
Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2014-04-23

Termediator-II: Identification of Interdisciplinary
Term Ambiguity Through Hierarchical Cluster
Analysis
Owen G. Riley
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Construction Engineering and Management Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Riley, Owen G., "Termediator-II: Identification of Interdisciplinary Term Ambiguity Through Hierarchical Cluster Analysis" (2014).
All Theses and Dissertations. 4030.
https://scholarsarchive.byu.edu/etd/4030

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F4030&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F4030&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F4030&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F4030&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F4030&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/253?utm_source=scholarsarchive.byu.edu%2Fetd%2F4030&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/4030?utm_source=scholarsarchive.byu.edu%2Fetd%2F4030&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

Termediator-II: Identification of Interdisciplinary

Term Ambiguity Through Hierarchical

Cluster Analysis

Owen Riley

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Joseph J. Ekstrom, Chair
Dale C. Rowe
Kevin B. Tew

School of Technology

Brigham Young University

April 2014

Copyright © 2014 Owen Riley

All Rights Reserved

ABSTRACT

 Termediator-II: Identification of Interdisciplinary

Term Ambiguity Through Hierarchical
Cluster Analysis

Owen Riley

School of Technology, BYU
Master of Science

Technical disciplines are evolving rapidly leading to changes in their associated
vocabularies. Confusion in interdisciplinary communication occurs due to this evolving
terminology. Two causes of confusion are multiple definitions (overloaded terms) and
synonymous terms. The formal names for these two problems are polysemy and synonymy.
Termediator-I, a web application built on top of a collection of glossaries, uses definition count
as a measure of term confusion. This tool was an attempt to identify confusing cross-disciplinary
terms. As more glossaries were added to the collection, this measure became ineffective.

This thesis provides a measure of term polysemy. Term polysemy is effectively measured

by semantically clustering the text concepts, or definitions, of each term and counting the
number of resulting clusters. Hierarchical clustering uses a measure of proximity between the
text concepts. Three such measures are evaluated: cosine similarity, latent semantic indexing,
and latent Dirichlet allocation. Two linkage types, for determining cluster proximity during the
hierarchical clustering process, are also evaluated: complete linkage and average linkage.
Crowdsourcing through a web application was unsuccessfully attempted to obtain a viable
clustering threshold by public consensus. An alternate metric of polysemy, convergence value, is
identified and tested as a viable clustering threshold.

Six resulting lists of terms ranked by cluster count based on convergence values are

generated, one for each similarity measure and linkage type combination. Each combination
produces a competitive list, and no clear combination can be determined as superior. Semantic
clustering successfully identifies polysemous terms, but each similarity measure and linkage type
combination provides slightly different results.

Keywords: cosine similarity, LSI, LDA, text similarity, hierarchical clustering, polysemy

iii

TABLE OF CONTENTS

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

1 Introduction ... 1

1.1 Background ... 1

1.2 Problem Statement .. 2

1.3 Mitigating the Problem ... 2

1.4 Terminology Model .. 3

1.4.1 Text Concepts and Abstract Concepts .. 3

1.4.2 Polysemy – One Term to Many Abstract Concepts .. 4

1.4.3 Synonymy – One Abstract Concept to Many Terms .. 5

1.5 Research Questions ... 6

1.6 Delimitations ... 7

1.7 Glossary of Terms ... 7

1.8 Thesis Statement ... 8

2 Background ... 9

2.1 Evolution of Disciplines ... 9

2.2 Previous Glossary Aggregation .. 10

2.3 Clustering Techniques .. 14

2.4 Similarity Measures .. 16

2.4.1 Term Frequency, Inverse Document Frequency and Cosine Similarity 16

2.4.2 Latent Semantic Indexing ... 19

iv

2.4.3 Latent Dirichlet Allocation ... 20

2.5 Linkage Types ... 21

2.6 Other Work on Short Text Similarity ... 23

2.7 Methodology Decisions based on the Literature Review ... 26

3 Methodology .. 28

3.1 Source Data - Termediator .. 28

3.2 Automated Clustering ... 28

3.3 Similarity Measure .. 28

3.3.1 Stopword Removal and Stemming ... 30

3.3.2 Training Topics ... 31

3.3.3 Training Corpora ... 31

3.4 Linkage Type .. 35

3.5 Threshold .. 35

3.5.1 Crowdsourcing Application .. 35

3.5.2 Platform ... 36

3.5.3 Data Storage .. 36

3.5.4 Identifying Sample Terms ... 37

3.5.5 Interface .. 38

3.5.6 Interface Optimizations ... 40

3.5.7 Crowdsourcing Outcomes ... 42

3.5.8 Convergence Values ... 43

4 Contribution .. 47

4.1 Summary of Previous Findings... 47

4.2 Compendium Results .. 48

v

5 Conclusions and Future Work ... 51

5.1 Overview ... 51

5.2 Evaluation of Results .. 51

5.3 Future Work .. 52

5.4 Closing .. 53

REFERENCES .. 54

Appendix A. List of Stopwords .. 56

Appendix B. Crowdsourcing Tool Code ... 63

vi

LIST OF TABLES

Table 2-1: Evolution of the Top 10 Polysemous Terms by Text Concept Count........................ 14

Table 2-2: Text to Vector Illustration .. 17

Table 2-3: Weaknesses of Keyword Matching .. 19

Table 2-4: Four Point Rating Scale (Metzler 2007)... 24

Table 3-1: Bodies of Knowledge in Our Collection .. 32

Table 3-2: Top 5 LSI Topics .. 33

Table 3-3: Top 5 Polysemous Terms with Different Training Corpora 34

Table 3-4: Complete List of Sample Terms ... 38

Table 3-5: Top 10 Polysemous Sample Terms Lists ... 45

Table 3-6: Mean Convergence Values ... 45

Table 4-1: Top 30 Potentially Confusing Terms ... 49

Table 4-2: Top 10 Polysemous Terms Alphabetized Before and After 50

vii

LIST OF FIGURES

Figure 1-1: Differences between Two Technical Disciplines... ..2

Figure 1-2: Relationship between Abstract and Text Concepts... ..4

Figure 1-3: Polysemy Diagram5

Figure 1-4: Synonymy Diagram5

Figure 2-1: Simplified XML Format ... 10

Figure 2-2: Initial Glossary Aggregation Prototype with the Term "DATA" Selected 11

Figure 2-3: Basic Termediator Interface .. 12

Figure 2-4: Termediator's Similarity Interface .. 12

Figure 2-5: Sample Dendrogram (left) and Alternative Representation (right) 16

Figure 2-6: The Three Most Common Linkage Types .. 22

Figure 3-1: Semantic Clustering Interface ... 39

Figure 3-2: Sample Graph for Finding Cluster Optimizations .. 41

Figure 3-3: Convergences for HTML (left) and Process (right) .. 43

Figure 3-4: Convergence Values across the Compendium with Means 44

1

1 INTRODUCTION

1.1 Background

Over the past 10 years there has been significant evolution in technical disciplines in

Universities and professions around the world. Technical disciplines including computer science,

information systems, computer engineering, software engineering, and information technology

have emerged and evolved, each using different words and phrases to describe key concepts

(Ekstrom, et al. 2010).

The individual definitions within a particular technical vocabulary change based upon

academic, professional, and governmental influences. For example, before the term for the data

structure now known as a “stack” was standardized, it was referred to as a LIFO (last in, first

out), pushdown list, pile, or a reverse queue. It wasn’t until the publication of Fundamental

Algorithms by Donald Knuth that the term “stack” became standardized (Knuth 1968).

In 2010 charts were generated to illustrate topical differences between technical

disciplines using academic bodies of knowledge (Ekstrom, et al. 2010). The charts were

generated using the suggested topic hours which are clearly defined within the bodies of

knowledge. The disciplines of information technology and Information Systems are illustrated in

figure 1-1. Of similar origin, these two disciplines are clearly diverging in their emphases.

2

Figure 1-1: Differences between Two Technical Disciplines

Terminologies evolve as disciplines focus on different specialized areas within computing.

For example, the word “tuple” could refer to a record of a database to a database engineer or a

collection of values to a software developer. This discipline specific evolution leads to cross

disciplinary communication problems.

1.2 Problem Statement

Multiple definitions and synonymous terms (polysemy and synonymy) cause

terminological confusion between and within disciplines which often results in lost productivity.

Constantly evolving professional terminology exacerbates the problem. This is especially true in

rapidly evolving technology related disciplines including information technology, computer

science, information systems, and software engineering (Ekstrom, et al. 2010).

1.3 Mitigating the Problem

A list of potentially confusing cross disciplinary terms could help mitigate this problem

by providing teams with guidance as to how collaborating disciplines use the words. The

3

problem then becomes locating repositories of discipline specific terminology. Two potential

sources of term data are dictionaries and glossaries.

Glossaries, like dictionaries, contain lists of terms associated with concepts (definitions).

Dictionaries start with words and produce definitions applicable across all domains ranked by

usage. On the other hand, glossaries start with concepts and produce terms (words or phrases) to

accurately represent the ideas. Glossaries are better suited to resolve terminological confusion as

they seek to facilitate understanding about concepts at a domain level while dictionaries seek to

simply define words at a global level.

