. Additionally, the plugin now deletes files

from within the plugin instead of waiting for the epilog script to run at the termination of the job.

The source code for the mount_isolation plugin is included in Appendix B.

 Multiple Temporary Directories

Some HPC jobs use multiple temporary directories beyond the default /tmp directory.

To allow the mount_isolation plugin to work with these directories, the Slurm source code was

changed to add a configuration variable to the slurm.conf file. This configuration variable allows

Slurm administrators to create a comma separated list of which temporary directories they want

isolated by job in the slurm.conf file as follows: TaskPluginTmpDirs=/tmp,/dev/shm.

27

If this configuration variable is not set, it defaults to /tmp. The mount_isolation plugin retrieves

this configuration, and loops through the comma separated list of temporary directories to create

the necessary directories to implement job isolation (see Figure 4-1).

Figure 4-1: Read Slurm.conf for Multiple Temporary Directories

char tmp_dirs[PATH_MAX];

snprintf(tmp_dirs, PATH_MAX, "%s",

slurmctld_conf.task_plugin_tmp_dirs);

/* prepare to loop through tmp directories */

char* tmp_dir;

char* saveptr;

tmp_dir = strtok_r(tmp_dirs, ",", &saveptr);

/* look through tmp directories */

while (tmp_dir) {

/* prepare for next loop */

tmp_dir = strtok_r(NULL, ",", &saveptr);

while (tmp_dir && *tmp_dir == '\040') {

tmp_dir++;

}

}

28

 Reentrant Functions

It is important to note that when available, reentrant versions of common functions are

used. Reentrant functions end with “_r” and are used to prevent errors when a job runs on more

than one node. A reentrant function has the following characteristics (Ganssle, 2004):

1. It uses all shared variables in an atomic way, unless each is allocated to be a

specific instance of the function.

2. It does not call non-reentrant functions.

3. It does not use the hardware in a non-atomic way.

Reentrant functions ensure that even if there is an interrupt, the code will execute correctly when

returning from the interrupt. This is important in HPC environments that use parallel processing.

 Temporary Subdirectory

Another change that was made to my methodology is the addition of another directory

inside the temporary directory. In the original plan outlined in the methodology section the

plugin created a directory structure visible to root as /tmp/username/job_id, but this

change allows administrators to create an additional subdirectory through a slurm.conf variable

as follows: TaskPluginTmpSubdir=mountns. This creates a directory structure visible to

root as /tmp/mountns/<user>/<job_id> (see Figure 4-2). The new temporary

subdirectory is given file permissions of 000. Creating this directory allows the possibility of

future work to implement PID namespaces in addition to the mount namespace implemented in

mount_isolation.

29

Figure 4-2: Directory Structure with Additional Subdirectory

 Recursive Removal of Job Directory

The greatest benefit of the recursive remove being held within the mount_isolation plugin

is the reduction the amount of work for administrators to implement this solution. This recursive

remove is also the most dangerous part of code in the plugin as it has the potential to remove

files that are not meant to be removed. Several safeguards were built into the code to help

mitigate this risk.

First, the recursive remove code was separated into its own function that is not executed

until the last step as each job terminates. Second, the Linux function lstat is used to determine

if the function should recurse or not. lstat differs from its brother stat in that it doesn’t

follow symbolic links (Kerrisk, STAT(2) Linux Programmer's Manual, 2017). This will prevent

the recursive remove from following symbolic links that may point outside the directory

structure we want to remove. Third, the recursive remove function checks the device_id of the

30

directory structure that is being removed. As the function recurses, it continues to check the

device_id to make sure it hasn’t jumped onto a new mount location.

 PAM Session Module

Impact on users was the contributing factor to this addition. The BYU Fulton

Supercomputing director wanted this implemented so that the users wouldn’t notice any changes.

Without the addition of the pam_mount_ns_adopt.so module, users would view their temporary

directory as containing a job_id directory. Because users often don’t know their job_id, this can

become confusing, especially if a user is running multiple jobs.

The pam_mount_ns_adopt module is a PAM module that adopts the user’s session into

the same mount namespace as the job they are running. This means that they will see the same

directory structure as the job running on that node. The module is dependent on cgroups, and the

pam_slurm_adopt module. When a uses ssh to connect to a supercomputing node, the

pam_mount_ns_adopt module gathers the needed information about both the new session, and

the jobs the user is running. Using the Linux setns function, the user is adopted into the same

mount namespace as their job (see Figure 4-3). The source code for the pam_mount_ns_adopt

PAM module is included in Appendix C. The helper.h and helper.c files included code allowing

the module to connect to Slurm.

31

Figure 4-3: Adopt User into Mount Namespace

 Unit and Integration Testing

Before implementing the mount_isolation plugin at BYU’s Fulton Supercomputing

Center, we wanted to be thorough in our testing to prevent any major issues. The section of code

we were most worried about was the recursive remove function. As you can imagine, a recursive

remove that gets out of the desired directory location can be potentially catastrophic. To fully test

the plugin, a series of test cases covering all possible job launches was required (see Table 4-1).

Each option needed to be run in combination with every job launch option. As each test was run,

the following were evaluated:

1. Was the namespace created correctly? This was tested by ensuring the files were

written to the correct location (/tmp/<mountns>/<user>/<job id>).

2. When the job terminates, is the job id directory successfully removed?

syslog(LOG_MAKEPRI(LOG_AUTH, LOG_INFO),

 "%s: adopting user into mnt namespace", PAM_MODULE_NAME);

if (setns(fd2, 0) == -1) {

 syslog(LOG_MAKEPRI(LOG_AUTH, LOG_INFO),

 "%s: setns failed to adopt user into jobid mnt ns",

 PAM_MODULE_NAME);

 goto cleanup;

}

32

Table 4-1: Job Testing Combinations

Job Launch Options

sbatch scancel

salloc srun

srun multi-node

 symbolic link

 Slurm Repository Contribution

The end goal of the mount_isolation plugin is to merge the plugin with the Slurm public

repository. To accomplish this, all code needs to be formatted according to Slurm coding

standards. Some of the changes required to meet these standards were to write all comments in

the following format: /* [comment] */. Code is also limited to 80 characters across. Other

coding standards are defined specifying best practices for indentation, braces, naming

conventions, etc. Coding style is based on the Linux Kernel coding style, and can be found on

the Slurm website (Torvalds, 2016).

 Gathering Data

Because the Fulton Supercomputing Center is a production environment, and there are

always other urgent updates, I was unable to get the actual plugin on their entire system to gather

data. Because the current epilog script they use runs after every job, I was able to gather data

about each job as it completed. The current epilog script only removes temporary files if that

user has no more overlapping jobs (see Figure 4-4). To gather data about all jobs, not just jobs

when files are removed, I added two data gathering points in the script. Because the script only

removes files when the user has no more active jobs, all overlapping jobs before it will not have

33

accurate data measurements, however the data can still be used to gain visibility into how often a

user has overlapping jobs. Data gathered included the following:

• Date the job was run
• Anonymized user ID
• Cluster name
• Node name
• Number of files removed
• Amount of data removed
• Does the user have more active jobs

Figure 4-4: Epilog Flow Chart

34

 IMPLEMENTATION DATA

 Development Environment Data

Live production environment data varies greatly based on what jobs users submit. For

generated data that takes many of these variables into consideration, see the wasted temporary

space simulator (WTSS) in section 5.4. The following simulated data was gathered in a

controlled development environment as a proof of concept for the mount_isolation plugin. The

simulation includes a series of five overlapping, identical jobs that always generate a set number

and size of temporary files. These five jobs were run 1 minute apart for 5 minutes each. The test

was repeated twice, once using the epilog script to remove files, and once using the

mount_isolation plugin to remove files. The node running these jobs was given 4 processors on

which to run them. Slurm squeue output is used to verify which jobs are running (R), and

which jobs are pending (PD) due to lack of resources to run the job (see Tables 5-1 and 5-2).

Table 5-1: Overlapping Jobs (epilog)

JobID Partition Name User State Time Nodes NodeList (Reason)

154 debug job.sh tannersatch PD 0:00 1 (Resources)

150 debug job.sh tannersatch R 4:15 1 lx0

151 debug job.sh tannersatch R 3:15 1 lx0

152 debug job.sh tannersatch R 2:15 1 lx0

153 debug job.sh tannersatch R 1:15 1 lx0

35

Table 5-2: Overlapping Jobs (mount_isolation plugin)

JobID Partition Name User State Time Nodes NodeList (Reason)

159 debug job.sh tannersatch PD 0:00 1 (Resources)

155 debug job.sh tannersatch R 4:15 1 lx0

156 debug job.sh tannersatch R 3:15 1 lx0

157 debug job.sh tannersatch R 2:15 1 lx0

158 debug job.sh tannersatch R 1:15 1 lx0

The two test instances consist of identical jobs and generated a predetermined amount of

data, in this case 24MB. The jobs were also written to run for a predetermined amount of time

using sleep 300, which allowed the jobs to run for approximately five minutes (see Figure 5-1).

In addition to the jobs performing the same function, they were also launched by Slurm using the

same configurations. They were allocated 10 minutes on the node, given 1 processor, 1K of

memory, and they were configured to allow oversubscription, which just means that more than

one job can be run on a node at a time if there are enough processors to handle increased load.

