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ABSTRACT 

 
 Termediator-II: Identification of Interdisciplinary   

Term Ambiguity Through Hierarchical 
Cluster Analysis 

 
Owen Riley 

School of Technology, BYU 
Master of Science 

 
  

Technical disciplines are evolving rapidly leading to changes in their associated 
vocabularies. Confusion in interdisciplinary communication occurs due to this evolving 
terminology. Two causes of confusion are multiple definitions (overloaded terms) and 
synonymous terms. The formal names for these two problems are polysemy and synonymy. 
Termediator-I, a web application built on top of a collection of glossaries, uses definition count 
as a measure of term confusion. This tool was an attempt to identify confusing cross-disciplinary 
terms. As more glossaries were added to the collection, this measure became ineffective. 

 
This thesis provides a measure of term polysemy. Term polysemy is effectively measured 

by semantically clustering the text concepts, or definitions, of each term and counting the 
number of resulting clusters. Hierarchical clustering uses a measure of proximity between the 
text concepts. Three such measures are evaluated: cosine similarity, latent semantic indexing, 
and latent Dirichlet allocation. Two linkage types, for determining cluster proximity during the 
hierarchical clustering process, are also evaluated: complete linkage and average linkage. 
Crowdsourcing through a web application was unsuccessfully attempted to obtain a viable 
clustering threshold by public consensus. An alternate metric of polysemy, convergence value, is 
identified and tested as a viable clustering threshold. 

 
Six resulting lists of terms ranked by cluster count based on convergence values are 

generated, one for each similarity measure and linkage type combination. Each combination 
produces a competitive list, and no clear combination can be determined as superior. Semantic 
clustering successfully identifies polysemous terms, but each similarity measure and linkage type 
combination provides slightly different results. 
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1 INTRODUCTION 

1.1 Background 

Over the past 10 years there has been significant evolution in technical disciplines in 

Universities and professions around the world. Technical disciplines including computer science, 

information systems, computer engineering, software engineering, and information technology 

have emerged and evolved, each using different words and phrases to describe key concepts 

(Ekstrom, et al. 2010). 

The individual definitions within a particular technical vocabulary change based upon 

academic, professional, and governmental influences. For example, before the term for the data 

structure now known as a “stack” was standardized, it was referred to as a LIFO (last in, first 

out), pushdown list, pile, or a reverse queue.  It wasn’t until the publication of Fundamental 

Algorithms by Donald Knuth that the term “stack” became standardized (Knuth 1968). 

In 2010 charts were generated to illustrate topical differences between technical 

disciplines using academic bodies of knowledge (Ekstrom, et al. 2010). The charts were 

generated using the suggested topic hours which are clearly defined within the bodies of 

knowledge. The disciplines of information technology and Information Systems are illustrated in 

figure 1-1. Of similar origin, these two disciplines are clearly diverging in their emphases. 
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Figure 1-1: Differences between Two Technical Disciplines 
 
 
 
Terminologies evolve as disciplines focus on different specialized areas within computing. 

For example, the word “tuple” could refer to a record of a database to a database engineer or a 

collection of values to a software developer. This discipline specific evolution leads to cross 

disciplinary communication problems. 

1.2 Problem Statement 

Multiple definitions and synonymous terms (polysemy and synonymy) cause 

terminological confusion between and within disciplines which often results in lost productivity. 

Constantly evolving professional terminology exacerbates the problem. This is especially true in 

rapidly evolving technology related disciplines including information technology, computer 

science, information systems, and software engineering (Ekstrom, et al. 2010).  

1.3 Mitigating the Problem 

A list of potentially confusing cross disciplinary terms could help mitigate this problem 

by providing teams with guidance as to how collaborating disciplines use the words. The 
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problem then becomes locating repositories of discipline specific terminology. Two potential 

sources of term data are dictionaries and glossaries. 

Glossaries, like dictionaries, contain lists of terms associated with concepts (definitions). 

Dictionaries start with words and produce definitions applicable across all domains ranked by 

usage. On the other hand, glossaries start with concepts and produce terms (words or phrases) to 

accurately represent the ideas. Glossaries are better suited to resolve terminological confusion as 

they seek to facilitate understanding about concepts at a domain level while dictionaries seek to 

simply define words at a global level. 

There is an existing data-set which contains 399 different domain specific glossaries 

compiled into a standardized XML format (Richards 2013). This aggregated glossary corpus 

contains 40,065 terms with a total of 71,199 text concepts (or definitions) from 15 domains. We 

refer to this corpus as “the compendium”. Our semantic clustering process combines hierarchical 

agglomerative clustering algorithms with text similarity measures to determine term polysemy. 

We must first understand our underlying terminology model before we can address the specifics 

of this semantic clustering process. 

1.4 Terminology Model 

1.4.1 Text Concepts and Abstract Concepts 

The source data for this research is a collection of technical glossaries, each consisting of 

terms and concepts. A term is an entry in a glossary which can be a word or phrase while a 

concept is the information defining that term. We needed to distinguish between the text used to 

describe a term and the idea that the text represents. We call the text element a “text concept” 

and the idea an “abstract concept”. Text concepts are the text we see when we expand a term 
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within a glossary. For example, a text concept of the term “computer” is “a general-purpose tool 

for communication and control as well as computation”. An abstract concept is the semantic idea 

or “platonic ideal” that we are trying to represent with a text concept. Any attempt to define the 

abstract concept using text simply creates another text concept. Thus, an abstract concept is the 

set of text concepts that attempt to represent the same idea. 

 

 

Figure 1-2:  Relationship between Abstract and Text Concepts 

 

We are interested in two sources of confusion that occur in communication: synonymy 

and polysemy. With these definitions of term, text concept, and abstract concept, we can now 

clearly define both sources of confusion. 

1.4.2 Polysemy – One Term to Many Abstract Concepts 

The first type of ambiguity is referred to as polysemy. A term is polysemous if it can 

mean two or more different ideas, or in our case if the term has text concepts belonging to 

different abstract concepts (Figure 1-3).  
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Figure 1-3:  Polysemy Diagram 
 
 

We can measure term polysemy using the text concepts found in glossaries. The 

polysemy of each term is quantified by semantically organizing the term’s associated text 

concepts into clusters that represent abstract concepts. The degree of polysemy for each term is 

represented by its number of abstract concepts. Sorting the terms in the compendium by their 

number of abstract concepts in descending order provides a measure of the most polysemous or 

potentially confusing terms. 

1.4.3 Synonymy – One Abstract Concept to Many Terms 

The second type of ambiguity is called synonymy, where two or more terms have text 

concepts that belong to the same abstract concept.  

 

 

Figure 1-4:  Synonymy Diagram 
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Unlike polysemy, synonymy is difficult to measure. Determining whether two terms are 

synonymous or simply highly similar is subjective and often domain specific. In the 

Termediator-I project, a basic measure (cosine similarity) was used to define distance between 

text concepts which attempted to identify synonyms. Termediator-I displayed a similarity score 

between the text concepts of potential synonyms and let the users judge whether they were 

actually synonyms or not.  

Introducing synonymy analysis in addition to polysemy would introduce additional 

complexity: dealing with the combination of polysemy and synonymy. Some term A can be 

synonymous with one meaning of term B, and a different meaning of B can be synonymous with 

some term C. This relationship would not necessarily be transitive, meaning that A and C are not 

always synonymous given the fact that A is synonymous to B and B is synonymous to C.  

Since Termediator-I has already targeted synonymy and to avoid issues stemming from 

synonymy subjectivity, our semantic clustering process in Termediator-II is targeted solely at 

measuring term polysemy. 

1.5 Research Questions 

Our Termediator-II analysis system addresses the following questions: 

1. How well can semantic clustering of text concepts be used to identify abstract 

concepts? 

2. How well can semantic clustering of text concepts reveal polysemous terms? 

3. Which combination of semantic similarity measure and clustering algorithm is best at 

grouping semantically similar text concepts? 

4. What terms are most likely to cause confusion among disciplines? 
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1.6 Delimitations 

This research is bounded by the following parameters: 

1. Similarity measures will be limited to cosine similarity, latent semantic indexing, and 

latent Dirichlet allocation. See Chapter 2 for a more complete explanation. 

2. Hierarchical clustering will be used as the cluster method because the number of 

clusters to be formed cannot be predetermined. 

3. Of the different linkage types associated with hierarchical clustering algorithms, only 

complete and average linkages will be analyzed. 

4. All test applications will be built and processed using Python 2.7. 

1.7 Glossary of Terms 

Abstract Concept: The set of text concepts which all describe the same semantic idea. 

Body of Knowledge: Typically a multi-tiered document outlining different topics for a 

particular discipline created by one or more professional organizations. 

Compendium: The source data of this research, which is made up of many technical 

glossaries which were merged together. 

Glossary: A collection of terms and text concepts from a single source. 

Convergence Value: The smallest threshold value for a particular similarity measure and 

linkage type that produces a single cluster for a particular term. 

Polysemy: Overloaded term where two or more of its text concepts belong to different 

abstract concepts. 

Synonymy: Terms where each contain at least one concept which belong to the same 

abstract concept. 

Term: An entry in a glossary which can be a word or phrase. 
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Termediator: An ongoing research project which created the compendium and performs 

basic text concept to term similarity measures. 

Text Concept: One or more sentences explaining a specific term in a glossary. 

Threshold: A hierarchical clustering distance parameter that determines when to stop 

combining clusters. 

1.8 Thesis Statement 

Term polysemy can be measured using hierarchical clustering algorithms with text 

similarity measures on a collection of glossaries.  

To establish a background for Termediator-II, we will present a brief history of 

Termediator and its shortcomings in identifying polysemous terms. We will then describe how 

the hierarchical clustering process functions. An explanation of three different similarity 

measures used in the semantic clustering will be introduced and explained. Once all these pieces 

are understood, we can proceed to the methodology of this research. 
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2 BACKGROUND 

2.1 Evolution of Disciplines 

Relationships between computing and society have evolved over the past decade which 

led Brigham Young University IT professors, Ekstrom and Lunt, to research the evolution of 

technical disciplines (Ekstrom 2010). According to them, the “inevitable divergence of 

terminology and evolution of social structures around common interests has led to… less 

communication between closely related fields of study”. The evolution of technical disciplines 

led to very specific computing majors emerging, such as bioinformatics and geographic 

information systems, each with their own nuanced vocabularies. Bodies of knowledge have been 

published in attempts to capture important information with regards to these fields, including 

relevant concepts, terms, and activities within a domain. 

As evidence of the evolution of technical disciplines, a document entitled “Computing 

Curricula” by the ACM Council and the IEEE-CS Board of Governors was created in 2001. This 

document was intended to be a guide for developing various technical undergraduate degree 

programs and included related technical disciplines including computer science, information 

systems, and information technology. For each undergraduate program, the document included a 

short history of its development, a brief description of what it is, visual representations of the 

topics with the depth of each, and suggested career paths. Such a document was necessary to 

capture the differences between those related disciplines amidst their evolution. 
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The evolution of these technical disciplines inevitably leads to different specialized 

vocabularies, contributing to the communication problems that stem from polysemy and 

synonymy. Confusion caused solely by synonymy, when a person communicates a specific 

abstract concept using an unfamiliar term to a listener who attaches that same idea to another 

term, can often be recognized by that party and resolved. In contrast, a miscommunication 

caused by polysemy, when a person uses a familiar term but intends a different meaning than 

what is received, can initially go undetected making it much more serious. For example, an 

engineer is told to lay wire to create a “trunk” between two switches, which can either mean a 

single link that holds many signals or many links that hold one signal. If the wrong meaning is 

interpreted by the engineer, the mistake can quickly become very costly in both time and money. 

Ekstrom’s subsequent research into these communication problems laid the foundation 

for our work, starting with his aggregated glossary prototype (Ekstrom 2010). 

2.2 Previous Glossary Aggregation 

A glossary aggregation prototype was built which contained the text of ISO/IEC/IEEE 

24765 (SEVocab). It was then parsed and normalized into a simple XML structure illustrated in 

figure 2-1.  

 

 

Figure 2-1:  Simplified XML Format 
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The glossary aggregation prototype started with the SEVocab collection which contained 

124 software and system engineering glossaries edited by the IEEE computer society. The 

editing process excluded terms and concepts that were “considered parochial to one group or 

organization” or “whose meanings could be inferred from the definitions of the component 

words” or “whose meaning in the IT field could be directly inferred from their common English 

meaning” (IEEE 2010). A web application was built which could access the data within 

SEVocab. The interface consisted of a sorted list of terms along with the number of associated 

text concepts which, when selected, would display the text of those concepts in a nearby frame. 

 

 

Figure 2-2:  Initial Glossary Aggregation Prototype with the Term "DATA" Selected 

 

Following the path laid out by the initial glossary aggregation prototype, an updated 

prototype called Termediator-I was created (Richards 2013). In addition to the edited glossaries 

used in the original aggregation prototype, Termediator-I contained dozens of additional 

technical glossaries. It also featured a slightly different interface which showed text concepts 

underneath terms instead of off to the side.  
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Figure 2-3:  Basic Termediator Interface 

 

In addition to presenting an interactive aggregated glossary, Termediator-I presents a list 

of terms with text concepts below them. Clicking on a concept then causes Termediator-I to 

identify the terms that contain concepts which are “closest” to the selected concept using cosine 

similarity.  