There is an existing data-set which contains 399 different domain specific glossaries

compiled into a standardized XML format (Richards 2013). This aggregated glossary corpus

contains 40,065 terms with a total of 71,199 text concepts (or definitions) from 15 domains. We

refer to this corpus as “the compendium”. Our semantic clustering process combines hierarchical

agglomerative clustering algorithms with text similarity measures to determine term polysemy.

We must first understand our underlying terminology model before we can address the specifics

of this semantic clustering process.

1.4 Terminology Model

1.4.1 Text Concepts and Abstract Concepts

The source data for this research is a collection of technical glossaries, each consisting of

terms and concepts. A term is an entry in a glossary which can be a word or phrase while a

concept is the information defining that term. We needed to distinguish between the text used to

describe a term and the idea that the text represents. We call the text element a “text concept”

and the idea an “abstract concept”. Text concepts are the text we see when we expand a term

4

within a glossary. For example, a text concept of the term “computer” is “a general-purpose tool

for communication and control as well as computation”. An abstract concept is the semantic idea

or “platonic ideal” that we are trying to represent with a text concept. Any attempt to define the

abstract concept using text simply creates another text concept. Thus, an abstract concept is the

set of text concepts that attempt to represent the same idea.

Figure 1-2: Relationship between Abstract and Text Concepts

We are interested in two sources of confusion that occur in communication: synonymy

and polysemy. With these definitions of term, text concept, and abstract concept, we can now

clearly define both sources of confusion.

1.4.2 Polysemy – One Term to Many Abstract Concepts

The first type of ambiguity is referred to as polysemy. A term is polysemous if it can

mean two or more different ideas, or in our case if the term has text concepts belonging to

different abstract concepts (Figure 1-3).

5

Figure 1-3: Polysemy Diagram

We can measure term polysemy using the text concepts found in glossaries. The

polysemy of each term is quantified by semantically organizing the term’s associated text

concepts into clusters that represent abstract concepts. The degree of polysemy for each term is

represented by its number of abstract concepts. Sorting the terms in the compendium by their

number of abstract concepts in descending order provides a measure of the most polysemous or

potentially confusing terms.

1.4.3 Synonymy – One Abstract Concept to Many Terms

The second type of ambiguity is called synonymy, where two or more terms have text

concepts that belong to the same abstract concept.

Figure 1-4: Synonymy Diagram

6

Unlike polysemy, synonymy is difficult to measure. Determining whether two terms are

synonymous or simply highly similar is subjective and often domain specific. In the

Termediator-I project, a basic measure (cosine similarity) was used to define distance between

text concepts which attempted to identify synonyms. Termediator-I displayed a similarity score

between the text concepts of potential synonyms and let the users judge whether they were

actually synonyms or not.

Introducing synonymy analysis in addition to polysemy would introduce additional

complexity: dealing with the combination of polysemy and synonymy. Some term A can be

synonymous with one meaning of term B, and a different meaning of B can be synonymous with

some term C. This relationship would not necessarily be transitive, meaning that A and C are not

always synonymous given the fact that A is synonymous to B and B is synonymous to C.

Since Termediator-I has already targeted synonymy and to avoid issues stemming from

synonymy subjectivity, our semantic clustering process in Termediator-II is targeted solely at

measuring term polysemy.

1.5 Research Questions

Our Termediator-II analysis system addresses the following questions:

1. How well can semantic clustering of text concepts be used to identify abstract

concepts?

2. How well can semantic clustering of text concepts reveal polysemous terms?

3. Which combination of semantic similarity measure and clustering algorithm is best at

grouping semantically similar text concepts?

4. What terms are most likely to cause confusion among disciplines?

7

1.6 Delimitations

This research is bounded by the following parameters:

1. Similarity measures will be limited to cosine similarity, latent semantic indexing, and

latent Dirichlet allocation. See Chapter 2 for a more complete explanation.

2. Hierarchical clustering will be used as the cluster method because the number of

clusters to be formed cannot be predetermined.

3. Of the different linkage types associated with hierarchical clustering algorithms, only

complete and average linkages will be analyzed.

4. All test applications will be built and processed using Python 2.7.

1.7 Glossary of Terms

Abstract Concept: The set of text concepts which all describe the same semantic idea.

Body of Knowledge: Typically a multi-tiered document outlining different topics for a

particular discipline created by one or more professional organizations.

Compendium: The source data of this research, which is made up of many technical

glossaries which were merged together.

Glossary: A collection of terms and text concepts from a single source.

Convergence Value: The smallest threshold value for a particular similarity measure and

linkage type that produces a single cluster for a particular term.

Polysemy: Overloaded term where two or more of its text concepts belong to different

abstract concepts.

Synonymy: Terms where each contain at least one concept which belong to the same

abstract concept.

Term: An entry in a glossary which can be a word or phrase.

8

Termediator: An ongoing research project which created the compendium and performs

basic text concept to term similarity measures.

Text Concept: One or more sentences explaining a specific term in a glossary.

Threshold: A hierarchical clustering distance parameter that determines when to stop

combining clusters.

1.8 Thesis Statement

Term polysemy can be measured using hierarchical clustering algorithms with text

similarity measures on a collection of glossaries.

To establish a background for Termediator-II, we will present a brief history of

Termediator and its shortcomings in identifying polysemous terms. We will then describe how

the hierarchical clustering process functions. An explanation of three different similarity

measures used in the semantic clustering will be introduced and explained. Once all these pieces

are understood, we can proceed to the methodology of this research.

9

2 BACKGROUND

2.1 Evolution of Disciplines

Relationships between computing and society have evolved over the past decade which

led Brigham Young University IT professors, Ekstrom and Lunt, to research the evolution of

technical disciplines (Ekstrom 2010). According to them, the “inevitable divergence of

terminology and evolution of social structures around common interests has led to… less

communication between closely related fields of study”. The evolution of technical disciplines

led to very specific computing majors emerging, such as bioinformatics and geographic

information systems, each with their own nuanced vocabularies. Bodies of knowledge have been

published in attempts to capture important information with regards to these fields, including

relevant concepts, terms, and activities within a domain.

As evidence of the evolution of technical disciplines, a document entitled “Computing

Curricula” by the ACM Council and the IEEE-CS Board of Governors was created in 2001. This

document was intended to be a guide for developing various technical undergraduate degree

programs and included related technical disciplines including computer science, information

systems, and information technology. For each undergraduate program, the document included a

short history of its development, a brief description of what it is, visual representations of the

topics with the depth of each, and suggested career paths. Such a document was necessary to

capture the differences between those related disciplines amidst their evolution.

10

The evolution of these technical disciplines inevitably leads to different specialized

vocabularies, contributing to the communication problems that stem from polysemy and

synonymy. Confusion caused solely by synonymy, when a person communicates a specific

abstract concept using an unfamiliar term to a listener who attaches that same idea to another

term, can often be recognized by that party and resolved. In contrast, a miscommunication

caused by polysemy, when a person uses a familiar term but intends a different meaning than

what is received, can initially go undetected making it much more serious. For example, an

engineer is told to lay wire to create a “trunk” between two switches, which can either mean a

single link that holds many signals or many links that hold one signal. If the wrong meaning is

interpreted by the engineer, the mistake can quickly become very costly in both time and money.

Ekstrom’s subsequent research into these communication problems laid the foundation

for our work, starting with his aggregated glossary prototype (Ekstrom 2010).

2.2 Previous Glossary Aggregation

A glossary aggregation prototype was built which contained the text of ISO/IEC/IEEE

24765 (SEVocab). It was then parsed and normalized into a simple XML structure illustrated in

figure 2-1.

Figure 2-1: Simplified XML Format

11

The glossary aggregation prototype started with the SEVocab collection which contained

124 software and system engineering glossaries edited by the IEEE computer society. The

editing process excluded terms and concepts that were “considered parochial to one group or

organization” or “whose meanings could be inferred from the definitions of the component

words” or “whose meaning in the IT field could be directly inferred from their common English

meaning” (IEEE 2010). A web application was built which could access the data within

SEVocab. The interface consisted of a sorted list of terms along with the number of associated

text concepts which, when selected, would display the text of those concepts in a nearby frame.

Figure 2-2: Initial Glossary Aggregation Prototype with the Term "DATA" Selected

Following the path laid out by the initial glossary aggregation prototype, an updated

prototype called Termediator-I was created (Richards 2013). In addition to the edited glossaries

used in the original aggregation prototype, Termediator-I contained dozens of additional

technical glossaries. It also featured a slightly different interface which showed text concepts

underneath terms instead of off to the side.

12

Figure 2-3: Basic Termediator Interface

In addition to presenting an interactive aggregated glossary, Termediator-I presents a list

of terms with text concepts below them. Clicking on a concept then causes Termediator-I to

identify the terms that contain concepts which are “closest” to the selected concept using cosine

similarity.

Figure 2-4: Termediator's Similarity Interface

13

The analysis of Termediator-I data and the data from the initial glossary aggregation

prototype led to the conclusion that the number of text concepts associated with a term was a

reasonable indicator of that term’s polysemy. The initial glossary aggregation prototype

produced a strong list of polysemous terms when sorted by the number of a term’s associated

text concepts. Once the Termediator-I compendium had grown to 160 glossaries, the terms were

again sorted by their number of text concepts resulting in polysemous terms such as “constraint”

and “activity” once again appearing near the top. However, some noise was also introduced with

the addition of the new glossaries, such as the term “Gantt Chart” being ranked as the 9th most

complex term in the entire compendium which began to challenge the naive hypothesis.