Figure 5-1: Job Script

#!/bin/bash

#SBATCH --time 0-00:10:00

#SBATCH --ntasks=1

#SBATCH --mem=1K

#SBATCH --oversubscribe

dd if=/dev/zero of=/tmp/"$SLURM_JOB_ID"_tmp.dat bs=24M count=1

sleep 300

exit 0

36

In both test instances, the jobs sent output to a log file at the end of each job to show how

much data remained in /tmp. The epilog script set of jobs used the epilog script to write to the

logs, while the plugin set used the mount_isolation plugin to write to the logs. Based on the

information gathered form the logs, the data was compiled into a single table showing a

comparison of the two solutions (see Table 5-3). For the sake of comparison, all job ids from the

plugin set of jobs (jobs 155-159) have been changed to be the same as the epilog set of jobs (jobs

150-154).

Table 5-3: Epilog vs Plugin Comparison Over Time

Time JobID(s) Status Time Epilog /tmp Plugin /tmp Epilog data Plugin data

0:00 150 R 0:00 150.dat 150/150.dat 24MB 24MB

1:00 150
151

R
R

1:00
0:00

150.dat
151.dat

150/150.dat
151/151.dat

48MB 48MB

2:00 150
151
152

R
R
R

2:00
1:00
0:00

150.dat
151.dat
152.dat

150/150.dat
151/151.dat
152/152.dat

72MB 72MB

3:00 150
151
152
153

R
R
R
R

3:00
2:00
1:00
0:00

150.dat
151.dat
152.dat
153.dat

150/150.dat
151/151.dat
152/152.dat
153/153.dat

96MB 96MB

4:00 150
151
152
153
154

R
R
R
R
PD

4:00
3:00
2:00
1:00
0:00

150.dat
151.dat
152.dat
153.dat

150/150.dat
151/151.dat
152/152.dat
153/153.dat

96MB 96MB

5:00 151
152
153
154

R
R
R
R

4:00
3:00
2:00
0:00

150.dat
151.dat
152.dat
153.dat
154.dat

151/151.dat
152/152.dat
153/153.dat
154/154.dat

120MB 96MB

37

Table 5-3, Cont’d

Time JobID(s) Status Time Epilog /tmp Plugin /tmp Epilog data Plugin data

6:00 152
153
154

R
R
R

4:00
3:00
1:00

150.dat
151.dat
152.dat
153.dat
154.dat

152/152.dat
153/153.dat
154/154.dat

120MB 72MB

7:00 153
154

R
R

4:00
2:00

150.dat
151.dat
152.dat
153.dat
154.dat

153/153.dat
154/154.dat

120MB 48MB

8:00 154 R 3:00 150.dat
151.dat
152.dat
153.dat
154.dat

154/154.dat 120MB 24MB

9:00 154 R 4:00 150.dat
151.dat
152.dat
153.dat
154.dat

154/154.dat 120MB 24MB

10:00 - - - - - - -

 Production Environment Data

The following data was gathered from the BYU Fulton Computing Center over a period

of one month, from four HPC clusters. Due to some inconsistencies in gathering the data, the

one-month period was narrowed to approximately two weeks (see Table 5-4). While the data

gathered over the one-month period is useful, for the remainder of this chapter the two-week data

set will be used to preserve any trends found in the data.

38

Table 5-4: Data Gathered

Time Interval Total Jobs Total Data Removed Total Files Deleted

Jan. 31 – Mar. 6 (34 days) 473,513 1,020.323 GB 1,135,150

Feb. 12 – Feb. 28 (17 days) 418,297 410.232 GB 947,446

5.2.1 Saved Disk Space

This mount_isolation plugin will save scarce temporary disk space. After gathering data

over a period of two weeks, we can see that the amount of data removed is somewhat significant.

Because there are several different ways HPC system administrators deal with this problem, the

benefits of this plugin will vary. Based on data gathered over the two-week period, the total

amount of disk space saved was 410.232 GB. While this is a relatively small amount of data, the

Fulton Supercomputing Center has approximately two petabytes of storage space (FSL

Resources 2018), for systems that don’t remove these files until the node is rebooted, the files

can build up over a period of months. Over this two-week timeframe, a large quantity of that was

removed in two specific 12 hour time periods mostly from the same cluster, m9 (see Figure 5-2).

5.2.2 Files Removed

While the number of files removed is less interesting than the size of those files, it is

interesting to note that there is a relationship between the two. Over the same 1-month period

described above, there were nearly 800,000 files removed. Oddly, the spikes in data removed in

Figure 5-2 don’t line up with the spikes in the number of files removed per cluster (see Figure 5-

3). Although the relationship isn’t apparent in these two graphs, additional analysis reveals that

the number of files removed has a weak correlation with the amount of data removed (see Figure

5-4).

39

Figure 5-2: Data Removed per Cluster

Figure 5-3: Files Removed per Cluster

40

Figure 5-4: Data to Files Relationship

5.2.3 Overlapping Jobs

While the plugin solution will always offer improved security through isolation, the

difference between the plugin solution, and the epilog script solution is dependent on

overlapping jobs per user. The more overlapping jobs there are per user, the more beneficial the

plugin solution will be to system administrators. When comparing the number of overlapping

jobs, to the number of non-overlapping jobs, it is clear that, at least in this HPC environment,

there is a large number of overlapping jobs (see Figure 5-5). It is interesting to note that although

there is a large number of overlapping jobs, the majority of them are launched by just a few users

(see Figure 5-6).

41

Figure 5-5: Overlapping Job Comparison

Figure 5-6: Average Overlap per User

42

 Data Delimitations

5.3.1 Linux du

A standard Unix program, du, was used to estimate file space usage in the production

environment. While the program is fairly accurate, it is important to note that the Linux man

page specifically says the returned data is an estimate, not exact.

5.3.2 User Variance

The biggest variable in my data is the behavior of the users of the supercomputer. Jobs

run on a supercomputer will vary greatly depending on the end goal of the users. If a user

launches multiple jobs, causing them to overlap, then epilog script solution to the problem will

be less efficient. If a user launches a job that doesn’t require the creation of temporary files, then

the plugin won’t have any benefit. If the user writes their job code to remove temporary files

themselves, the only benefit will be in the isolation of those files.

 Theoretical Improvement

Improvements on storage utilization will vary based on the job and the user. For HPC

system administrators that opt to remove files whenever they reboot the node, the improvement

will be a sum of all temporary files generated between reboots. For HPC system administrators

that opt to use an epilog script to remove files when all jobs by a user are complete, the

improvement will be a sum of all overlapping temporary files generated by jobs after the first job

by that user. This improvement will be on a per user basis. The WTSS simulates jobs run on an

HPC cluster to help administrators determine if the mount_isolation plugin will be beneficial.

43

The WTSS is written in python. The simulator’s input parameters specify the node

configuration of the simulated HPC cluster, the probability distribution of users launching jobs

and the statistical distribution parameters governing the characteristics of job generation. While

concise, the simulator allows HPC administrators and researchers to specify custom parameters

and gain insight into the security and space savings that isolation of temporary HPC storage can

provide. The compute node description domain specific language (DSL) uses nested Python

dictionaries to specify the quantity of nodes in the cluster and the number of processors per node.

nodes = { CLUSTER_NAME: { 'count': QUANTITY, 'processors':

QUANTITY_PER_NODE } }. Cluster configurations can be repeated to represent multiple

clusters (see Figure 5-7).

Figure 5-7: Example Node Configuration

Compute jobs in the simulator consist of four parameters: the user id that launches and

owns the job, the number of processors the job requires, the wall clock time length of the job,

and the quantity of temporary space the job will consume. Users of the Fulton Supercomputing

Center often launch multiple jobs simultaneously. Some users launch hundreds of jobs

simultaneously. To model the large usage of compute resources by a small number of users, the

nodes = {

 'm8' : { 'count': 320, 'processors': 24 },

 'm7' : { 'count': 230, 'processors': 16 },

 'm6' : { 'count': 256, 'processors': 12 }

}

44

simulator samples a geometric probability distribution with a user-p parameter value of 0.56 (see

Figure 5-8). All jobs assigned to user-ids greater than 9 are lumped into the 9th user. The number

of processors per job is sampled from a uniform distribution of 2 to 8 processors. Time length of

the job is sampled from a uniform distribution of 4 to 10 processors. Finally, the temporary

storage consumption of a job is sampled from a geometric distribution with parameter value of

0.22. While temporary storage in HPC centers is a limited resource that needs better

management, not all HPC jobs use temporary storage. Therefore, the temporary storage

consumption parameter in the simulator is adjusted downwards so that approximately 80% of the

jobs don’t consume any temporary storage. The temporary storage consumption parameter of .22

and the user-p parameter of .56 were based on job data gathered from the FSL as described in

section 5.2.

Once the compute nodes and the jobs have been generated, the simulator’s scheduler uses

a first come first served (FCFS) scheduling algorithm (Feitelson and Weil 1998), to simulate

execution of the jobs. The simulator calculates the number of temporary space gigabyte-hours

(GB-hours) wasted because Slurm is unable to detect which job owns which portion of a user’s

temporary storage consumption (see Figure 5-9). Reasonable values for user-p are in the 0.3 to

0.5 range. User-p determines the probability that a job will be assigned to the first user.

Given a workload of 100 jobs, user-p parameter of 0.56 and a wasted space parameter of

0.22, the simulator calculates that between 75 and 125 GB-hours of temporary storage space is

wasted depending on job arrival patterns (see Figure 5-10). WTSS source code is included in

Appendix A. Figures 5-8 and 5-9 were generated by chart2.py, while figure 5-10 was generated

by chart1.py. Both chart1.py and chart2.py import the sim.py file to run the simulation.