 

 

Figure 2-4:  Termediator's Similarity Interface 
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The analysis of Termediator-I data and the data from the initial glossary aggregation 

prototype led to the conclusion that the number of text concepts associated with a term was a 

reasonable indicator of that term’s polysemy. The initial glossary aggregation prototype 

produced a strong list of polysemous terms when sorted by the number of a term’s associated 

text concepts. Once the Termediator-I compendium had grown to 160 glossaries, the terms were 

again sorted by their number of text concepts resulting in polysemous terms such as “constraint” 

and “activity” once again appearing near the top. However, some noise was also introduced with 

the addition of the new glossaries, such as the term “Gantt Chart” being ranked as the 9th most 

complex term in the entire compendium which began to challenge the naive hypothesis. 

As the number of glossaries grew, the number of common terms used across disciplines 

also grew. With just under 400 glossaries aggregated together, the terms with the highest number 

of text concepts were not very polysemous at all. Instead of containing polysemous terms like 

“constraint”, the list contained terms that have little variance in their meanings such as “HTML” 

and “Download”. Table 2-1 shows the evolution of Termediator’s top confusing terms using the 

text concept counts vs number of glossaries in the collection.  

The new glossaries added into the SEVocab collection introduced a new problem: 

abstract concept duplication. Our initial metric of polysemy, text concept count, was premised on 

the idea that each text concept represented a different abstract concept. SEVocab’s editing 

process by the IEEE produced a glossary collection that followed this premise by combining 

similar text concepts together. After the unedited glossaries were added, many terms had 

multiple text concepts communicating the exact same idea which rendered text concept counting 

ineffective. We needed metrics of polysemy that could address abstract concept duplication 

introduced by unedited glossaries. 
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Table 2-1:  Evolution of the Top 10 Polysemous Terms by Text Concept Count 

124 Glossaries 160 Glossaries 399 Glossaries 
Term # Concepts Term # Concepts Term # Concepts 

Constraint 14 Process 22 Bandwidth 54 

Process 13 Activity 18 HTML 53 

Entity 10 Task 17 Firewall 50 

Measure 10 Baseline 15 Browser 49 

Function 10 Constraint 14 Software 49 

Baseline 9 Stakeholder 14 Internet 47 

Implementation 9 Risk 13 URL 46 

Input 9 C(A) 12 GIF 44 

Activity 9 Gantt Chart 12 Download 43 

System 9 Software 12 Virus 43 

 

We address abstract concept duplication by combining semantically similar text concepts 

using hierarchical clustering. Each term has its associated text concepts semantically clustered so 

that each cluster represents an automatically derived approximation of an abstract concept, or 

collection of semantically similar text concepts. We will then count the clusters associated with 

terms exactly like we counted the filtered concepts in SEVocab with the same result: ranking by 

a measure of term polysemy. To accomplish that task, we must first understand what clustering 

is and how it can be used to semantically group text concepts together. 

2.3 Clustering Techniques 

The idea of clustering data has been around as early as the 1930’s (Tryon 1939). The 

general idea is to group (or cluster) objects together such that objects within a cluster are more 

similar to each other than to objects from other clusters. Robert Tryon, one of the earliest 
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researchers to give clustering a practical application, referred to this area of study as cluster 

analysis. 

Since the original idea of cluster analysis was published, many different clustering 

techniques were invented. Each of these variations have different notions when it comes to 

determining what a cluster is and how it is formed. As a result, clustering is often defined as 

exploratory data mining, where trial and error is often necessary to determine optimal results. 

 “K-nearest neighbors” is a popular clustering algorithm. This algorithm, given a set of 

pre-classified data points, determines which cluster each point belongs to based on the 

classification of its k nearest neighbors. The value chosen for k is often determined through 

experimentation. Another popular clustering algorithm is “K-means” which has a total of k 

centroids that are created and act as centroids to their own clusters. Through a series of iterations, 

these centroids slowly shift around until an optimal formation is discovered that encapsulates all 

the data. A third clustering algorithm, hierarchical clustering, takes a completely different 

approach than the previous methods discussed. 

Hierarchical agglomerative clustering (HAC) initially places each text concept into its 

own cluster. Next HAC repeatedly combines the closest two clusters together using an associated 

proximity matrix until every text concept is a part of a single parent cluster. The proximity 

matrix stores the pairwise distances between the text concepts. HAC results are typically 

represented using a specific tree diagram called a dendrogram (figure 2-5).  
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Figure 2-5:  Sample Dendrogram (left) and Alternative Representation (right)  

 

The data in the dendrogram can be reduced to a single metric of polysemy by establishing 

a threshold value. The threshold value is a distance measure that determines when to stop the 

clustering process. This value takes a horizontal slice of the dendrogram, producing a cluster for 

each line it intersects. The number of clusters produced ranges from a single cluster when drawn 

at the top of the dendrogram to the number of text concepts when drawn at the bottom. 

Constructing the proximity matrix for text concepts is the first step to performing hierarchical 

clustering. 

2.4 Similarity Measures 

2.4.1 Term Frequency, Inverse Document Frequency and Cosine Similarity 

The vector space model for determining text similarity was originally proposed by Salton 

and his team from Cornell University (Salton 1975). They came up with the idea of representing 

texts as numerical vectors in order to use mathematics to compare them together. The vectors are 

composed of N dimensions where N is the number of distinct terms between them. Different 

weights for these dimensions were suggested such as a binary system (one if the term occurs at 
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least once, or zero otherwise), a raw term frequency, or a weighted term frequency. After 

converting two texts into vectors, Salton claims that “two documents with similar index terms 

are then represented by points that are very close together in the space”. As an example, consider 

the following two simple phrases P1 and P2: 

P1 = the red cat  

P2 = the angry red dog  

First, we take each distinct term and create vectors such that the vectors of P1 and P2 

become what is shown in table 2-2. 

 

Table 2-2:  Text to Vector Illustration 

 THE RED CAT ANGRY DOG 

P1 1 1 1 0 0 

P2 1 1 0 1 1 

 

Thus, P1 can be represented as the vector (1,1,1,0,0) and P2 can be represented as the 

vector (1,1,0,1,1). Using this type of approach, we can convert the entire compendium into a 

collection of different vectors with N dimensions, where N is the number of distinct words found 

throughout the corpus. 

When determining the optimal weight for the different dimensions in the vector, Salton’s 

best solution was to multiply raw term frequency (TF) with the inverse document frequency 

(IDF). The IDF was originally defined in his work as the following: 
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(𝐼𝐷𝐹)𝑘 =  ⌈log2 𝑛⌉ −  ⌈log2 𝑑𝑘⌉ + 1            (2-1) 

 

Since then, it has become standardized as: 

 

idf(𝑡,𝐷) =  log |𝐷|
|{𝑑∈𝐷∶𝑡∈𝑑}|             (2-2) 

 

In this formula t is a term and D is the set of all documents comprising the corpus. It is 

the logarithm of the total number of documents divided by the number of documents that contain 

the term t. The base of the logarithm can be any value as it only changes the impact of the IDF 

portion and not the order of results. When IDF is used to help weigh a vector, it causes rarer 

terms to have more weight while also reducing the weight of very common terms. In Salton’s 

experiments, using IDF with the raw term frequency gave an average precision and recall gain of 

14 percent over raw term frequency alone (Salton 1975). 

In addition to defining TF and IDF, Salton also suggested different methods for 

comparing the resulting vectors. One of these methods was to compare the angle between the 

vectors, stating that similarity is inversely related to that angle. If the angle is close to 0, that 

means the vectors are almost pointing in the exact same place in space which he inferred meant 

they would be semantically similar. 

A simple and popular method for comparing the resulting vectors is known as cosine 

similarity. Using Salton’s idea of comparing angles, one can take the cosine of the two vectors to 

get a distance metric between the two texts.  
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𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = cos(𝜃) =  𝐴∙𝐵
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𝑖=1

�∑ (𝐴𝑖)2𝑛
𝑖=1 ×�∑ (𝐵𝑖)2𝑛

𝑖=1

         (2-3) 

 

A benefit of the cosine value is it converts all angular distances to a value between 0 and 

1. The cosine of 0 degrees is 1 and the cosine of 90 degrees is 0, which means that very similar 

vectors will approach 1 while dissimilar vectors tend towards 0. While a true cosine ranges from 

-1 to 1, we use the absolute value so that it is bound between 0 and 1. 

2.4.2 Latent Semantic Indexing 

Another method of detecting semantic similarity between texts is called “Latent Semantic 

Indexing” (LSI), or sometimes “Latent Semantic Analysis” (LSA). Patented in 1989 by Scott 

Deerwester et al, LSI is considered a highly effective similarity measure. LSI is designed 

to “take advantage of implicit higher-order structure in the association of terms with documents” 

(Deerwester, 1990). The idea behind LSI is that words that are used in similar contexts with high 

frequency tend to have similar meanings. LSI is based on the statistical technique of 

correspondence analysis. To illustrate the weaknesses of straight keyword matching, an example 

is given in Table 2-3. 

 
Table 2-3:  Weaknesses of Keyword Matching 

 Access Document Retrieval Information Theory Database Indexing Computer REL MATCH 

Doc 1 X X X   X X  R  
Doc 2    X X   X  M 
Doc 3   X X    X R M 

*Query: “IDF in computer-based information lookup” 
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The example in table 2-3 illustrates that even if query words match a document, it doesn’t 

necessarily mean they are semantically similar. Document 2 shares the words “computer” and 

“information” with the query but would not address the query’s intention. To a human observer, 

it is obvious that document 1 would match the query because both involve document retrieval, 

but a lack of shared terms causes them to be unmatched. 

According to Deerwester, LSI needed to be able to “predict what terms ‘really’ are 

implied by a query or apply to a document”. To do this, the first step is to create a matrix of 

terms by documents which is a common information retrieval technique. Using another 

technique called singular value decomposition, the matrix is then transformed into a latent 

semantic structure model. A more detailed analysis of this technique is beyond the scope of this 

thesis. 

This technique was selected because of its inherent ability to deal with both polysemy 

and synonymy. The authors, while introducing the idea of LSI, expound on both of these 

linguistic hurdles specifically and discuss how this can overcome both when detecting similarity. 

Such a similarity technique could potentially be the best method for creating the semantic 

clusters defined earlier.  

2.4.3 Latent Dirichlet Allocation 

Researchers from Stanford University and the University of California invented a new 

type of similarity measure in 2003 based on probabilistic methods called latent Dirichlet 

allocation (LDA) (Blei 2003). It is different than the previous similarity methods because it uses 

topic modeling to represent a corpora. The researchers give a brief history of information 

retrieval, discussing the benefits of LSI in the process. Despite the improvement that came from 

using LSI over conventional TF*IDF measures, they felt the need to further dive into the 
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probabilistic nature of word occurrences. Their simple definition of LDA is “a generative 

probabilistic model of a corpus… [where] documents are represented as random mixtures over 

latent topics”. 

The mathematics used to derive LDA are extensive and far beyond the scope of this 

thesis. This method creates distributions over words as topics and then, based on the words of the 

small texts being compared, creates a vector with a dimension for every topic. The weight of 

each dimension is a measure of the applicability of the text to that particular topic. Similarity 

between texts is then simply the cosine of these two topic vectors. This method was chosen as a 

representative of the topic modeling approach to similarity in an attempt to determine if a 

probabilistic approach will outperform correspondence analysis (LSI) or the purely lexical 

approach (TF*IDF). 

Cosine similarity, LSI, or LDA can all be used to create proximity matrices for the text 

concepts within a term. Once text concepts start being clustered together, the proximity matrix 

alone is insufficient because it doesn’t outline the proximity of clusters of text concepts. To 

determine cluster proximity, we need to identify and use a parameter known as a linkage type. 

2.5 Linkage Types 

The proximity matrix alone is sufficient only when the clusters contain one text concept. 

Once clusters contain more than one text concept, linkage types are used to determining cluster 

proximity. One set of researchers from the University of Sheffield performed some analysis on a 

variety of linkage types of which we will only investigate three in particular (El-Hamdouchi 

1987). 

The first and most basic linkage type is referred to as single linkage. When two clusters 

are compared, single linkage defines their proximity as equal to the distance of the closest two 
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points between them, or in our case the two most similar text concepts. One issue that 

researchers have had in the past with this linkage type is what is called “chaining” which is when 

it “forms loosely bound clusters with little internal cohesion” due to the newest member 

continually chaining to another new member (El-Hamdouchi 1987). The research team from the 

University of Sheffield concluded that this method proved to be the worst of the linkage types in 

the document retrieval space for their particular corpus. We chose not to evaluate single linkage 

because additional research has proven that it “generally gives results that are far inferior to 

those obtainable when the other hierarchic agglomerative methods are used” (Willett 1988). 

Where single linkage compares the closest two points, complete linkage compares the 

furthest two points, or the two most dissimilar members of the clusters. Complete linkage tends 

to form more compact clusters of approximately equal diameter. Unlike single linkage, complete 

linkage does not suffer from chaining. 

The third type is average linkage, which does exactly what the name implies. When two 

clusters are compared, their distance is determined by the average distance between any point in 

the first and any points in the second. It is more computationally intensive than the first two 

types and tends to be a midpoint between the single and complete linkages. 