As the number of glossaries grew, the number of common terms used across disciplines

also grew. With just under 400 glossaries aggregated together, the terms with the highest number

of text concepts were not very polysemous at all. Instead of containing polysemous terms like

“constraint”, the list contained terms that have little variance in their meanings such as “HTML”

and “Download”. Table 2-1 shows the evolution of Termediator’s top confusing terms using the

text concept counts vs number of glossaries in the collection.

The new glossaries added into the SEVocab collection introduced a new problem:

abstract concept duplication. Our initial metric of polysemy, text concept count, was premised on

the idea that each text concept represented a different abstract concept. SEVocab’s editing

process by the IEEE produced a glossary collection that followed this premise by combining

similar text concepts together. After the unedited glossaries were added, many terms had

multiple text concepts communicating the exact same idea which rendered text concept counting

ineffective. We needed metrics of polysemy that could address abstract concept duplication

introduced by unedited glossaries.

14

Table 2-1: Evolution of the Top 10 Polysemous Terms by Text Concept Count

124 Glossaries 160 Glossaries 399 Glossaries
Term # Concepts Term # Concepts Term # Concepts

Constraint 14 Process 22 Bandwidth 54

Process 13 Activity 18 HTML 53

Entity 10 Task 17 Firewall 50

Measure 10 Baseline 15 Browser 49

Function 10 Constraint 14 Software 49

Baseline 9 Stakeholder 14 Internet 47

Implementation 9 Risk 13 URL 46

Input 9 C(A) 12 GIF 44

Activity 9 Gantt Chart 12 Download 43

System 9 Software 12 Virus 43

We address abstract concept duplication by combining semantically similar text concepts

using hierarchical clustering. Each term has its associated text concepts semantically clustered so

that each cluster represents an automatically derived approximation of an abstract concept, or

collection of semantically similar text concepts. We will then count the clusters associated with

terms exactly like we counted the filtered concepts in SEVocab with the same result: ranking by

a measure of term polysemy. To accomplish that task, we must first understand what clustering

is and how it can be used to semantically group text concepts together.

2.3 Clustering Techniques

The idea of clustering data has been around as early as the 1930’s (Tryon 1939). The

general idea is to group (or cluster) objects together such that objects within a cluster are more

similar to each other than to objects from other clusters. Robert Tryon, one of the earliest

15

researchers to give clustering a practical application, referred to this area of study as cluster

analysis.

Since the original idea of cluster analysis was published, many different clustering

techniques were invented. Each of these variations have different notions when it comes to

determining what a cluster is and how it is formed. As a result, clustering is often defined as

exploratory data mining, where trial and error is often necessary to determine optimal results.

 “K-nearest neighbors” is a popular clustering algorithm. This algorithm, given a set of

pre-classified data points, determines which cluster each point belongs to based on the

classification of its k nearest neighbors. The value chosen for k is often determined through

experimentation. Another popular clustering algorithm is “K-means” which has a total of k

centroids that are created and act as centroids to their own clusters. Through a series of iterations,

these centroids slowly shift around until an optimal formation is discovered that encapsulates all

the data. A third clustering algorithm, hierarchical clustering, takes a completely different

approach than the previous methods discussed.

Hierarchical agglomerative clustering (HAC) initially places each text concept into its

own cluster. Next HAC repeatedly combines the closest two clusters together using an associated

proximity matrix until every text concept is a part of a single parent cluster. The proximity

matrix stores the pairwise distances between the text concepts. HAC results are typically

represented using a specific tree diagram called a dendrogram (figure 2-5).

16

Figure 2-5: Sample Dendrogram (left) and Alternative Representation (right)

The data in the dendrogram can be reduced to a single metric of polysemy by establishing

a threshold value. The threshold value is a distance measure that determines when to stop the

clustering process. This value takes a horizontal slice of the dendrogram, producing a cluster for

each line it intersects. The number of clusters produced ranges from a single cluster when drawn

at the top of the dendrogram to the number of text concepts when drawn at the bottom.

Constructing the proximity matrix for text concepts is the first step to performing hierarchical

clustering.

2.4 Similarity Measures

2.4.1 Term Frequency, Inverse Document Frequency and Cosine Similarity

The vector space model for determining text similarity was originally proposed by Salton

and his team from Cornell University (Salton 1975). They came up with the idea of representing

texts as numerical vectors in order to use mathematics to compare them together. The vectors are

composed of N dimensions where N is the number of distinct terms between them. Different

weights for these dimensions were suggested such as a binary system (one if the term occurs at

17

least once, or zero otherwise), a raw term frequency, or a weighted term frequency. After

converting two texts into vectors, Salton claims that “two documents with similar index terms

are then represented by points that are very close together in the space”. As an example, consider

the following two simple phrases P1 and P2:

P1 = the red cat

P2 = the angry red dog

First, we take each distinct term and create vectors such that the vectors of P1 and P2

become what is shown in table 2-2.

Table 2-2: Text to Vector Illustration

 THE RED CAT ANGRY DOG

P1 1 1 1 0 0

P2 1 1 0 1 1

Thus, P1 can be represented as the vector (1,1,1,0,0) and P2 can be represented as the

vector (1,1,0,1,1). Using this type of approach, we can convert the entire compendium into a

collection of different vectors with N dimensions, where N is the number of distinct words found

throughout the corpus.

When determining the optimal weight for the different dimensions in the vector, Salton’s

best solution was to multiply raw term frequency (TF) with the inverse document frequency

(IDF). The IDF was originally defined in his work as the following:

18

(𝐼𝐷𝐹)𝑘 = ⌈log2 𝑛⌉ − ⌈log2 𝑑𝑘⌉ + 1 (2-1)

Since then, it has become standardized as:

idf(𝑡,𝐷) = log |𝐷|
|{𝑑∈𝐷∶𝑡∈𝑑}| (2-2)

In this formula t is a term and D is the set of all documents comprising the corpus. It is

the logarithm of the total number of documents divided by the number of documents that contain

the term t. The base of the logarithm can be any value as it only changes the impact of the IDF

portion and not the order of results. When IDF is used to help weigh a vector, it causes rarer

terms to have more weight while also reducing the weight of very common terms. In Salton’s

experiments, using IDF with the raw term frequency gave an average precision and recall gain of

14 percent over raw term frequency alone (Salton 1975).

In addition to defining TF and IDF, Salton also suggested different methods for

comparing the resulting vectors. One of these methods was to compare the angle between the

vectors, stating that similarity is inversely related to that angle. If the angle is close to 0, that

means the vectors are almost pointing in the exact same place in space which he inferred meant

they would be semantically similar.

A simple and popular method for comparing the resulting vectors is known as cosine

similarity. Using Salton’s idea of comparing angles, one can take the cosine of the two vectors to

get a distance metric between the two texts.

19

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = cos(𝜃) = 𝐴∙𝐵
‖𝐴‖‖𝐵‖

= ∑ 𝐴𝑖×𝐵𝑖𝑛
𝑖=1

�∑ (𝐴𝑖)2𝑛
𝑖=1 ×�∑ (𝐵𝑖)2𝑛

𝑖=1

 (2-3)

A benefit of the cosine value is it converts all angular distances to a value between 0 and

1. The cosine of 0 degrees is 1 and the cosine of 90 degrees is 0, which means that very similar

vectors will approach 1 while dissimilar vectors tend towards 0. While a true cosine ranges from

-1 to 1, we use the absolute value so that it is bound between 0 and 1.

2.4.2 Latent Semantic Indexing

Another method of detecting semantic similarity between texts is called “Latent Semantic

Indexing” (LSI), or sometimes “Latent Semantic Analysis” (LSA). Patented in 1989 by Scott

Deerwester et al, LSI is considered a highly effective similarity measure. LSI is designed

to “take advantage of implicit higher-order structure in the association of terms with documents”

(Deerwester, 1990). The idea behind LSI is that words that are used in similar contexts with high

frequency tend to have similar meanings. LSI is based on the statistical technique of

correspondence analysis. To illustrate the weaknesses of straight keyword matching, an example

is given in Table 2-3.

Table 2-3: Weaknesses of Keyword Matching

 Access Document Retrieval Information Theory Database Indexing Computer REL MATCH

Doc 1 X X X X X R
Doc 2 X X X M
Doc 3 X X X R M

*Query: “IDF in computer-based information lookup”

20

The example in table 2-3 illustrates that even if query words match a document, it doesn’t

necessarily mean they are semantically similar. Document 2 shares the words “computer” and

“information” with the query but would not address the query’s intention. To a human observer,

it is obvious that document 1 would match the query because both involve document retrieval,

but a lack of shared terms causes them to be unmatched.

According to Deerwester, LSI needed to be able to “predict what terms ‘really’ are

implied by a query or apply to a document”. To do this, the first step is to create a matrix of

terms by documents which is a common information retrieval technique. Using another

technique called singular value decomposition, the matrix is then transformed into a latent

semantic structure model. A more detailed analysis of this technique is beyond the scope of this

thesis.

