
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2019-12-01

Exploring the Efficiency of Software-Defined Radios in 3D Heat Exploring the Efficiency of Software-Defined Radios in 3D Heat

Mapping Mapping

Andrew Scott Thomas
Brigham Young University

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Engineering Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Thomas, Andrew Scott, "Exploring the Efficiency of Software-Defined Radios in 3D Heat Mapping" (2019).
Theses and Dissertations. 7754.
https://scholarsarchive.byu.edu/etd/7754

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F7754&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=scholarsarchive.byu.edu%2Fetd%2F7754&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/7754?utm_source=scholarsarchive.byu.edu%2Fetd%2F7754&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

Exploring the Efficiency of Software-Defined

Radios in 3D Heat Mapping

Andrew Scott Thomas

A dissertation/thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Justin Giboney, Chair
Willie Harrison
Derek Hansen

School of Technology

Brigham Young University

Copyright © 2019 Andrew Scott Thomas

All Rights Reserved

ABSTRACT

Exploring the Efficiency of Software-Defined
Radios in 3D Heat Mapping

Andrew Scott Thomas
School of Technology, BYU

Master of Science

A common method of connecting to the internet is a wireless network. These networks
can be monitored to discover the area of their coverage, but commercial receivers don’t always
provide the most accurate results. A software-defined radio was programmed to sniff wireless
signals and tested against a commercial receiver and the results were compared. The results
suggest that the software-defined radio performs at least as well as the commercial receiver in
distance measurements and significantly better in samples taken per minute. It was determined
that the software-defined radio is a viable replacement for a commercial receiver in 3D heat
mapping.

Keywords: software-defined radio, WiFi, security, heat map

ACKNOWLEDGEMENTS

I would like to thank everyone who has helped me and pushed me to finish my research

and thesis. I appreciate my parents for letting me use their house as a testing grounds for

everything I did and for supporting me through the whole process. I would also like to thank

Dale Rowe who chaired my committee until his departure from BYU and helped me discover

this area of research. I also thank Justin Giboney, my committee chair, who encouraged me and

helped me see this research through to the end.

I appreciate the help of all my friends and coworkers who kept me motivated and

working toward the end goal. I’m grateful for everyone who reviewed my writing, helped me

troubleshoot, and gave me the best possible chance of success.

iv

TABLE OF CONTENTS

LIST OF TABLES .. vii
LIST OF FIGURES ... viii

1 Introduction ... 1

Background .. 1

Research Objectives ... 3

Hypotheses ... 3

Definitions .. 4

Methodology .. 5

1.5.1 Assessments .. 5

1.5.2 Controlled Environment.. 6

1.5.3 Real-World Environment .. 7

Assumptions and Delimitations ... 7

1.6.1 Assumptions .. 7

1.6.2 Delimitations ... 7

2 Literature Review .. 9

The IEEE 802.11 Family .. 9

Methods of Attacking Wireless Networks ... 10

Securing Wireless Networks .. 11

3D Site Surveys .. 12

SDR-Based 802.11 Wireless Communication Module .. 13

Difficulties of Wireless Communications .. 13

3 Methodology .. 15

Equipment Preparation ... 15

SDR Functionality Tests .. 15

Speed Test .. 16

Distance Test .. 16

3.4.1 Noise Floor.. 17

Field Test .. 17

Site Test .. 17

Performance Criteria .. 18

Hardware Setup .. 18

v

4 Implementation .. 19

 Equipment .. 19

4.1.1 Variables ... 19

4.1.2 Antennas ... 20

 Initial SDR Development ... 20

 Raspberry Pi Development... 21

4.3.1 Raspbian Development ... 21

4.3.2 Ubuntu 18.04 for Raspberry Pi Development... 21

 Data Collection Platform .. 22

 Data Collection Scripts... 22

4.5.1 SDR Script .. 23

4.5.2 Pi Script ... 24

 Analysis Scripts .. 25

4.6.1 SDR Processing Script .. 25

4.6.2 SDR Analysis Script – Distance Test ... 25

4.6.3 SDR Analysis Script – Speed Test.. 26

4.6.4 Pi Analysis Script – Distance Test .. 26

4.6.5 Pi Analysis Script – Speed Test .. 27

5 Results and Analysis .. 28

 Rubric of Efficacy .. 28

5.1.1 Functional Distance .. 28

5.1.2 Average Samples per Minute .. 29

 Field Test Results ... 29

5.2.1 Distance Test ... 29

5.2.2 Speed Test Results .. 32

 Site Test Results ... 34

5.3.1 Distance Test Results .. 34

5.3.2 Speed Test Results .. 36

 Analysis of Research Question 1 ... 38

 Analysis of Hypothesis 1.. 39

 Analysis of Hypothesis 2.. 39

 Further Observations .. 39

5.7.1 Complexity .. 39

vi

5.7.2 Unknown Networks .. 40

5.7.3 Weaknesses of the SDR .. 40

5.7.4 Using the SDR in the Drone Environment ... 41

5.7.5 Summary of Advantages and Disadvantages .. 41

6 Conclusions and Future Research .. 42

 Conclusion .. 42

 Future Work ... 42

References ... 45

Appendix A. VM and Raspberry pi setup .. 47

Appendix B. Data Collection Scripts ... 50

Appendix C. Analysis Scripts .. 68

vii

LIST OF TABLES

Table 1: Equipment Used.. 19
Table 2: Distance Test Comparison – Field Test .. 30
Table 3: Distance Test Comparison – Site Test .. 34
Table 4: Advantages and Disadvantages of the Platforms .. 41

viii

LIST OF FIGURES

Figure 1: Drone Environment ... 18
Figure 2: SDR Signal Strength - Field Test .. 31
Figure 3: Pi Signal Strength - Field Test .. 31
Figure 4: SDR Average Samples per Minute – Field Test ... 33
Figure 5: Pi Average Samples per Minute – Field Test .. 33
Figure 6: SDR Signal Strength – Site Test ... 35
Figure 7: Pi Signal Strength – Site Test .. 35
Figure 8: SDR Average Samples per Minute – Site Test ... 37
Figure 9: Pi Average Samples per Minute – Site Test .. 37
Figure 10: SDR Average Samples per Minute (Network Traffic) – Site Test 37

1

1 INTRODUCTION

Background

The first IEEE standard for wireless networks was released in 1997 and has continued to

grow and be revised over the twenty years since its inception. The first iteration of that standard,

the 802.11 wireless standard, was relatively slow compared to speeds we are able to achieve

today, but it laid the foundation for a large shift from wired to wireless networks in many

organizations (IEEE, 1997). The flexibility of such a network is beneficial for many reasons, but

it is also a weakness that can be exploited.

Being able to access a wireless network outside of a building is one method of attack that

a malicious party can leverage. If the network extends to the parking lot or the street, an attacker

doesn’t need physical access to the building to be able to attempt to compromise the network and

subsequently the hosts on that network. Attack vectors introduced by this vulnerability include

man-in-the-middle (MITM) attacks and denial-of-service (DOS) attacks (Elhamahmy & Sobh,

2011; Li, Koutsopoulos, & Poovendran, 2010). Being able to regulate and understand the

perimeter of the wireless network is an important step in mitigating that risk (Issac, Jacob, &

Mohammed, 2005).

A method of mapping the network accessibility and signal strength outside of a building

in order to visualize the perimeter of the network is commonly used to defend against these

attacks. This method of network analysis, called “heat mapping” or “war driving” provides

2

valuable information about a wireless network’s strength outside of the building, and thus how

far away an attacker would need to be to gain access. There have been various methods for doing

war driving, including pushing a laptop on a cart and measuring the network strength or driving

around the building in a car measuring network strength, but most only analyze the ground-level

strength of the network (Hurley, Thornton, & Puchol, 2004).

Wireless networks are broadcast in three dimensions (3D), so if an attacker is unable to

access the network near the ground, it may still be possible to find an access point above ground

level through new technology such as a drone. A drone with the proper equipment would be able

to land on a balcony or roof or simply hover around the building and relay the signal to the

attacker on the ground. To prevent this, an organization needs to be able to create a 3D heat map

that covers every surface of the building, not just the ground level.

The most effective method to create a 3D heat map employs a drone to circle a building

and map the network at a given distance away (Pack, 2014). This is a promising method, but it

can be improved. One improvement that can be made is the use of a software-defined radio

(SDR) to implement the IEEE 802.11 standard instead of using a conventional WiFi receiver.

This method can increase efficiency by being able to read packets across a network without

connecting where a normal receiver would traditionally need to conduct a complete handshake or

do a scan of available networks. To increase efficiency, the SDR can also be programmed to

simply read partial packets to find the network identifier without wasting time on decoding the

entire packet. By taking advantage of this technology, wireless heat mapping in three dimensions

can be created at faster speeds and greater distances.

3

Research Objectives

Since access to a wireless network is one method for an attacker to access a system,

organizations that host such networks need an efficient way to monitor the reach of their

networks. With the recent advent of affordable drone technology, a scanning platform must be

developed with a small enough form factor that it can be mounted on a drone to map not only

signal strength on the ground-level, but also signal strength across every face of a building.

Although technologies do exist that are able to create a 3D heat map of a building, improvement

on the effectiveness of these technologies is possible to increase the capture speed and capture

distance. This new design focuses on improving two main features: collection speed of the

receiver and the distance at which samples can still be reliably collected.

These two aspects can be summarized by the following research question:

Research Question 1: What advantages does a software-defined radio have over a

commercial WiFi receiver?

Hypotheses

The purpose of the experiments will be to test the following hypotheses:

• Hypothesis 1: An implementation of the IEEE 802.11 standard on an SDR will be more

capable of interpreting WiFi signals at greater distances than a conventional WiFi

receiver.

• Hypothesis 2: An implementation of the IEEE 802.11 standard on an SDR will collect

samples at a greater speed than a conventional WiFi receiver.

4

 Definitions

Access Point (AP) – The device from which a wireless signal originates.

Attacker – Any party, an individual or organization, that attempts to access a network with

malicious intent.

Countermeasure Evaluation – A determination of how to mitigate risks.

Drone – An unmanned aerial vehicle whose movements are often autonomous. See also UAV.

Heat Map – A geographic visualization of density or change in factors such as population and

weather. In the context of this study, it refers to WiFi signal level.

IEEE – Institute of Electrical and Electronics Engineers.

IEEE 802.11 Standard – The de facto standard for WiFi communication

Packet – A networking term used to describe the finite-length data being transferred over wired

or wireless networks.

Red Team – A team of security professionals hired by an organization to examine weaknesses

within their network. These professionals attempt to access the network in the same manner as an

attacker.

Service Set Identifier (SSID) – The name of a WiFi network

Signal Level – Also known as signal strength. This refers to the strength of the signal above the

“noise,” which represents the point where the signal is too low to be read.

Site Survey – See Heat Map

5

Software-Defined Radio (SDR) – A programmable device capable of transmitting and

receiving wireless signals.

UAV – Unmanned Aerial Vehicle. An aircraft that can operate without a pilot on board.

WiFi Hotspot – See Access Point

WiFi Receiver – A device that is able to read the signal originating from a WiFi hotspot.

Wireless Network (or WiFi) – A method of connecting a host to the internet that does not

require a wired connection.