 

 

Figure 2-6:  The Three Most Common Linkage Types 
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It is unknown which of these two latter linkage types will perform the best on the 

compendium. This thesis tests both so that their relative performance can be compared. 

2.6 Other Work on Short Text Similarity 

Anna Huang has performed similar work in regards to semantic clustering (Huang 2008). 

In her paper, she describes five different vector based similarity measures which are Euclidean, 

cosine, Jaccard coefficient, Pearson correlation coefficient, and averaged Kullback-Leibler 

divergence. Each is a slightly different application of the vector model. Huang’s purpose was to 

determine which was the most effective at clustering text documents together. 

Huang chose to use a standard K-means clustering algorithm which is fundamentally 

different than our hierarchical approach. Huang uses K-means clustering because she knows 

beforehand how many clusters she wishes to form. Her source data was manually pre-classified 

with a specific number of different categories which she tried to match with k-means clustering. 

Upon analyzing the results, it was determined that each similarity measure had comparable 

effectiveness with the exception of Euclidean, which underperformed the others. 

The results of Huang’s research encouraged our decision to use only one vector based 

similarity measure, cosine similarity. Testing additional vector based similarity measures would 

most likely replicate this prior research, reinforcing the idea that each of the vector based 

approaches are fairly equal. Using the cosine measure is also advantageous because of its relative 

simplicity in implementation compared to the other vector based similarity measures. 

A variety of other papers have been published on detecting similarity specifically 

between short texts. One research team led by Donald Metzler focused on solving the vocabulary 

mismatch problem, which is the problem of using different words to describe the same idea 

(Metzler 2007). Their research looked first at a lexical approach, which included exact matching, 
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phrase matching, and subset matching. They also examined probabilistic methods, such as word 

co-occurrence, to deal specifically with vocabulary mismatching. Using a set of 363,822 MSN 

search queries from 2005, the researchers tested both methods independently and combined. 

What they discovered was that lexical matching was better at discovering extremely similar 

queries and that probabilistic matching was better at discovering moderately similar queries. The 

best method for determining similarity came from combining both methods, placing lexical 

matches first followed by the probabilistic ones. 

We decided not to try and implement their specific similarity method into our tests. The 

source data for their experiments consisted of internet search queries which are fundamentally 

different than text concepts found in glossaries. Queries are concise requests for information 

while text concepts are explanations of terms. 

One method they used to evaluate resulting matches was applicable to our research. A 

four point scale was established which consisted of a rank, a description, and an example (Table 

2-4). A person than ranked a set of randomly selected matches from the experiments to 

determine their effectiveness. We used a variation of this approach when evaluating the quality 

of our semantic clustering. 

 

Table 2-4:  Four Point Rating Scale (Metzler 2007) 

 

Judgment Description Examples 
(Query / Candidate) 

Excellent The candidate is semantically equivalent to the user query. atlanta ga / 
atlanta georgia 

Good The candidate is related to (but not identical to) the query intent 
and it is likely the user would be interested in the candidate. 

seattle mariners / 
seattle baseball tickets 

Fair 
The candidate is related to the query intent, but in an overly vague 

or specific manner that results in the user having little, if any, 
interest in the candidate. 

hyundia azera / 
new york car show 

Bad The candidate is unrelated to the query intent web visitor count / 
coin counter 
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Another research group led by Vasileios Hatzivassiloglou performed their own set of 

tests to determine short text similarity (Hatzivass 1999). Like previous research, their focus was 

on overcoming the vocabulary mismatch problem. Their research investigated a service called 

WordNet, which is a large lexical database for the English language funded by the National 

Science Foundation. One feature of WordNet is the ability to give a word and receive a list of 

potential synonyms. 

By using the WordNet service, the researchers are able to find similarity between short 

texts that don’t share any words. Such a scenario would fail in any vector-based approach 

automatically because they only rely on shared words to detect similarity. This research differs 

from our own in their specific definition of similarity. They define two texts as similar if they 

both “focus on a common concept, actor, object, or action”. They further assert that the common 

actor or object must be subjected to the same action or description in both texts. Our definition of 

similar is not as restricted. This limits the applicability of their research to our problem. 

They create their own method for detecting similarity which involves identifying basic 

and composite features that are shared between the two texts. Their method ultimately performs 

better on source data consisting of 16,000 news articles from Reuters, with each paragraph acting 

as a unit of text. Hatzivassiloglou claims that although they are using paragraphs as their text 

unit, sentences would work in the same way. 

Once again, their methods could be implemented as a potential similarity measure to 

experiment with, but it was decided against. Their implementation requires the implementation 

of a classifier which was trained using a large number of manually tagged documents. The 

source data used for their research was pre-classified into topical categories so training was of 

little consequence to implement. The source data for our semantic clustering is only pre-tagged 
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with a domain which, due to the heavy overlap between disciplines, would be an ineffective 

measure. 

2.7 Methodology Decisions based on the Literature Review 

From the literature review, a few conclusions can be drawn. First, there is a growing need 

as disciplines evolve to disambiguate terminology. There must be some way to help these 

divergent disciplines communicate effectively despite the presence of polysemous and 

synonymous terms. The research we are performing will help to identify the most polysemous of 

these terms, and future work may perhaps use these identified terms to further aid in these 

efforts. 

The second conclusion is that there is an adequate data set that was created to deal with 

terminological disambiguation. Starting in early 2012, the Termediator-I research team collected 

technical glossaries so that terminological disambiguation research could take place. Using this 

data set currently containing 399 glossaries, the Termediator-I research project implements basic 

similarity measures allowing users to find similar terms based solely on their text concepts. We 

will additionally use this dataset to identify the most polysemous terms present in these 

glossaries. 

Third, hierarchical clustering appears to be the most efficient clustering algorithm for 

dealing with this problem. Using a threshold value that will be determined experimentally, 

hierarchical clustering can be used to generate an unknown number of clusters. Using clustering 

algorithms like k-means and k-nearest-neighbor would be ineffective since each term has an un-

predetermined number of abstract concepts associated with it and we don’t have pre-classified 

training data. 
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Fourth, there are a large variety of standard similarity measures that could be used to try 

and detect similarity. Many core similarity measures have a number of derivative techniques that 

slightly modify the core functionality. Testing each established derivative technique would not 

be efficient so only a few core similarity measures will be used for experimentation. Specifically, 

the cosine similarity measure will represent the vector based approach, the latent semantic 

indexing technique will represent the statistical approach, and the latent Dirichlet analysis 

technique will represent the probabilistic topic modeling approach. These three measures are 

each significantly different from each other and will offer a good generalization of each of the 

approaches. 

Lastly, there are a number of different custom similarity measures that research teams 

have published recently to calculate semantic similarity of specific short texts. Each approach 

that was reviewed had positive results but was the result of a combination of existing techniques. 

After reviewing each and weighing their strengths and weaknesses, we determined that it would 

be best to leave the experimentation for our problem to the core similarity measures discussed 

above. 
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3 METHODOLOGY 

3.1 Source Data - Termediator 

The source data for this research was introduced and outlined in Chapter 2. It is a 

collection of 399 technical glossaries which have been merged together into one compendium. 

Each entry contains a term with one or more text concepts associated with it.  In total there are 

40,065 distinct terms and 71,199 different text concepts. 

3.2 Automated Clustering 

Our semantic clustering was performed using three main variables: 

• Similarity Measure 

• Hierarchical Linkage Type 

• Threshold 

Each of these variables will be discussed, including what role they play, the different 

permutations each has, and the estimated impact on the quality of the resulting clusters. 

3.3 Similarity Measure 

The function of the similarity measure in the hierarchical clustering process is to establish 

text concept proximity. The three similarity measures used to produce proximity matrices we 

evaluated were: 



29 

• Cosine Similarity 

• Latent Semantic Indexing 

• Latent Dirichlet Allocation 

Each of the similarity measures has already been introduced and described in Chapter 2 

in detail. To summarize, each was chosen to represent a different approach to similarity 

detection. The cosine similarity measure uses the basic vector model introduced by Salton back 

in the 70’s (Salton 1975). Converting each text concept into a vector, this method measures the 

cosine between two vectors to determine the semantic similarity. Of the three measures, this was 

expected to perform the poorest due to the fact it depends on exact word matching. 

Latent semantic analysis uses singular value decomposition to determine the similarity of 

two texts. The fundamental principle behind LSI is that if words co-occur often, they will be 

semantically similar. Even with short texts, this idea can be effective in successfully finding 

semantic similarity. We expected this measure to perform better than the cosine method in 

identifying abstract concepts. 

The final measure, latent Dirichlet allocation, is based on the idea of topic modelling. A 

topic is defined as a distribution over words, so text concepts will be matched with specific 

topics and then subsequently compared for similarity. Of the three methods, it was expected that 

this would perform the best. 

Similarity values needed to be converted to distance before they can be used as 

proximities in hierarchical clustering. All three of the similarity measures produce similarity 

values between zero and one with higher values indicating greater similarity. Taking the 

complement of the similarity values by subtracting them from one will convert similarity to 

distance, causing highly similar values to approach a distance of zero and dissimilar values to 
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approach a distance of one. Each term will have a different proximity matrix which is the 

collection of the distance values generated from the complemented similarity measures between 

each pair of the term’s text concepts. 

3.3.1 Stopword Removal and Stemming 

Before we used any of the similarity measures, we performed two optimizations on every 

text concept found in the compendium. The first optimization was stop word removal. A 

majority of the text concepts contained words that are not useful in determining the text 

concept’s semantic meaning. Some simple examples of such words are “the”, “there”, and “a”. 

Removing these words “increases retrieval efficiency and generally improves retrieval 

effectiveness” (Croft 2010). The list of stop words used for this function is included in appendix 

A. 

In addition to removing the stop words in each concept, another technique called 

stemming was applied. Stemming is the process of “[capturing] the relationships between 

different variations of a word” (Croft 2010). With stemming, words are broken down to a root 

word so that these and other similar words can be compared together. To perform the stemming, 

we used a common algorithmic stemmer called the Porter stemmer. It follows a series of steps to 

transform an input word into a common stem and “has been shown to be effective in a number 

of… evaluations and search applications” (Van Rijsbergen 1980). For example, the words 

“computer”, “computers”, and “computing” would all become the stem “comput”, causing them 

to be evaluated as the same word. The stemmer script we used is a Python version obtained from 

a web site maintained by Martin Porter, the author of the Porter stemmer (Porter 2001). 
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After performing stop word removal and stemming, each text concept became a list of 

semantically significant stems without stop words which were then suitable to be used with any 

of the three similarity measures mentioned. 

3.3.2 Training Topics 

The number of topics that the LSI and LDA training algorithms create has to be 

predetermined. Prior research into this dimensionality by Roger Bradford revealed that an ideal 

number of topics to create for any sufficiently large corpus is between 300 and 500, and that any 

value chosen outside this range results in “significant distortions” (Bradford 2008).  Based on 

this data, we decided to create 400 topics when training both the LSI and LDA techniques. 

3.3.3 Training Corpora 

LSI and LDA both require training before they can be used to evaluate text similarity. 

Initially, the compendium was used as the training corpus with the assumption that the text 

concepts would contain enough information to generate effective models. An alternative source 

of training data would be bodies of knowledge (BOK). BOKs are official domain specific 

documents produced by academic and professional expert groups which outline topics of study. 

The BOKs generally follow a hierarchical structure with three main levels. The top level is a 

knowledge area, which is a word or short phrase which defines a large area within the discipline. 

An example of this in the Computer Science body of knowledge is “operating systems”. The 

level below this is typically called a unit such as “concurrency” and “memory management” for 

the example knowledge area. The third level is comprised of topics, which are very specific 

words or phrases such as “paging and virtual memory” and “caching” for the memory 

management unit. 
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16 different bodies of knowledge from several domains were obtained and converted into 

a standard XML format to act as a potential training corpus. The complete collection is shown in 

table 3-1. 

 

Table 3-1:  Bodies of Knowledge in Our Collection 

NAME AUTHOR YEAR 
A Guide to the Project Management Body of Knowledge 
Fourth Edition 

Project Management Institute 2008 

Business Analysis Body of Knowledge International Institute of Business 
Analysis 

2009 

Computer Science Curricula 2013 Association for Computing Machinery 
IEEE Computer Society 

2012 

Computer Science Curriculum 2008: An Interim 
Revision of CS 2001 

Association for Computing Machinery 
IEEE Computer Society 

2008 

Computing Curricula 2001 Computer Science Association for Computing Machinery 
IEEE Computer Society 

2001 

Curriculum Guidelines for Graduate Degree Programs in 
Software Engineering 

Integrated Software & Systems 
Engineering Curriculum 

2009 

Curriculum Guidelines for Undergraduate Degree 
Programs in Computer Engineering 

Association for Computing Machinery 
IEEE Computer Society 

2004 

Curriculum Guidelines for Undergraduate Degree 
Programs in Information Technology 

Association for Computing Machinery 
IEEE Computer Society 

2008 

Curriculum Guidelines for Undergraduate Degree 
Programs in Information Systems 

Association for Information Systems 2010 

Curriculum Guidelines for Undergraduate Degree 
Programs in Software Engineering 

Association for Computing Machinery 
IEEE Computer Society 

2004 

Enterprise Architecture Body of Knowledge Mitre 2004 
Essential Body of Knowledge US Department of Homeland Security 2008 
Essential Body of Knowledge US Department of Energy 2011 
Guide to the Quality Body of Knowledge American Society for Quality 2009 
Human Resources Professionals in Canada Revised Body 
of Knowledge 

Canadian Council of Human Resources 
Associations 

2007 

The Common Body of Knowledge for Computing and IT Canada’s Association of Information 
Technology Professionals 

2012 

 

There are some key differences between glossaries and bodies of knowledge which could 

affect the quality of a training corpus. The first relates to the amount of contextual information. 