This technique was selected because of its inherent ability to deal with both polysemy

and synonymy. The authors, while introducing the idea of LSI, expound on both of these

linguistic hurdles specifically and discuss how this can overcome both when detecting similarity.

Such a similarity technique could potentially be the best method for creating the semantic

clusters defined earlier.

2.4.3 Latent Dirichlet Allocation

Researchers from Stanford University and the University of California invented a new

type of similarity measure in 2003 based on probabilistic methods called latent Dirichlet

allocation (LDA) (Blei 2003). It is different than the previous similarity methods because it uses

topic modeling to represent a corpora. The researchers give a brief history of information

retrieval, discussing the benefits of LSI in the process. Despite the improvement that came from

using LSI over conventional TF*IDF measures, they felt the need to further dive into the

21

probabilistic nature of word occurrences. Their simple definition of LDA is “a generative

probabilistic model of a corpus… [where] documents are represented as random mixtures over

latent topics”.

The mathematics used to derive LDA are extensive and far beyond the scope of this

thesis. This method creates distributions over words as topics and then, based on the words of the

small texts being compared, creates a vector with a dimension for every topic. The weight of

each dimension is a measure of the applicability of the text to that particular topic. Similarity

between texts is then simply the cosine of these two topic vectors. This method was chosen as a

representative of the topic modeling approach to similarity in an attempt to determine if a

probabilistic approach will outperform correspondence analysis (LSI) or the purely lexical

approach (TF*IDF).

Cosine similarity, LSI, or LDA can all be used to create proximity matrices for the text

concepts within a term. Once text concepts start being clustered together, the proximity matrix

alone is insufficient because it doesn’t outline the proximity of clusters of text concepts. To

determine cluster proximity, we need to identify and use a parameter known as a linkage type.

2.5 Linkage Types

The proximity matrix alone is sufficient only when the clusters contain one text concept.

Once clusters contain more than one text concept, linkage types are used to determining cluster

proximity. One set of researchers from the University of Sheffield performed some analysis on a

variety of linkage types of which we will only investigate three in particular (El-Hamdouchi

1987).

The first and most basic linkage type is referred to as single linkage. When two clusters

are compared, single linkage defines their proximity as equal to the distance of the closest two

22

points between them, or in our case the two most similar text concepts. One issue that

researchers have had in the past with this linkage type is what is called “chaining” which is when

it “forms loosely bound clusters with little internal cohesion” due to the newest member

continually chaining to another new member (El-Hamdouchi 1987). The research team from the

University of Sheffield concluded that this method proved to be the worst of the linkage types in

the document retrieval space for their particular corpus. We chose not to evaluate single linkage

because additional research has proven that it “generally gives results that are far inferior to

those obtainable when the other hierarchic agglomerative methods are used” (Willett 1988).

Where single linkage compares the closest two points, complete linkage compares the

furthest two points, or the two most dissimilar members of the clusters. Complete linkage tends

to form more compact clusters of approximately equal diameter. Unlike single linkage, complete

linkage does not suffer from chaining.

The third type is average linkage, which does exactly what the name implies. When two

clusters are compared, their distance is determined by the average distance between any point in

the first and any points in the second. It is more computationally intensive than the first two

types and tends to be a midpoint between the single and complete linkages.

Figure 2-6: The Three Most Common Linkage Types

23

It is unknown which of these two latter linkage types will perform the best on the

compendium. This thesis tests both so that their relative performance can be compared.

2.6 Other Work on Short Text Similarity

Anna Huang has performed similar work in regards to semantic clustering (Huang 2008).

In her paper, she describes five different vector based similarity measures which are Euclidean,

cosine, Jaccard coefficient, Pearson correlation coefficient, and averaged Kullback-Leibler

divergence. Each is a slightly different application of the vector model. Huang’s purpose was to

determine which was the most effective at clustering text documents together.

Huang chose to use a standard K-means clustering algorithm which is fundamentally

different than our hierarchical approach. Huang uses K-means clustering because she knows

beforehand how many clusters she wishes to form. Her source data was manually pre-classified

with a specific number of different categories which she tried to match with k-means clustering.

Upon analyzing the results, it was determined that each similarity measure had comparable

effectiveness with the exception of Euclidean, which underperformed the others.

The results of Huang’s research encouraged our decision to use only one vector based

similarity measure, cosine similarity. Testing additional vector based similarity measures would

most likely replicate this prior research, reinforcing the idea that each of the vector based

approaches are fairly equal. Using the cosine measure is also advantageous because of its relative

simplicity in implementation compared to the other vector based similarity measures.

A variety of other papers have been published on detecting similarity specifically

between short texts. One research team led by Donald Metzler focused on solving the vocabulary

mismatch problem, which is the problem of using different words to describe the same idea

(Metzler 2007). Their research looked first at a lexical approach, which included exact matching,

24

phrase matching, and subset matching. They also examined probabilistic methods, such as word

co-occurrence, to deal specifically with vocabulary mismatching. Using a set of 363,822 MSN

search queries from 2005, the researchers tested both methods independently and combined.

What they discovered was that lexical matching was better at discovering extremely similar

queries and that probabilistic matching was better at discovering moderately similar queries. The

best method for determining similarity came from combining both methods, placing lexical

matches first followed by the probabilistic ones.

We decided not to try and implement their specific similarity method into our tests. The

source data for their experiments consisted of internet search queries which are fundamentally

different than text concepts found in glossaries. Queries are concise requests for information

while text concepts are explanations of terms.

One method they used to evaluate resulting matches was applicable to our research. A

four point scale was established which consisted of a rank, a description, and an example (Table

2-4). A person than ranked a set of randomly selected matches from the experiments to

determine their effectiveness. We used a variation of this approach when evaluating the quality

of our semantic clustering.

Table 2-4: Four Point Rating Scale (Metzler 2007)

Judgment Description Examples
(Query / Candidate)

Excellent The candidate is semantically equivalent to the user query. atlanta ga /
atlanta georgia

Good The candidate is related to (but not identical to) the query intent
and it is likely the user would be interested in the candidate.

seattle mariners /
seattle baseball tickets

Fair
The candidate is related to the query intent, but in an overly vague

or specific manner that results in the user having little, if any,
interest in the candidate.

hyundia azera /
new york car show

Bad The candidate is unrelated to the query intent web visitor count /
coin counter

25

Another research group led by Vasileios Hatzivassiloglou performed their own set of

tests to determine short text similarity (Hatzivass 1999). Like previous research, their focus was

on overcoming the vocabulary mismatch problem. Their research investigated a service called

WordNet, which is a large lexical database for the English language funded by the National

Science Foundation. One feature of WordNet is the ability to give a word and receive a list of

potential synonyms.

By using the WordNet service, the researchers are able to find similarity between short

texts that don’t share any words. Such a scenario would fail in any vector-based approach

automatically because they only rely on shared words to detect similarity. This research differs

from our own in their specific definition of similarity. They define two texts as similar if they

both “focus on a common concept, actor, object, or action”. They further assert that the common

actor or object must be subjected to the same action or description in both texts. Our definition of

similar is not as restricted. This limits the applicability of their research to our problem.

They create their own method for detecting similarity which involves identifying basic

and composite features that are shared between the two texts. Their method ultimately performs

better on source data consisting of 16,000 news articles from Reuters, with each paragraph acting

as a unit of text. Hatzivassiloglou claims that although they are using paragraphs as their text

unit, sentences would work in the same way.

Once again, their methods could be implemented as a potential similarity measure to

experiment with, but it was decided against. Their implementation requires the implementation

of a classifier which was trained using a large number of manually tagged documents. The

source data used for their research was pre-classified into topical categories so training was of

little consequence to implement. The source data for our semantic clustering is only pre-tagged

26

with a domain which, due to the heavy overlap between disciplines, would be an ineffective

measure.

2.7 Methodology Decisions based on the Literature Review

From the literature review, a few conclusions can be drawn. First, there is a growing need

as disciplines evolve to disambiguate terminology. There must be some way to help these

divergent disciplines communicate effectively despite the presence of polysemous and

synonymous terms. The research we are performing will help to identify the most polysemous of

these terms, and future work may perhaps use these identified terms to further aid in these

efforts.

The second conclusion is that there is an adequate data set that was created to deal with

terminological disambiguation. Starting in early 2012, the Termediator-I research team collected

technical glossaries so that terminological disambiguation research could take place. Using this

data set currently containing 399 glossaries, the Termediator-I research project implements basic

similarity measures allowing users to find similar terms based solely on their text concepts. We

will additionally use this dataset to identify the most polysemous terms present in these

glossaries.

Third, hierarchical clustering appears to be the most efficient clustering algorithm for

dealing with this problem. Using a threshold value that will be determined experimentally,

hierarchical clustering can be used to generate an unknown number of clusters. Using clustering

algorithms like k-means and k-nearest-neighbor would be ineffective since each term has an un-

predetermined number of abstract concepts associated with it and we don’t have pre-classified

training data.

27

Fourth, there are a large variety of standard similarity measures that could be used to try

and detect similarity. Many core similarity measures have a number of derivative techniques that

slightly modify the core functionality. Testing each established derivative technique would not

be efficient so only a few core similarity measures will be used for experimentation. Specifically,

the cosine similarity measure will represent the vector based approach, the latent semantic

indexing technique will represent the statistical approach, and the latent Dirichlet analysis

technique will represent the probabilistic topic modeling approach. These three measures are

each significantly different from each other and will offer a good generalization of each of the

approaches.