45

Figure 5-8: Total Jobs per User

Figure 5-9: Effect of User-p on GB-hours Wasted

46

Figure 5-10: GB-hours Wasted Based on User-p and Wasted Space Parameters

47

 DISCUSSION AND CONCLUSION

Per job isolation of temporary file storage in HPC environments provide benefits in

security, efficiency, and administration. HPC users typically have multiple supercomputing jobs

running concurrently. Temporary files generated by these tasks are only deleted when all jobs the

user is running on a compute node are complete. Even though the user may have only one

running job, the temporary directory may still contain temporary files from previously executed

jobs, taking up valuable temporary storage on the compute node.

Isolation of temporary files per job and per user is implemented through bind mounts and

Linux mount namespaces. Job temporary files are stored in individual job directories and bind

mounted to /tmp in the job’s mount namespace. All temporary files created throughout the job’s

life cycle are stored in /tmp, an isolated job directory visible to the root user as

/tmp/<user>/<job_id>. Administrators can now purge temporary files belonging only to a

specific user job by removing the temporary directory associated with the job. Slurm epilog

scripts can be written by the administrator to automatically purge obsolete temporary files as jobs

terminate, freeing scarce shared temporary file storage.

The purging of these obsolete temporary files neutralizes the danger of denial of service

by malicious users taking up valuable shared temporary storage. Isolation of temporary job files

provides visibility to administrators of which jobs may be taking up the most temporary file

space. Information gathered by administrators concerning job file space can be used to enforce

48

temporary file space quotas on a per job basis. Because temporary files are isolated on a per job

and per user basis, a user’s temporary files are by default private and secured from access by

other users on the compute node. Our Slurm Task temporary storage isolation plugin will be

submitted upstream to the Slurm public repository. This will allow other Slurm users to enable

the plugin in slurm.conf to take advantage of the benefits of per job and per user temporary file

isolation.

 Future Work

The mount_namespace plugin can be merged with the public Slurm repository. This part

of future work should be accomplished in the near future as I am currently working with the FSL

director to prepare the code to be submitted to Slurm.

While the mount_namespace plugin is complete, there are still a few areas that can be

improved. Slurm HPC environments are configured in many different ways, and although the

plugin was tested thoroughly, there will most likely to be small changes that need to be made to

allow the plugin to benefit a wider range of HPC environments.

For the solution described in this thesis to be effective, there are a few code dependencies

(cgroups, pam_slurm_adopt, and pam_mount_ns_adopt). Future work could also include altering

the plugin to work without some of these dependencies. These changes would make the

mount_namespace plugin easier for system administrators to implement. The

pam_mount_ns_adopt module could also be expanded so that it isn’t dependent on the

pam_slurm_adopt module.

49

There are several aspects of Linux namespaces that can still be explored within HPC

environments. The BYU FSL Operations Director would also like to implement PID

namespaces in addition to the mount namespaces covered in this thesis.

Apart from development improvement, there could also be more research on how the

plugin affects HPC systems beyond disk space saved. Research could be done to see how many

Watt-hours are saved due to the prompt removal of temporary files. Some HPC environments

deal with HIPPA, and other government regulations. Research could be extended to see how

Linux namespaces can simplify and improve data privacy to meet regulation requirements. This

thesis covers the isolation of temporary files using mount namespaces. How might mount

namespaces be used to isolate other files? Linux namespaces have a wide variety of types and

applications that are yet to be discovered.

50

REFERENCES

Biederman, E. W. (2006). Multiple Instances of the Global Linux Namespaces. Proceedings of
the Linux Symposium, 1, p. 101. Ottawa, Ontario Canada. Retrieved from
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.108.5475&rep=rep1&type=pdf
#page=101

Chrissamuel, & Fossing. (2016, February 28). vlsci/spank-private-tmp. Retrieved from
https://github.com/vlsci/spank-private-tmp

Feitelson, D. G., & Weil, A. M. (1998). Utilization and predictability in scheduling the IBM SP2
with backfilling. IEEE, 842-546. Retrieved from
http://dx.doi.org/10.1109/ipps.1998.669970

Fossing, & Kmjonsson. (2015, March 24). hpc2n/spank-private-tmp. Retrieved from
https://github.com/hpc2n/spank-private-tmp

FSL Resources. (2018). Retrieved from https://marylou.byu.edu/documentation/resources

Ganssle, J. (2004). Reentrancy. The Firmware Handbook, 231-244.

Geisshirt, K. (2007). Pluggable Authentication Modules: The Definitive Guide to PAM for Linux
SysAdmins and C Developers, a Comprehensive and Practical Guide to PAM for Linux:
How Modules Work and How to Implement Them. Packt Publishing.

Hallyn, S. E., & Pai, R. (2007, September 17). Applying mount namespaces. Retrieved from
http://ibm.com/developerworks/library/l-mount-namespaces/index.html

Jaspal, S., Thomas, G., & Takashi, S. (1996). Impact of job mix on optimizations for space
sharing.

Kerrisk, M. (2013, January 04). Namespaces in operation, part1: namespaces overview.
Retrieved from LWN.net: https://lwn.net/Articles/531114/

Kerrisk, M. (2017, September 15). STAT(2) Linux Programmer's Manual. Retrieved 2018, from
http://man7.org/linux/man-pages/man2/lstat.2.html

Kerrisk, M. (2018, February 02). MOUNT(2) Linux Programmer's Manual. Retrieved from
http://man7.org/linux/man-pages/man2/mount.2.html

51

Kerrisk, M. (2018, February 02). NAMESPACES(7) Linux Programmer's Manual. Retrieved
from http://man7.org/linux/man-pages/man7/namespaces.7.html

Kerrisk, M. (2018, February 02). UNSHARE(2) Linux Programmer's Manual. Retrieved from
http://man7.org/linux/man-pages/man2/unshare.2.html

Larson, S. M., Snow, C. D., Shirts, M., & Pande, V. S. (2009). Folding@Home and
Genome@Home: Using distributed computing to tackle previously intractable problems
in computational biology. arXiv preprint arXiv:0901.0866.

Reshetova, E., Karhunen, J., Nyman, T., & Asokan, N. (2014, July 16). Security of OS-level
virtualization technologies.

Ridwan, M. (2014). Separation Anxiety: A Tutorial for Isolating Your System with Linux
Namespaces. Retrieved from toptal: https://www.toptal.com/linux/separation-anxiety-
isolating-your-system-with-linux-namespaces

Slurm Workload Manager. (2013, November 24). Retrieved from SchedMD:
https://slurm.schedmd.com/slurm.html

SPANK - Slurm Plug-in Architecture for Node and job (K)control. (2018, February 08).
Retrieved from http://slurm.schedmd.com/spank.html

Top 500. (2013, November). Retrieved 2017, from https://www.top500.org/

Torvalds, L. (2016). Linux Kernel Coding Style. Retrieved from SchedMD - Slurm Workload
Manager: https://slurm.schedmd.com/coding_style.pdf

Wirzenius, L. (1993). LINUX system administrator's guide.

Xavier, M. E., Neves, M. V., Rossi, F. D., Ferreto, T. C., Lange, T., & De Rose, C. A. (2013).
Performance Evaluation of Container-based Virtualization for High Performance
Computing Environments. 2013 21st Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing. Porto Alegre, Brazil.

52

APPENDICES

53

Appendix A. Source Code for Simulated Data

sim.py

import random

import numpy as np

#nodes = { 'm8' : { 'count': 320, 'procs': 24 }, 'm7': { 'count': 230, 'procs': 16 },
'm6' : { 'count': 256, 'procs': 12 } }

nodes = { 'm8' : { 'count': 10, 'procs': 24 }, }

def import_data():

 my_data = np.genfromtxt('hpc_data.csv', delimiter=' ',dtype=None)

 # print (my_data)

import_data()

class Node:

 def __init__(self, id, name, procs):

 #node id, an integer

 self.id = id

 # node name m8-1

 self.name = name

 #number of processors the node has

 self.procs = procs

 # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] for a 10 processor node

 self.free = [x for x in range(procs)]

 #dict user_id -> job_id -> jobs

 self.jobs_by_user = {}

 #dict user_id -> job_id -> jobs

 #jobs that have finished but can't cleanup temp space because other jobs from the
same user are running on the node.

 self.finished_temp_jobs = {}

 def __str__(self):

54

 print "Node: " + self.name + " " + self.procs + ", " + self.free

 def __repr__(self):

 return "Node: " + self.name + " " + str(self.procs) + ", " + str(self.free)

 def take(self, n):

 """take n processors from this nodes free processor list and return unique
identifiers, [node.id, processor.id], for each processor"""

 nn = self.free[:n]

 self.free = self.free[n:]

 v = [[self.id, x] for x in nn];

 return v

 def give(self, x):

 """return processor x to the free processor list"""

 self.free.append(x)

 self.free = sorted(self.free)

 def addJob(self, j):

 """add a newly started job to this node because the job is running on one of the
nodes processors"""

 if j.user_index in self.jobs_by_user:

 self.jobs_by_user[j.user_index][j.id] = j

 else:

 self.jobs_by_user[j.user_index] = { j.id: j }

 def addJobWaitingForCleanup(self, j):

 """add a job to the finished_temp_jobs list because the job finished but still has
temporary storage allocated

 and cannont be freed, because another job from the same user is running on the
node"""

 if j.user_index in self.finished_temp_jobs:

 self.finished_temp_jobs[j.user_index][j.id] = j

 else:

 self.finished_temp_jobs[j.user_index] = { j.id: j }

 def endJob(self, j):