Wireless Local Area Network (WLAN) – A wireless network within a small area

Methodology

Data will be collected on a given wireless network using two methods: the first will use a

commercial WiFi receiver, a Raspberry Pi 4, and the second will use an implementation of the

IEEE 802.11 protocol on a Nuand BladeRF SDR. These were chosen due to their small form

factor and availability. The SDR was chosen because it is one of a few that will reach the 2.4

GHz range. Both platforms will be subjected to tests that will examine two important attributes:

collection speed (how many samples can be collected per second) and distance (how far from the

receiver will the receiver be able to collect packets).

1.5.1 Assessments

The speed assessment will test the number of samples that can be collected every minute

by each platform. This will be tested by setting the platform in a stationary position and

6

collecting samples over a set period of time. The average samples per minute will then be

calculated from this data.

The distance measurement will simply measure the greatest distance at which the system

is able to accurately capture WiFi packets. Accurate capture will be based on a noise floor

calculated for each platform. Once the signal level decreases below this noise floor, the platform

will be considered unable to capture packets.

A rubric of efficacy will be created by the researcher to evaluate the results of these

experiments. The two platforms will be evaluated based on this rubric and a recommendation

will be made for the most effective platform.

There will be two situations in which the speed and distance measurements will be taken;

the first will be a controlled environment with the access point in a known location, and the

second will be in a real-world situation.

1.5.2 Controlled Environment

The control constitutes a WiFi hotspot being placed in a known location in a field or

other open area. This hotspot will send out a consistent signal that will be received by the two

platforms. For the first test, each platform will be placed at known distances away from the AP

with a line-of-sight view and several measurements will be taken. The average signal level at

each distance will be taken and plotted. For the second test, the platforms will be placed near the

AP and will collect samples for a set amount of time. The average samples per second will be

measured from the samples taken.

7

1.5.3 Real-World Environment

The real-world application constitutes measuring the signal level of a WiFi network

outside of a building. With permission from the correct administrators and officials, the speed

and distance measurements were again evaluated and compared to the developed rubric. All heat

maps and results were provided to the correct administrators in the building used with

recommendations for which was deemed most accurate.

Assumptions and Delimitations

1.6.1 Assumptions

The assumptions made at the beginning of the experiment are set out as follows:

Assumption 1: The conventional receiver (raspberry pi) functions properly and consistently.

Assumption 2: The proposed platform (SDR receiver) functions in accordance with the IEEE

802.11 standards for WLAN networks.

Assumption 3: The wireless networks examined will offer a consistent output that will allow

both platforms to be accurately compared, despite not being tested simultaneously.

1.6.2 Delimitations

There are certain delimitations that are outside the scope of this project.

1: Alternative Communication Channels. The proposed platform can certainly be

modified to examine other channels of communication such as GSM and Bluetooth, but

these are considered out of the scope of this project. Also out of scope are higher-

frequency WiFi channels such as the 3.7 GHz and 5 GHz bands that are available. This is

8

due largely to hardware restrictions. While it would be interesting to examine these

channels, this project focuses on the IEEE 802.11 standard operating at 2.4 GHz.

2: Penetration Testing. The proposed platform can be modified to allow sending WiFi

packets as well as receiving them, but for this experiment only reception will be

considered. Thus, the viability of this tool as a Red Team attack vector will not be

considered.

3: Countermeasure Evaluation. The experiments run in this thesis will give important

information to the entities being tested, but it will not suggest mitigation procedures for

dealing with vulnerabilities. The purpose of this experiment will be to show those

vulnerabilities and allow the separate entities to decide how to mitigate their risks.

9

2 LITERATURE REVIEW

The IEEE 802.11 Family

As wireless communications have grown, the Institute of Electrical and Electronics

Engineers (IEEE) has developed standards for WiFi communications. These standards describe

methods of interpreting electromagnetic signals so that data can be passed wirelessly and are

grouped under the 802.11 family (IEEE, 1997). The initial launch of the 802.11 standard was in

1997 with what is now referred to as the legacy protocol, 802.11-1997. This protocol

implemented Direct-Sequence Spread Spectrum (DSSS) and Frequency-Hopping Spread

Spectrum (FHSS) techniques for modulation that would result in a throughput of about 1-2

Mbit/s at 2.4 GHz (IEEE, 1997). Two years later both the 802.11a and 802.11b protocols were

introduced. The first, 802.11a, introduced both the 3.7 GHz licensed band and the 5 GHz band as

well as Orthogonal Frequency-Division Multiplexing (OFDM), but these higher frequencies are

more prone to fading and thus have a lower range than their 2.4 GHz counterpart.

For this reason the 802.11b standard (and subsequently the g and n standards) were

widely accepted and implemented. The current standard in the 2.4 GHz band is 802.11n, which

implements a Multi-Input Multi-Output OFDM (MIMO-OFDM) modulation for high speeds

(reaching 150 Mbit/s) and very high throughput (IEEE, 2009). This is also rivaled by the

802.11ac standard that operates in the 5 GHz band reaching theoretical speeds of 866.7 Mbit/s

10

(IEEE, 2013). Over the past 20 years this standard has defined wireless communications and is a

large influence on our lives.

While wireless networks are convenient and advantageous, they are also problematic.

Since standard is wireless, the signal must be broadcasted. This allows anyone with the proper

technology to access the raw signal. There are structures within the design of the 802.11 protocol

that offer some security, and there are many other protocols that attempt to protect the digital

data being transferred, but WiFi sniffing is an inherent vulnerability that will be present as long

as the technology remains wireless.

Methods of Attacking Wireless Networks

Several authors have examined attack vectors for wireless networks. One such method is

a jamming attack. In this type of attack, the malicious part attempts to disrupt as many

communication channels as possible (Li et al., 2010). This attack is not meant to steal data but to

disrupt normal traffic flows in an attempt to prevent users from using the network. This is a type

of denial of service (DOS) attack that is relatively easy to carry out.

More advanced methods include eavesdropping on a network and cracking its WEP keys

(Yuan, Matthews, Wright, Xu, & Yu, 2010). This attack vector involves discovering a network,

sniffing packets being passed across the network, and using those packets to crack the WEP key.

This attack allows all packets being passed to be decrypted. This attack allows the malicious

party to steal information instead of simply preventing information from being passed.

A third method of attacking a wireless network is a Man in the Middle (MITM) attack

(Yuan et al., 2010). The most common method to perform this attack is to poison the ARP cache

on the access point. Poisoning implies tricking the access point into thinking the malicious

11

computer is a different (trusted) computer. The malicious computer can then intercept packets,

modify them, and send them to their destination.

Securing Wireless Networks

Securing a wireless network is not a simple task. There are as many solutions as there are

attack vectors, and there isn’t a single solution that will mitigate all the risks. For example, a

method of preventing a jamming attack is a monitoring tool that assesses energy limitations and

performance specifications for nodes on the network (Li et al., 2010). This mitigation would not

stop a MITM attack. For MITM attacks, static ARP entries within the network could be a

solution (Yuan et al., 2010).

One method of assessing the threats to a wireless network is a process called war driving.

Many studies show this as the primary source of information when beginning attacks on wireless

networks (Issac et al., 2005; Li et al., 2010; Yuan et al., 2010). War driving involves driving a

laptop (or similar reception platform) around in search of wireless networks. Once a network is

discovered, an attack can be mounted in an attempt to compromise the network. A case study in

Malaysia used this method to find and capture packets from a wide variety of wireless networks

(Issac et al., 2005). This study found that many APs weren’t using any sort of encryption, and

even when encryption was being used, a lot of useful information was still being passed in plain

text. The study offers 16 security measures for securing wireless networks. Number nine

suggests physically limiting the reach of the wireless network. Site surveys aim at understanding

the reach of the wireless network around a building and using this information to better limit the

reach of that network.

12

3D Site Surveys

A site survey, or an analysis of a wireless network, is a way of understanding usage

properties of the network as well as its range. These surveys can also be used to understand risks

by mapping the area of coverage of a network outside a building as well as finding rogue access

points that may offer a point of entry for wireless attacks. These surveys can be completed by

various methods, but often they are a simple two-dimensional (2D) scan done by a laptop being

pushed around the building on a cart (Hills & Schiegel, 2004). There have been studies that have

also suggested methods for three-dimensional heat mapping using new drone technology that

offer a more complete understanding of the network (Pack, 2014).

Many site surveys offer data limited to a 2D field (the sidewalk around a building, for

example) or take too much time to be feasible (Pack, 2014). This means that an organization is

unlikely to do extensive surveys and thus they will not be aware of any vulnerabilities that may

exist due to this oversight. In order to make site surveys feasible, they need to be low-cost and

accurate. The most effective method found has been the implementation of drone technologies to

conduct a 3D heat mapping of the outside of a building (Pack, 2014).

For these 3D surveys to be effective, the receiver needs to be small enough to be carried

by a drone but powerful enough to accurately detect and map the signal strength. The method

used in Pack’s research used a Raspberry Pi to achieve this goal, but an improvement on this

method could use a software-defined radio to capture the WiFi signal. The small form factor of

many SDRs as well as their flexibility in programming make them an ideal test platform.

13

SDR-Based 802.11 Wireless Communication Module

As the IEEE 802.11 standard has been developed, many applications have been built and

tested, including the use of a Software Defined Radio (SDR) as a reception platform. In one such

experiment, long-range communications were established using the SDR platform where the

IEEE 802.11a/g standard was implemented (Guerra, Anand, & Knightly, 2014). This type of

platform offers many advantages, including a dynamic and highly customizable platform ideal

for a development situation. It also offers a flexible environment that allows the developer to

adapt to many different situations. This may also be a downside as improper programming may

lead to performance loss, and size constraints may restrict the extent to which the platform will

be effective. It is also limited by the bandwidth allowed on the platform. Many SDRs have a very

limited band in which they were designed to operate and may not cover both the 2.4 GHz and 5

GHz bands in which WiFi signals operate, such as the first generation of the Nuand BladeRF

used in this research. This can be overcome either by choosing a band to examine, buying

separate platforms for each band, or finding a newer platform that will cover all the bands in the

required spectrum

Difficulties of Wireless Communications

There are several difficulties in the physical properties of electromagnetic signals that

lead to difficulties in their reception and subsequent interpretation into logical information (as a

string of meaningful bits). The first of these properties, attenuation, can destroy a signal

completely if the signal-to-noise ratio gets too low, meaning the signal isn’t distinguishable from

the static naturally in the air. When a signal is seen, it can be interpreted, but the techniques used

in interpretation require a certain input level in order to function properly (Rice, 2008). This

problem is solved with automatic gain control (AGC) that reads the input level of a signal and

14

iteratively regulates the signal strength (Rosu, n.d.). An AGC loop generally consists of a

variable gain amplifier (VGA) whose gain is established by a feedback loop with error correction

(Whitlow, n.d.). This sort of feedback loop is designed to minimize the error, or the difference

between the incoming signal level (after amplification) and the expected signal level. The second

physical property that causes difficulty is the carrier phase error of the signal. Carrier phase error

is a phenomenon in which an electromagnetic wave expands or contracts in time (meaning it is

received at a slightly different frequency than it was transmitted at) (Rice, 2008). The problem

that arises is that the carrier frequency upon arrival is not the frequency expected by the receiver.

To overcome this, a phase-lock loop (PLL) can be implemented that tracks the incoming

frequency of the carrier and changes the interpreter accordingly. Unfortunately the receiver is

also unaware of the ideal time to sample a signal, so a PLL is usually integrated into a timing-

synchronization loop that will extrapolate from the signal the ideal sample time (Rice, 2008).