Lastly, there are a number of different custom similarity measures that research teams

have published recently to calculate semantic similarity of specific short texts. Each approach

that was reviewed had positive results but was the result of a combination of existing techniques.

After reviewing each and weighing their strengths and weaknesses, we determined that it would

be best to leave the experimentation for our problem to the core similarity measures discussed

above.

28

3 METHODOLOGY

3.1 Source Data - Termediator

The source data for this research was introduced and outlined in Chapter 2. It is a

collection of 399 technical glossaries which have been merged together into one compendium.

Each entry contains a term with one or more text concepts associated with it. In total there are

40,065 distinct terms and 71,199 different text concepts.

3.2 Automated Clustering

Our semantic clustering was performed using three main variables:

• Similarity Measure

• Hierarchical Linkage Type

• Threshold

Each of these variables will be discussed, including what role they play, the different

permutations each has, and the estimated impact on the quality of the resulting clusters.

3.3 Similarity Measure

The function of the similarity measure in the hierarchical clustering process is to establish

text concept proximity. The three similarity measures used to produce proximity matrices we

evaluated were:

29

• Cosine Similarity

• Latent Semantic Indexing

• Latent Dirichlet Allocation

Each of the similarity measures has already been introduced and described in Chapter 2

in detail. To summarize, each was chosen to represent a different approach to similarity

detection. The cosine similarity measure uses the basic vector model introduced by Salton back

in the 70’s (Salton 1975). Converting each text concept into a vector, this method measures the

cosine between two vectors to determine the semantic similarity. Of the three measures, this was

expected to perform the poorest due to the fact it depends on exact word matching.

Latent semantic analysis uses singular value decomposition to determine the similarity of

two texts. The fundamental principle behind LSI is that if words co-occur often, they will be

semantically similar. Even with short texts, this idea can be effective in successfully finding

semantic similarity. We expected this measure to perform better than the cosine method in

identifying abstract concepts.

The final measure, latent Dirichlet allocation, is based on the idea of topic modelling. A

topic is defined as a distribution over words, so text concepts will be matched with specific

topics and then subsequently compared for similarity. Of the three methods, it was expected that

this would perform the best.

Similarity values needed to be converted to distance before they can be used as

proximities in hierarchical clustering. All three of the similarity measures produce similarity

values between zero and one with higher values indicating greater similarity. Taking the

complement of the similarity values by subtracting them from one will convert similarity to

distance, causing highly similar values to approach a distance of zero and dissimilar values to

30

approach a distance of one. Each term will have a different proximity matrix which is the

collection of the distance values generated from the complemented similarity measures between

each pair of the term’s text concepts.

3.3.1 Stopword Removal and Stemming

Before we used any of the similarity measures, we performed two optimizations on every

text concept found in the compendium. The first optimization was stop word removal. A

majority of the text concepts contained words that are not useful in determining the text

concept’s semantic meaning. Some simple examples of such words are “the”, “there”, and “a”.

Removing these words “increases retrieval efficiency and generally improves retrieval

effectiveness” (Croft 2010). The list of stop words used for this function is included in appendix

A.

In addition to removing the stop words in each concept, another technique called

stemming was applied. Stemming is the process of “[capturing] the relationships between

different variations of a word” (Croft 2010). With stemming, words are broken down to a root

word so that these and other similar words can be compared together. To perform the stemming,

we used a common algorithmic stemmer called the Porter stemmer. It follows a series of steps to

transform an input word into a common stem and “has been shown to be effective in a number

of… evaluations and search applications” (Van Rijsbergen 1980). For example, the words

“computer”, “computers”, and “computing” would all become the stem “comput”, causing them

to be evaluated as the same word. The stemmer script we used is a Python version obtained from

a web site maintained by Martin Porter, the author of the Porter stemmer (Porter 2001).

31

After performing stop word removal and stemming, each text concept became a list of

semantically significant stems without stop words which were then suitable to be used with any

of the three similarity measures mentioned.

3.3.2 Training Topics

The number of topics that the LSI and LDA training algorithms create has to be

predetermined. Prior research into this dimensionality by Roger Bradford revealed that an ideal

number of topics to create for any sufficiently large corpus is between 300 and 500, and that any

value chosen outside this range results in “significant distortions” (Bradford 2008). Based on

this data, we decided to create 400 topics when training both the LSI and LDA techniques.

3.3.3 Training Corpora

LSI and LDA both require training before they can be used to evaluate text similarity.

Initially, the compendium was used as the training corpus with the assumption that the text

concepts would contain enough information to generate effective models. An alternative source

of training data would be bodies of knowledge (BOK). BOKs are official domain specific

documents produced by academic and professional expert groups which outline topics of study.

The BOKs generally follow a hierarchical structure with three main levels. The top level is a

knowledge area, which is a word or short phrase which defines a large area within the discipline.

An example of this in the Computer Science body of knowledge is “operating systems”. The

level below this is typically called a unit such as “concurrency” and “memory management” for

the example knowledge area. The third level is comprised of topics, which are very specific

words or phrases such as “paging and virtual memory” and “caching” for the memory

management unit.

32

16 different bodies of knowledge from several domains were obtained and converted into

a standard XML format to act as a potential training corpus. The complete collection is shown in

table 3-1.

Table 3-1: Bodies of Knowledge in Our Collection

NAME AUTHOR YEAR
A Guide to the Project Management Body of Knowledge
Fourth Edition

Project Management Institute 2008

Business Analysis Body of Knowledge International Institute of Business
Analysis

2009

Computer Science Curricula 2013 Association for Computing Machinery
IEEE Computer Society

2012

Computer Science Curriculum 2008: An Interim
Revision of CS 2001

Association for Computing Machinery
IEEE Computer Society

2008

Computing Curricula 2001 Computer Science Association for Computing Machinery
IEEE Computer Society

2001

Curriculum Guidelines for Graduate Degree Programs in
Software Engineering

Integrated Software & Systems
Engineering Curriculum

2009

Curriculum Guidelines for Undergraduate Degree
Programs in Computer Engineering

Association for Computing Machinery
IEEE Computer Society

2004

Curriculum Guidelines for Undergraduate Degree
Programs in Information Technology

Association for Computing Machinery
IEEE Computer Society

2008

Curriculum Guidelines for Undergraduate Degree
Programs in Information Systems

Association for Information Systems 2010

Curriculum Guidelines for Undergraduate Degree
Programs in Software Engineering

Association for Computing Machinery
IEEE Computer Society

2004

Enterprise Architecture Body of Knowledge Mitre 2004
Essential Body of Knowledge US Department of Homeland Security 2008
Essential Body of Knowledge US Department of Energy 2011
Guide to the Quality Body of Knowledge American Society for Quality 2009
Human Resources Professionals in Canada Revised Body
of Knowledge

Canadian Council of Human Resources
Associations

2007

The Common Body of Knowledge for Computing and IT Canada’s Association of Information
Technology Professionals

2012

There are some key differences between glossaries and bodies of knowledge which could

affect the quality of a training corpus. The first relates to the amount of contextual information.

Bodies of knowledge typically have descriptions for the various knowledge areas and units, and

in some cases even the topics. Glossaries lack this type of context and are most often made up of

short definitions. The second key difference is authorship. Bodies of knowledge are created by

33

professional and academic organizations such as the IEEE computer society which have vast

expertise in their respective disciplines. As such, the BOKs are reviewed by many individuals

and refined over time resulting in a higher quality product. Many glossaries do not undergo such

a vigorous editing process. The overall quality of the glossaries information is potentially lower.

We evaluated the effectiveness of training LSI and LDA with the compendium vs training with

the bodies of knowledge to determine which training corpus was most effective.

One method of evaluating a training corpus is to look at the topics which are generated.

Each topic is a collection of highly co-occurring words which should all be related in some way

if the training corpus was effective. LSI topics are the most logical choice for this comparison

because it generates topics sorted by prevalence. LDA’s topics have no order whatsoever which

prevents them from being able to be compared. We compared the top 5 LSI topics generated by

the bodies of knowledge alone, the compendium alone, and with both combined.

Table 3-2: Top 5 LSI Topics

Rank BOKs Compendium BOKs + Compendium

1 Perform, FTC, Mightily,
Consult, Zoom

System, Software,
Computer, Data,

Information

System, Software,
Computer, Data,

Information

2 Mightily, FTC,
Directory, AIF, Video

Software, IEC, ISO,
IEEE, Engineering-

Technology

Software, IEC, ISO,
IEEE, Network

3 Perform, FTC, Zoom,
AIF, Protocol

Network, Page, Web,
File, Image

Network, Page, Web,
File, Image

4 Directory, Fidelity,
Expert, Perform, FTC

Computer, Program,
Process, File,
Information

Computer, Program,
Process, File,
Information

5 Expert, Perform,
Network, AIF, Consult

Web, Page, Data,
Internet, Computer

Web, Data, Page,
Internet, Protocol

 The poor topic quality of the topics from the bodies of knowledge alone was surprising

considering all the points made previously. One reason for its inability to stand up as a training

34

corpus on its own is hypothesized to be due to its small size. Compared to the compendium, the

body of knowledge collection has about ¼ the number of entries. The poor topic quality could

also likely be due to the number of topics generated. For the size of the bodies of knowledge, our

topic number of 400 may have been too high while being just right for the size of the

compendium.