 """job j has finished see if we can clean up its temporary storage usage or
whether it needs to wait in the finished_temp_jobs queue"""

 if(j.temp_gigs > 0):

 self.addJobWaitingForCleanup(j)

 else:

 j.temp_end_time = j.end_time

55

 if j.id in self.jobs_by_user[j.user_index]:

 self.jobs_by_user[j.user_index].pop(j.id)

 #print self.jobs_by_user[j.user_index], len(self.jobs_by_user[j.user_index]
)

 if len(self.jobs_by_user[j.user_index]) == 0:

 if j.user_index in self.finished_temp_jobs:

 for x in self.finished_temp_jobs[j.user_index].iteritems():

 x[1].temp_end_time = j.end_time

 #print "x", x

 self.finished_temp_jobs[j.user_index] = { }

class Job:

 def __init__(self, id, user_index, node_count, time_length, temp_gigs):

 self.id = id

 self.user_index = user_index

 self.node_count = node_count

 self.time_length = time_length

 self.temp_gigs = temp_gigs

 self.end_time = 0

 self.temp_end_time = 0

 def start(self, start_time):

 """given the start_time of the job, set the start_time, end_time, and
temp_end_time"""

 self.start_time = start_time

 self.end_time = start_time + self.time_length

 self.temp_end_time = self.end_time

 def wasted(self):

 """calculate the wasted GB-hrs of this job"""

 return (self.temp_end_time - self.end_time) * self.temp_gigs

 def __repr__(self):

 return "Job: " + str(self.id) + " ST-ET%TET " + str(self.start_time) + "-" +
str(self.end_time)+ "%" + str(self.temp_end_time - self.end_time) + " NC " + str(
self.node_count) + " TG " + str(self.temp_gigs)

class Scheduler:

 def __init__(self, nodes, jobs):

 self.clock = 0;

56

 self.jobs = jobs

 self.nodes = {}

 self.running_jobs = []

 self.finished_jobs = []

 self.fullnodes = {}

 self.with_space_nodes = {}

 for x in nodes:

 self.with_space_nodes[x.id] = x

 self.nodes[x.id] = x

 def run(self):

 """Schedule and run the jobs"""

 while len(self.jobs) > 0 or len(self.running_jobs) > 0:

 #sort jobs

 self.running_jobs = sorted(self.running_jobs, key = lambda x: x.end_time)

 #print "Q", self.running_jobs

 #finish jobs

 if len(self.running_jobs) > 0:

 current_end_time = self.running_jobs[0].end_time

 self.clock = current_end_time

 while len(self.running_jobs) > 0 and self.running_jobs[0].end_time ==
current_end_time:

 x = self.running_jobs.pop(0)

 self.return_nodes(x.nodes)

 ###print "Ending at", self.clock, x

 self.removeJobFromNodes(x)

 self.finished_jobs.append(x)

 #count free nodes

 free_node_count = 0

 for k, x in self.nodes.iteritems():

 free_node_count += len(x.free)

 #launch jobs

 success = True

 while success and len(self.jobs) > 0:

 if self.jobs[0].node_count < free_node_count:

 j = self.jobs.pop(0)

57

 #print free_node_count, j.node_count

 j.nodes = self.take_nodes(j.node_count)

 j.start(self.clock);

 self.addJobToNodes(j)

 ###print "Starting", j

 self.running_jobs.append(j)

 free_node_count -= j.node_count

 else:

 success = False

 #print results at end of run

 ###print self.nodes

 self.finished_jobs = sorted(self.finished_jobs, key = lambda x: x.id)

 wasted = 0

 user_dist = np.zeros(10)

 for x in self.finished_jobs:

 ###print x

 wasted += x.wasted()

 user_dist[x.user_index] += 1;

 #print user_dist

 #print "End Clock", self.clock

 #print "Wasted", wasted, "GB-hrs"

 return { 'end_clock': self.clock, 'wasted': wasted, 'user_dist': user_dist }

 def return_nodes(self, nodes):

 """Given a list of processor ids [[nodeid, processid], [nodeid, processid]]
lookup the node by node id and give the process id back to the node"""

 #print "return_nodes ", nodes

 for x in nodes:

 if x[0] in self.fullnodes:

 node = self.fullnodes.pop(x[0])

 node.give(x[1]);

 self.with_space_nodes[x[0]] = node

 elif x[0] in self.with_space_nodes:

 self.with_space_nodes[x[0]].give(x[1])

 def take_nodes(self, cnt):

 """Given a count of processors needed take that many processors from nodes with
free processors"""

 local_nodes = []

58

 local_cnt = cnt

 while local_cnt > 0:

 i = self.with_space_nodes.popitem()

 if len(i[1].free) <= local_cnt:

 #print local_cnt, i, "lte"

 local_cnt -= len(i[1].free)

 local_nodes.extend(i[1].take(len(i[1].free)))

 self.fullnodes[i[1].id] = i[1]

 else:

 #print local_cnt, i, "gt"

 local_nodes.extend(i[1].take(local_cnt))

 self.with_space_nodes[i[1].id] = i[1]

 local_cnt = 0;

 return local_nodes;

 def addJobToNodes(self, j):

 """Add job j to all nodes that job is running on"""

 for x in j.nodes:

 self.nodes[x[0]].addJob(j);

 def removeJobFromNodes(self, j):

 """remove job j from all nodes that job is running on"""

 for x in j.nodes:

 self.nodes[x[0]].endJob(j);

def genNodes():

 """Generate node datastructures from node description structure"""

 id = 0;

 ns = []

 for clustername, data in nodes.items():

 for x in xrange(data['count']):

 ns.append(Node(id, clustername + '-' + str(x), data['procs']))

 id += 1;

 return ns

def genJobs(id, users, p, wasted_p = 0.5):

 """Generate job datastructure from job creation parameters"""

59

 user_index = max(0, min(np.random.geometric(p=p), len(users)))

 node_count = random.randint(2,8)

 time_length = random.randint(4,10)

 temp_gigs = max(0, np.random.geometric(p = (1 - wasted_p)) - 1)

 return Job(id, user_index, node_count, time_length, temp_gigs);

def simulate(user_p = 0.35, jobcount = 100, usercount = 10, wasted_p = 0.5):

 jobs = map(lambda x: genJobs(x, range(1, usercount), user_p, wasted_p = wasted_p
), xrange(jobcount))

 nodes = genNodes()

 #create and run scheduler

 return Scheduler(nodes, jobs).run()

chart1.py

import sim as Sim

import numpy as np

import matplotlib.pyplot as plt

from matplotlib import cm

from mpl_toolkits.mplot3d import Axes3D

x = np.linspace(0, 1)

y = [Sim.simulate(user_p=z)['wasted'] for z in x]

#plt.fill_between(x, 0, y)

#plt.grid(True)

#plt.show()

x = np.linspace(0, 0.6)

y = np.linspace(0, 1)

z = [[Sim.simulate(user_p=yz, wasted_p=xz)['wasted'] for xz in x] for yz in y]

print len(x)

print len(y)

print len(z)

print np.array(z).shape

X, Y = np.meshgrid(x, y)

#print X

#print Y

Z = np.clip(np.array(z), 0, 5000)

60

#Z = np.array(z)

#print Z

fig = plt.figure()

ax = fig.add_subplot(111, projection='3d')

#ax.contourf(X, Y, Z)

ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.coolwarm)

ax.set_xlabel('amount of wasted space parameter')

ax.set_ylabel('user job distribution parameter')

ax.set_zlabel('GB-hours wasted')

#ax.set_xlim(0.2, 1)

#ax.set_zlim(0, 1000)

#ax.set_zscale('log')

#plt.fill_between(x, 0, y)

plt.grid(True)

plt.show()

chart2.py

import sim as Sim

import numpy as np

import matplotlib.pyplot as plt

from matplotlib import cm

from mpl_toolkits.mplot3d import Axes3D

x = np.linspace(0, 1)

y = [Sim.simulate(user_p=z)['wasted'] for z in x]

#plt.fill_between(x, 0, y)

#plt.grid(True)

#plt.show()

x = np.linspace(0, 1)

y = np.linspace(0, 1)

#print x

#print y

z = [Sim.simulate(user_p=yz)['wasted'] for yz in x]

fig = plt.figure()

61

ax = fig.add_subplot(111)

ax.plot(x, z)

ax.set_title('Effect of user-p job distribution parameter')

ax.set_xlabel(' user-p geometric parameter (job distiribution across user id)')

ax.set_ylabel('GB-hours wasted')

plt.fill_between(x, 0, z)

txt = '''

Reasonable values for user-p are in the 0.3 to 0.45 range

user-p determines the probability that a job will assigned to the first user.

'''

fig.text(.1,1,txt)

fig = plt.figure()

ax = fig.add_subplot(111)

ud = Sim.simulate(user_p=0.3) ['user_dist']

ax.bar(np.arange(len(ud)), ud, color='r')

ax.set_xlabel('user id')

ax.set_ylabel('job count')

ax.set_title('Total jobs per user')

txt = '''

This graph depicts the job distribution for a user-p parameter of 0.3

We lump all jobs assigned to user-ids greater than 9 into the 9th user.