These two tools allow the receiver to accurately sample the incoming electromagnetic signal and

pass the symbols to the interpreter where they will be translated into a series of bits.

This interpreter may be software-based or hardware-based. A software-based interpreter

will be the basis of this research as it is more flexible and easier for development. Hardware-

based interpreters, such as one built on an FPGA, offer more speed while functioning, but they

require more time for development. Where software allows for quick debugging and testing,

FPGA development consists of running simulations and loading the image onto the hardware.

These tend to add an additional time cost to development, particularly if the image contains

errors and the process must be repeated.

15

3 METHODOLOGY

A description of the preparation, instrumentation tests, and flight assessment plans are

given. Flight plans are laid out and analysis methods are established.

Equipment Preparation

The wireless collection platforms (the raspberry pi and the SDR) will be tested in a

stationary position to assess consistent reporting of results. These will then be mounted and

tested in the context of the full drone system to examine if there is any interference within the

system that would influence the results.

SDR Functionality Tests

Most of the equipment to be used is commercially available, thus it does not need

extensive testing. In order to verify functionality, the SDR, which runs on a non-commercial

WiFi receiver program, is tested according to the experiment that follows.

The WiFi receiver program on the SDR must be able to receive, decode, and interpret

WiFi packets. The program was written according to the IEEE 802.11 standard, and thus was

tested against that standard. A wireless access point (WAP) was set up that continuously sent

packets. The SDR was then introduced and began capturing packets. When the SDR was able to

16

capture and interpret these packets accurately, it was considered adequate for further testing on

the drone platform.

Speed Test

The speed test measured the speed at which each platform was able to capture packets,

measured in packets captured per minute. This was done with a WiFi transmitter sending a

constant signal at a known location. Each platform was placed a yard away from the transmitter

and set to capture packets for an hour. The pi was tested for the first hour and the SDR for the

second hour. An overall average of packets per minute was calculated at the end of each test. In

addition to this average, each hour was divided into five minute intervals and an average was

taken for each 5 minute interval. The overall averages were compared to determine which

platform was able to collect more samples per minute. Each platform was also evaluated

individually to determine the variance of the data. This was used to determine the consistency of

a given platform.

Distance Test

The distance test measured the farthest distance at which each of the receivers provided

accurate results. A WiFi transmitter was placed in a known location and each of the receivers

collected results at 15 yard intervals away from the transmitter. The receivers remained within

the line of sight of the transmitter to reduce interference. This test was measured over a period of

5 minutes at each interval and an average signal level for the time period was calculated. A

receiver was deemed ineffective at a certain distance when the signal level fell below an

acceptable threshold, or noise floor.

17

3.4.1 Noise Floor

The noise floor was determined as the signal level at which a receiver was able to connect

to the AP. This measure does not consider the maximum distance that a platform can see the

existence of a network (but not connect to it), only the distance at which a connection can occur.

The measurement is conducted in this way due to the differences between the platforms. The pi,

which was able to actively scan for networks, could see the existence of a network far outside of

the range of being able to connect to and communicate with the network. The SDR was listening

for actual communication on the network, so when it passed the range of being able to interpret

those communications, samples were unable to be taken. The noise floor measurement is a

method of more accurately comparing the two platforms.

Field Test

A flat plane (a parking lot) with no obstructions was used in this test. A WiFi transmitter

was placed at the edge of the plane transmitting a constant signal and the speed test was

conducted. The results of this test provided an understanding of the capabilities of the WiFi

receiver platforms.

The distances outlined in the distance test were measured and marked. The distance test

was then conducted and the results recorded. The results of this test provided an understanding of

how well each platform responded at each of the distances outlined.

Site Test

The site test implemented both the speed and distance tests in a real-world environment.

The tests were conducted on a live network and their results compared. The distance test did not

18

attempt to determine the maximum distance at which the signal could be read, but to show the

use of each platform in the real world. Some anecdotal assertions can be made from the distance

test, however no other conclusions were drawn.

Performance Criteria

The platforms were evaluated based on two different measurements: functional distance

from the transmitter and average samples per minute. Functional distance refers to the distance at

which the signal level of the platform is above the noise threshold. Average samples per minute

refers to the number of samples that each platform can take in one minute.

Hardware Setup

To best simulate the environment of a drone, the platforms were integrated into an

existing drone platform and tested with the drone equipment. No flight tests were conducted, but

the drone power supply was used and the drone’s equipment was powered on during the tests.

Figure 1 shows the overall setup of the drone environment.

Figure 1: Drone Environment

19

4 IMPLEMENTATION

Equipment

The following equipment was used.

Table 1: Equipment Used

Type Model
GPS Goouuu Tech GT-U7 (NEO-6M)
Power Module 3DR C/I Power Monitor
Battery Lectron Pro 5200mAh 3 cell Lithium Polymer
WiFi Receiver Raspberry Pi 4 Model B
Software-Defined Radio Nuand BladeRF (x40)
SDR Antenna Nuand Tri-Band Antenna (5dBi)

4.1.1 Variables

Each of these platforms are somewhat modular and reliant on a number of variables for

their outcome. Environmental variables as well as differences between hardware versions can

cause a change in the results. As such, it was important to control as many of these variables as

possible. Changes in environmental variables such as temperature were accounted for by testing

each platform in the same area on the same day with as little time in between as possible.

Simultaneous tests were not possible due to hardware restrictions. The hardware for each

platform was also controlled to be as similar as possible. Both platforms used the same power

20

supply, GPS, barometer, and processor. The only difference in hardware was the antenna. These

differences are discussed in section 4.1.2.

4.1.2 Antennas

The WiFi receiver contains an on-board antenna. In order to minimize form factor, this

antenna was used instead of an external antenna and to provide a basic scenario of how a scan

might be conducted (minimizing the number of external parts). For a similar reason, a generic 3-

band antenna was used with the SDR. This is a generic “starter” antenna, meaning it is

inexpensive and will cover a wide range of frequencies. The antennas used are obviously

different between the two platforms, and it was expected that the SDR antenna would perform

better than the pi antenna. There are several external antennas that can be purchased for the pi

that would improve performance, however none were chosen for the purpose of this research.

Instead, this research focuses on comparisons between the most basic (not optimized) models of

each platform.

Initial SDR Development

To facilitate development of the SDR data collection script, the development was done on

a virtual machine (VM) running Ubuntu 18.04 Desktop. Appendix A gives the setup of the

virtual machine. The data collection script was based on the Gnu Radio development platform.

The script was based largely off an example provided in the gr-ieee802-11 module, with some

modifications to allow for the use of the BladeRF platform. Since this was a desktop

environment, the GUI provided a simple development interface and allowed for visual

representations of the data that wouldn’t be available in headless mode. Once it was determined

21

that the module was working correctly, the automatically-generated python script was taken and

modified to be used in headless mode.

Raspberry Pi Development

4.3.1 Raspbian Development

Due to its similarities to Ubuntu as well as being built for the Raspberry Pi, Raspbian was

initially chosen as the operating system for the WiFi receiver. The same setup method used on

the VM was attempted on this distro as well, but the packages needed (found in Appendix A)

were not compatible with ARM processors. For this reason, Raspbian was discarded.

4.3.2 Ubuntu 18.04 for Raspberry Pi Development

In an attempt to create an environment more closely akin to the VM environment used to

develop the data collection script, a version of Ubuntu 18.04 compatible with the Raspberry Pi 4

was found and installed in place of Raspbian. The setup used for the VM was again attempted

and it was found that the packages would again not install due to the Pi’s ARM processor. For

this reason, the next attempt was based on the binary package of Gnu Radio available for install

on the Pi. All other packages needed to be built from source and compatible with Gnu Radio 3.8,

which is the packet manager’s version. When this again encountered errors, Gnu Radio was

uninstalled and the latest version (3.9) was built from source. All extra packages that depended

on the version of Gnu Radio were also uninstalled and the Gnu Radio 3.9-compatible versions

were built on the pi. Some code modifications were made to make it compatible with the ARM

processor. This install was completed successfully and the python script developed on the VM

was transferred to the Pi.

22

The GnuRadio program automatically generates a python script when a flowchart is

created. This script was taken and modified to run without any of its GUI components. It was

initially developed to output a constellation plot of the signal as well as an FFT plot of the raw

signal. During development, the constellation plot gave a graphical representation of the symbols

being accepted by the SDR. Similarly, the FFT plot showed the frequency band being received.

These elements were removed from the final script as there was no need for any visual indicators

after the script was verified to be working. Since the script was originally built on Gnu Radio

3.7, another small modification was also needed to convert to version 3.9. This involved

converting the moving_average function implemented in version 3.7 of the gr-ieee802-11

module to the moving_average function that came native with Gnu Radio (the function was

removed in gr-ieee802-11 3.9 in favor of the native Gnu Radio function). This modification

allowed the script to run correctly as it had on the VM.

Data Collection Platform

The drone environment was used to determine if the SDR platform would perform

appropriately while surrounded by the equipment on the drone. This platform included GPS and

barometer modules along with flight controller and telemetry modules that could potentially

cause interference. This environment was also used to show that the SDR was small enough to

be mounted on a drone, and to determine if power issues would occur when the SDR was

powered on using the drone power source.

Data Collection Scripts

There were two separate data collection scrips written: one for controlling the SDR and

one for the conventional WiFi scanning method. Each script had a systemd service that could be

23

enabled so the script would run on boot. The service for the method being tested was enabled

before the test began and stopped at the end of the test. Both scripts can be found in Appendix B

4.5.1 SDR Script

The script that controlled the SDR had two distinct parts: the collection of data from the

SDR and the collection of data from the GPS. The script controlling the SDR was largely

generated by Gnu Radio with modifications to remove the GUI components. The code consists

of a class that connects signal processing blocks together in a manner that allows for the capture

of WiFi signals and stores them in a pcap (network capture) file readable in Wireshark and

similar programs. Due to the nature of the capture, these packets also contain a Radio Tap header

which includes a measurement of signal strength. This measurement was used to determine the

effectiveness of this platform. The name of this file was

log[number]_wifi_[timestamp][operating frequency].pcap. The [number] section was used to

avoid files with the same name. If a file already existed with a certain [number], it was

incremented until the file name was unique. This check was implemented due to the pi’s lack of

an internal clock. When the pi was running without an active network connection, stopping and

restarting the pi would cause clock skew that sometimes resulted in data points that seemed to be

taken at the same time. This implementation allowed for multiple data points to be taken and

given unique file names no matter the circumstance. The timestamp was in the format

MM_DD_YY_12:34:56, varying according to the day and the time of day according to the time

saved by the pi. The operating frequency was the frequency of the channel being scanned by the

SDR, for example 2412000000 (or 2.412 GHz, WiFi channel 1). The SDR did not have scanning

functionality, so a single channel was set at the beginning of the experiment based on the

frequency of the WiFi being tested against.

24

The second part of the script controlled the collection of GPS data. Due to the nature of

the program, the GPS data couldn’t be introduced directly into the pcap file, so a new file was

created to hold the GPS data. It was named exactly like the corresponding pcap file but with

a .log extension instead. This allowed for direct correlation between the network data and the

GPS data. Both files included timestamps of when the data was taken, so these timestamps were

used to determine what network data corresponded to which GPS measurements. The GPS data

was output with a timestamp, the latitude, the longitude, and the altitude.

The two parts worked on two different threads, so data from the SDR was being

continuously collected in parallel with the GPS data being collected.