 When evaluating the effectiveness of adding the bodies of knowledge to the compendium

as a training corpus, the topics themselves did not give much indication of their effectiveness.

Judging from the top 5 topics alone, it was difficult to tell if the compendium alone was the

better training corpus than the compendium with the bodies of knowledge added. When both are

used to perform semantic clustering and compared, they produce slightly different resulting lists.

Table 3-3: Top 5 Polysemous Terms with Different Training Corpora

RANK WITHOUT BOKS WITH BOKS

1 Data Interface

2 Interface Risk

3 Workstation Object

4 Firewall Function

5 Baseline Firewall

 Training with the compendium with the bodies of knowledge appeared to produce lists of

more polysemous terms than training on the compendium alone. For example, the term

“workstation” dropped in one of the LDA lists which allowed more polysemous terms such as

“object” and “function” to rise to the top. Based on these results, we chose to train LSI and LDA

on the compendium combined with the bodies of knowledge for our semantic clustering.

35

3.4 Linkage Type

The next variable was the linkage type, or the method for determining proximity between

two clusters. There were two different types we chose to evaluate: complete and average

linkages. The linkage type plays a very important role in determining the overall shape and

density of the resulting clusters. Complete linkage compares the two furthest points of a cluster

to determine distance which results in numerous dense clusters. Average linkage compares

clusters using an average distance between each member. Intuitively both complete and average

linkages seemed to be very effective and fair ways to evaluate cluster proximities, but it was

unknown which would perform better.

3.5 Threshold

The final variable in these experiments was a tuning variable called the threshold.

Normally, hierarchical clustering produces a complete dendrogram but our experiments require

us to take a single slice of that dendrogram at a particular threshold value. The threshold value is

a number between zero and one corresponding to a maximum distance. The clustering process

repeatedly combines the two closest clusters until every cluster is more distant from each other

than the threshold value. Higher threshold values will always produce fewer clusters as a result.

We initially chose to obtain a candidate threshold value through what we call the crowdsourcing

application.

3.5.1 Crowdsourcing Application

A candidate threshold would be the number where, after clustering is performed, most

terms would have their text concepts semantically clustered “properly”. Since determining when

text concepts are properly clustered is subjective, we initially chose to obtain a candidate

36

threshold through crowdsourcing. We constructed a web application which visually displayed

clusters in a format similar to a dendrogram for a set of sample terms. The interface allowed

users to manually adjust the threshold until the clusters appeared “right” to them. Collecting

enough of these thresholds would enable us to use statistics to determine which threshold was

optimal according to public consensus. This process began with choosing a suitable platform to

build the web application.

3.5.2 Platform

The web application used for gathering data was built using the Google App Engine

(GAE) platform. GAE is a service offered by Google which allows users to build web

applications and subsequently host them on Google’s servers. GAE was selected because the

web application is hosted on their servers allowing users to use the web application from any

device with an internet connection. GAE also allows developers to easily attach a database which

was necessary in order to store the collected data.

3.5.3 Data Storage

The GAE platform gave us the freedom to choose from a variety of data stores. One was

a standard SQL engine hosted by Google called Cloud SQL. A second was called Google Cloud

Storage and is a file system hosted in the cloud. The third option was the GAE data store, which

is a schema-less NoSQL database. The data being collected was very simple and required none

of the benefits of relational SQL databases so we chose to use the GAE data store.

The data being stored consisted of two main parts: a survey portion and the clustering

threshold portion. The answers to the survey questions were simply stored as text with no

additional modification necessary. The clustering portion contained the current sample term and

37

six different thresholds that ranged from zero to one. A final piece of information that was stored

was the completion date and time. Using the GAE data store, we were able to store each

response as one row that contained all the information just described. Simple queries could be

made after the data was gathered to try and find patterns much like regular SQL queries. The

data store, like the application, was hosted by Google and could be accessed by any machine

with an internet connection. With the platform and database established, we needed to determine

which specific terms users would need to cluster to collect our sample thresholds.

3.5.4 Identifying Sample Terms

Due to the size of the corpus, experimental testing was performed on a subset of the

compendium. The most efficient method for choosing a subset was to manually select a handful

of terms. The semantic clustering can only be performed on terms with more than one text

concept and of the 40,065 total terms, only about 25% had more than one associated text

concept.

Sample terms needed to have a high number of concepts to precisely identify the optimal

semantic clustering threshold. This is because terms with a low number of text concepts are less

sensitive to changes in the threshold than concepts with high numbers. Aside from the number of

associated text concepts, it was also important for sample terms to come from both sides of the

polysemy scale to show that the threshold was globally applicable. There needed to be terms that

were semantically simple with few different meanings as well as terms that were semantically

complex with many different meanings. We subsequently selected 16 different terms to be part

of the sample. We then designed and built the interface that would let users cluster the sample

terms shown in table 3-4.

38

Table 3-4: Complete List of Sample Terms

ATM Database GIF Software
Bandwidth Download HTML Upload
Browser Firewall Internet URL
Constraint FTP Process Virus

3.5.5 Interface

When using the application, the first thing users saw was a series of simple questions.

The purpose of these questions was to gain a little user background to add different dimensions

to the resulting data. For example, gender-specific patterns could have played into how semantic

clusters were evaluated. The data we chose to gather was gender, age range, and technical

expertise.

 Once the questions were answered, the user was presented with a term and six duplicate

sets of its concepts. The six sets of concepts corresponded to the six combinations of similarity

measures and linkage types. Below each set of concepts was a slider which corresponded to the

threshold value identified and explained earlier in this thesis. For each set of text concepts, the

user adjusted the threshold slider until the concepts were clustered the “best” according to their

judgment. It was up to each user how to define this subjective measure. A couple additional

features were added to assist the users in their clustering. The first was background coloring

which ranged from green to red based on max intracluster distance. Each member within a

cluster was compared with every other member within the same cluster, after which the most

dissimilar members were identified and measured. Distances closer to 0 were greener indicating

a tighter cluster whereas distances closer to 1 were redder indicating a looser cluster. The second

feature utilized the domains from which each concept came from which were manually tagged

when the glossaries were added into the compendium. Each concept was given a light dotted

39

border which had a color signifying the concept’s particular domain that was displayed by

hovering the cursor over the text concept.

After each set of concepts was a four point evaluation question which asked the user how

well the clusters were grouped by meaning. This step was necessary because users were asked to

find the point on the slider that was closest to how they would cluster the text concepts, but it did

not measure how close that actually was. Some clusters could have perfectly aligned with the

user’s expectations while others at their best were still vastly different. This data would have

been useful in identifying which similarity algorithm and linkage type combinations regularly

aligned with users’ expectations and which did not. The options were “barely”, “somewhat”,

“mostly”, and “exactly” corresponding to how well the clusters were semantically grouping the

text concepts at the chosen threshold.

Figure 3-1: Semantic Clustering Interface

40

3.5.6 Interface Optimizations

While building the prototype data collection application, a few issues arose. It was clear

that user fatigue was going to impede accurate data collection based on feedback from early

testers. For each sample term, the tester would be required to adjust six different sliders while

reading and organizing large amounts of text. Users would be adjusting 96 different bars in one

sitting to evaluate all 16 of our sample terms. With so much required of users, data would rapidly

begin losing value once users began getting mentally fatigued.

 To address user fatigue, it was necessary to require less of each individual tester. Instead

of asking each user to evaluate every sample term, we instead asked each user to evaluate a

single one. Each of the sample terms needed to be evaluated multiple times for the results to be

statistically significant so the tradeoff was more testers would be required. This updated

approach required a tester to adjust only six bars instead of almost 100.

 Another method to reduce the amount of user fatigue was to initialize the threshold

sliders. If the thresholds started at a point which would be close to where most users would place

it, they would then either agree with the groupings or make small adjustments in either direction.

One option was to simply initialize every slider with some value predetermined through heuristic

testing. Another was to take a mathematical approach and attempt to find some cluster

optimization which would place the slider in roughly the same area as humans would. To create

a more academically sound experiment, the latter option was investigated.

 Each threshold produces some number of clusters which each have different

characteristics, such as density or max width. It was theorized that these values could be

measured and related to each threshold such that an optimization exists. The first cluster

characteristic measured was max width, which was determined for each cluster by identifying

41

max distance between its members. Another cluster characteristic that was measured was a

normalized max width which was generated by taking the number of cluster members divided by

the max width of the cluster. These lists were then reduced to a variety of single values using

different measures including sum, mean, root mean square, and median.

Using a python library called matplotlib, we were able to create graphs which had

thresholds along the X axis and one of the calculated values we just discussed along the Y axis

(Figure 3-2). Thresholds shown have been multiplied by 100 to avoid dealing with decimals so

the thresholds range from 0 to 100. The goal was that some combination of these variables would

create a curve which would have either a maximum or minimum in the last quartile of the

possible threshold values, where we heuristically determined the candidate threshold would

reside. All attempts at determining a mathematical optimization were initially unsuccessful as

each attempt generated graphs that were either always increasing or always decreasing like the

example shown in figure 3-2.