Bodies of knowledge typically have descriptions for the various knowledge areas and units, and 

in some cases even the topics. Glossaries lack this type of context and are most often made up of 

short definitions. The second key difference is authorship. Bodies of knowledge are created by 
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professional and academic organizations such as the IEEE computer society which have vast 

expertise in their respective disciplines. As such, the BOKs are reviewed by many individuals 

and refined over time resulting in a higher quality product. Many glossaries do not undergo such 

a vigorous editing process. The overall quality of the glossaries information is potentially lower. 

We evaluated the effectiveness of training LSI and LDA with the compendium vs training with 

the bodies of knowledge to determine which training corpus was most effective. 

One method of evaluating a training corpus is to look at the topics which are generated. 

Each topic is a collection of highly co-occurring words which should all be related in some way 

if the training corpus was effective. LSI topics are the most logical choice for this comparison 

because it generates topics sorted by prevalence. LDA’s topics have no order whatsoever which 

prevents them from being able to be compared. We compared the top 5 LSI topics generated by 

the bodies of knowledge alone, the compendium alone, and with both combined.  

 
Table 3-2:  Top 5 LSI Topics 

Rank BOKs Compendium BOKs + Compendium 

1 Perform, FTC, Mightily, 
Consult, Zoom 

System, Software, 
Computer, Data, 

Information 

System, Software, 
Computer, Data, 

Information 

2 Mightily, FTC, 
Directory, AIF, Video 

Software, IEC, ISO, 
IEEE, Engineering-

Technology 

Software, IEC, ISO, 
IEEE, Network 

3 Perform, FTC, Zoom, 
AIF, Protocol 

Network, Page, Web, 
File, Image 

Network, Page, Web, 
File, Image 

4 Directory, Fidelity, 
Expert, Perform, FTC 

Computer, Program, 
Process, File, 
Information 

Computer, Program, 
Process, File, 
Information 

5 Expert, Perform, 
Network, AIF, Consult 

Web, Page, Data, 
Internet, Computer 

Web, Data, Page, 
Internet, Protocol 

 

 The poor topic quality of the topics from the bodies of knowledge alone was surprising 

considering all the points made previously. One reason for its inability to stand up as a training 
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corpus on its own is hypothesized to be due to its small size. Compared to the compendium, the 

body of knowledge collection has about ¼ the number of entries. The poor topic quality could 

also likely be due to the number of topics generated. For the size of the bodies of knowledge, our 

topic number of 400 may have been too high while being just right for the size of the 

compendium. 

 When evaluating the effectiveness of adding the bodies of knowledge to the compendium 

as a training corpus, the topics themselves did not give much indication of their effectiveness. 

Judging from the top 5 topics alone, it was difficult to tell if the compendium alone was the 

better training corpus than the compendium with the bodies of knowledge added. When both are 

used to perform semantic clustering and compared, they produce slightly different resulting lists. 

 

Table 3-3:  Top 5 Polysemous Terms with Different Training Corpora 
 

RANK WITHOUT BOKS WITH BOKS 

1 Data Interface 

2 Interface Risk 

3 Workstation Object 

4 Firewall Function 

5 Baseline Firewall 

 

 Training with the compendium with the bodies of knowledge appeared to produce lists of 

more polysemous terms than training on the compendium alone. For example, the term 

“workstation” dropped in one of the LDA lists which allowed more polysemous terms such as 

“object” and “function” to rise to the top. Based on these results, we chose to train LSI and LDA 

on the compendium combined with the bodies of knowledge for our semantic clustering. 
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3.4 Linkage Type 

The next variable was the linkage type, or the method for determining proximity between 

two clusters. There were two different types we chose to evaluate: complete and average 

linkages. The linkage type plays a very important role in determining the overall shape and 

density of the resulting clusters. Complete linkage compares the two furthest points of a cluster 

to determine distance which results in numerous dense clusters. Average linkage compares 

clusters using an average distance between each member. Intuitively both complete and average 

linkages seemed to be very effective and fair ways to evaluate cluster proximities, but it was 

unknown which would perform better. 

3.5 Threshold 

The final variable in these experiments was a tuning variable called the threshold. 

Normally, hierarchical clustering produces a complete dendrogram but our experiments require 

us to take a single slice of that dendrogram at a particular threshold value. The threshold value is 

a number between zero and one corresponding to a maximum distance. The clustering process 

repeatedly combines the two closest clusters until every cluster is more distant from each other 

than the threshold value. Higher threshold values will always produce fewer clusters as a result. 

We initially chose to obtain a candidate threshold value through what we call the crowdsourcing 

application. 

3.5.1 Crowdsourcing Application 

A candidate threshold would be the number where, after clustering is performed, most 

terms would have their text concepts semantically clustered “properly”. Since determining when 

text concepts are properly clustered is subjective, we initially chose to obtain a candidate 
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threshold through crowdsourcing. We constructed a web application which visually displayed 

clusters in a format similar to a dendrogram for a set of sample terms. The interface allowed 

users to manually adjust the threshold until the clusters appeared “right” to them. Collecting 

enough of these thresholds would enable us to use statistics to determine which threshold was 

optimal according to public consensus. This process began with choosing a suitable platform to 

build the web application. 

3.5.2 Platform 

The web application used for gathering data was built using the Google App Engine 

(GAE) platform. GAE is a service offered by Google which allows users to build web 

applications and subsequently host them on Google’s servers. GAE was selected because the 

web application is hosted on their servers allowing users to use the web application from any 

device with an internet connection. GAE also allows developers to easily attach a database which 

was necessary in order to store the collected data. 

3.5.3 Data Storage 

The GAE platform gave us the freedom to choose from a variety of data stores. One was 

a standard SQL engine hosted by Google called Cloud SQL. A second was called Google Cloud 

Storage and is a file system hosted in the cloud. The third option was the GAE data store, which 

is a schema-less NoSQL database. The data being collected was very simple and required none 

of the benefits of relational SQL databases so we chose to use the GAE data store. 

The data being stored consisted of two main parts: a survey portion and the clustering 

threshold portion. The answers to the survey questions were simply stored as text with no 

additional modification necessary. The clustering portion contained the current sample term and 
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six different thresholds that ranged from zero to one. A final piece of information that was stored 

was the completion date and time. Using the GAE data store, we were able to store each 

response as one row that contained all the information just described. Simple queries could be 

made after the data was gathered to try and find patterns much like regular SQL queries. The 

data store, like the application, was hosted by Google and could be accessed by any machine 

with an internet connection. With the platform and database established, we needed to determine 

which specific terms users would need to cluster to collect our sample thresholds. 

3.5.4 Identifying Sample Terms 

Due to the size of the corpus, experimental testing was performed on a subset of the 

compendium. The most efficient method for choosing a subset was to manually select a handful 

of terms. The semantic clustering can only be performed on terms with more than one text 

concept and of the 40,065 total terms, only about 25% had more than one associated text 

concept. 

Sample terms needed to have a high number of concepts to precisely identify the optimal 

semantic clustering threshold. This is because terms with a low number of text concepts are less 

sensitive to changes in the threshold than concepts with high numbers. Aside from the number of 

associated text concepts, it was also important for sample terms to come from both sides of the 

polysemy scale to show that the threshold was globally applicable. There needed to be terms that 

were semantically simple with few different meanings as well as terms that were semantically 

complex with many different meanings. We subsequently selected 16 different terms to be part 

of the sample. We then designed and built the interface that would let users cluster the sample 

terms shown in table 3-4. 
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Table 3-4:  Complete List of Sample Terms 

ATM Database GIF Software 
Bandwidth Download HTML  Upload 
Browser Firewall Internet URL 
Constraint FTP Process Virus 

 

3.5.5 Interface 

When using the application, the first thing users saw was a series of simple questions. 

The purpose of these questions was to gain a little user background to add different dimensions 

to the resulting data. For example, gender-specific patterns could have played into how semantic 

clusters were evaluated. The data we chose to gather was gender, age range, and technical 

expertise. 

 Once the questions were answered, the user was presented with a term and six duplicate 

sets of its concepts. The six sets of concepts corresponded to the six combinations of similarity 

measures and linkage types. Below each set of concepts was a slider which corresponded to the 

threshold value identified and explained earlier in this thesis. For each set of text concepts, the 

user adjusted the threshold slider until the concepts were clustered the “best” according to their 

judgment. It was up to each user how to define this subjective measure. A couple additional 

features were added to assist the users in their clustering. The first was background coloring 

which ranged from green to red based on max intracluster distance. Each member within a 

cluster was compared with every other member within the same cluster, after which the most 

dissimilar members were identified and measured. Distances closer to 0 were greener indicating 

a tighter cluster whereas distances closer to 1 were redder indicating a looser cluster. The second 

feature utilized the domains from which each concept came from which were manually tagged 

when the glossaries were added into the compendium. Each concept was given a light dotted 
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border which had a color signifying the concept’s particular domain that was displayed by 

hovering the cursor over the text concept. 

After each set of concepts was a four point evaluation question which asked the user how 

well the clusters were grouped by meaning. This step was necessary because users were asked to 

find the point on the slider that was closest to how they would cluster the text concepts, but it did 

not measure how close that actually was. Some clusters could have perfectly aligned with the 

user’s expectations while others at their best were still vastly different. This data would have 

been useful in identifying which similarity algorithm and linkage type combinations regularly 

aligned with users’ expectations and which did not. The options were “barely”, “somewhat”, 

“mostly”, and “exactly” corresponding to how well the clusters were semantically grouping the 

text concepts at the chosen threshold. 

 

 

Figure 3-1:  Semantic Clustering Interface 
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3.5.6 Interface Optimizations 

While building the prototype data collection application, a few issues arose. It was clear 

that user fatigue was going to impede accurate data collection based on feedback from early 

testers. For each sample term, the tester would be required to adjust six different sliders while 

reading and organizing large amounts of text. Users would be adjusting 96 different bars in one 

sitting to evaluate all 16 of our sample terms. With so much required of users, data would rapidly 

begin losing value once users began getting mentally fatigued. 

 To address user fatigue, it was necessary to require less of each individual tester. Instead 

of asking each user to evaluate every sample term, we instead asked each user to evaluate a 

single one. Each of the sample terms needed to be evaluated multiple times for the results to be 

statistically significant so the tradeoff was more testers would be required. This updated 

approach required a tester to adjust only six bars instead of almost 100. 

 Another method to reduce the amount of user fatigue was to initialize the threshold 

sliders. If the thresholds started at a point which would be close to where most users would place 

it, they would then either agree with the groupings or make small adjustments in either direction. 

One option was to simply initialize every slider with some value predetermined through heuristic 

testing. Another was to take a mathematical approach and attempt to find some cluster 

optimization which would place the slider in roughly the same area as humans would. To create 

a more academically sound experiment, the latter option was investigated. 

 Each threshold produces some number of clusters which each have different 

characteristics, such as density or max width. It was theorized that these values could be 

measured and related to each threshold such that an optimization exists. The first cluster 

characteristic measured was max width, which was determined for each cluster by identifying 
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max distance between its members. Another cluster characteristic that was measured was a 

normalized max width which was generated by taking the number of cluster members divided by 

the max width of the cluster. These lists were then reduced to a variety of single values using 

different measures including sum, mean, root mean square, and median. 

Using a python library called matplotlib, we were able to create graphs which had 

thresholds along the X axis and one of the calculated values we just discussed along the Y axis 

(Figure 3-2). Thresholds shown have been multiplied by 100 to avoid dealing with decimals so 

the thresholds range from 0 to 100. The goal was that some combination of these variables would 

create a curve which would have either a maximum or minimum in the last quartile of the 

possible threshold values, where we heuristically determined the candidate threshold would 

reside. All attempts at determining a mathematical optimization were initially unsuccessful as 

each attempt generated graphs that were either always increasing or always decreasing like the 

example shown in figure 3-2. 

 

 

Figure 3-2:  Sample Graph for Finding Cluster Optimizations 
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3.5.7 Crowdsourcing Outcomes 

The first attempt at collecting data was to crowd-source, using the public to try and find 

ideal thresholds. As described in the previous section, a web application was constructed and 

subsequently published which gave anyone the opportunity to perform their own clustering. The 

goal was to obtain at least 200 responses which, when averaged together, would reveal a 

candidate threshold for each similarity algorithm and linkage type combination obtained through 

consensus. 

We anxiously awaited for the data to start flooding in after broadcasting the URL for the 

web application throughout our social circles. After three weeks only 14 responses had been 

recorded, most of which originated with very close family members. The GAE platform had 

analytics information available which revealed that less than 10% of the users who opened the 

application actually completed it. In consultation with user experience experts, it became clear 

that the problem was too complex for this type of analysis (Helps 2014). 