4.5.2 Pi Script

The script used on the Pi platform was designed to collect WiFi data directly from the

Raspberry Pi’s WiFi interface. This was done in a simple loop that scanned for all available

access points (APs), parsed and formatted the information, acquired and formatted GPS and

barometer information, and then wrote all the information to a log file in CSV format. This

allowed for simple parsing of all the data in a single location and didn’t require two separate files

as in the SDR script. The filename for these logs was in the format

log[number]_[timestamp].log. These values are used in the same manner as described in the

SDR script. The notable difference is the lack of a frequency component. Since the pi can scan

all APs on all frequencies, the frequency component of the filename was not necessary and was

thus excluded.

25

This script was largely taken from Scott Pack’s thesis research, but some modifications

were made for this use case. In particular, the code was modified to allow for the geolocation

data to not be logged when a flightless test was being conducted.

Analysis Scripts

There were three scripts developed to facilitate analysis of the data. The first script was

developed to examine the raw pcap file created by the SDR and create a log file with a more

useful format, including timestamps for the packets and relative signal strength. The second

script was developed to divide the formatted data output by the first script into correct time

divisions and take the average signal strength over the given division. Both scripts were used for

the SDR. The third script was created to divide the data collected by the pi into time divisions

and take the average signal strength for the given time division. Minor modifications to each of

these scripts were made between the distance tests and the speed tests.

4.6.1 SDR Processing Script

To prepare the data captured by the SDR for analysis, a processing script was run on the

capture (pcap) file. This script scraped the relevant information from the file, namely the SSID,

timestamp, and signal strength of each packet, and then wrote that information to a new file:

converted_data.log. Each line represented a different packet. This file was then able to be

analyzed by the SDR analysis script.

4.6.2 SDR Analysis Script – Distance Test

A script was developed to take the average signal strength given by the SDR at a certain

distance away from the transmitter. This script divided the packets by a pre-recorded time stamp

26

and added together all the signal strengths for each time period. A count was also kept of how

many packets were processed within that time period in order to accurately represent the

average. At the end of the script, a calculation was made for each distance represented by a

certain time period and an average was given.

4.6.3 SDR Analysis Script – Speed Test

A script was also developed to determine the number of samples taken during the speed

test. The SDR processing script was run on the network capture file to prepare for this script. The

analysis script divided the pcap file into 5-minute intervals and counted the number of packets

(or samples) were in each interval. This count was then divided by 5 to determine the number of

samples per minute. The final time slot was disregarded as it was under 5 minutes. A total count

was also kept and the total time was measured. The total count was divided by the total time to

find an overall average of samples per minute across the whole hour.

4.6.4 Pi Analysis Script – Distance Test

The SDR analysis script for the distance test was modified to accept the log file output by

the pi’s data collection script. The log file was parsed according to time measurements, and

average signal strengths were calculated for each time measurement as with the SDR analysis

script. Since the pi collected information on multiple SSIDs, this script was modified to search

for the correct SSID within the log file before processing the lines found within the log. A slight

change in variable parsing and indexing was also necessary to correctly identify the signal level

within the log.

27

4.6.5 Pi Analysis Script – Speed Test

This script was a modification of the SDR analysis script for the speed test. Since this

was simply counting the number of samples taken within a time frame, the only modification

needed was to search for the correct SSID in the line of the log file being imported.

28

5 RESULTS AND ANALYSIS

Rubric of Efficacy

In an attempt to compare the two platforms, the following criteria will be used to

determine effectiveness of the platforms: functional distance and average samples per minute the

platform can take.

5.1.1 Functional Distance

The functional distance is considered the maximum distance at which the platform can

receive samples above the noise level, which is the distance at which each platform is able to

receive packets. Each platform has its own measure of this due to the difference in measurement

for the noise floor. Both noise measurements were taken in dBm, which is a mathematical

comparison of the received signal power level compared to 1 mW. The SDR defines the noise

floor as 0dBm, and any signals below this point were not interpreted. The pi does not specify the

noise floor, but from the data collected, the noise floor can be seen at approximately -70dBm.

The pi was able to see the AP at signal levels lower than this, however connections to the AP at

this noise level or lower were unsuccessful. For the purposes of this research, these values will

be used to determine the functional distance of the platform. The platform with the longest

functional distance will be considered the most effective for this measurement.

29

5.1.2 Average Samples per Minute

The average samples per minute refers to how many measurements the platform can take

in a minute without any constraints such as GPS measurements. This measurement attempts to

find the maximum possible speed that measurements can be taken. A direct comparison can be

made between the two platforms, and the platform with the highest average per minute is

considered the most effective.

Field Test Results

The field tests were taken under a controlled environment with a WiFi router placed in a

known location. Measurements taken were based on this single access point (AP).

5.2.1 Distance Test

The following results come from the flightless distance test. Initially the flightless

distance test was attempted using a WiFi hotspot from a cell phone. Due to the weak signal level

and poor results, this attempt was discarded. The second attempt used a WiFi router set up in a

parking lot and with measurements being taken every 15 yards. This test ended at 150 yards. For

each transition between 15-yard increments, the instruments were powered off and moved to

create a separate log file for each distance. Instrumentation error caused these numbers to be

unusable. The third attempt was done in the same environment as the second, but instead of

powering off the instrumentation with each move, GPS measurements were taken to augment the

physical measurement taken. This allowed the instruments to remain on during the transition

between stages which reduced the possibility of error.

30

Measurements were taken at 15 yard increments for 5 minutes each. Average signal

levels were taken at each stage as shown in table 2. Figures 2 and 3 show these numbers

graphically compared to the noise floor.

Table 2: Distance Test Comparison – Field Test

Distance SDR (dBm) Pi (dBm)
5 yards (baseline) 0 -45
15 yards 9 -53
30 yards 16 -74
45 yards 8 -73
60 yards 0 -72
75 yards 0 -75
90 yards 0 -79
105 yards 0 -76
120 yards 0 -75
135 yards 0 -78
150 yards 0 -75

The data in table 2 shows that both platforms were able to see the signal with varying

degrees of success. Notably the SDR very clearly either received a packet or it didn’t. At longer

distances the SDR was completely blind to the signal. On the other hand, the pi was able to see

the hotspot at all distances, but the signal from 30 yards and onward was very faint. The pi did

have clear signals at 5 and 15 yards.

Of interest are the first two tests for the SDR. The expectation was that the signal strength

would be strongest at 5 and 15 yards and fall off after that. The lack of packets at 5 yards is most

likely due to the positioning of the antenna with respect to the hotspot. The hotspot was located

in an elevated location to offer better visibility at longer distances, but the SDR (and pi) were

placed on the ground for each test. The antenna was situated vertically to allow better reception

at longer distances, but at these short distances it was not ideal for reception.

31

The SDR also lost all reception after 45 yards while the pi reported being able to at least

see the network being tested. Both platforms had reached their noise floor at that point, and it is

likely that the SDR was not able to process the signal among the noise. More processing and

likely upgraded equipment would be necessary to enable the SDR to extract information from

below its noise floor.

Figure 2: SDR Signal Strength - Field Test

Figure 3: Pi Signal Strength - Field Test

32

The results of this test suggest that the SDR is no worse than the pi at detecting the

distance at which the network is accessible. Since the pi was able to detect the signal at larger

distances, even if it is unable to connect, it has an advantage in certain situations. However, when

testing the limits of a connection or when being able to capture packets is required, the pi and the

SDR have similar functional distances. Since the main reason for using an SDR is to test

connection limits and perform packet capture, it is determined to be a viable platform.

5.2.2 Speed Test Results

The AP was set up on the same plane as the collection platform and was constantly

sending and receiving data. Each collection platform was set up one yard away with GPS

measurements turned off, and the script was set to collect data for an hour. The pi collected data

for the first hour and the SDR collected data for the second hour. After each platform collected

data, the hour was divided into 5-minute intervals, and an average number of samples per minute

was taken for each 5-minute interval. An overall average was also taken for the full hour. Figures

4 and 5 show the results of this test for the SDR and the pi, respectively.

The overall average for the pi was 15.7 samples per minute, and the overall average for

the SDR was 507 samples per minute. The SDR outperformed the pi by a factor of 32.3

according to raw averages. This is a significant difference between the two platforms, however

the pi offered more consistency in its sampling. The variance of the pi for this test was 0.021

where the variance of the SDR was 507.5. This difference in variance is caused by the scanning

method employed by each platform. The pi performs an active scan that will produce results as

long as the AP is in range. The SDR requires network traffic to be captures as it flows between

the AP and some endpoint. If the traffic spikes or lags, this will be reflected in the number of

33

samples per minute. For most active APs, the amount of traffic that can be detected by the SDR

will outweigh the difference in variance, in which case the SDR will be the superior platform for

speed, however the SDR will be inferior when testing inactive APs or APs that do not regularly

see much traffic.

Figure 4: SDR Average Samples per Minute – Field Test

Figure 5: Pi Average Samples per Minute – Field Test

34

Site Test Results

The site test involved an active and utilized AP within a home. With the owner’s

permission, the distance and speed tests were again conducted. While there were several visible

APs in the area, the tests were based solely on the owner’s SSID.

5.3.1 Distance Test Results

The distances taken for this test were based on safe locations outside the house (namely

sidewalks to avoid the road). The first distance was 11 yards away from the AP, the second

distance was 19 yards, and the final distance was 36 yards. Table 2 shows the average signal

levels for both the SDR and the Pi at each of these distances.

Table 3: Distance Test Comparison – Site Test

Distance (yards) SDR (dBm) Pi (dBm)
11 9 -60
19 8 -66
36 4 -59

Neither platform reached the noise floor in either experiment, but where the SDR had a

predictably decreasing trend, the pi exhibited a flat behavior that suggests a minimal signal. It

was confirmed that the pi was collecting data properly, and the evidence suggests that the pi was

detecting a somewhat minimal signal. The behavior experienced here is similar to the behavior in

the field test after 30 yards. The interference from walls and other obstacles would cause much

quicker attenuation in the signal, and this is likely the reason for the flatness of the pi signal

received. The SDR also saw effects of this attenuation. Compared to the field test, the signal was

significantly attenuated, however the signal received by the SDR did more accurately show the

35

signal strength decreasing with greater distance. For this test, the SDR appears to perform a more

accurate measurement of the expected signal strength of the network. This data is not sufficient

to conclude that the SDR is better or worse than the pi, however it does show that the SDR

functioned as expected in a real-world scenario.

Figure 6: SDR Signal Strength – Site Test

Figure 7: Pi Signal Strength – Site Test

36

5.3.2 Speed Test Results

The on-site speed test did not edit the collection script to remove the GPS timing. In this

case, the pi slightly outperformed the SDR with an average of 12.5 samples per minute, shown in

figure 9, compared to the SDR’s 10.7 samples per minute, shown in figure 8. The pi slightly

underperformed compared to the speed test conducted in the controlled environment by three

samples per minute. This is to be expected. By comparison, the SDR only functioned at 2%

efficiency compared to the controlled environment. This drastic decrease in efficiency is

unexpected. A likely explanation for this is a lack of network activity during the test. The test

was re-run at a time of higher network activity. This test showed an average of 55.6 samples per

minute, as shown in figure 10. While this is still significantly lower than the field test, it does

outperform the pi by a factor of 4.45. It also highlights a difference between the two collection

platforms. The pi is a stable platform because it actively scans the APs available to extract the

data necessary for the experiment. The SDR, being a passive sniffer, requires network traffic to

be sent or broadcast from the transmitter. If there is a network available with no network traffic

being passed, the SDR will be unable to detect that network’s traffic. When traffic is available,

the SDR continues to outperform the pi by a significant margin, despite the decrease in sampling

caused by the GPS.