'''

fig.text(.1,1,txt)

x = np.linspace(0, 1)

y = np.linspace(0, 1, 10)

z = [Sim.simulate(user_p=xz)['user_dist'] for xz in x]

print len(x)

print len(y)

print len(z)

print np.array(z).shape

X, Y = np.meshgrid(y, x)

#print X

#print Y

Z = np.array(z)

print X.shape

62

print Y.shape

print Z.shape

Z = np.clip(np.array(z), 0, 100)

fig = plt.figure()

ax = fig.add_subplot(111, projection='3d')

#ax.contourf(X, Y, Z)

ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.coolwarm)

ax.set_xlabel('user_id')

ax.set_ylabel('user_p')

ax.set_zlabel('# of jobs')

ax.set_xticklabels(np.arange(10))

#ax.set_xlim(0.2, 1)

#ax.set_zlim(0, 1000)

#ax.set_zscale('log')

#plt.fill_between(x, 0, y)

plt.grid(True)

plt.show()

63

Appendix B. Source Code for Mount_Isolation Task Plugin

/***\

 * task_mount_isolation.c - Create isolated namespaced directories per job

 * Copyright (C) 2018, Brigham Young University

 * Author: Tanner Satchwell <tannersatch@gmail.com>

 * Author: Ryan Cox <ryan_cox@byu.edu>

 *

 * This file is part of SLURM, a resource management program.

 * For details, see <http://slurm.schedmd.com/>.

 * Please also read the included file: DISCLAIMER.

 *

 * SLURM is free software; you can redistribute it and/or modify it under

 * the terms of the GNU General Public License as published by the Free

 * Software Foundation; either version 2 of the License, or (at your option)

 * any later version.

 *

 * In addition, as a special exception, the copyright holders give permission

 * to link the code of portions of this program with the OpenSSL library under

 * certain conditions as described in each individual source file, and

 * distribute linked combinations including the two. You must obey the GNU

 * General Public License in all respects for all of the code used other than

 * OpenSSL. If you modify file(s) with this exception, you may extend this

 * exception to your version of the file(s), but you are not obligated to do

 * so. If you do not wish to do so, delete this exception statement from your

 * version. If you delete this exception statement from all source files in

 * the program, then also delete it here.

 *

 * SLURM is distributed in the hope that it will be useful, but WITHOUT ANY

 * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS

 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more

 * details.

 *

 * You should have received a copy of the GNU General Public License along

64

 * with SLURM; if not, write to the Free Software Foundation, Inc.,

 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

***/

#if HAVE_CONFIG_H

include "config.h"

#endif

#define _GNU_SOURCE

#define PATH_MAX 1024

#include <sched.h>

#include <unistd.h>

#include <sys/mount.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/stat.h>

#include <signal.h>

#include <sys/types.h>

#include <dirent.h>

#include "slurm/slurm_errno.h"

#include "src/common/slurm_xlator.h"

#include "src/slurmd/slurmstepd/slurmstepd_job.h"

#include "src/slurmd/slurmd/slurmd.h"

#include "src/common/uid.c"

/*

 * These variables are required by the generic plugin interface. If they

 * are not found in the plugin, the plugin loader will ignore it.

 *

 * plugin_name - a string giving a human-readable description of the

 * plugin. There is no maximum length, but the symbol must refer to

 * a valid string.

 *

 * plugin_type - a string suggesting the type of the plugin or its

 * applicability to a particular form of data or method of data handling.

 * If the low-level plugin API is used, the contents of this string are

 * unimportant and may be anything. SLURM uses the higher-level plugin

 * interface which requires this string to be of the form

65

 *

 * <application>/<method>

 *

 * where <application> is a description of the intended application of

 * the plugin (e.g., "task" for task control) and <method> is a description

 * of how this plugin satisfies that application. SLURM will only load

 * a task plugin if the plugin_type string has a prefix of "task/".

 *

 * plugin_version - an unsigned 32-bit integer containing the Slurm version

 * (major.minor.micro combined into a single number).

 */

const char plugin_name[] = "task MOUNT_ISOLATION plugin";

const char plugin_type[] = "task/mount_isolation";

const uint32_t plugin_version = SLURM_VERSION_NUMBER;

/*

 * the main isolate function that sets up the mount namespace

 */

static int _isolate(const stepd_step_rec_t *job);

/*

 * a function to cleanup no longer needed temporary files

 */

static int _job_cleanup(const uint32_t job_id);

/*

 * a function to recursively delete a non-empty directory

 */

static int _remove_directory(const char *path, int64_t *bytes, dev_t device_id);

/*

 * init() is called when the plugin is loaded, before any other functions

 * are called. Put global initialization here.

 */

extern int init (void)

{

 /* retreive tmp directories and subdirectory from slurm.conf */

 char tmp_dirs[PATH_MAX];

 snprintf(tmp_dirs, PATH_MAX, "%s", slurmctld_conf.task_plugin_tmp_dirs);

 char tmp_subdir[PATH_MAX];

66

 snprintf(tmp_subdir, PATH_MAX, "%s", slurmctld_conf.task_plugin_tmp_subdir);

 int rc = 0;

 /* prepare to loop through tmp directories */

 char* tmp_dir;

 char* saveptr;

 tmp_dir = strtok_r(tmp_dirs, ",", &saveptr);

 /* look through tmp directories */

 while (tmp_dir) {

 char subdir_path[PATH_MAX];

 snprintf(subdir_path, PATH_MAX, "%s/%s", tmp_dir, tmp_subdir);

 struct stat sb;

 /* make the tmp directory private */

 rc = mount("", tmp_dir, NULL, MS_PRIVATE, NULL);

 if (rc) {

 /* make sure the directory is mounted to itself */

 rc = mount(tmp_dir, tmp_dir, NULL, MS_BIND, NULL);

 if (rc) {

 slurm_error("%s: failed to 'mount --bind %s %s' error: %d",

 plugin_name, tmp_dir, tmp_dir, rc);

 return SLURM_ERROR;

 }

 /* try again */

 rc = mount("", tmp_dir, NULL, MS_PRIVATE, NULL);

 if (rc) {

 slurm_error("%s: failed to 'mount --make-private %s' error: %d",

 plugin_name, tmp_dir, rc);

 return SLURM_ERROR;

 }

 }

 /* create tmp subdirectory */

 rc = lstat(subdir_path, &sb);

 if (rc == 0 && S_ISDIR(sb.st_mode)) {

 debug3("%s: failed to create %s temporary subdirectory at %s. warning: %d
(directory already exists)",

 plugin_name, tmp_subdir, subdir_path, rc);

67

 } else {

 rc = mkdir(subdir_path, 0000);

 if (rc) {

 slurm_error("%s: failed to create %s temporary subdirectory at %s. error: %d",

 plugin_name, tmp_subdir, subdir_path, rc);

 return SLURM_ERROR;

 }

 }

 /* prepare for next loop */

 tmp_dir = strtok_r(NULL, ",", &saveptr);

 while (tmp_dir && *tmp_dir == '\040') {

 tmp_dir++;

 }

 }

 debug("%s loaded", plugin_name);

 return SLURM_SUCCESS;

}

/*

 * fini() is called when the plugin is removed. Clear any allocated

 * storage here.

 */

extern int fini (void)

{

 return SLURM_SUCCESS;

}

/*

 * task_p_slurmd_batch_request()

 */

extern int task_p_slurmd_batch_request (uint32_t job_id,

 batch_job_launch_msg_t *req)

{

 debug("task_p_slurmd_batch_request: %u", job_id);

 return SLURM_SUCCESS;

}

/*

68

 * task_p_slurmd_launch_request()

 */

extern int task_p_slurmd_launch_request (uint32_t job_id,

 launch_tasks_request_msg_t *req,

 uint32_t node_id)

{

 debug("task_p_slurmd_launch_request: %u.%u %u",

 job_id, req->job_step_id, node_id);

 return SLURM_SUCCESS;

}

/*

 * task_p_slurmd_reserve_resources()

 */

extern int task_p_slurmd_reserve_resources (uint32_t job_id,

 launch_tasks_request_msg_t *req,

 uint32_t node_id)

{

 debug("task_p_slurmd_reserve_resources: %u %u", job_id, node_id);

 return SLURM_SUCCESS;

}

/*

 * task_p_slurmd_suspend_job()

 */

extern int task_p_slurmd_suspend_job (uint32_t job_id)

{

 debug("task_p_slurmd_suspend_job: %u", job_id);

 return SLURM_SUCCESS;

}

/*

 * task_p_slurmd_resume_job()

 */

extern int task_p_slurmd_resume_job (uint32_t job_id)

{

 debug("task_p_slurmd_resume_job: %u", job_id);

 return SLURM_SUCCESS;

}

69

/*

 * task_p_slurmd_release_resources()

 */

extern int task_p_slurmd_release_resources (uint32_t job_id)

{

 debug("task_p_slurmd_release_resources: %u", job_id);

 /* return _job_cleanup(job_id); */

 return SLURM_SUCCESS;

}

/*

 * task_p_pre_setuid() is called before setting the UID for the

 * user to launch his jobs. Use this to create the CPUSET directory

 * and set the owner appropriately.

 */

extern int task_p_pre_setuid (stepd_step_rec_t *job)

{

 return SLURM_SUCCESS;

}

/*

 * task_p_pre_launch() is called prior to exec of application task.

 * It is followed by TaskProlog program (from slurm.conf) and

 * --task-prolog (from srun command line).