The core problem with the tool, we were informed, was it came off as overwhelming to 

the average user. The instructions that were required to give the user a clear picture of their task 

took up over half a page.  If we further include the text that needed to be read in each of the six 

interactive windows, users were simply overwhelmed and ultimately decided against going 

further and completing the task. After further discussion, we determined that there would be no 

realistic way to refine the tool to mitigate this problem. Adding an incentive for users to use the 

application would increase the quantity of the results, but the complexity of the task would cause 

the quality of those results to deteriorate. 
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Despite this failure, the crowdsourcing tool’s visual representation of the clusters 

illuminated a new potential measure of polysemy. Without valid crowdsourcing data, we had to 

find a replacement data source to determine our clustering threshold to proceed.  

3.5.8 Convergence Values 

Adjusting the thresholds of various terms in the tool revealed that terms converged into a 

single cluster at different thresholds. Terms we considered to be polysemous converged at higher 

thresholds than terms we considered to be less polysemous. This should have been obvious 

because more polysemous terms have more abstract concepts and would therefore require a 

higher threshold to converge. Looking back at the graphs we created when we attempted to 

initialize a starting threshold for the crowdsourcing tool, we once again noticed this pattern. The 

graphs shown in figure 3-3 show the general difference between less polysemous terms like 

“HTML” and more polysemous terms like “process” in relation to convergence. For each 

similarity measure and linkage type, we collected the threshold value when the last two clusters 

converged for every term, calling these numbers convergence values.  

 

 

Figure 3-3:  Convergences for HTML (left) and Process (right) 
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Graphing the convergence values for each combination of similarity measure and linkage 

type give us the graph in figure 3-4. 

Regardless of the similarity measure or linkage type used, the overall pattern of the 

convergence values remains the same. Convergence values alone cannot be used to identify the 

most polysemous terms because the majority of the terms converge at the max threshold. The 

mean of the convergence values on the other hand is informative. 

 

 

Figure 3-4:  Convergence Values across the Compendium with Means 

 

The mean convergence values identified in figure 3-4 all fall in the last quartile of 

possible thresholds, which was where we heuristically determined the candidate threshold would 

reside. To test the validity of the mean convergence value, we took our 16 sample terms from the 

crowd sourcing tool and performed semantic clustering to see if they would be sorted by 

polysemy. 
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Table 3-5:  Top 10 Polysemous Sample Terms Lists 

LDA LSI Cosine 
Average  Complete  Average  Complete  Average  Complete  

Database Bandwidth Process Software Firewall Firewall 
Virus Software Virus Firewall Constraint Bandwidth 
Software Process Software Process Process Virus 
Firewall Firewall HTML Virus Virus Software 
Process Database Firewall Database Database Process 
GIF Virus Download Bandwidth GIF Database 
FTP Download GIF Download FTP Constraint 
Download Constraint FTP HTML Download Browser 
Constraint Browser Database Browser Bandwidth Internet 
Bandwidth URL Constraint Internet ATM HTML 

 

The different similarity measures and linkage types produced slightly different results, 

but in general it can be seen that the less polysemous sample terms like HTML and GIF tended 

to be ranked lower than the more polysemous terms like database and constraint. With enough 

evidence of success, we generated an ideal threshold for each similarity measure and linkage 

type combination by using the convergence values in place of the crowdsourcing data. 

After calculating the arithmetic mean for each collection of convergences, we identified 

the following candidate thresholds based on the data found in the compendium shown in  

table 3-6. 

 

Table 3-6:  Mean Convergence Values 

Similarity Measure / 
Linkage Type 

Mean Convergence 
Value 

Rounded Convergence 
Value 

Cosine / Average 84.92 .85 
Cosine / Complete 91.66 .92 

LSI / Average 86.55 .87 
LSI / Complete 87.71 .88 
LDA / Average 84.43 .84 
LDA / Complete 91.54 .92 
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Using the mean convergence values as the thresholds, we were subsequently able to 

perform semantic clustering for each similarity algorithm and linkage type combination to 

discover the most polysemous terms in the compendium. 
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4 CONTRIBUTION 

4.1 Summary of Previous Findings 

The process of producing a high quality list of polysemous terms led us to some valuable 

findings that we wish to reiterate. 

When we researched similarity measures we identified two, LSI and LDA, which 

required a training corpus to establish models to compare texts. We looked at two main texts as 

potential training corpora: the compendium and BOKs. Both corpora were evaluated by looking 

at the top topics generated. Unexpectedly, topics generated by the compendium training corpus 

were far superior to those generated by the BOKs. Additionally, we analyzed the topics when 

both corpora were added together to determine if the BOKs could enhance the compendium 

during training. The resulting topics were too similar to the topics generated by the compendium 

alone to determine which corpus was superior. We subsequently performed semantic clustering 

using the compendium and then the compendium with the BOKs and compared the term lists. 

The compendium with the bodies of knowledge appeared to produce a slightly higher quality list 

according to our judgment. We chose to combine the bodies of knowledge with the compendium 

when training LSI and LDA. Our next findings were discovered when we tried to obtain a 

candidate threshold value required for hierarchical clustering. 

We initially attempted to obtain, by a consensus, a candidate clustering threshold. Our 

crowdsourcing application was too complex for users, resulting in a completion rate of less than 
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10%. Despite this failure, the tool gave us a new perspective on cluster visualization, leading to 

our next finding. The tool, along with our attempt to find an initialized threshold to aid users, 

illuminated a new generic measure of term polysemy we call the convergence value. We 

observed that less polysemous terms tended to converge into a single cluster at lower thresholds 

than more polysemous terms. By using convergence values in place of the crowdsourcing 

thresholds, we could generate a single candidate threshold using the mean. Experimentation 

additionally showed that the mean convergence values for the compendium consistently fell in 

the last quartile of possible thresholds. The vast majority of the threshold values collected by the 

crowdsourcing tool also fell in the last quartile further indicating that the mean convergence 

values were an adequate substitute for the crowdsourcing data. With a candidate threshold 

identified, we were able to perform our semantic clustering process. 

4.2 Compendium Results 

Using the cosine, LSI, and LDA similarity measures along with the complete and average 

linkage types with their associated mean convergence value, we performed hierarchical 

clustering on each term in the compendium and sorted the results by cluster count. This produced 

six different lists of terms of which we chose to limit to the top 30 from each (table 4-1). 

Evaluating the effectiveness of each combination of the variables is not an easy task due 

to the subjective nature of determining term polysemy. Each individual has different 

backgrounds and experiences meaning that each individual would have a slightly different order 

if asked to order the same terms by polysemy.  
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Function 11 25 Interface 10 42 Interface 13 42 Interface 14 42 Interface 10 42 Interface 12 42
User 8 34 Firewall 10 67 Function 10 25 Function 11 25 Risk 9 30 Risk 10 30
Risk 8 30 User 9 34 Template 9 28 Bandwidth 11 64 Function 9 25 Object 10 32
Resource 8 12 Spam 9 53 Signature 9 31 User 10 34 Signature 8 31 Function 10 25
Process 8 36 Risk 9 30 Object 9 32 Risk 10 30 Scope 8 17 Firewall 10 67
Object 8 32 Function 9 25 Unit 8 13 Object 10 32 Policy 8 13 Template 9 28
Interface 8 42 Design 9 23 Stakeholder 8 19 Firewall 10 67 Object 8 32 Encryption 9 46
Entity 8 18 Data 9 41 Scope 8 17 Signature 9 31 Design 8 23 Baseline 9 42
Cc 8 13 Baseline 9 42 Process 8 36 Node 9 31 CC 8 13 Authentication 9 36
Case 8 15 Bandwidth 9 64 Feedback 8 15 Network 9 47 Baseline 8 42 User 8 34
Unit 7 13 Signature 8 31 Design 8 23 Header 9 24 AI 8 14 Signature 8 31
Template 7 28 Object 8 32 Constraint 8 21 Domain 9 32 User 7 34 Scope 8 17
Task 7 29 Node 8 31 CC 8 13 Design 9 23 Template 7 28 Path 8 20
State 7 12 Encryption 8 46 Baseline 8 42 Constraint 9 21 Standard 7 13 Design 8 23
Spoofing 7 20 Domain 8 32 Spoofing 7 20 Bot 9 21 Padding 7 10 Database 8 44
Signature 7 31 Cc 8 13 Risk 7 30 Baseline 9 42 Lol 7 11 Class 8 23
Set 7 10 Bot 8 21 Resource 7 12 Authentication 9 36 Firewall 7 67 CC 8 13
Scope 7 17 Virus 7 61 Queue 7 18 Stakeholder 8 19 Class 7 23 AI 8 14
Robot 7 15 Terminal 7 25 Pi 7 8 Scope 8 17 Worm 6 43 Worm 7 43
Project 7 16 Template 7 28 Parameter 7 13 Protocol 8 48 Tos 6 13 Terminal 7 25
Policy 7 13 Task 7 29 Lol 7 11 Process 8 36 Testing 6 17 Task 7 29
Non-Repudiation 7 15 System 7 20 Link 7 23 Gateway 8 30 Task 6 29 System 7 20
Feedback 7 15 Phishing 7 35 Header 7 24 Flash 8 30 System 6 20 Standard 7 13
Domain 7 32 Link 7 23 Error 7 15 Encryption 8 46 State 6 12 Spoofing 7 20
Design 7 23 Input 7 23 Entity 7 18 Data 8 41 Spoofing 6 20 Node 7 31
Data 7 41 Header 7 24 Domain 7 32 Cut 8 11 Simulation 6 21 Measure 7 17
Constraint 7 21 Feedback 7 15 Data 7 41 Client 8 37 Resource 6 12 Lol 7 11
Class 7 23 Entity 7 18 Cut 7 11 CC 8 13 Queue 6 18 Link 7 23
Bot 7 21 Database 7 44 Case 7 15 Thread 7 18 Process 6 36 Kilobyte 7 25
Authentication 7 36 Client 7 37 Bot 7 21 Terminal 7 25 Paradigm 6 7 Header 7 24

COSINE LSI LDA
AVERAGE COMPLETE AVERAGE COMPLETE AVERAGE COMPLETE

Table 4-1:  Top 30 Potentially Confusing Terms 
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If we look further at the results, we can see that there are 10 terms which exist in all six 

lists. These 10 terms are all highly polysemous and are evidence of the success of using semantic 

clustering to identify term polysemy. Those particular terms are especially significant because, in 

a compendium containing over 40,000 terms, they made it into the top 30 most polysemous 

terms regardless of the similarity measure or linkage type used. Table 4-2 compares our initial 

metric of polysemy, simple concept count, to our new metric of cluster count using the terms 

found in every list. 

 

Table 4-2:  Top 10 Polysemous Terms Alphabetized Before and After 
 

Old Metric 
Concept Count 

New Metric 
Semantic Clustering 

Bandwidth Design 
Browser Function 

Download Interface 
Firewall Object 

GIF Risk 

HTML Signature 
Internet System 

Software Task 
URL Template 
Virus User 

   

 Our new metric using semantic clustering has clearly produced a list of highly 

polysemous terms. The less polysemous terms that previously rose to the top of our polysemy 

lists from their high text concept count, like HTML and GIF, dropped dramatically. The 

clustering process was able to successfully combine semantically duplicate text concepts so that 

a more accurate count of each term’s different abstract concepts could be obtained. 
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5 CONCLUSIONS AND FUTURE WORK 

5.1 Overview 

Vocabularies within and between disciplines have been rapidly evolving, making 

identifying potentially confusing words and phrases an important task. We wanted to identify the 

most polysemous terms being used today using a collection of 399 glossaries. Polysemy of a 

term was measured by semantically clustering its associated text concepts and counting the 

resulting number of clusters. Terms with one text concept were not included. As part of the 

semantic clustering process, we compared three similarity measures consisting of cosine 

similarity, latent semantic indexing, and latent Dirichlet allocation. Two hierarchical clustering 

linkage types were also compared: complete and average linkages. A third clustering variable, 

threshold, was calculated using the mean convergence value, or the mean value at which a term’s 

text concepts are clustered into a single cluster across the entire compendium. We produced a list 

of terms sorted by polysemy for each of the six combinations of similarity measures and linkage 

types. 

5.2 Evaluation of Results 

Each list that was produced using our semantic clustering was effective. The results are 

so effective that no combination of similarity measure and linkage type can clearly be deemed 

the best. It is our conclusion that, in the absence of clear evidence supporting which similarity 
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measure and clustering combination performed the best, our best list of the most polysemous 

terms was created by finding the terms present in every one of the six lists. We created that final 

list of polysemous terms that can be found earlier in table 4-2. In a compendium of over 40,000 

terms, it is highly significant that the 10 terms in our final list appeared as highly polysemous 

regardless of the similarity measure or linkage type used. 

We consider the semantic clustering successful based on the intuitive sense of polysemy 

in the terms that were displayed in the lists. Every method produced few clusters for the 

common, less polysemous terms like “HTML” and produced more clusters for the more 

polysemous terms like “object”. 