It is important to note that figures 8 and 10 show the exact same test being run at two

different times. The data shown in figure 8 was collected at a time of very low network activity

on the network being tested, while the data in figure 10 was collected at a time of higher network

activity on that network.

37

Figure 8: SDR Average Samples per Minute – Site Test

Figure 9: Pi Average Samples per Minute – Site Test

Figure 10: SDR Average Samples per Minute (Network Traffic) – Site Test

38

Analysis of Research Question 1

Research Question 1: What advantages does a software-defined radio have over a

commercial WiFi receiver?

The results of the speed test taken show that the SDR outperforms the pi by a factor or 32

in a controlled environment. The SDR is able to outperform the pi to this level for one major

reason: the pi is designed as an active scanner while the SDR is designed to passively scan the

frequency. The pi requires an active scan of all frequencies for all available access points within

range. This requires time and resources that greatly limit the number of measurements that can

be taken in a minute. The SDR is able to passively pick up packets being sent on a certain

channel or frequency. This means that this iteration does not scan all frequencies, but it is able to

listen to a single frequency channel and capture samples at a much higher rate than the pi. It was

also shown that this can be a weakness of the SDR. When network activity is low, the SDR will

potentially collect less data than the pi. However, in most scenarios, the SDR will outperform the

pi in speed.

The distance scenario was less conclusive. The pi and the SDR performed similarly at

similar distances, but there were clear advantages and weaknesses in the two platforms. The pi

was able to see, but not connect to, the AP at longer distances. It did pass the noise floor at

nearly the same time as the SDR passed its noise floor, meaning their functional distances were

similar. For this reason, the advantages of the SDR are situational. It performs similar to or better

than the pi in the cases it was designed for, but the pi performs better than the SDR outside of

those cases.

39

 Analysis of Hypothesis 1

Hypothesis 1: An implementation of the IEEE 802.11 standard on an SDR will be more

capable of interpreting WiFi signals at greater distances than a conventional WiFi receiver.

The distance test showed that the functional distance of the SDR was about 15 yards

greater than the functional distance of the pi. This is a fairly insignificant difference, and the only

conclusion that can be reasonably drawn is that the SDR is no worse than the pi in functional

distance. This does concede, however, that the SDR is a viable platform for this type of test.

 Analysis of Hypothesis 2

An implementation of the IEEE 802.11 standard on an SDR will collect samples at a

greater speed than a conventional WiFi receiver.

Given that the SDR was superior to the pi in both speed measurements, this hypothesis is

true. The caveat for this assessment is the situation in which network traffic is limited. Since

most organizations performing assessments will be working with active networks during

business hours, this caveat is noted but deemed inconsequential.

 Further Observations

Observations not strictly relating to the original research question and hypotheses are

considered and assessed.

5.7.1 Complexity

The SDR as a platform is superior to the pi in its flexibility and potential, however it

requires more effort on the part of the user. It requires an understanding of signal processing that

40

most users do not have. While it would require a lot of time and expertise to develop an SDR

platform such as the one used in this research, the benefits of the platform outweigh the costs.

The code provided in Appendix B is a good starting point for this development, but the code

provided is still in a basic form that required further development for more advanced cases.

5.7.2 Unknown Networks

While developing the SDR platform, previously invisible networks appeared on the test

scans. Much of the development took place in two locations (work and home). One location (the

work network) had no known wireless networks on the 2.4 GHz range, and the other location

(the home network) had a 2.4 GHz network on a known channel. Testing on the home network

provided expected results, however when scanning the work network, two previously unknown

wireless networks appeared. Both networks found had counterparts in the 5 GHz band, however

these were in the 2.4 GHz band and did not appear to be accessible by a normal computer. Much

of the information gathered about this network seemed to point to it being a hidden network used

for printers and other similar devices. Further investigation is necessary to determine the exact

nature of these networks and their accessibility.

5.7.3 Weaknesses of the SDR

During testing of the SDR platform, many strengths were found as well as some

weaknesses. The most apparent weakness in the SDR platform is its use as a passive sniffer.

Where the pi is able to do active scanning in searching for a network, the SDR is currently

unable to do so. For this reason, if a network is not active (if devices are not sending packets),

the SDR will not see the network. Modification to the code could allow the SDR to do active

reconnaissance, however that was beyond the scope of the research.

41

5.7.4 Using the SDR in the Drone Environment

 While not a primary focus of this research, the testing showed that the SDR was able to

run while mounted on the drone. This was an expected outcome, but further validates the

assertion that the SDR is a viable platform for 3D heat mapping.

5.7.5 Summary of Advantages and Disadvantages

 Table 4 describes the advantages and disadvantages of each platform for certain

characteristics and conditions. This is not an exhaustive list, but it is a summary of some of the

important findings of this research.

Table 4: Advantages and Disadvantages of the Platforms

SDR

Pi

Advantage Disadvantage Advantage Disadvantage

Scanning Passive - faster
and able to sniff
traffic

Passive - if there is no
traffic, the sniffer will
not detect a network

Active - can see a network
even when there is no
traffic

Active - slower, only
attempts to see the
network, doesn't sniff
traffic

Weight

Requires the pi for
processing, heavier

Does not require external
modules (lightest possible
version)

Data Data output in
pcap format,
viewable in
Wireshark

Quick parsing of data is
more difficult, if a
packet is malformed
the data may not be
viewable in wireshark

Human-readable data
output in a log file

Must understand the
order of the data to
read (data is
unlabeled)

Speed Very fast
(number of
samples is the
number of
packets sniffed)

If there are no packets,
it doesn't function

Stable, speeds don't
change much between
tests

Much slower than the
SDR

Distance Functions at
similar
distances to the
Pi

No samples collected at
longer distances when
packets drop below the
noise floor

Can scan and see WiFi
networks at longer
distances, connections can
be established at similar
distances to the SDR

May still see an AP at
long distances but be
unable to connect
(potential false
positive)

42

6 CONCLUSIONS AND FUTURE RESEARCH

 Conclusion

The research suggests that the SDR platform is a viable platform for mapping WiFi signal

strength. Difficulties in development and lack of knowledge base inhibit the number of users

able to implement such a platform, however those who are able to build a similar platform can

find improved results over conventional systems. These improvements largely relate to the speed

of collection seen on the SDR platform. This increased collection speed could translate into more

time-efficient creation of heat maps. Combined with an equally time-efficient geolocation

method, a heat map could potentially be created four times faster than with previous methods,

assuming the findings from the site test hold true.

Due to the passive nature of the SDR, an active wireless network is necessary for testing.

This is the biggest advantage of the SDR as well as its biggest disadvantage. The passive nature

is the reason for the increase in speed, but it also limits the situations in which it can function.

This disadvantage can be avoided by conducting assessments with this platform during normal

business hours using a network that is known to be active.

 Future Work

The following items can be investigated to improve the system or expand on the work

found in this research.

43

Expanded Spectrum Surveys: While this survey only covered the 2.4 GHz WiFi

spectrum, future surveys could expand to the 5 GHz band, Bluetooth, or GSM. The SDR could

be easily reprogrammed to accept the 5 GHz band, and modules exist for capturing Bluetooth

and other data.

Penetration Testing Assessment: The principles of cybersecurity call researchers to

develop better tools under the assumption that malicious parties are also developing better

strategies to compromise people and systems. This research has shown that the SDR platform

can be more effective than other tools in analyzing wireless networks. It was developed as a

reception platform, but some modifications could allow for its use as a vulnerability assessment

and penetration testing tool. This could involve more advanced sniffing, Man-in-the-Middle

attacks, and network spoofing.

Countermeasure Evaluation: The assessment in this research could easily be used to

develop countermeasure evaluations within an organization, including how to best reduce WiFi

leakage and how to detect attacks against their network.

Specialized Equipment: This research showed that the SDR platform is viable in the use

case. Further improvements can be made including the use of a directional antenna to survey at a

greater distance, FPGA-based signal processing for speed, and other specialized modifications

aimed at improving performance.

FPGA Programming: The SDR receiver was implemented mainly in software and

required a significant amount of processing power. If the majority of the processing can be done

within an FPGA array such as the one available on the bladeRF SDR used, the speed and

accuracy of the data collected could be greatly increased.

44

Active Network Tracking: The SDR is a passive device and thus can only sniff

available traffic. To make the type of scanning outlined in this thesis more practical and be able

to detect live but inactive networks, an active scanning module could be added.

Network Monitoring: The SDR receiver can be modified to track the activity on a

network. This could simply measure the number of packets being sent across the network, or it

could be used to look at different types of packets being sent and their contents.

45

REFERENCES

Elhamahmy, M., & Sobh, T. (2011). Preventing Information Leakage Caused by War Driving
Attacks in Wi-Fi Networks. International Conference on Aerospace Sciences and Aviation
Technology, 14(AEROSPACE SCIENCES), 1–9. https://doi.org/10.21608/asat.2011.23405

Guerra, R. E., Anand, N., & Knightly, E. W. (2014). Demo: An Open-Source Develpment

Platform for Long-Range UHF-Connected WiFi Hotspots. 275–278. MobiCom.

Hills, A., & Schiegel, J. (2004). Rollabout: A Wireless Design Tool. IEEE Communications

Magazine, 132–138.

Hurley, C., Thornton, F., & Puchol, M. (2004). WarDriving: Drive, Detect, Defend - A Guide to

Wireless Security (R. Rogers, Ed.). Syngress Publishing, Inc.

IEEE. (1997). Telecommunications and Information Exchange Part 11 : Wireless LAN Medium

Access Control (MAC) and Physical Layer (PHY) Specifications. IEEE-SA Standards
Board.

IEEE. (2009). Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer

(PHY) Specifications. IEEE-SA Standards Board.

IEEE. (2013). Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer

(PHY) Specifications. IEEE-SA Standards Board.

Issac, B., Jacob, S. M., & Mohammed, L. A. (2005). The Art of War Driving and Security

Threats - A Malaysian Case Study. 2005 13th IEEE International Conference on Networks
Jointly Held with the 2005 7th IEEE Malaysia International Conference on
Communications, Proceedings, 1, 124–129. https://doi.org/10.1109/ICON.2005.1635452

Li, M., Koutsopoulos, I., & Poovendran, R. (2010). Optimal Jamming Attack Strategies and

Network Defense Policies in Wireless Sensor Networks. IEEE Transactions on Mobile
Computing, 9(8), 1119–1133. https://doi.org/10.1109/TMC.2010.75

Pack, S. J. (2014). Multi-Rotor—Aided Three-Dimensional 802.11 Wireless Heat Mapping.

Retrieved from
http://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=5014&context=etd

46

Rice, M. (2008). Digital Communications: A Discrete-Time Approach.

Rosu, I. (accessed 2019). Automatic Gain Control (AGC) in Receivers. Retrieved from

http://www.qsl.net/va3iul/Files/Automatic_Gain_Control.pdf

Whitlow, D. (accessed 2019). Design and Operation of Automatic Gain Control Loops for

Receivers in Modern Communications Systems. Retrieved from
http://www.analog.com/media/en/trainingseminars/tutorials/4257541202295345046111181
2375Design_and_Operation_of_AGC_Loops.pdf

Yuan, X., Matthews, D., Wright, O., Xu, J., & Yu, H. (2010). Laboratory Exercises for Wireless

Network Attacks and Defenses. Proc. of the 14th Colloquium for Information Systems
Security Education. Baltimore, Maryland, USA, (336).