 */

extern int task_p_pre_launch (stepd_step_rec_t *job)

{

 debug("task_p_pre_launch: %u.%u, task %d",

 job->jobid, job->stepid, job->envtp->procid);

 return SLURM_SUCCESS;

}

/*

 * task_p_pre_launch_priv() is called prior to exec of application task.

 * in privileged mode, just after slurm_spank_task_init_privileged

 */

extern int task_p_pre_launch_priv (stepd_step_rec_t *job)

{

 debug("task_p_pre_launch_priv: %u.%u",

 job->jobid, job->stepid);

70

 return _isolate(job);

 /* return SLURM_SUCCESS; */

}

/*

 * task_term() is called after termination of application task.

 * It is preceded by --task-epilog (from srun command line)

 * followed by TaskEpilog program (from slurm.conf).

 */

extern int task_p_post_term (stepd_step_rec_t *job, stepd_step_task_info_t *task)

{

 debug("task_p_post_term: %u.%u, task %d",

 job->jobid, job->stepid, task->id);

 return _job_cleanup(job->jobid);

 /* return SLURM_SUCCESS; */

}

/*

 * task_p_post_step() is called after termination of the step

 * (all the task)

 */

extern int task_p_post_step (stepd_step_rec_t *job)

{

 return SLURM_SUCCESS;

}

/*

 * Keep track a of a pid.

 */

extern int task_p_add_pid (pid_t pid)

{

 return SLURM_SUCCESS;

}

/*

 * _isolate() is called from task_p_pre_launch_priv to setup mount namespace isolation

 */

static int _isolate(const stepd_step_rec_t *job)

{

71

 /* set variables for function */

 int rc = 0;

 char* user = uid_to_string(job->uid);

 /* retreive tmp directories and subdirectory from slurm.conf */

 char tmp_dirs[PATH_MAX];

 snprintf(tmp_dirs, PATH_MAX, "%s", slurmctld_conf.task_plugin_tmp_dirs);

 char tmp_subdir[PATH_MAX];

 snprintf(tmp_subdir, PATH_MAX, "%s", slurmctld_conf.task_plugin_tmp_subdir);

 /* create a new mount namespace */

 rc = unshare(CLONE_NEWNS);

 if (rc) {

 slurm_error("%s: failed to unshare mounts for job: %u error: %d",

 plugin_name, job->jobid, rc);

 return SLURM_ERROR;

 }

 /* make root in the new namespace a slave so any changes don't propagate

 * back to the default root */

 rc = mount("", "/", NULL, MS_REC|MS_SLAVE, NULL);

 if (rc) {

 slurm_error("%s: failed to 'mount --make-rslave /' for job: %u error: %d",

 plugin_name, job->jobid, rc);

 return SLURM_ERROR;

 }

 /* prepare to loop through tmp directories */

 char* tmp_dir;

 char* saveptr;

 tmp_dir = strtok_r(tmp_dirs, ",", &saveptr);

 /* loop through tmp directories */

 while (tmp_dir) {

 /* set variables for loop */

 char tmp_user_path[PATH_MAX];

 snprintf(tmp_user_path, PATH_MAX, "%s/%s/%s",

 tmp_dir, tmp_subdir, user);

 char tmp_job_path[PATH_MAX];

 snprintf(tmp_job_path, PATH_MAX, "%s/%s/%s/%d",

72

 tmp_dir, tmp_subdir, user, job->jobid);

 struct stat sb;

 /* create user tmp directory */

 rc = lstat(tmp_user_path, &sb);

 if (rc == 0 && S_ISDIR(sb.st_mode)) {

 debug3("%s: failed to create user directory %s for job: %u warning: %d
(directory already exists)",

 plugin_name, tmp_user_path, job->jobid, rc);

 } else {

 rc = mkdir(tmp_user_path, 0700);

 if (rc) {

 slurm_error("%s: failed to create user directory %s for job: %u error: %d",

 plugin_name, tmp_user_path, job->jobid, rc);

 return SLURM_ERROR;

 }

 }

 /* set permissions on user tmp directory */

 rc = lchown(tmp_user_path, job->uid, job->gid);

 if (rc) {

 slurm_error("%s: failed to change ownership of user directory %s for job: %u
error: %d",

 plugin_name, tmp_user_path, job->jobid, rc);

 return SLURM_ERROR;

 }

 /* create job id tmp directory */

 rc = lstat(tmp_job_path, &sb);

 if (rc == 0 && S_ISDIR(sb.st_mode)) {

 debug3("%s: failed to create jobid directory %s for job: %u warning: %d
(directory already exists)",

 plugin_name, tmp_job_path, job->jobid, rc);

 } else {

 rc = mkdir(tmp_job_path, 0700);

 if (rc) {

 slurm_error("%s: failed to create jobid directory %s for job: %u error: %d",

 plugin_name, tmp_job_path, job->jobid, rc);

 return SLURM_ERROR;

 }

 }

73

 /* set permissions on job id tmp directory */

 rc = lchown(tmp_job_path, job->uid, job->gid);

 if (rc) {

 slurm_error("%s: failed to change ownership of jobid directory %s for job: %u
error: %d",

 plugin_name, tmp_job_path, job->jobid, rc);

 return SLURM_ERROR;

 }

 /* bind user and job id isolated directories to tmp directories */

 rc = mount(tmp_job_path, tmp_dir, NULL, MS_BIND, NULL);

 if (rc) {

 slurm_error("%s: failed to mount jobid directory %s to %s for job: %u error:
%d",

 plugin_name, tmp_job_path, tmp_dir, job->jobid, rc);

 return SLURM_ERROR;

 }

 /* prepare for next loop */

 tmp_dir = strtok_r(NULL, ",", &saveptr);

 while (tmp_dir && *tmp_dir == '\040') {

 tmp_dir++;

 }

 }

 return SLURM_SUCCESS;

}

/*

 * _job_cleanup() is called when a job terminates and calls _remove_directory()

 * to remove temporary files related to the temrinated job

 */

static int _job_cleanup(const uint32_t job_id)

{

 int rc = 0;

 ListIterator itr = NULL;

 List steps = NULL;

 step_loc_t *stepd = NULL;

 int job_step_cnt = 0;

 int64_t bytes = 0;

74

 char* nodename;

 uid_t uid = -1;

 int fd;

 /* get the nodename */

 if (!(nodename = slurm_conf_get_aliased_nodename())) {

 slurm_error("%s: failed to get nodename for job: %u error: %d",

 plugin_name, job_id, rc);

 return SLURM_ERROR;

 }

 steps = stepd_available(NULL, nodename);

 /* count number of running steps for the job and get uid */

 itr = list_iterator_create(steps);

 while ((stepd = list_next(itr))) {

 if (stepd->jobid != job_id) {

 /* multiple jobs expected on shared nodes */

 continue;

 }

 /* count number of running steps for the job */

 if (stepd->stepid != SLURM_EXTERN_CONT) {

 job_step_cnt++;

 }

 debug3("%s: _job_cleanup step: %u:%u, step count: %d",

 plugin_name, stepd->jobid, stepd->stepid, job_step_cnt);

 fd = stepd_connect(stepd->directory, stepd->nodename, stepd->jobid,

 stepd->stepid, &stepd->protocol_version);

 if (fd == -1) {

 debug3("%s: _job_cleanup unable to connect to step %u.%u",

 plugin_name, stepd->jobid, stepd->stepid);

 continue;

 }

 uid = stepd_get_uid(fd, stepd->protocol_version);

 close(fd);

 if ((int)uid < 0) {

75

 debug3("%s: _job_cleanup get uid failed %u.%u",

 plugin_name, stepd->jobid, stepd->stepid);

 continue;

 }

 }

 list_iterator_destroy(itr);

 /* if this is the last step in the job */

 if (job_step_cnt == 1) {

 /* set necessary variables */

 char* user = uid_to_string(uid);

 struct stat sb;

 /* used to ensure recursive remove stays on the same file system */

 dev_t device_id;

 /* retreive tmp directories and subdirectory from slurm.conf */

 char tmp_dirs[PATH_MAX];

 snprintf(tmp_dirs, PATH_MAX, "%s", slurmctld_conf.task_plugin_tmp_dirs);

 char tmp_subdir[PATH_MAX];

 snprintf(tmp_subdir, PATH_MAX, "%s",

 slurmctld_conf.task_plugin_tmp_subdir);

 /* prepare to loop through tmp directories */

 char* tmp_dir;

 char* saveptr;

 tmp_dir = strtok_r(tmp_dirs, ",", &saveptr);

 /* loop through tmp directories */

 while (tmp_dir) {

 /* set variables for loop */

 char tmp_job_path[PATH_MAX];

 snprintf(tmp_job_path, PATH_MAX, "%s/%s/%s/%d",

 tmp_dir, tmp_subdir, user, job_id);

 if (!lstat(tmp_job_path, &sb)) {

 device_id = sb.st_dev;

 }

 rc = _remove_directory(tmp_job_path, &bytes, device_id);

 if (rc) {

76

 slurm_error("%s: failed to remove job related temporary files for job: %u
error: %d",

 plugin_name, job_id, rc);

 return SLURM_ERROR;

 }

 /* prepare for next loop */

 tmp_dir = strtok_r(NULL, ",", &saveptr);

 while (tmp_dir && *tmp_dir == '\040') {

 tmp_dir++;

 }

 }

 /****** Begin Data Gathering ******/

 info("%s: %ld bytes temporary files purged for jobid %u",

 plugin_name, bytes, job_id);

 /****** End Data Gathering ******/

 }

 return SLURM_SUCCESS;