Figure 3-2: Sample Graph for Finding Cluster Optimizations

42

3.5.7 Crowdsourcing Outcomes

The first attempt at collecting data was to crowd-source, using the public to try and find

ideal thresholds. As described in the previous section, a web application was constructed and

subsequently published which gave anyone the opportunity to perform their own clustering. The

goal was to obtain at least 200 responses which, when averaged together, would reveal a

candidate threshold for each similarity algorithm and linkage type combination obtained through

consensus.

We anxiously awaited for the data to start flooding in after broadcasting the URL for the

web application throughout our social circles. After three weeks only 14 responses had been

recorded, most of which originated with very close family members. The GAE platform had

analytics information available which revealed that less than 10% of the users who opened the

application actually completed it. In consultation with user experience experts, it became clear

that the problem was too complex for this type of analysis (Helps 2014).

The core problem with the tool, we were informed, was it came off as overwhelming to

the average user. The instructions that were required to give the user a clear picture of their task

took up over half a page. If we further include the text that needed to be read in each of the six

interactive windows, users were simply overwhelmed and ultimately decided against going

further and completing the task. After further discussion, we determined that there would be no

realistic way to refine the tool to mitigate this problem. Adding an incentive for users to use the

application would increase the quantity of the results, but the complexity of the task would cause

the quality of those results to deteriorate.

43

Despite this failure, the crowdsourcing tool’s visual representation of the clusters

illuminated a new potential measure of polysemy. Without valid crowdsourcing data, we had to

find a replacement data source to determine our clustering threshold to proceed.

3.5.8 Convergence Values

Adjusting the thresholds of various terms in the tool revealed that terms converged into a

single cluster at different thresholds. Terms we considered to be polysemous converged at higher

thresholds than terms we considered to be less polysemous. This should have been obvious

because more polysemous terms have more abstract concepts and would therefore require a

higher threshold to converge. Looking back at the graphs we created when we attempted to

initialize a starting threshold for the crowdsourcing tool, we once again noticed this pattern. The

graphs shown in figure 3-3 show the general difference between less polysemous terms like

“HTML” and more polysemous terms like “process” in relation to convergence. For each

similarity measure and linkage type, we collected the threshold value when the last two clusters

converged for every term, calling these numbers convergence values.

Figure 3-3: Convergences for HTML (left) and Process (right)

44

Graphing the convergence values for each combination of similarity measure and linkage

type give us the graph in figure 3-4.

Regardless of the similarity measure or linkage type used, the overall pattern of the

convergence values remains the same. Convergence values alone cannot be used to identify the

most polysemous terms because the majority of the terms converge at the max threshold. The

mean of the convergence values on the other hand is informative.

Figure 3-4: Convergence Values across the Compendium with Means

The mean convergence values identified in figure 3-4 all fall in the last quartile of

possible thresholds, which was where we heuristically determined the candidate threshold would

reside. To test the validity of the mean convergence value, we took our 16 sample terms from the

crowd sourcing tool and performed semantic clustering to see if they would be sorted by

polysemy.

45

Table 3-5: Top 10 Polysemous Sample Terms Lists

LDA LSI Cosine
Average Complete Average Complete Average Complete

Database Bandwidth Process Software Firewall Firewall
Virus Software Virus Firewall Constraint Bandwidth
Software Process Software Process Process Virus
Firewall Firewall HTML Virus Virus Software
Process Database Firewall Database Database Process
GIF Virus Download Bandwidth GIF Database
FTP Download GIF Download FTP Constraint
Download Constraint FTP HTML Download Browser
Constraint Browser Database Browser Bandwidth Internet
Bandwidth URL Constraint Internet ATM HTML

The different similarity measures and linkage types produced slightly different results,

but in general it can be seen that the less polysemous sample terms like HTML and GIF tended

to be ranked lower than the more polysemous terms like database and constraint. With enough

evidence of success, we generated an ideal threshold for each similarity measure and linkage

type combination by using the convergence values in place of the crowdsourcing data.

After calculating the arithmetic mean for each collection of convergences, we identified

the following candidate thresholds based on the data found in the compendium shown in

table 3-6.

Table 3-6: Mean Convergence Values

Similarity Measure /
Linkage Type

Mean Convergence
Value

Rounded Convergence
Value

Cosine / Average 84.92 .85
Cosine / Complete 91.66 .92

LSI / Average 86.55 .87
LSI / Complete 87.71 .88
LDA / Average 84.43 .84
LDA / Complete 91.54 .92

46

Using the mean convergence values as the thresholds, we were subsequently able to

perform semantic clustering for each similarity algorithm and linkage type combination to

discover the most polysemous terms in the compendium.

47

4 CONTRIBUTION

4.1 Summary of Previous Findings

The process of producing a high quality list of polysemous terms led us to some valuable

findings that we wish to reiterate.

When we researched similarity measures we identified two, LSI and LDA, which

required a training corpus to establish models to compare texts. We looked at two main texts as

potential training corpora: the compendium and BOKs. Both corpora were evaluated by looking

at the top topics generated. Unexpectedly, topics generated by the compendium training corpus

were far superior to those generated by the BOKs. Additionally, we analyzed the topics when

both corpora were added together to determine if the BOKs could enhance the compendium

during training. The resulting topics were too similar to the topics generated by the compendium

alone to determine which corpus was superior. We subsequently performed semantic clustering

using the compendium and then the compendium with the BOKs and compared the term lists.

The compendium with the bodies of knowledge appeared to produce a slightly higher quality list

according to our judgment. We chose to combine the bodies of knowledge with the compendium

when training LSI and LDA. Our next findings were discovered when we tried to obtain a

candidate threshold value required for hierarchical clustering.

We initially attempted to obtain, by a consensus, a candidate clustering threshold. Our

crowdsourcing application was too complex for users, resulting in a completion rate of less than

48

10%. Despite this failure, the tool gave us a new perspective on cluster visualization, leading to

our next finding. The tool, along with our attempt to find an initialized threshold to aid users,

illuminated a new generic measure of term polysemy we call the convergence value. We

observed that less polysemous terms tended to converge into a single cluster at lower thresholds

than more polysemous terms. By using convergence values in place of the crowdsourcing

thresholds, we could generate a single candidate threshold using the mean. Experimentation

additionally showed that the mean convergence values for the compendium consistently fell in

the last quartile of possible thresholds. The vast majority of the threshold values collected by the

crowdsourcing tool also fell in the last quartile further indicating that the mean convergence

values were an adequate substitute for the crowdsourcing data. With a candidate threshold

identified, we were able to perform our semantic clustering process.

4.2 Compendium Results

Using the cosine, LSI, and LDA similarity measures along with the complete and average

linkage types with their associated mean convergence value, we performed hierarchical

clustering on each term in the compendium and sorted the results by cluster count. This produced

six different lists of terms of which we chose to limit to the top 30 from each (table 4-1).

Evaluating the effectiveness of each combination of the variables is not an easy task due

to the subjective nature of determining term polysemy. Each individual has different

backgrounds and experiences meaning that each individual would have a slightly different order

if asked to order the same terms by polysemy.

49

Term #
Cl

us
te

rs

Co

nc
ep

ts

Term #
Cl

us
te

rs

Co

nc
ep

ts

Term #
Cl

us
te

rs

Co

nc
ep

ts

Term #
Cl

us
te

rs

Co

nc
ep

ts

Term #
Cl

us
te

rs

Co

nc
ep

ts

Term #
Cl

us
te

rs

Co

nc
ep

ts

Function 11 25 Interface 10 42 Interface 13 42 Interface 14 42 Interface 10 42 Interface 12 42
User 8 34 Firewall 10 67 Function 10 25 Function 11 25 Risk 9 30 Risk 10 30
Risk 8 30 User 9 34 Template 9 28 Bandwidth 11 64 Function 9 25 Object 10 32
Resource 8 12 Spam 9 53 Signature 9 31 User 10 34 Signature 8 31 Function 10 25
Process 8 36 Risk 9 30 Object 9 32 Risk 10 30 Scope 8 17 Firewall 10 67
Object 8 32 Function 9 25 Unit 8 13 Object 10 32 Policy 8 13 Template 9 28
Interface 8 42 Design 9 23 Stakeholder 8 19 Firewall 10 67 Object 8 32 Encryption 9 46
Entity 8 18 Data 9 41 Scope 8 17 Signature 9 31 Design 8 23 Baseline 9 42
Cc 8 13 Baseline 9 42 Process 8 36 Node 9 31 CC 8 13 Authentication 9 36
Case 8 15 Bandwidth 9 64 Feedback 8 15 Network 9 47 Baseline 8 42 User 8 34
Unit 7 13 Signature 8 31 Design 8 23 Header 9 24 AI 8 14 Signature 8 31
Template 7 28 Object 8 32 Constraint 8 21 Domain 9 32 User 7 34 Scope 8 17
Task 7 29 Node 8 31 CC 8 13 Design 9 23 Template 7 28 Path 8 20
State 7 12 Encryption 8 46 Baseline 8 42 Constraint 9 21 Standard 7 13 Design 8 23
Spoofing 7 20 Domain 8 32 Spoofing 7 20 Bot 9 21 Padding 7 10 Database 8 44
Signature 7 31 Cc 8 13 Risk 7 30 Baseline 9 42 Lol 7 11 Class 8 23
Set 7 10 Bot 8 21 Resource 7 12 Authentication 9 36 Firewall 7 67 CC 8 13
Scope 7 17 Virus 7 61 Queue 7 18 Stakeholder 8 19 Class 7 23 AI 8 14
Robot 7 15 Terminal 7 25 Pi 7 8 Scope 8 17 Worm 6 43 Worm 7 43
Project 7 16 Template 7 28 Parameter 7 13 Protocol 8 48 Tos 6 13 Terminal 7 25
Policy 7 13 Task 7 29 Lol 7 11 Process 8 36 Testing 6 17 Task 7 29
Non-Repudiation 7 15 System 7 20 Link 7 23 Gateway 8 30 Task 6 29 System 7 20
Feedback 7 15 Phishing 7 35 Header 7 24 Flash 8 30 System 6 20 Standard 7 13
Domain 7 32 Link 7 23 Error 7 15 Encryption 8 46 State 6 12 Spoofing 7 20
Design 7 23 Input 7 23 Entity 7 18 Data 8 41 Spoofing 6 20 Node 7 31
Data 7 41 Header 7 24 Domain 7 32 Cut 8 11 Simulation 6 21 Measure 7 17
Constraint 7 21 Feedback 7 15 Data 7 41 Client 8 37 Resource 6 12 Lol 7 11
Class 7 23 Entity 7 18 Cut 7 11 CC 8 13 Queue 6 18 Link 7 23
Bot 7 21 Database 7 44 Case 7 15 Thread 7 18 Process 6 36 Kilobyte 7 25
Authentication 7 36 Client 7 37 Bot 7 21 Terminal 7 25 Paradigm 6 7 Header 7 24