Another result of our research was the realization that there is no ideal clustering 

threshold that accurately clusters text concepts semantically for every term. The number of 

clusters depicted in table 4-1 do not directly indicate the number of real meanings the associated 

term contains. The thresholds used for the semantic clustering are designed to create cluster 

quantities that, when compared with other terms in the same experiment, will give the terms a 

sense of rank. The crowdsourcing tool demonstrated that each term has a different ideal 

threshold that accurately clusters its text concepts by meaning. This means that while we can 

identify the terms that are polysemous, we do not have a clear method of automatically 

determining the exact number of different meanings (abstract concepts) associated with each 

term.   

5.3  Future Work 

Many additional text similarity measures exist and could be evaluated for their 

effectiveness in semantic clustering. Additional testing is also necessary to determine the effect 

of using different thresholds than the mean convergence value when clustering the compendium. 
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It is currently unknown exactly how the threshold value effects the resulting lists of polysemous 

terms. 

A stronger method for evaluating the results of semantic clustering is necessary to 

accurately identify the best similarity algorithm and linkage type combination. The subjective 

nature of linguistic problems like term polysemy makes it difficult to objectively rank the 

different results. Creating some method for doing so would allow us to evaluate each similarity 

measure and linkage type and conclusively determine which combination produces the most 

accurate results. 

5.4 Closing 

The idea behind semantic clustering being used to evaluate term polysemy has solid 

ground. We have shown that semantic clustering can be used on glossaries to measure the degree 

of polysemy in terms with high accuracy. We generated six lists of highly polysemous terms and 

were able to create a single list showing the shared polysemous terms between them all. We were 

successful in identifying terms that people would deem as highly polysemous which would have 

a very high potential of causing confusion in interdisciplinary communication.   
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APPENDIX A. LIST OF STOPWORDS 

When transforming the text during the glossary aggregation, the following words are 

removed as they generally detract from the semantic meaning of the text: 

 

a  

about  

above  

across  

afore  

aforesaid  

after  

again  

against  

agin  

ago  

aint  

albeit  

all  

almost  

alone  

along  

alongside  

already  

also  

although  

always  

am  

american  

amid  

amidst  

among  

amongst  

an  

and  

anent  

another  

any  

anybody  

anyone  

anything  

are  

aren't  

around  

as  

aslant  

astride  

at  

athwart  

away  
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b  

back  

bar  

barring  

be  

because  

been  

before  

behind  

being  

below  

beneath  

beside  

besides  

best  

better  

between  

betwixt  

beyond  

both  

but  

by  

c  

can  

cannot  

can't  

certain  

circa  

close  

concerning  

considering  

cos  

could  

couldn't  

couldst  

d  

dare  

dared  

daren't  

dares  

daring  

despite  

did  

didn't  

different  

directly  

do  

does  

doesn't  

doing  

done  

don't  

dost  

doth  

down  

during  

durst  

e  

each  

early  

either  

em  

english  

enough  

ere  

even  

ever  

every  

everybody  
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everyone  

everything  

except  

excepting  

f  

failing  

far  

few  

first  

five  

following  

for  

four  

from  

g  

gonna  

gotta  

h  

had  

hadn't  

hard  

has  

hasn't  

hast  

hath  

have  

haven't  

having  

he  

he'd  

he'll  

her  

here  

here's  

hers  

herself  

he's  

high  

him  

himself  

his  

home  

how  

howbeit  

however  

how's  

i  

id  

if  

ill  

i'm  

immediately  

important  

in  

inside  

instantly  

into  

is  

isn't  

it  

it'll  

it's  

its  

itself  

i've  

j  

just  

k  

l  
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large  

last  

later  

least  

left  

less  

lest  

let's  

like  

likewise  

little  

living  

long  

m  

many  

may  

mayn't  

me  

mid  

midst  

might  

mightn't  

mine  

minus  

more  

most  

much  

must  

mustn't  

my  

myself  

n  

near  

'neath  

need  

needed  

needing  

needn't  

needs  

neither  

never  

nevertheless  

new  

next  

nigh  

nigher  

nighest  

nisi  

no  

no-one  

nobody  

none  

nor  

not  

nothing  

notwithstanding  

now  

o  

o'er  

of  

off  

often  

on  

once  

one  

oneself  

only  

onto  

open  
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or  

other  

otherwise  

ought  

oughtn't  

our  

ours  

ourselves  

out  

outside  

over  

own  

p  

past  

pending  

per  

perhaps  

plus  

possible  

present  

probably  

provided  

providing  

public  

q  

qua  

quite  

r  

rather  

re  

real  

really  

respecting  

right  

round  

s  

same  

sans  

save  

saving  

second  

several  

shall  

shalt  

shan't  

she  

shed  

shell  

she's  

short  

should  

shouldn't  

since  

six  

small  

so  

some  

somebody  

someone  

something  

sometimes  

soon  

special  

still  

such  

summat  

supposing  

sure  

t  
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than  

that  

that'd  

that'll  

that's  

the  

thee  

their  

theirs  

their's  

them  

themselves  

then  

there  

there's  

these  

they  

they'd  

they'll  

they're  

they've  

thine  

this  

tho  

those  

thou  

though  

three  

thro'  

through  
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APPENDIX B. CROWDSOURCING TOOL CODE 

app.yaml 
 
application: glass-radar-428 
version: 1 
runtime: python27 
api_version: 1 
threadsafe: true 
 
libraries: 
- name: numpy 
  version: "latest" 
 
handlers: 
- url: /static 
  static_dir: static 
 
- url: /.* 
  script: thesisapp.application 
 
 
build_terms.py 
 
""" Execute this script to build cache.json, the cache file used 
for the semantic clustering application """ 
 
import scipy 
import os 
import porter 
import re 
import numpy 
from lxml import etree 
from gensim import corpora, models, similarities 
import json 
from scipy.cluster.hierarchy import linkage, inconsistent, 
fcluster, maxdists, dendrogram, cophenet 
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import sem_cluster 
import itertools 
from math import ceil, sqrt 
import matplotlib.pyplot as plt 
import csv 
 
terms = sem_cluster.terms 
sim_algorithms = sem_cluster.sim_algorithms 
linkage_types = sem_cluster.linkage_types 
 
def get_sim_matrix(sim_algorithm): 
    """ Takes a similarity algorithm and returns a condensed 
similarity matrix with every term """ 
     
    # Check if the matrix already exists. If so, load it. 
Otherwise build a new one 
    try: 
        matrix = 
similarities.MatrixSimilarity.load(sim_algorithm + ".index") 
    except IOError: 
        stoplist = [w.strip() for w in open('../stopwords.txt', 
'r').readlines()] 
        splitter = re.compile ( "[a-z\-']+", re.I ) 
        stemmer = porter.PorterStemmer() 
        glossary = etree.parse("../glossary.xml") 
        source = [] 
        glossary_source = [] 
        for subdir, dirs, files in os.walk("../DatabaseFiles"): 
            for file in files: 
                filename = subdir+'/'+file 
                bok = etree.parse(filename) 
                for node in bok.iter(): 
                    if node.text and (node.tag == "name" or 
node.tag == "text" or node.tag == "learningOutcome"): 
                        
source.append(node.text.encode('ascii','ignore').strip().lower()
) 
        for entry in glossary.findall("Entry"): 
            for concept in entry.findall("Concept"): 
                
glossary_source.append(concept.text.encode('ascii','ignore').str
ip().lower()) 
 
        texts = [[stemmer.stem(word, 0, len(word)-1) for word in 
splitter.findall(document) if word not in stoplist] 
                 for document in source] 
        clean_texts = [text for text in texts if text] 
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        dictionary = corpora.Dictionary(clean_texts)         
        corpus = [dictionary.doc2bow(text) for text in 
clean_texts] 
         
        glossary_texts = [[stemmer.stem(word, 0, len(word)-1) 
for word in splitter.findall(document) if word not in stoplist] 
                 for document in glossary_source] 
        dictionary = corpora.Dictionary(glossary_texts)         
        glossary_corpus = [dictionary.doc2bow(text) for text in 
glossary_texts] 
 
        if sim_algorithm == "lsi": 
            tfidf = models.TfidfModel(glossary_corpus + corpus) 
            corpus_tfidf = tfidf[glossary_corpus + corpus] 
            lsi = models.LsiModel(corpus_tfidf, 
id2word=dictionary, num_topics=400) 
            lsi.save('lsi.model') 
            matrix = 
similarities.MatrixSimilarity(lsi[glossary_corpus]) 
            matrix.save('lsi.index') 
        elif sim_algorithm == "lda": 
            lda = models.LdaModel(corpus + glossary_corpus, 
id2word=dictionary, num_topics=400) 
            lda.save('lda.model') 
            matrix = 
similarities.MatrixSimilarity(lda[glossary_corpus]) 
            matrix.save('lda.index') 
        else: 
            raise 
 
    return matrix 
 
def get_term_sim_list(term, sim_algorithm): 
    """ Returns a condensed proximity matrix specific for the 
term and sim_algorithn """ 
     
    # Load the term_sim_list cache if it exists 
    try: 
        with open(sim_algorithm + "_term_dict.json") as f: 
            term_dict = json.load(f) 
    except: 
        term_dict = {} 
 
    # If the term_sim_list is in the cache, load it. Otherwise 
build a new term_sim_list 
    if term in term_dict: 
        term_sim_list = term_dict[term] 
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    else: 
        glossary = etree.parse("../glossary.xml") 
        if sim_algorithm == "cosine": 
            stoplist = [w.strip() for w in 
open('../stopwords.txt', 'r').readlines()] 
            splitter = re.compile ( "[a-z\-']+", re.I ) 
            stemmer = porter.PorterStemmer() 
 
            source = [] 
            for entry_obj in glossary.findall("Entry"): 
                cur_term = entry_obj.find("Term").text.lower() 
                if cur_term == term: 
                    for concept_obj in 
entry_obj.findall("Concept"): 
                        source.append(concept_obj.text) 
            texts = [[stemmer.stem(word.lower(), 0, len(word)-1) 
for word in splitter.findall(document) if word not in stoplist] 
                     for document in source] 
            dictionary = corpora.Dictionary(texts) 
            corpus = [dictionary.doc2bow(text) for text in 
texts] 
            cosine = models.TfidfModel(corpus)     
            matrix = similarities.MatrixSimilarity(corpus) 
        else: 
            matrix = get_sim_matrix(sim_algorithm) 
        valid_ids = [] 
        term_sim_list = [] 
        total_num = 0 
        source = [] 
        term_concept_dict = {} 
        try: 
            with open("term_concept_dict.json") as f: 
                term_concept_dict = json.load(f) 
        except: 
            term_concept_dict = {} 
        for num, entry_obj in 
enumerate(glossary.findall("Entry")): 
            term_name = entry_obj.find("Term").text.lower()             
            for concept_num, concept_obj in 
enumerate(entry_obj.findall("Concept")): 
                if term == term_name: 
                    valid_ids.append(total_num) 
                    source.append(concept_obj.text) 
                total_num += 1 
        term_concept_dict[term] = source 
        with open("term_concept_dict.json", "w") as f: 
            json.dump(term_concept_dict, f) 
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        id_len = len(valid_ids) - 1 
        result_num = 0 
        while id_len > 0: 
            result_num += id_len 
            id_len -= 1 
        if sim_algorithm == "cosine": 
            valid_ids = range(len(valid_ids)) 
        min_id = min(valid_ids) 
        max_id = max(valid_ids) 
        for id_num in valid_ids: 
            if id_num == max_id: 
                break 
            vec = matrix.index[id_num] 
            for x in matrix[vec][id_num+1:max_id+1]: 
                val = 1-x 
                if val < 0: 
                    val = 0 
                term_sim_list.append(val) 
        term_dict[term] = term_sim_list 
 