}

/*

 * _remove_directory() is called to recursively delete a non-empty directory

 */

static int _remove_directory(const char *path, int64_t *bytes, dev_t device_id)

{

 /* declare needed variables */

 DIR *d = opendir(path);

 size_t path_len = strlen(path);

 int r = -1;

 if (d) {

 struct dirent *p;

 r = 0;

 while (!r && (p=readdir(d))) {

 int r2 = -1;

77

 char *buf;

 size_t len;

 /* skip the names "." and ".." we don't want to recurse on them. */

 if (!strcmp(p->d_name, ".") || !strcmp(p->d_name, "..")) {

 continue;

 }

 len = path_len + strlen(p->d_name) + 2;

 buf = xmalloc(len);

 if (buf) {

 struct stat statbuf;

 snprintf(buf, len, "%s/%s", path, p->d_name);

 if (!lstat(buf, &statbuf)) {

 if (statbuf.st_dev == device_id) {

 if (S_ISDIR(statbuf.st_mode)) {

 r2 = _remove_directory(buf, bytes, device_id);

 } else {

 /****** Begin Data Gathering ******/

 *bytes += statbuf.st_size;

 /****** End Data Gathering ******/

 r2 = remove(buf);

 }

 } else {

 /* device ID has changed, return error without removing */

 r2 = -1;

 }

 }

 xfree(buf);

 }

 r = r2;

 }

 closedir(d);

 }

 if (!r) {

 /****** Begin Data Gathering ******/

78

 struct stat sb;

 if (!lstat(path, &sb)) {

 *bytes += sb.st_size;

 r = remove(path);

 }

 /****** End Data Gathering ******/

 /* r = remove(path); */

 }

 return r;

}

79

Appendix C. Source Code for PAM_Mount_NS_Adopt

pam_mount_ns_adopt.c

/***\

 * pam_mount_ns_adopt.c - Adopt incoming connections into job mount namespace

 * Copyright (C) 2018, Brigham Young University

 * Author: Tanner Satchwell <tannersatch@gmail.com>

 *

 * This file is part of SLURM, a resource management program.

 * For details, see <https://slurm.schedmd.com/>.

 * Please also read the included file: DISCLAIMER.

 *

 * SLURM is free software; you can redistribute it and/or modify it under

 * the terms of the GNU General Public License as published by the Free

 * Software Foundation; either version 2 of the License, or (at your option)

 * any later version.

 *

 * In addition, as a special exception, the copyright holders give permission

 * to link the code of portions of this program with the OpenSSL library under

 * certain conditions as described in each individual source file, and

 * distribute linked combinations including the two. You must obey the GNU

 * General Public License in all respects for all of the code used other than

 * OpenSSL. If you modify file(s) with this exception, you may extend this

 * exception to your version of the file(s), but you are not obligated to do

 * so. If you do not wish to do so, delete this exception statement from your

 * version. If you delete this exception statement from all source files in

 * the program, then also delete it here.

 *

 * SLURM is distributed in the hope that it will be useful, but WITHOUT ANY

 * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS

 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more

 * details.

80

 *

 * You should have received a copy of the GNU General Public License along

 * with SLURM; if not, write to the Free Software Foundation, Inc.,

 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

***/

#ifndef PAM_MODULE_NAME

define PAM_MODULE_NAME "pam_mount_ns_adopt"

#endif

#if HAVE_CONFIG_H

include "config.h"

#endif

#define _GNU_SOURCE

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <fcntl.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <unistd.h>

#include <syslog.h>

#include <pwd.h>

#include <stddef.h>

#include <stdint.h>

#include <sched.h>

#include <sys/mount.h>

#include <inttypes.h>

#include <dlfcn.h>

#include "helper.c"

#include "slurm/slurm.h"

#include "src/common/slurm_xlator.h"

#include "src/common/slurm_protocol_api.h"

#include "src/common/xcgroup_read_config.c"

#include "src/slurmd/common/xcgroup.c"

#include "src/common/stepd_api.h"

81

#ifndef PATH_MAX

define PATH_MAX 1024

#endif

#include <security/_pam_macros.h>

#include <security/pam_ext.h>

#define PAM_SM_SESSION

#include <security/pam_modules.h>

#include <security/pam_modutil.h>

/**********************************\

 * Session Management Functions *

**********************************/

PAM_EXTERN int

pam_sm_open_session(pam_handle_t *pamh,

 int flags, int argc, const char **argv)

{

 uint16_t protocol_version;

 step_loc_t *stepd = NULL;

 uint32_t * pids = NULL;

 uint32_t job_id = 0;

 uint32_t count = 0;

 char * nodename = NULL;

 char mountns[PATH_MAX];

 ListIterator itr = NULL;

 List steps = NULL;

 pid_t user_pid;

 pid_t job_pid;

 int step_id = 0;

 int rc = 0;

 int fd1;

 int fd2;

 /* get the pid of the connecting user */

 syslog(LOG_MAKEPRI(LOG_AUTH, LOG_INFO), "%s: acquiring pid",

 PAM_MODULE_NAME);

 user_pid = getpid();

 syslog(LOG_MAKEPRI(LOG_AUTH, LOG_INFO), "%s: user pid = %d",

82

 PAM_MODULE_NAME, user_pid);

 /* get the job_id for the connecting user */

 rc = slurm_pid2jobid(user_pid, &job_id);

 if (rc) {

 _log_msg(LOG_INFO, "slurm_pid2jobid error: %s", strerror(rc));

 return (PAM_IGNORE);

 }

 /* get the node name of the node the user is connecting to */

 syslog(LOG_MAKEPRI(LOG_AUTH, LOG_INFO), "%s: acquiring nodename",

 PAM_MODULE_NAME);

 if (!(nodename = slurm_conf_get_aliased_nodename())) {

 /* if no match, try localhost

 * (Should only be valid in a test environment) */

 if (!(nodename = slurm_conf_get_nodename("localhost"))) {

 syslog(LOG_MAKEPRI(LOG_AUTH, LOG_INFO), "%s: no hostname found",

 PAM_MODULE_NAME);

 return (PAM_IGNORE);

 }

 }

 syslog(LOG_MAKEPRI(LOG_AUTH, LOG_INFO), "%s: nodename = %s",

 PAM_MODULE_NAME, nodename);

 /* find a stepid for the job */

 steps = stepd_available(NULL, nodename);

 itr = list_iterator_create(steps);

 while ((stepd = list_next(itr))) {

 if (stepd->jobid != job_id) {

 /* multiple jobs expected on shared nodes */

 continue;

 }

 if (stepd->stepid != SLURM_EXTERN_CONT) {

 step_id = stepd->stepid;

 break;

 }

 }

 list_iterator_destroy(itr);

 syslog(LOG_MAKEPRI(LOG_AUTH, LOG_INFO), "%s: step_id = %d",

 PAM_MODULE_NAME, step_id);

83

 /* connect to stepd to get job information */

 syslog(LOG_MAKEPRI(LOG_AUTH, LOG_INFO), "%s: connecting to job %u",

 PAM_MODULE_NAME, job_id);

 fd1 = stepd_connect(NULL, nodename, job_id, step_id, &protocol_version);

 if (fd1 == -1) {

 if (errno == ENOENT) {

 syslog(LOG_MAKEPRI(LOG_AUTH, LOG_INFO),

 "%s: job step %u.%u does not exist on this node.",

 PAM_MODULE_NAME, job_id, step_id);

 } else {

 syslog(LOG_MAKEPRI(LOG_AUTH, LOG_INFO),

 "%s: unable to connect to slurmstepd", PAM_MODULE_NAME);

 }

 close(fd1);

 return (PAM_IGNORE);

 }

 /* get a list of job pids, just use the first pid that isn't

 * the incoming connection */

 syslog(LOG_MAKEPRI(LOG_AUTH, LOG_INFO),

 "%s: getting pids", PAM_MODULE_NAME);

 stepd_list_pids(fd1, protocol_version, &pids, &count);

 for (int i = 0; i < count; i++) {

 if (pids[i] != user_pid) {

 job_pid = pids[i];

 break;

 }

 }

 /* prepare the path of the job mount ns */

 syslog(LOG_MAKEPRI(LOG_AUTH, LOG_INFO),

 "%s: building mnt namespace path", PAM_MODULE_NAME);

 snprintf(mountns, PATH_MAX, "/proc/%d/ns/mnt", job_pid);

 /* open and connect to the job mount ns */

 syslog(LOG_MAKEPRI(LOG_AUTH, LOG_INFO),

 "%s: opening mnt namespace", PAM_MODULE_NAME);

 fd2 = open(mountns, O_RDONLY);

 if (fd2 == -1) {

 syslog(LOG_MAKEPRI(LOG_AUTH, LOG_INFO),

84

 "%s: failed to open '/proc/PID/ns/mnt", PAM_MODULE_NAME);

 goto cleanup;

 }

 /* adopt the user into the job mnt namespace */

 syslog(LOG_MAKEPRI(LOG_AUTH, LOG_INFO),

 "%s: adopting user into mnt namespace", PAM_MODULE_NAME);

 if (setns(fd2, 0) == -1) {

 syslog(LOG_MAKEPRI(LOG_AUTH, LOG_INFO),

 "%s: setns failed to adopt user into jobid mnt ns",

 PAM_MODULE_NAME);

 goto cleanup;

 }

 close(fd1);

 close(fd2);

 return (PAM_SUCCESS);

 cleanup:

 close(fd1);

 close(fd2);

 return (PAM_IGNORE);

}

PAM_EXTERN int

pam_sm_close_session(pam_handle_t *pamh,

 int flags, int argc, const char *argv[])

{

 return (PAM_SUCCESS);

}

#ifdef PAM_STATIC

struct pam_module _pam_mount_ns_adopt_modstruct = {

 PAM_MODULE_NAME,

 NULL,

 NULL,

 NULL,

 pam_sm_open_session,

85

 NULL,

 NULL,

};

#endif

helper.h

/* helper.h

 *

 * Some helper functions needed for pam_slurm_adopt.c */

#define PAM_SM_ACCOUNT

#include <security/pam_modules.h>

#include <security/_pam_macros.h>

extern void send_user_msg(pam_handle_t *pamh, const char *msg);

extern void libpam_slurm_init (void);

extern void libpam_slurm_fini (void);

helper.c

/***\

 * pam_slurm_adopt/helper.c

 * Useful portions extracted from pam_slurm.c by Ryan Cox <ryan_cox@byu.edu>

 *

 * Copyright (C) 2002-2007 The Regents of the University of California.