47

APPENDIX A. VM AND RASPBERRY PI SETUP

VM Setup:

Anything with a gray background is a command

Install VM OS and update to latest version (installed Ubuntu Desktop 16.04,
upgraded to 18.04)

pip install --upgrade git+https://github.com/gnuradio/pybombs.git
pybombs auto-config
pybombs recipes add-defaults
mkdir ~/pybombs/
pybombs prefix init ~/pybombs/bladeRF -a bladeRF -R gnuradio-default
(if getting uhd errors: sudo apt install python-requests python-mako python-
setuptools)
pybombs -p bladeRF install bladeRF gr-iqbal gr-osmosdr gqrx

Edit normal user (sdr) and root user .bashrc file to be able to run GRC:

#!/bin/bash

Add GNU Radio binaries to the search path
GNURADIO_PATH=/home/sdr/pybombs/bladeRF # THIS DEPENDS ON WHERE PYBOMBS IS
INSTALLED
export PATH=$PATH:$GNURADIO_PATH/bin

Add GNU Radio python libraries to python search path
if [$PYTHONPATH]; then
 export PYTHONPATH=$PYTHONPATH:$GNURADIO_PATH/lib/python2.7/dist-
packages
else
 export PYTHONPATH=$GNURADIO_PATH/lib/python2.7/dist-packages
fi

Add a file: /etc/ld.so.conf.d/gnuradio.conf
In that file:

/home/sdr/pybombs/bladeRF/lib

That should just be a single line in the file

Run:
sudo ldconfig -v | grep gnuradio

48

source ~/.bashrc
First one checks that things were set up properly, second one updates the
path

Next step is to update udev to be able to run the SDR
https://github.com/Nuand/bladeRF/tree/master/host/misc/udev
Add those three files into /etc/udev/rules.d (change @BLADERF_GROUP@ to
plugdev)
make sure they're all 644 for permissions
run: sudo udevadm control --reload-rules && sudo udevadm trigger (unplug and
replug the SDR)

For Constellation (and other things that require OpenGL):

sudo pip install pyopengl

Installing the WiFi-specific libraries:
pybombs install gr-foo
pybombs install gr-ieee802-11

In .bashrc (for root) add the following line at the end:
export QT_X11_NO_MITSHM=1

TROUBLESHOOTING:
If it doesn’t register the bladeRF, try changing the VM USB port driver to 3
instead of 2

Resources:
https://github.com/Nuand/bladeRF/wiki/Getting-Started%3A-Linux
http://pyopengl.sourceforge.net/documentation/installation.html
http://www.codebind.com/linux-tutorials/install-opengl-ubuntu-linux/

Raspberry Pi Setup:

Install Ubuntu 18.04 on an SD card (image and setup instructions available at

https://jamesachambers.com/raspberry-pi-4-ubuntu-server-desktop-18-04-3-

image-unofficial/)

On the image, GnuRadio v3.9 was built from source.

The following packages were also built from source to fit GnuRadio v3.9:

osmocom, gr-foo, and gr-ieee802_11. Version 3.9 of these packages was not the

maintainers’ stable version, but it was necessary to ensure it built

properly.

https://jamesachambers.com/raspberry-pi-4-ubuntu-server-desktop-18-04-3-image-unofficial/
https://jamesachambers.com/raspberry-pi-4-ubuntu-server-desktop-18-04-3-image-unofficial/

49

The GPS used was USB-capable, so no extra configuration was needed to ensure

compatibility.

The barometer required the Adafruit BMP280 library. This can be easily

downloaded, but it must be added to the $PYTHONPATH variable. If it is not

added to $PYTHONPATH, all development must happen within the same directory.

The data collection scripts were transferred to the pi and functionality was

tested before testing began.

50

APPENDIX B. DATA COLLECTION SCRIPTS

SDR Data Collection Script:

#!/usr/bin/env python2

-*- coding: utf-8 -*-

GNU Radio Python Flow Graph

Title: Wifi Rx

GNU Radio version: 3.7.13.4

from gnuradio import blocks

from gnuradio import eng_notation

from gnuradio import fft

from gnuradio import filter

from gnuradio import gr

from gnuradio.eng_option import eng_option

from gnuradio.fft import window

from gnuradio.filter import firdes

from gnuradio.qtgui import Range, RangeWidget

from optparse import OptionParser

import foo

import ieee802_11

import osmosdr

import sys

import time

51

from datetime import datetime

import adafruit_bmp280

import board, busio

from pynmea import nmea

import os

import serial

print("\033[1;32;40m[+]\033[1;37;40m Giving the GPS time to
acquire...\033[0;39;40m")

time.sleep(6)

print("\033[1;32;40m[+]\033[1;37;40m GPS acquisition time
elapsed\033[0;39;40m")

now = datetime.now()

flghtless = True

Set up the barometer (if attached)

try:

 i2c = busio.I2C(board.SCL, board.SDA)

 sensor = adafruit_bmp280.Adafruit_BMP280_I2C(i2c)

 sensor.sea_level_pressure = 1013.25

 start_alt = sensor.altitude

 barometer = True

except Exception as e:

 print("\033[1;31;40m[-] No barometer found:\033[0;39;40m")

 print("\033[1;31;40m[-]\033[1;95;40m " + str(e) + "\033[0;39;40m")

 barometer = False

Find the correct filename

g_datetime = now.strftime("%m_%d_%Y_%H%M%S_")

g_freq = 2417000000

log_path = '/var/log/geolocate/test/'

filenum = 0

52

fileset = False

while not fileset:

 filenum = filenum + 1

 log_name = "log" + str(filenum) + "_wifi_%s%d.pcap"%(g_datetime,g_freq)

 gps_log_name = "log" + str(filenum) + "_wifi_%s%d.log"%(g_datetime,g_freq)

 if not os.path.isfile(log_path + log_name):

 fileset = True

f = open(log_path + gps_log_name,'w+')

f.write("\n")

f.flush()

os.fsync(f)

Find the correct serial port for the GPS

filenum = 0

fileset = False

ACM_path = '/dev/ttyACM'

while not fileset:

 if not os.path.exists(ACM_path + str(filenum)):

 filenum += 1

 else:

 ACM_path = ACM_path + str(filenum)

 fileset = True

 if filenum > 5:

 break

Set up the GPS object

try:

 gps = serial.Serial(ACM_path,9600,timeout=1)

 gpgga = nmea.GPGGA()

 gps_conn = True

except Exception as e:

53

 print("\033[1;31;40m[-]\033[1;37;40m No GPS found:\033[0;39;40m")

 print("\033[1;31;40m[-]\033[1;95;40m " + str(e) + "\033[0;39;40m")

 gps_conn = False

class wifi_rx(gr.top_block):

 def __init__(self):

 gr.top_block.__init__(self, "Wifi Rx")

 ##

 # Variables

 ##

 self.window_size = window_size = 48

 self.sync_length = sync_length = 320

 self.samp_rate = samp_rate = 20e6

 self.lo_offset = lo_offset = 0

 self.gain = gain = 0.75

 self.freq = freq = g_freq

 self.chan_est = chan_est = 0

 self.datetime = g_datetime #now.strftime("%m_%d_%Y_%H%M%S_")

 self.log_path = log_path

 self.log_name = log_name

 ##

 # Blocks

 ##

 self.ieee802_11_sync_short_0 = ieee802_11.sync_short(0.56, 2, False,
False)

 self.ieee802_11_sync_long_0 = ieee802_11.sync_long(sync_length,
False, False)

 self.ieee802_11_parse_mac_0 = ieee802_11.parse_mac(False, True)

 self.ieee802_11_moving_average_xx_1 =
blocks.moving_average_ff(window_size + 16,1,4000)

54

 self.ieee802_11_moving_average_xx_0 =
blocks.moving_average_cc(window_size,1,4000)

 self.ieee802_11_frame_equalizer_0 =
ieee802_11.frame_equalizer(chan_est, freq, samp_rate, False, False)

 self.ieee802_11_decode_mac_0 = ieee802_11.decode_mac(False, False)

 self.foo_wireshark_connector_0 = foo.wireshark_connector(127, False)

 self.fft_vxx_0 = fft.fft_vcc(64, True, (window.rectangular(64)),
True, 1)

 self.dc_blocker_xx_0 = filter.dc_blocker_cc(32, True)

 self.blocks_stream_to_vector_0 =
blocks.stream_to_vector(gr.sizeof_gr_complex*1, 64)

 self.blocks_multiply_xx_0 = blocks.multiply_vcc(1)

 self.blocks_file_sink_0 = blocks.file_sink(gr.sizeof_char*1,
self.log_path + self.log_name, True) # '/var/log/geolocate/field-distance-
2/wifi_%s%d.pcap'%(self.datetime,self.freq), True)

 self.blocks_file_sink_0.set_unbuffered(True)

 self.blocks_divide_xx_0 = blocks.divide_ff(1)

 self.blocks_delay_0_0 = blocks.delay(gr.sizeof_gr_complex*1, 16)

 self.blocks_delay_0 = blocks.delay(gr.sizeof_gr_complex*1,
sync_length)

 self.blocks_conjugate_cc_0 = blocks.conjugate_cc()

 self.blocks_complex_to_mag_squared_0 =
blocks.complex_to_mag_squared(1)

 self.blocks_complex_to_mag_0 = blocks.complex_to_mag(1)

 self.bladeRF_Source = osmosdr.source(args="numchan=" + str(1) + " "
+ "fpga='/home/ubuntu/hostedx40-latest.rbf'")

 self.bladeRF_Source.set_sample_rate(samp_rate)

 self.bladeRF_Source.set_center_freq(freq, 0)

 self.bladeRF_Source.set_freq_corr(0, 0)

 self.bladeRF_Source.set_dc_offset_mode(2, 0)

 self.bladeRF_Source.set_iq_balance_mode(0, 0)

 self.bladeRF_Source.set_gain_mode(False, 0)

 self.bladeRF_Source.set_gain(10, 0)

 self.bladeRF_Source.set_if_gain(20, 0)

 self.bladeRF_Source.set_bb_gain(20, 0)

 self.bladeRF_Source.set_antenna('', 0)

55

 self.bladeRF_Source.set_bandwidth(samp_rate, 0)

 ##

 # Connections

 ##

 self.msg_connect((self.ieee802_11_decode_mac_0, 'out'),
(self.foo_wireshark_connector_0, 'in'))

 self.msg_connect((self.ieee802_11_decode_mac_0, 'out'),
(self.ieee802_11_parse_mac_0, 'in'))

 self.connect((self.bladeRF_Source, 0), (self.dc_blocker_xx_0, 0))

 self.connect((self.blocks_complex_to_mag_0, 0),
(self.blocks_divide_xx_0, 0))

 self.connect((self.blocks_complex_to_mag_squared_0, 0),
(self.ieee802_11_moving_average_xx_1, 0))

 self.connect((self.blocks_conjugate_cc_0, 0),
(self.blocks_multiply_xx_0, 1))

 self.connect((self.blocks_delay_0, 0), (self.ieee802_11_sync_long_0,
1))

 self.connect((self.blocks_delay_0_0, 0), (self.blocks_conjugate_cc_0,
0))

 self.connect((self.blocks_delay_0_0, 0),
(self.ieee802_11_sync_short_0, 0))

 self.connect((self.blocks_divide_xx_0, 0),
(self.ieee802_11_sync_short_0, 2))

 self.connect((self.blocks_multiply_xx_0, 0),
(self.ieee802_11_moving_average_xx_0, 0))

 self.connect((self.blocks_stream_to_vector_0, 0), (self.fft_vxx_0,
0))

 self.connect((self.dc_blocker_xx_0, 0),
(self.blocks_complex_to_mag_squared_0, 0))

 self.connect((self.dc_blocker_xx_0, 0), (self.blocks_delay_0_0, 0))

 self.connect((self.dc_blocker_xx_0, 0), (self.blocks_multiply_xx_0,
0))

 self.connect((self.fft_vxx_0, 0), (self.ieee802_11_frame_equalizer_0,
0))

 self.connect((self.foo_wireshark_connector_0, 0),
(self.blocks_file_sink_0, 0))