        # Save the newly created term_sim_list in the cache 
        with open(sim_algorithm + "_term_dict.json", "w") as f: 
            json.dump(term_dict, f) 
 
    return term_sim_list 
 
     
def cluster(X, t, method): 
    """ Slightly modifies the default SciPy hierarchical 
clustering function """ 
    Z = linkage(X, method=method) 
    R = inconsistent(Z, d=2) 
    T = fcluster(Z, criterion="distance", depth=2, R=R, t=t) 
     
    return T 
 
def getClusterDistances(clusterList, term_sim_list): 
    """ Takes a list of clusters along with the proximity matrix 
and returns the max intracluster distance for each cluster as a 
list """ 
    distances = [] 
    val = 0 
    n = 0 
    while val != len(term_sim_list): 
        n += 1 
        val = n*(n-1)/2 
    combo = list(itertools.combinations(range(n), 2)) 
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    for x in range(max(clusterList)): 
        indices = [i for i, cluster in enumerate(clusterList) if 
cluster == x+1] 
        tempDistances = [0] 
        for y in list(itertools.combinations(indices, 2)): 
            for index, z in enumerate(combo): 
                if y == z: 
                    tempDistances.append(term_sim_list[index]) 
                    break 
        num = max(tempDistances) 
        dist = ceil(num * 1000) / 1000.0 
        if dist > 1: 
            dist = 1 
        distances.append(dist) 
 
    return distances 
     
def printTopNConfusingTerms(cache, n): 
    """ Evaluates the cache and produces a list of the top n 
polysemous terms for each similarity measure and linkage type 
""" 
     
    data_store = {} 
    for term in cache: 
        for sim_algorithm in sim_algorithms: 
            sim_store = data_store.setdefault(sim_algorithm, {}) 
            for linkage_type in linkage_types: 
                link_store = sim_store.setdefault(linkage_type, 
[]) 
                cool = 
cache[term]["data"][sim_algorithm][linkage_type] 
                temp_thres = 0 
                temp_dia = [] 
                for threshold in range(100): 
                    cur_thres = str(threshold) 
                    cur_dia = cool[cur_thres][0] 
                    if cur_dia != temp_dia: 
                        temp_dia = cur_dia 
                        temp_thres = cur_thres 
                link_store.append(temp_thres) 
    glossary = etree.parse("../glossary.xml") 
    term_concept_count = {} 
    for entry in glossary.findall("Entry"): 
        term = entry.find("Term").text.lower() 
        term_concept_count[term] = len(entry.findall("Concept")) 
    for sim in data_store: 
        for link in data_store[sim]: 
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            threshold = str(int(round(numpy.mean(map(int, 
data_store[sim][link]))))) 
            results = [] 
            for term in cache: 
                concept_count = term_concept_count[term] 
                
results.append((max(cache[term]["data"][sim][link][threshold][0]
), term, concept_count)) 
            results = sorted(results, reverse=True) 
            print sim, link 
            counter = 0 
            for result in results: 
                print '\t',result[1],'-', result[0],'clusters - 
', result[2],'concepts' 
                counter += 1 
                if counter == n: 
                    break 
            print '\n' 
 
 
def experimentalData(cache, show=False): 
    """ Test function for building graphs when seeking to 
initialize threshold sliders in the crowdsourcing application 
""" 
     
    datapointStringList = ["MaxClusterWidths", 
"NormalizedClusterDensity"] 
    valueStringList = ["Median","Mean","Sum","Root-mean-
squared","Variance"] 
 
    test = {} 
    for sim_algorithm in sim_algorithms: 
        test[sim_algorithm] = {} 
        for linkage_type in linkage_types: 
            test[sim_algorithm][linkage_type] = [[] for i in 
range(len(datapointStringList)*len(valueStringList))] 
 
    for term in cache: 
        for sim_algorithm in sim_algorithms: 
            for linkage_type in linkage_types: 
                vals = [] 
                thres = [] 
                data = [[] for i in 
range(len(datapointStringList)*len(valueStringList))] 
                for threshold in range(0, 101, 1): 
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                    clusterList = 
cache[term]["data"][sim_algorithm][linkage_type][str(threshold)]
[0] 
                    clusterDiameters = 
cache[term]["data"][sim_algorithm][linkage_type][str(threshold)]
[1] 
                     
                    datapointsList = [] 
                                     
                    #This method uses a list of max cluster 
widths 
                    datapointsList.append(clusterDiameters) 
 
                    #This method takes the number of cluster 
members / max width of cluster + 1 
                    
datapointsList.append([clusterList.count(x+1)/((clusterDiameters
[x] + 1)) for x in range(max(clusterList))]) 
 
                    for ind, datapoints in 
enumerate(datapointsList): 
                        #This method takes the median 
                        data[len(valueStringList)*ind + 
0].append(numpy.median(datapoints)) 
 
                        #This method takes the mean 
                        data[len(valueStringList)*ind + 
1].append(numpy.mean(datapoints)) 
                         
                        #This method takes the sum 
                        data[len(valueStringList)*ind + 
2].append(sum(datapoints)) 
 
                        #This method takes the root mean squared 
                        data[len(valueStringList)*ind + 
3].append(sqrt(sum(result ** 2 for result in 
datapoints)/len(datapoints))) 
                         
                        #This method takes the variance 
                        data[len(valueStringList)*ind + 
4].append(numpy.var(datapoints)) 
 
                    thres.append(threshold) 
                for index, values in enumerate(data): 
                    zippedList = zip(values, thres) 
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                    if len(zippedList) > 0:                
test[sim_algorithm][linkage_type][index].append(max(zippedList,k
ey=lambda item:item[0])[1]) 
                    dataindex, valueindex = (index / 
len(valueStringList), index % len(valueStringList)) 
                    if datapointStringList[dataindex] == 
"NormalizedClusterDensity" and valueStringList[valueindex] == 
"Mean": 
                        plt.plot(thres, values,'', 
label=""+term+" " +sim_algorithm+" "+linkage_type) 
#                plt.plot(thres, data[0],'', label=""+term+" " 
+sim_algorithm+" "+linkage_type) 
        plt.ylabel("Computed Value") 
        plt.xlabel("Threshold") 
        plt.legend(loc=2) 
        if show: 
            plt.show() 
 
    for sim_algorithm in test: 
        print sim_algorithm 
        for linkage_type in test[sim_algorithm]: 
            print '\t',linkage_type 
            for index, values in 
enumerate(test[sim_algorithm][linkage_type]): 
                dataindex, valueindex = (index / 
len(valueStringList), index % len(valueStringList)) 
                mean = numpy.mean(values) 
                stdev = numpy.std(values) 
                if stdev <= 10 and mean >= 60 and mean <= 95: 
                    print '\t\t', mean, stdev, 
datapointStringList[dataindex], valueStringList[valueindex] 
                    print '\t\t\t', values                     
 
if __name__ == '__main__': 
    """ Builds the cache file required for clustering 
application """ 
    from pprint import pprint 
    stoplist = [w.strip() for w in open('../stopwords.txt', 
'r').readlines()] 
    splitter = re.compile ( "[a-z\-']+", re.I ) 
    stemmer = porter.PorterStemmer() 
 
    try: 
        with open("cache.json") as f: 
            cache = json.load(f) 
    except: 
        cache = {} 
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    source = [] 
 
    glossary = etree.parse("../glossary.xml") 
     
    terms = [] 
    for entry in glossary.findall("Entry"): 
        if len(entry.findall("Concept")) > 3: 
            terms.append(entry.find("Term").text.lower()) 
 
    issue = False 
    data_store = {} 
    for term in terms: 
        if issue: 
            print "\tIssue Detected" 
            issue = False 
        print "Starting", term, "..." 
        current_entry = '' 
        for entry in glossary.findall("Entry"): 
            if term == entry.find("Term").text.lower(): 
                current_entry = entry 
                break 
        domains = [] 
        concepts = [] 
        for concept in current_entry.findall("Concept"): 
            concepts.append(concept.text) 
            source = concept.find("ConceptAnnotation").text 
            
domains.append(glossary.find("GlossaryRef[@id='"+source+"']").fi
nd("OriginDomain").text.replace(" ","")) 
        for sim_algorithm in sim_algorithms: 
            sim_store = data_store.setdefault(sim_algorithm, {}) 
            term_sim_list = get_term_sim_list(term.lower(), 
sim_algorithm) 
            for linkage_type in linkage_types: 
                link_store = sim_store.setdefault(linkage_type, 
[]) 
                temp_dia = [] 
                temp_thres = 0 
                for threshold in range(0, 101, 1): 
                    try: 
                        clusters = cluster(term_sim_list, 
threshold/float(100), linkage_type) 
                        clusterList = clusters.tolist() 
                    except UnboundLocalError: 
                        issue = True 
                        clusters = [1] 
                        clusterList = clusters 
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                    term_cache = cache.setdefault(term, {}) 
                    domain_cache = 
term_cache.setdefault("domains", domains) 
                    concept_cache = 
term_cache.setdefault("concepts", concepts) 
                    data_cache = term_cache.setdefault("data", 
{}) 
                    sim_algorithm_cache = 
data_cache.setdefault(sim_algorithm, {}) 
                    linkage_type_cache = 
sim_algorithm_cache.setdefault(linkage_type, {}) 
                    clusterDiameters = 
getClusterDistances(clusterList, term_sim_list) 
                    cur_thres = str(threshold) 
                    if clusterDiameters != temp_dia: 
                        temp_dia = clusterDiameters 
                        temp_thres = cur_thres 
 
                    linkage_type_cache[threshold] = 
(clusterList, clusterDiameters) 
 
#                    Z = linkage(term_sim_list, 
method=linkage_type) 
#                    dendrogram(Z) 
#                   plt.show() 
#                if temp_thres != "0" and temp_thres != "1": 
#                    link_store.append(temp_thres) 
#    for sim in data_store: 
#        print sim 
#        for lin in data_store[sim]: 
#            data = map(int, data_store[sim][lin]) 
#            print '\t',lin 
#            print '\t\t', numpy.mean(data) 
#            with open(sim + '_' + lin + '.csv', 'w') as f: 
#                writer = csv.writer(f) 
#                writer.writerows([data]) 
    with open("cache.json", "w") as f: 
        json.dump(cache, f) 
 
 
sem_cluster.py 
 
""" Contains helper functions for thesisapp.py to use in AJAX 
calls """ 
 
import json 
import numpy 
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import math 
 
terms = ["html", "constraint", "process", "database", "ftp", 
"atm", "virus", "bandwidth", "firewall", "browser", "software", 
"internet", "url", "gif", "download", "upload"] 
sim_algorithms = ["lsi", "lda", "cosine"] 
linkage_types = ["complete", "average"] 
 
def get_clusters(term, sim_algorithm, linkage_type, threshold): 
    text = '' 
    with open("term_concept_dict.json") as f: 
        term_concept_dict = json.load(f) 
    source = term_concept_dict[term] 
    with open("cache.json") as f: 
        cache = json.load(f) 
    clusters = 
cache[term]["data"][sim_algorithm][linkage_type][str(int(float(t
hreshold)))][0] 
    domains = cache[term]["domains"] 
    clusterWidths = 
cache[term]["data"][sim_algorithm][linkage_type][str(int(float(t
hreshold)))][1] 
    clusterColors = get_cluster_colors(clusterWidths) 
    clusters = numpy.array(clusters) 
    for x in range(max(clusters)): 
        clusterFrequency = clusters.tolist().count(x+1) 
        clusterWidth = clusterWidths[x] 
        text += "<div class='cluster' style='background-
color:rgba(" + clusterColors[x] + ",.2)'><h4>Group " + str(x+1) 
+ '</h4>' 
        for y in range(clusterFrequency): 
            domain = 
domains[numpy.flatnonzero(clusters==x+1)[y]] 
            text += "<p class='"+ domain + "' title='" + domain 
+ "'>" + source[numpy.flatnonzero(clusters==x+1)[y]] + 
'</p><hr>' 
        #remove trailing horizontal rule 
        text = text[:-4] 
        text += '</div>' 
    text += '<div class="clear"></div>' 
 
    return text 
 
     
if __name__ == '__main__': 
    get_clusters("html", "lsi", "complete", float(50)/100) 
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thesisapp.py 
 
""" The main script for the Crowdsourcing Application """ 
import webapp2 
import sem_cluster 
import json 
from google.appengine.ext import ndb 
 
class ClustererResponse(ndb.Model): 
    """Models a clusterer's response with content and date.""" 
    gender = ndb.StringProperty() 
    age = ndb.StringProperty() 
    techy = ndb.StringProperty() 
    term = ndb.StringProperty() 
    lsi_complete = ndb.IntegerProperty() 
    lsi_complete_rating = ndb.IntegerProperty() 
    lsi_average = ndb.IntegerProperty() 
    lsi_average_rating = ndb.IntegerProperty() 
    lda_complete = ndb.IntegerProperty() 
    lda_complete_rating = ndb.IntegerProperty() 
    lda_average = ndb.IntegerProperty() 
    lda_average_rating = ndb.IntegerProperty() 
    cosine_complete = ndb.IntegerProperty() 
    cosine_complete_rating = ndb.IntegerProperty() 
    cosine_average = ndb.IntegerProperty() 
    cosine_average_rating = ndb.IntegerProperty() 
    date = ndb.DateTimeProperty(auto_now_add=True) 
 
class MainPage(webapp2.RequestHandler): 
 
    def get(self): 
        html = "" 
        html += '<script src="static/jquery.js"></script>' 
        html += '<script src="static/script.js"></script>' 
        html += '<script src="static/bootstrap-
slider.js"></script>' 
        html += '<link rel="stylesheet" 
href="static/style.css">' 
        html += '<link rel="stylesheet" 
href="static/bootstrap.css">' 
        html += '<link rel="stylesheet" 
href="static/slider.css">' 
        html += '<h1><b>Instructions:</b></h1>' 
        html += '<p class="instructionParagraph">The first 
section is a simple survey designed to gather general data about 
your background. No personally identifiable information will be 
collected so please answer as accurately as you can.' 
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        html += '<p class="instructionParagraph">The following 
section consists of first choosing a term. Six different 
interactive windows will then appear beneath. Each term has a 
number of different definitions which have been found and 
gathered from all over the internet. For each interactive 
window, your task is to drag the slider (or click the + and - 
buttons) found in the top left until the definitions are grouped 
together by <em>meaning</em> as best as you can. As the slider 
moves from left to right, the definitions will begin to group 
together more and more until eventually (when the slider is all 
the way to the right) they will be in a single group. The total 
number of definitions never changes, only their groupings with 
eachother. It may be easier to start the slider all the way to 
the right and then slowly move it left until an ideal set of 
groups is formed. This will need to be done six times for the 
chosen term in order to evaluate different test variables in the 
experiment. The groupings will most likely not be perfect, so 
try to find the spot on the slider where it is the CLOSEST to 
how you would group them if you were told to group the 
definitions manually by <em>meaning</em>. After each slider you 
will find a simple question asking you to rate the resulting 
groups by how well they group concepts by meaning.</p>' 
        html += '<p class="instructionParagraph">The background 
color of each group will change from green to red according to 
definition density. In other words, greener groups are more 
closely related (according to the computer) while redder groups 
are less closely related. While it is intended to be an aid to 
your task, you may ignore it when finding your ideal groups. 
Each definition also has a dotted colored border which 
identifies the domain from which the definition was retrieved. 
Hovering over a definition will reveal this domain if so 
desired.</p>' 
        html += '<p class="instructionParagraph">After you 
complete the exercise, click the submit button at the bottom of 
the page. If you want, you can then hit the back button on your 
browser and select a different term and repeat the exercise. 
Either way, thank you so much for your help with this and have 
fun!' 
 