 * Copyright (C) 2008-2009 Lawrence Livermore National Security.

 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).

 * UCRL-CODE-2002-040.

 *

 * Written by Chris Dunlap <cdunlap@llnl.gov>

 * and Jim Garlick <garlick@llnl.gov>

 * modified for SLURM by Moe Jette <jette@llnl.gov>.

 *

 * This file is part of pam_slurm, a PAM module for restricting access to

86

 * the compute nodes within a cluster based on information obtained from

 * Simple Linux Utility for Resource Managment (SLURM). For details, see

 * <http://www.llnl.gov/linux/slurm/>.

 *

 * pam_slurm is free software; you can redistribute it and/or modify it

 * under the terms of the GNU General Public License as published by the

 * Free Software Foundation; either version 2 of the License, or (at your

 * option) any later version.

 *

 * pam_slurm is distributed in the hope that it will be useful, but WITHOUT

 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License

 * for more details.

 *

 * You should have received a copy of the GNU General Public License along

 * with pam_slurm; if not, write to the Free Software Foundation, Inc.,

 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

***/

#ifndef PAM_MODULE_NAME

define PAM_MODULE_NAME "pam_slurm_adopt"

#endif

#if HAVE_CONFIG_H

include "config.h"

#endif

#include <ctype.h>

#include <errno.h>

#include <pwd.h>

#include <stdarg.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/param.h>

#include <sys/types.h>

#include <syslog.h>

#include <unistd.h>

#include <dlfcn.h>

87

#include "slurm/slurm.h"

#include "src/common/slurm_xlator.h"

/* Define the externally visible functions in this file.

 */

#define PAM_SM_ACCOUNT

#include <security/pam_modules.h>

#include <security/_pam_macros.h>

/* Define the functions to be called before and after load since _init

 * and _fini are obsolete, and their use can lead to unpredicatable

 * results.

 */

void __attribute__ ((constructor)) libpam_slurm_init(void);

void __attribute__ ((destructor)) libpam_slurm_fini(void);

/*

 * Handle for libslurm.so

 *

 * We open libslurm.so via dlopen () in order to pass the

 * flag RTDL_GLOBAL so that subsequently loaded modules have

 * access to libslurm symbols. This is pretty much only needed

 * for dynamically loaded modules that would otherwise be

 * linked against libslurm.

 *

 */

static void * slurm_h = NULL;

/* This function is necessary because libpam_slurm_init is called without access

 * to the pam handle.

 */

static void

_log_msg(int level, const char *format, ...)

{

 va_list args;

 openlog(PAM_MODULE_NAME, LOG_CONS | LOG_PID, LOG_AUTHPRIV);

 va_start(args, format);

 vsyslog(level, format, args);

88

 va_end(args);

 closelog();

 return;

}

/*

 * Sends a message to the application informing the user

 * that access was denied due to SLURM.

 */

extern void

send_user_msg(pam_handle_t *pamh, const char *mesg)

{

 int retval;

 struct pam_conv *conv;

 void *dummy; /* needed to eliminate warning:

 * dereferencing type-punned pointer will

 * break strict-aliasing rules */

 char str[PAM_MAX_MSG_SIZE];

 struct pam_message msg[1];

 const struct pam_message *pmsg[1];

 struct pam_response *prsp;

 info("send_user_msg: %s", mesg);

 /* Get conversation function to talk with app.

 */

 retval = pam_get_item(pamh, PAM_CONV, (const void **) &dummy);

 conv = (struct pam_conv *) dummy;

 if (retval != PAM_SUCCESS) {

 _log_msg(LOG_ERR, "unable to get pam_conv: %s",

 pam_strerror(pamh, retval));

 return;

 }

 /* Construct msg to send to app.

 */

 memcpy(str, mesg, sizeof(str));

 msg[0].msg_style = PAM_ERROR_MSG;

 msg[0].msg = str;

 pmsg[0] = &msg[0];

 prsp = NULL;

89

 /* Send msg to app and free the (meaningless) rsp.

 */

 retval = conv->conv(1, pmsg, &prsp, conv->appdata_ptr);

 if (retval != PAM_SUCCESS)

 _log_msg(LOG_ERR, "unable to converse with app: %s",

 pam_strerror(pamh, retval));

 if (prsp != NULL)

 _pam_drop_reply(prsp, 1);

 return;

}

/*

 * Dynamically open system's libslurm.so with RTLD_GLOBAL flag.

 * This allows subsequently loaded modules access to libslurm symbols.

 */

extern void libpam_slurm_init (void)

{

 char libslurmname[64];

 if (slurm_h)

 return;

 /* First try to use the same libslurm version ("libslurm.so.24.0.0"),

 * Second try to match the major version number ("libslurm.so.24"),

 * Otherwise use "libslurm.so" */

 if (snprintf(libslurmname, sizeof(libslurmname),

 "libslurm.so.%d.%d.%d", SLURM_API_CURRENT,

 SLURM_API_REVISION, SLURM_API_AGE) >=

 (signed) sizeof(libslurmname)) {

 _log_msg (LOG_ERR, "Unable to write libslurmname\n");

 } else if ((slurm_h = dlopen(libslurmname, RTLD_NOW|RTLD_GLOBAL))) {

 return;

 } else {

 _log_msg (LOG_INFO, "Unable to dlopen %s: %s\n",

 libslurmname, dlerror ());

 }

 if (snprintf(libslurmname, sizeof(libslurmname), "libslurm.so.%d",

 SLURM_API_CURRENT) >= (signed) sizeof(libslurmname)) {

90

 _log_msg (LOG_ERR, "Unable to write libslurmname\n");

 } else if ((slurm_h = dlopen(libslurmname, RTLD_NOW|RTLD_GLOBAL))) {

 return;

 } else {

 _log_msg (LOG_INFO, "Unable to dlopen %s: %s\n",

 libslurmname, dlerror ());

 }

 if (!(slurm_h = dlopen("libslurm.so", RTLD_NOW|RTLD_GLOBAL))) {

 _log_msg (LOG_ERR, "Unable to dlopen libslurm.so: %s\n",

 dlerror ());

 }

 return;

}

extern void libpam_slurm_fini (void)

{

 if (slurm_h)

 dlclose (slurm_h);

 return;

}

	Brigham Young University
	BYU ScholarsArchive
	2018-06-01

	Isolation of Temporary Storage in High Performance Computing via Linux Namespacing
	Steven Tanner Satchwell
	BYU ScholarsArchive Citation

	TITLE PAGE
	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	1 INTRODUCTION
	1.1 Problem Statement
	1.2 Hypotheses
	1.3 Justification
	1.4 Delimitations

	2 LITERATURE REVIEW
	2.1 High Performance Computing
	2.2 Simple Linux Utility for Resource Management
	2.3 Unix File Systems
	2.4 Bind Mounts
	2.5 Pluggable Authentication Modules
	2.6 Linux Namespaces
	2.7 Overhead of OS-level Virtualization
	2.8 A Historical Perspective of Linux Namespaces
	2.9 OS-level Virtualization Security
	2.10 Related Work

	3 METHODOLOGY
	3.1 Isolation Components
	3.2 PAM Namespace Module
	3.3 Slurm Task Plugin
	3.4 Slurm Epilog Script

	4 IMPLEMENTATION
	4.1 PAM, mount_isolation, Epilog Conglomerate
	4.2 Multiple Temporary Directories
	4.3 Reentrant Functions
	4.4 Temporary Subdirectory
	4.5 Recursive Removal of Job Directory
	4.6 PAM Session Module
	4.7 Unit and Integration Testing
	4.8 Slurm Repository Contribution
	4.9 Gathering Data

	5 IMPLEMENTATION DATA
	5.1 Development Environment Data
	5.2 Production Environment Data
	5.2.1 Saved Disk Space
	5.2.2 Files Removed
	5.2.3 Overlapping Jobs

	5.3 Data Delimitations
	5.3.1 Linux du
	5.3.2 User Variance

	5.4 Theoretical Improvement

	6 DISCUSSION AND CONCLUSION
	6.1 Future Work

	REFERENCES
	APPENDICES
	Appendix A. Source Code for Simulated Data
	sim.py
	chart1.py
	chart2.py

	Appendix B. Source Code for Mount_Isolation Task Plugin
	Appendix C. Source Code for PAM_Mount_NS_Adopt
	pam_mount_ns_adopt.c
	helper.h
	helper.c