56

 self.connect((self.ieee802_11_frame_equalizer_0, 0),
(self.ieee802_11_decode_mac_0, 0))

 self.connect((self.ieee802_11_moving_average_xx_0, 0),
(self.blocks_complex_to_mag_0, 0))

 self.connect((self.ieee802_11_moving_average_xx_0, 0),
(self.ieee802_11_sync_short_0, 1))

 self.connect((self.ieee802_11_moving_average_xx_1, 0),
(self.blocks_divide_xx_0, 1))

 self.connect((self.ieee802_11_sync_long_0, 0),
(self.blocks_stream_to_vector_0, 0))

 self.connect((self.ieee802_11_sync_short_0, 0), (self.blocks_delay_0,
0))

 self.connect((self.ieee802_11_sync_short_0, 0),
(self.ieee802_11_sync_long_0, 0))

 def get_window_size(self):

 return self.window_size

 def set_window_size(self, window_size):

 self.window_size = window_size

 self.ieee802_11_moving_average_xx_1.set_length(self.window_size + 16)

 self.ieee802_11_moving_average_xx_0.set_length(self.window_size)

 def get_sync_length(self):

 return self.sync_length

 def set_sync_length(self, sync_length):

 self.sync_length = sync_length

 self.blocks_delay_0.set_dly(self.sync_length)

 def get_samp_rate(self):

 return self.samp_rate

 def set_samp_rate(self, samp_rate):

 self.samp_rate = samp_rate

57

 self._samp_rate_callback(self.samp_rate)

 self.ieee802_11_frame_equalizer_0.set_bandwidth(self.samp_rate)

 self.bladeRF_Source.set_sample_rate(self.samp_rate)

 self.bladeRF_Source.set_bandwidth(self.samp_rate, 0)

 def get_lo_offset(self):

 return self.lo_offset

 def set_lo_offset(self, lo_offset):

 self.lo_offset = lo_offset

 self._lo_offset_callback(self.lo_offset)

 def get_gain(self):

 return self.gain

 def set_gain(self, gain):

 self.gain = gain

 def get_freq(self):

 return self.freq

 def set_freq(self, freq):

 self.freq = freq

 self._freq_callback(self.freq)

 self.ieee802_11_frame_equalizer_0.set_frequency(self.freq)

 self.bladeRF_Source.set_center_freq(self.freq, 0)

 def get_chan_est(self):

 return self.chan_est

 def set_chan_est(self, chan_est):

 self.chan_est = chan_est

58

 self._chan_est_callback(self.chan_est)

 self.ieee802_11_frame_equalizer_0.set_algorithm(self.chan_est)

def main(top_block_cls=wifi_rx, options=None):

 tb = top_block_cls()

 tb.start()

 def quitting():

 tb.stop()

 tb.wait()

 try:

 while 1:

 try:

 location = datetime.now().strftime('Time:%H:%M:%S')

 if gps_conn:

 data = gps.readline()

 else:

 data = b""

 if 'GPGGA' in data.decode():

 #parse into a GPGGA object

 print("\033[1;32;40m[+]\033[1;37;40m Found the
GPS\033[0;39;40m")

 print("\033[1;32;40m[*] " + data.decode() +
"\033[0;39;40m")

 gpgga.parse(data.decode())

 lat = float(gpgga.latitude)

 long = float(gpgga.longitude)

 #shift the decimal point and convert long & lat into
decimal degrees

 lat = ((lat-(lat%100))/100)+(lat%100)/60

59

 long = ((long-(long%100))/100)+(long%100)/60

 if gpgga.lon_direction == 'W':

 long*=-1

 if gpgga.lat_direction == 'S':

 lat*=-1

 location += ",lat:" + str(lat) + ",long:" + str(long)

 #Grab the barometer altitude, subtract the starting
altitude to get relative to ground

 if barometer:

 altitude = sensor.altitude - start_alt

 location += ",alt:" + str(altitude)

 elif barometer:

 altitude = sensor.altitude - start_alt

 location += ",alt:" + str(altitude)

 else:

 print("\033[1;35;40m[*]\033[1;95;40m No GPS
Data\033[0;39;40m")

 time.sleep(1)

 print("\033[1;32;40m[+]\033[1;37;40m Writing to
log:\033[0;39;40m")

 f.write(location)

 f.write('\n')

 f.flush()

 os.fsync(f)

 print("\033[1;32;40m[+]\033[1;36;40m " + location +
"\033[0;39;40m")

 except KeyboardInterrupt:

 print("\033[1;34;40m[*]\033[1;37;40m
Quitting...\033[0;39;40m")

 break

 except Exception as e:

 #No GPS attached or no signal or some such problem.

60

 print("\033[1;31;40m[-]\033[1;37;40m GPS
error:\033[0;39;40m")

 print("\033[1;31;40m[-]\033[1;95;40m " + str(e) +
"\033[0;39;40m")

 time.sleep(1)

 continue

 except:

 quitting()

 finally:

 quitting()

if __name__ == '__main__':

 main()

Pi Wifi Data Collection Script:

import serial

import re

import subprocess

import time

from decimal import *

from pynmea import nmea

import adafruit_bmp280

import board, busio

import os.path

import os

from threading import Event

from datetime import datetime

print("\033[1;32;40m[+]\033[1;37;40m Giving the GPS time to
acquire...\033[0;39;40m")

time.sleep(6)

61

print("\033[1;32;40m[+]\033[1;37;40m GPS acquisition time
elapsed\033[0;39;40m")

now = datetime.now()

timestamp = now.strftime("_%m_%d_%Y_%H%M%S")

stopper = Event()

file_path = '/var/log/geolocate/test/'

flightless = True

try:

 bmp = busio.I2C(board.SCL, board.SDA)

 sensor = adafruit_bmp280.Adafruit_BMP280_I2C(bmp)

 sensor.sea_level_pressure = 1013.25

 start_alt = sensor.altitude

 print("\033[1;32;40m[+]\033[1;37;40m Barometer Found (I2C)\033[0;39;40m")

 barometer = True

except Exception as e:

 print("\033[1;31;40m[-] No barometer found in I2C:\033[0;39;40m")

 print("\033[1;31;40m[-]\033[1;95;40m " + str(e) + "\033[0;39;40m")

 barometer = False

if not barometer:

 try:

 import digitalio

 spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)

 cs = digitalio.DigitalInOut(board.D5)

 sensor = adafruit_bmp280.Adafruit_BMP280_SPI(spi, cs)

 start_alt = sensor.altitude

 print("\033[1;32;40m[+]\033[1;37;40m Barometer Found (SPI)\033[0;39;40m")

 barometer = True

 except Exception as e:

62

 print("\033[1;31;40m[-] No barometer found in SPI:\033[0;39;40m")

 print("\033[1;31;40m[-]\033[1;95;40m " + str(e) + "\033[0;39;40m")

 barometer = False

Identify the next unused log file.

filenum = 0

fileset = False

while not fileset:

 filenum = filenum + 1

 filename = "log" + str(filenum) + timestamp + ".log"

 if not os.path.isfile(file_path + filename):

 fileset = True

filenum = 0

fileset = False

ACM_path = '/dev/ttyACM'

while not fileset:

 if not os.path.exists(ACM_path + str(filenum)):

 filenum += 1

 else:

 ACM_path = ACM_path + str(filenum)

 fileset = True

 if filenum > 5:

 break

f = open(file_path + filename,'w+')

f.write("\n")

f.flush()

os.fsync(f)

Set up the output lists

addresses = []

63

channels = []

qualities = []

signal_levels = []

essids = []

getcontext().prec = 10

getcontext().rounding = ROUND_FLOOR

Set up the GPS object

try:

 gps = serial.Serial(ACM_path,9600,timeout=1)

 gpgga = nmea.GPGGA()

 print("\033[1;32;40m[+]\033[1;37;40m GPS Found\033[0;39;40m")

 gps_conn = True

except Exception as e:

 print("\033[1;31;40m[-]\033[1;37;40m No GPS found:\033[0;39;40m")

 print("\033[1;31;40m[-]\033[1;95;40m " + str(e) + "\033[0;39;40m")

 gps_conn = False

Start data collection

while not stopper.is_set():

 location = ""

 del addresses[:]

 del channels[:]

 del qualities[:]

 del signal_levels[:]

 del essids[:]

 gotAPs = False

 while not gotAPs and not stopper.is_set():

 try:

 output =
subprocess.check_output(['iwlist','wlan0','scan']).decode('UTF-8')

64

 output = output.splitlines()

 gotAPs = True

 except KeyboardInterrupt:

 print("\033[1;34;40m[*]\033[1;37;40m Quitting...\033[0;39;40m")

 stopper.set()

 # Sometimes the wireless doesn't work for a sec, just keep trying.

 break

 except Exception as e:

 print("\033[1;31;40m[*]\033[1;37;40m Error in the WiFi
scan:\033[0;39;40m")

 print("\033[1;31;40m[-]\033[1;95;40m " + str(e) + "\033[0;39;40m")

 continue

 gotAP = False

 for line in output:

 try:

 address = re.search('Address: (..:..:..:..:..:..)',line)

 if address is not None:

 addresses.append(address.group(1))

 gotAP = True

 channel = re.search('Channel:(.*)',line)

 if channel is not None:

 channels.append(channel.group(1))

 quality = re.search('Quality=(.*?)\/70',line)

 if quality is not None:

 qualities.append(quality.group(1))

 signal_level = re.search('Signal level=(.*?) dBm',line)

 if signal_level is not None:

 signal_levels.append(signal_level.group(1))

65

 essid = re.search('ESSID:\"(.*?)\"',line)

 if essid is not None:

 essids.append(essid.group(1))

 except KeyboardInterrupt:

 print("\033[1;34;40m[*]\033[1;37;40m Quitting...\033[0;39;40m")

 stopper.set()

 break

 except:

 print("\033[1;31;40m[-]\033[1;37;40m An error occured while examining
the address\033[0;39;40m")

 continue

 located = False

 gps.flushInput()

 gps.flushOutput()

 if gotAP:

 while (not located) and not stopper.is_set():

 try:

 location = ""

 if gps_conn:

 data = gps.readline()

 else:

 data = b""

 if 'GPGGA' in data.decode():

 # parse into a GPGGA object

 print("\033[1;32;40m[+]\033[1;37;40m Found the GPS\033[0;39;40m")

 print("\033[1;32;40m[*] " + data.decode() + "\033[0;39;40m")

 gpgga.parse(data.decode())

 lat = float(gpgga.latitude)

 long = float(gpgga.longitude)