        html += '<h3 style="float:right"> - Owen</h3><br><br>' 
        html += '<h1>Part 1 - Survey</h1>' 
        html += '<form action="/storeData" method="post">' 
        html += '<h4>My gender is:</h4>' 
        html += '<input type="radio" name="gender" value="m" 
required><span class="survey">Male</span><br>' 
        html += '<input type="radio" name="gender" 
value="f"><span class="survey">Female</span><br>' 
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        html += '<h4>My age range is:</h4>' 
        html += '<input type="radio" name="age" value="10-19" 
required><span class="survey">10-19</span><br>' 
        html += '<input type="radio" name="age" value="20-
29"><span class="survey">20-29</span><br>' 
        html += '<input type="radio" name="age" value="30-
39"><span class="survey">30-39</span><br>' 
        html += '<input type="radio" name="age" value="40-
49"><span class="survey">40-49</span><br>' 
        html += '<input type="radio" name="age" value="50-
59"><span class="survey">50-59</span><br>' 
        html += '<input type="radio" name="age" value="60"><span 
class="survey">60+</span><br>' 
        html += '<h4>I would consider myself as being computer 
savvy or "techy"</h4>' 
        html += '<input type="radio" name="techy" value="true" 
required><span class="survey">True</span><br>' 
        html += '<input type="radio" name="techy" 
value="false"><span class="survey">False</span><br>' 
         
        html += '<h1>Part 2 - Grouping</h1>' 
        html += '<label>Term :&nbsp;</label><select 
id="termSelect" name="termSelect"><option> - Select a Term - 
</option>' 
        for term in sem_cluster.terms: 
            html += '<option value="' + term + '">' + term + 
'</option>' 
        html += '</select>' 
        html += '<div id="termDiv"></div>' 
        html += '</form>' 
 
        self.response.write(html) 
 
class getCache(webapp2.RequestHandler): 
     
    def get(self): 
        cache = [] 
        with open("cache.json") as f: 
            cache = json.load(f) 
        jsonObject = json.dumps(cache) 
        self.response.write(jsonObject) 
         
class getTerm(webapp2.RequestHandler): 
     
    def get(self): 
        html = '' 
        term = self.request.get('term') 
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        html += "<h2>Term - " + term + "</h2>" 
        count = 0 
        for sim_algorithm in sem_cluster.sim_algorithms: 
            for linkage_type in sem_cluster.linkage_types: 
                count += 1 
                html += "<h3>" + term + " " + str(count) + " (" 
+ sim_algorithm + " similarity - " + linkage_type + " 
linkage)</h3>" 
                html += """<div class='clusterWrapper'> 
                            <input type='button' value='-' 
class='adjuster'><input type='text' class='termSlider' value='' 
data-slider-min='50' data-slider-max='100' data-slider-step='1' 
data-slider-tooltip='hide' data-slider-value='50' data-term='""" 
+ term + """' data-sim_algorithm='""" + sim_algorithm + """' 
data-linkage_type='""" + linkage_type + """'/> <input 
type='button' value='+' class='adjuster'/> 
                            <div class="clusterContents"></div> 
                            <input type='hidden' 
class='clusterslider' name='clusterslider' id='""" + term + "_" 
+ sim_algorithm + "_" + linkage_type + """' value='0'> 
                           </div>""" 
                html += "<center><h4>The groups above are" 
                html += "<input type='radio' 
id='1"+sim_algorithm+linkage_type+"' name='termRating" + 
str(count) + "' value='1' required><label 
for='1"+sim_algorithm+linkage_type+"'>Barely</label>" 
                html += "<input type='radio' 
id='2"+sim_algorithm+linkage_type+"' name='termRating" + 
str(count) + "' value='2'><label 
for='2"+sim_algorithm+linkage_type+"'>Somewhat</label>" 
                html += "<input type='radio' 
id='3"+sim_algorithm+linkage_type+"' name='termRating" + 
str(count) + "' value='3'><label 
for='3"+sim_algorithm+linkage_type+"'>Mostly</label>" 
                html += "<input type='radio' 
id='4"+sim_algorithm+linkage_type+"' name='termRating" + 
str(count) + "' value='4'><label 
for='4"+sim_algorithm+linkage_type+"'>Exactly</label>" 
                html += "&nbsp; grouped by 
meaning</h4></center>" 
 
        html += '<br><br><center><input type="submit" 
value="Submit"></center>' 
        self.response.write(html)         
 
class getClusters(webapp2.RequestHandler): 
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    def get(self): 
        self.response.headers['Content-Type'] = 'text/plain' 
 
        term = self.request.get('term') 
        sim_algorithm = self.request.get('sim_algorithm') 
        linkage_type = self.request.get('linkage_type') 
        threshold = self.request.get('threshold') 
        text = sem_cluster.get_clusters(term, sim_algorithm, 
linkage_type, threshold) 
        self.response.write(text) 
 
class storeData(webapp2.RequestHandler): 
 
    def post(self):         
        sliders = self.request.get_all('clusterslider') 
        rating1 = self.request.get('termRating1') 
        rating2 = self.request.get('termRating2') 
        rating3 = self.request.get('termRating3') 
        rating4 = self.request.get('termRating4') 
        rating5 = self.request.get('termRating5') 
        rating6 = self.request.get('termRating6') 
        term = self.request.get('termSelect') 
        clustererResponse = ClustererResponse(gender = 
self.request.get('gender'), 
                                              age = 
self.request.get('age'), 
                                              techy = 
self.request.get('techy'), 
                                              term = 
self.request.get('termSelect'), 
                                              lsi_complete = 
int(sliders.pop(0)), 
                                             lsi_complete_rating 
= int(rating1), 
                                              lsi_average = 
int(sliders.pop(0)), 
                                              lsi_average_rating 
= int(rating2), 
                                              lda_complete = 
int(sliders.pop(0)), 
                                             lda_complete_rating 
= int(rating3), 
                                              lda_average = 
int(sliders.pop(0)), 
                                              lda_average_rating 
= int(rating4), 
                                              cosine_complete = 
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int(sliders.pop(0)), 
                                          cosine_complete_rating 
= int(rating5), 
                                              cosine_average = 
int(sliders.pop(0)), 
                                              
cosine_average_rating = int(rating6)) 
        clustererResponse.put() 
        html = "<h2>Your responses have been stored. Thanks so 
much for your help and have a wonderful day!</h2>" 
        html += "<h2>If you wish to evaluate another term, 
please hit your back button and choose a different one.</h2>" 
        html += "<h3>Otherwise, you may now close your 
browser</h3>" 
        self.response.write(html) 
 
application = webapp2.WSGIApplication([ 
    ('/', MainPage), 
    ('/getTerm', getTerm), 
    ('/getClusters', getClusters), 
    ('/storeData', storeData), 
    ('/cache', getCache), 
], debug=True) 
 
 
script.js 
 
// Contains all custom JS needed for clustering app 
 
$(document).ready(function() { 
    var cache; 
    $.getJSON("/cache", function(data) { 
        cache = data; 
    }); 
         
    $("#termSelect").change(function() { 
        var term = $(this).val(); 
        $.get("/getTerm", { term:term }, function(data) { 
            $("#termDiv").html(data); 
            $(".adjuster").unbind().click(function() { 
                value = $(this).val(); 
                val = parseInt($(".clusterslider", 
$(this).parent()).val()); 
                if (value == "+") { 
                    val += 1; 
                } 
                else { 
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                    val -= 1; 
                } 
                $(".clusterslider", $(this).parent()).val(val); 
                $(".termSlider", 
$(this).parent()).slider('setValue', val).trigger("slide"); 
 
            }); 
            $(".termSlider").slider() 
                .on('slide', {cool:$(this).attr("data-term")}, 
function(ev) { 
                    var text = ""; 
                    var term = $(this).attr("data-term"); 
                    var sim_algorithm = $(this).attr("data-
sim_algorithm"); 
                    var linkage_type = $(this).attr("data-
linkage_type"); 
                    var threshold = 
$(this).data('slider').getValue(); 
                    var clusters = 
cache[term].data[sim_algorithm][linkage_type][threshold][0]; 
                    var domains = cache[term].domains; 
                    var concepts = cache[term].concepts; 
                    var widths = 
cache[term].data[sim_algorithm][linkage_type][threshold][1]; 
                    var clusterColors = 
get_cluster_colors(widths); 
                    var temp = [] 
                    for (var i = 0; i < clusters.length; i++) { 
                        value = clusters[i] - 1; 
                        if (temp[value] instanceof Array) { 
                            temp[value].push(i); 
                        } 
                        else { 
                            temp[value] = [i]; 
                        } 
                    } 
                    for (var i = 0; i < temp.length; i++) { 
                        text += "<div class='cluster' 
style='background-color:rgba(" + clusterColors[i] + 
",.2)'><h4>Group " + (i+1) + '</h4>' 
                        for (var j = 0; j < temp[i].length; j++) 
{ 
                            originIndex = temp[i][j]; 
                            originText = concepts[originIndex] 
                            domain = domains[originIndex] 
                            text += "<p class='"+ domain + "' 
title='" + domain + "'>" + originText + '</p><hr>'; 
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                        } 
//                        text = text[:-4] 
                        text = text.substring(0, text.length - 
4); 
 
                        text += '</div>' 
                    } 
                    text += '<div class="clear"></div>' 
                    $(this).parent().next().next().html(text); 
                    
$("#"+term+"_"+sim_algorithm+"_"+linkage_type).val(threshold); 
                }); 
            $(".termSlider").trigger("slide"); 
        }); 
    }); 
     
    function get_cluster_colors(clusterWidths) { 
        colors = []; 
        for (var i = 0; i < clusterWidths.length; i++) { 
            width = clusterWidths[i]; 
            if (width >= 1) { 
                width = .99; 
            } 
            width *= 511; 
 
            redValue = 0; 
            greenValue = 0; 
            if (width < 255) { 
                greenValue = 255; 
                redValue = Math.round(Math.sqrt(width) * 16); 
            }  
            else { 
                redValue = 255; 
                width = width - 255; 
                greenValue = 256 - Math.round(width * width / 
255); 
            } 
            colors.push(redValue + "," + greenValue + "," + 
"0"); 
        } 
 
        return colors 
    } 
}); 
 
style.css 
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body { 
    font-size: 12px 
!important; 
    margin:10px !important; 
} 
 
.clear { 
    clear:both; 
} 
 
.cluster { 
    display:inline-table; 
    width:200px; 
    margin-right:5px; 
    white-space:normal; 
    padding:5px; 
} 
 
.clusterContents { 
    height:650px; 
    overflow:auto; 
} 
 
.clusterWrapper { 
    white-space:nowrap; 
    margin-left:25px; 
    border: solid 1px gray; 
    background-
color:lightgray; 
} 
 
h2 {  
    margin-left:15px; 
} 
 
h3 { 
    margin-left:25px; 
    margin-bottom:0px; 
} 
 
input[type="radio"] { 
    margin-left:15px 
!important; 
} 
 
.instructionParagraph { 
    font-size:18px; 

} 
p { 
    margin-top:0px; 
} 
 
.cluster p { 
    padding:3px; 
    border-style: dotted; 
    border-width: 1px; 
    border-radius: 5px; 
} 
 
hr { 
    border-top-color:black 
!important; 
    margin-top:5px 
!important; 
    margin-bottom:10px 
!important; 
} 
 
.survey { 
    font-size:15px; 
    margin-left:5px; 
    position:relative; 
    top:-2px; 
} 
 
.GraphicDesign { 
    border-color: red; 
} 
 
.InformationTechnology { 
    border-color: blue; 
} 
 
.Telecommunications { 
    border-color: green; 
} 
 
.UserExperienceDesign { 
    border-color: purple; 
} 
 
.ComputerScience { 
    border-color: orange; 
} 
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.SoftwareEngineering { 
    border-color: yellow; 
} 
 
.Workflow { 
    border-color: cyan; 
} 
 
.SoftwareandSystemEngineering 
{ 
    border-color: white; 
} 
 
.RequirementsEngineering { 
    border-color: fuchsia; 
} 
 
.BusinessProcessManagement { 
    border-color: peru; 
} 
 
.InformationSecurity { 
    border-color: teal; 
} 
 
.InformationSystems { 
    border-color: chartreuse; 
} 