 # shift the decimal point and convert long & lat into decimal
degrees

66

 lat = ((lat-(lat%100))/100)+(lat%100)/60

 long = ((long-(long%100))/100)+(long%100)/60

 if gpgga.lon_direction == 'W':

 long*=-1

 if gpgga.lat_direction == 'S':

 lat*=-1

 location = str(lat) + "," + str(long)

 # Grab the barometer altitude, subtract the starting altitude to
get relative to ground

 if barometer:

 altitude = sensor.altitude - start_alt

 location += ",alt:" + str(altitude)

 located = True

 elif barometer:

 altitude = sensor.altitude - start_alt

 location += ",alt:" + str(altitude)

 located = True

 else:

 location += "none"

 print("\033[1;35;40m[*]\033[1;95;40m No GPS or Barometer
Data\033[0;39;40m")

 time.sleep(1)

 if flightless:

 located = True

 except KeyboardInterrupt:

 print("\033[1;34;40m[*]\033[1;37;40m Quitting...\033[0;39;40m")

 stopper.set()

 break

 except Exception as e:

 # No GPS attached or no signal or some such problem.

 print("\033[1;31;40m[-]\033[1;37;40m GPS error:\033[0;39;40m")

67

 print("\033[1;31;40m[-]\033[1;95;40m " + str(e) + "\033[0;39;40m")

 time.sleep(1)

 continue

 for idx, val in enumerate(addresses):

 try:

 print("\033[1;32;40m[+]\033[1;37;40m Writing to log:\033[0;39;40m")

 f.write(datetime.now().strftime('Time:%H:%M:%S') + "," + essids[idx] +
"," + addresses[idx] + "," + channels[idx] + "," + qualities[idx] + "," +
signal_levels[idx] + "," + location)

 f.write('\n')

 f.flush()

 os.fsync(f)

 print("\033[1;32;40m[+]\033[1;36;40m " +
datetime.now().strftime('Time:%H:%M:%S') + ',' + essids[idx] + "," +
addresses[idx] + "," + channels[idx] + "," + qualities[idx] + "," +
signal_levels[idx] + "," + location + "\033[0;39;40m")

 except KeyboardInterrupt:

 print("\033[1;34;40m[*]\033[1;37;40m Quitting...\033[0;39;40m")

 stopper.set()

 break

 except:

 continue

 f.flush()

68

APPENDIX C. ANALYSIS SCRIPTS

SDR Data Processing Script:

(Process pcap and output relevant information to a file)

import dpkt

from scapy.utils import RawPcapReader

from scapy.layers.l2 import Ether

from scapy.layers.inet import IP, TCP

import time

import binascii

import datetime

import pytz

filename = 'log1_wifi_10_26_2019_141307_2452000000.pcap'

def process_pcap(file_name):

 local_format = "%H:%M:%S"

 print_file = 'converted_data.log'

 f = open(print_file, 'w+')

 for (pkt_data, pkt_metadata,) in RawPcapReader(file_name):

 count += 1

 utc_time = datetime.datetime.utcfromtimestamp(pkt_metadata[0])

 utc_zone = pytz.utc

 utc_time = utc_zone.localize(utc_time)

 pytz.timezone('America/Denver')

69

 local_time = utc_time.astimezone(pytz.timezone('America/Denver'))

 try:

 tap = dpkt.radiotap.Radiotap(pkt_data)

 t_len = binascii.hexlify(pkt_data[2:3])

 t_len = int(t_len, 16)

 ieee80211Frame = pkt_data[t_len:]

 wlan = dpkt.ieee80211.IEEE80211(ieee80211Frame)

 wlan.unpack_ies(pkt_data)

 wlan.unpack(ieee80211Frame)

 sig_str = tap.ant_sig.db

 ssid = wlan.ies[0].info

 f.write(ssid.decode() + "," + str(sig_str) + "," +
local_time.strftime(local_format) + '\n')

 except KeyboardInterrupt as e:

 print(e)

process_pcap(filename)

SDR Data Analysis Script – Distance Test:

Analyze the log file and find the SSID, Signal Strength, and Timestamp

f = open('converted_data.log', 'r')

strengths = [0]*12

count = [0]*12

averages = [0]*12

for x in f:

 [ssid, sig_str, ts] = x.split(',')

70

 [h, m, s] = ts.split(':')

 time = int(h)*60 + int(m)

 if time < 846:

 strengths[0] += int(sig_str)

 count[0] += 1

 elif time < 852:

 strengths[1] += int(sig_str)

 count[1] += 1

 elif time < 858:

 strengths[2] += int(sig_str)

 count[2] += 1

 elif time < 863:

 strengths[3] += int(sig_str)

 count[3] += 1

 elif time < 868:

 strengths[4] += int(sig_str)

 count[4] += 1

 elif time < 874:

 strengths[5] += int(sig_str)

 count[5] += 1

 elif time < 880:

 strengths[6] += int(sig_str)

 count[6] += 1

 elif time < 886:

 strengths[7] += int(sig_str)

 count[7] += 1

 elif time < 891:

 strengths[8] += int(sig_str)

 count[8] += 1

 elif time < 897:

 strengths[9] += int(sig_str)

 count[9] += 1

71

 elif time < 903:

 strengths[10] += int(sig_str)

 count[10] += 1

 else:

 strengths[11] += int(sig_str)

 count[11] += 1

print(strengths)

print(count)

for i in range(len(strengths)):

 if count[i] == 0:

 pass

 else:

 averages[i] = strengths[i]/count[i]

 print("Average for split %d: %d" %(i+1,averages[i]))

Pi Data Analysis Script – Distance Test:

Analyze the log file and find the SSID, Signal Strength, and Timestamp

f = open('log1_10_26_2019_134002.log', 'r')

averages = [0]*12

count = [0]*12

for x in f:

 tmp = x.split(',')

 if len(tmp) < 2:

 continue

 if tmp[1] == "SDR Thesis":

 temp = tmp[0].split(':')

 spot = int(temp[1])*60 + int(temp[2])

 if spot < 826:

72

 averages[0] += int(tmp[5])

 count[0] += 1

 elif (spot) < 832:

 averages[1] += int(tmp[5])

 count[1] += 1

 elif (spot) < 837:

 averages[2] += int(tmp[5])

 count[2] += 1

 elif (spot) < 843:

 averages[3] += int(tmp[5])

 count[3] += 1

 elif (spot) < 848:

 averages[4] += int(tmp[5])

 count[4] += 1

 elif (spot) < 854:

 averages[5] += int(tmp[5])

 count[5] += 1

 elif (spot) < 859:

 averages[6] += int(tmp[5])

 count[6] += 1

 elif (spot) < 865:

 averages[7] += int(tmp[5])

 count[7] += 1

 elif (spot) < 870:

 averages[8] += int(tmp[5])

 count[8] += 1

 elif (spot) < 876:

 averages[9] += int(tmp[5])

 count[9] += 1

 elif (spot) < 881:

 averages[10] += int(tmp[5])

 count[10] += 1

73

 else:

 averages[11] += int(tmp[5])

 count[11] += 1

print(averages)

print(count)

for i in range(len(averages)):

 print("Average for time slot %d: %d"% (i,averages[i]/count[i]))

Data Analysis Script – Speed Test:

Count the number of samples per time period

f = open('converted_data.log', 'r')

total_count = 0 # Total number of samples taken

time_stamp = 0 # Index of the 5-minute segment taken

step_t = 0 # Time of the beginning of the step (in seconds)

time = 0 # Current time

fives = [0] # number of packets per 5-minute time stamp

start_t = ''

stop_t = ''

for x in f:

 tmp = x.split(',')

 if total_count == 0:

 temp = tmp[0].split(':')

 start_t = int(temp[1])*60*60 + int(temp[2])*60 + int(temp[3])

 step_t = start_t

 if int(tmp[1]) > 0: # for SDR analysis

if tmp[1] == "SDR Thesis": # for pi analysis

 total_count += 1

 temp = tmp[0].split(':')

 time = int(temp[1])*60*60 + int(temp[2])*60 + int(temp[3])

74

if time < (current_t + 300):

 fives[time_stamp] += 1

 if time > (step_t + 300):

 step_t = time

 time_stamp += 1

 fives.append(0)

 stop_t = time

total_time = stop_t - start_t

total_time_h = total_time/3600

total_time_m = (total_time % 3600)/60

total_time_s = (total_time % 3600) % 60

print("Total time: %d:0%d:%d" %(total_time_h, total_time_m, total_time_s))

print("Total number of samples: %d" % total_count)

print("Average samples per minute: %f" %
((float(total_count)/float(total_time))*60))

for i in range(len(fives)):

 print("Number of samples for time slot %d: %d - Average per
minute: %#f" %(i+1, fives[i], float(fives[i])/5.0))

	Exploring the Efficiency of Software-Defined Radios in 3D Heat Mapping
	BYU ScholarsArchive Citation

	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	1 Introduction
	1.1 Background
	1.2 Research Objectives
	1.3 Hypotheses
	1.4 Definitions
	1.5 Methodology
	1.5.1 Assessments
	1.5.2 Controlled Environment
	1.5.3 Real-World Environment

	1.6 Assumptions and Delimitations
	1.6.1 Assumptions
	1.6.2 Delimitations

	2 Literature Review
	2.1 The IEEE 802.11 Family
	2.2 Methods of Attacking Wireless Networks
	2.3 Securing Wireless Networks
	2.4 3D Site Surveys
	2.5 SDR-Based 802.11 Wireless Communication Module
	2.6 Difficulties of Wireless Communications

	3 Methodology
	3.1 Equipment Preparation
	3.2 SDR Functionality Tests
	3.3 Speed Test
	3.4 Distance Test
	3.4.1 Noise Floor

	3.5 Field Test
	3.6 Site Test
	3.7 Performance Criteria
	3.8 Hardware Setup

	4 Implementation
	4.1 Equipment
	4.1.1 Variables
	4.1.2 Antennas

	4.2 Initial SDR Development
	4.3 Raspberry Pi Development
	4.3.1 Raspbian Development
	4.3.2 Ubuntu 18.04 for Raspberry Pi Development

	4.4 Data Collection Platform
	4.5 Data Collection Scripts
	4.5.1 SDR Script
	4.5.2 Pi Script

	4.6 Analysis Scripts
	4.6.1 SDR Processing Script
	4.6.2 SDR Analysis Script – Distance Test
	4.6.3 SDR Analysis Script – Speed Test
	4.6.4 Pi Analysis Script – Distance Test
	4.6.5 Pi Analysis Script – Speed Test

	5 Results and Analysis
	5.1 Rubric of Efficacy
	5.1.1 Functional Distance
	5.1.2 Average Samples per Minute

	5.2 Field Test Results
	5.2.1 Distance Test
	5.2.2 Speed Test Results

	5.3 Site Test Results
	5.3.1 Distance Test Results
	5.3.2 Speed Test Results

	5.4 Analysis of Research Question 1
	5.5 Analysis of Hypothesis 1
	5.6 Analysis of Hypothesis 2
	5.7 Further Observations
	5.7.1 Complexity
	5.7.2 Unknown Networks
	5.7.3 Weaknesses of the SDR
	5.7.4 Using the SDR in the Drone Environment
	5.7.5 Summary of Advantages and Disadvantages

	6 Conclusions and Future Research
	6.1 Conclusion
	6.2 Future Work

	References
	Appendix A. VM and Raspberry pi setup
	Appendix B. Data Collection Scripts
	Appendix C. Analysis Scripts