COSINE LSI LDA
AVERAGE COMPLETE AVERAGE COMPLETE AVERAGE COMPLETE

Table 4-1: Top 30 Potentially Confusing Terms

50

If we look further at the results, we can see that there are 10 terms which exist in all six

lists. These 10 terms are all highly polysemous and are evidence of the success of using semantic

clustering to identify term polysemy. Those particular terms are especially significant because, in

a compendium containing over 40,000 terms, they made it into the top 30 most polysemous

terms regardless of the similarity measure or linkage type used. Table 4-2 compares our initial

metric of polysemy, simple concept count, to our new metric of cluster count using the terms

found in every list.

Table 4-2: Top 10 Polysemous Terms Alphabetized Before and After

Old Metric
Concept Count

New Metric
Semantic Clustering

Bandwidth Design
Browser Function

Download Interface
Firewall Object

GIF Risk

HTML Signature
Internet System

Software Task
URL Template
Virus User

 Our new metric using semantic clustering has clearly produced a list of highly

polysemous terms. The less polysemous terms that previously rose to the top of our polysemy

lists from their high text concept count, like HTML and GIF, dropped dramatically. The

clustering process was able to successfully combine semantically duplicate text concepts so that

a more accurate count of each term’s different abstract concepts could be obtained.

51

5 CONCLUSIONS AND FUTURE WORK

5.1 Overview

Vocabularies within and between disciplines have been rapidly evolving, making

identifying potentially confusing words and phrases an important task. We wanted to identify the

most polysemous terms being used today using a collection of 399 glossaries. Polysemy of a

term was measured by semantically clustering its associated text concepts and counting the

resulting number of clusters. Terms with one text concept were not included. As part of the

semantic clustering process, we compared three similarity measures consisting of cosine

similarity, latent semantic indexing, and latent Dirichlet allocation. Two hierarchical clustering

linkage types were also compared: complete and average linkages. A third clustering variable,

threshold, was calculated using the mean convergence value, or the mean value at which a term’s

text concepts are clustered into a single cluster across the entire compendium. We produced a list

of terms sorted by polysemy for each of the six combinations of similarity measures and linkage

types.

5.2 Evaluation of Results

Each list that was produced using our semantic clustering was effective. The results are

so effective that no combination of similarity measure and linkage type can clearly be deemed

the best. It is our conclusion that, in the absence of clear evidence supporting which similarity

52

measure and clustering combination performed the best, our best list of the most polysemous

terms was created by finding the terms present in every one of the six lists. We created that final

list of polysemous terms that can be found earlier in table 4-2. In a compendium of over 40,000

terms, it is highly significant that the 10 terms in our final list appeared as highly polysemous

regardless of the similarity measure or linkage type used.

We consider the semantic clustering successful based on the intuitive sense of polysemy

in the terms that were displayed in the lists. Every method produced few clusters for the

common, less polysemous terms like “HTML” and produced more clusters for the more

polysemous terms like “object”.

Another result of our research was the realization that there is no ideal clustering

threshold that accurately clusters text concepts semantically for every term. The number of

clusters depicted in table 4-1 do not directly indicate the number of real meanings the associated

term contains. The thresholds used for the semantic clustering are designed to create cluster

quantities that, when compared with other terms in the same experiment, will give the terms a

sense of rank. The crowdsourcing tool demonstrated that each term has a different ideal

threshold that accurately clusters its text concepts by meaning. This means that while we can

identify the terms that are polysemous, we do not have a clear method of automatically

determining the exact number of different meanings (abstract concepts) associated with each

term.

5.3 Future Work

Many additional text similarity measures exist and could be evaluated for their

effectiveness in semantic clustering. Additional testing is also necessary to determine the effect

of using different thresholds than the mean convergence value when clustering the compendium.

53

It is currently unknown exactly how the threshold value effects the resulting lists of polysemous

terms.

A stronger method for evaluating the results of semantic clustering is necessary to

accurately identify the best similarity algorithm and linkage type combination. The subjective

nature of linguistic problems like term polysemy makes it difficult to objectively rank the

different results. Creating some method for doing so would allow us to evaluate each similarity

measure and linkage type and conclusively determine which combination produces the most

accurate results.

5.4 Closing

The idea behind semantic clustering being used to evaluate term polysemy has solid

ground. We have shown that semantic clustering can be used on glossaries to measure the degree

of polysemy in terms with high accuracy. We generated six lists of highly polysemous terms and

were able to create a single list showing the shared polysemous terms between them all. We were

successful in identifying terms that people would deem as highly polysemous which would have

a very high potential of causing confusion in interdisciplinary communication.

54

REFERENCES

Blei, D, A Ng, and M Jordan. “Latent Dirichlet Allocation.” the Journal of machine Learning
research (2003). http://dl.acm.org/citation.cfm?id=944937 (accessed November 22,
2013).

Bradford, R.B. “An Empirical Study of Required Dimensionality for Large-Scale Latent
Semantic Indexing Applications.” Proceeding of the 17th ACM conference on
Information and knowledge mining - CIKM ’08 (2008): 153.
http://portal.acm.org/citation.cfm?doid=1458082.1458105.

Croft, W, D Metzler, and T Strohman. Search engines: Information retrieval in practice.
Reading: Addison-Wesley, 2010.

Deerwester, S, S Dumais, and T Landauer. “Indexing by Latent Semantic Analysis.” JASIS
(1990).
http://www.cob.unt.edu/itds/faculty/evangelopoulos/dsci5910/LSA_Deerwester1990.pdf
(accessed November 20, 2013).

Ekstrom, J. “Experience with a Cross-Disciplinary Aggregated Glossary of Technical Terms.”
Proceedings of the 13th annual conference on … (2012).
http://dl.acm.org/citation.cfm?id=2380562 (accessed November 12, 2013).

Ekstrom, J, and B Lunt. “Academic IT and Adjacent Disciplines 2010.” Proceedings of the 2010
ACM conference on … (2010). http://dl.acm.org/citation.cfm?id=1867653 (accessed
March 25, 2013).

El-Hamdouchi, A, and P Willett. “Comparison of Hierarchic Agglomerative Clustering Methods
for Document Retrieval.” The Computer Journal (1989).
http://medcontent.metapress.com/index/A65RM03P4874243N.pdf (accessed December
2, 2013).

Hatzivassiloglou, V, J Klavans, and E Eskin. “Detecting Text Similarity over Short Passages:
Exploring Linguistic Feature Combinations via Machine Learning.” Proceedings of the
1999 joint … (1999).
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.32.9798&rep=rep1&type=pdf
(accessed October 1, 2013).

Helps, R. Interview with Owen Riley. Personal interview. BYU, February 26th, 2014.

55

Huang, A. “Similarity Measures for Text Document Clustering.” Proceedings of the Sixth New
Zealand Computer …, no. April (2008). http://favi.com.vn/wp-
content/uploads/2012/05/pg049_Similarity_Measures_for_Text_Document_Clustering.p
df (accessed November 20, 2013).

IEEE. “Using SEVOCAB” SEVocab. http://pascal.computer.org/sev_display/help.jsp (accessed
February 10, 2014) (2010).

Knuth, D. “The Art of Computer Programming: Fundamental Algorithms, Vol. 1.” (1968)

Metzler, D, S Dumais, and C Meek. “Similarity Measures for Short Segments of Text.”
Advances in Information Retrieval (2007). http://link.springer.com/chapter/10.1007/978-
3-540-71496-5_5 (accessed October 1, 2013).

Porter, M. The Porter Stemming Algorithm. 2001.
http://tartarus.org/martin/PorterStemmer/index-old.html.

Richards, J, O Riley, J Ekstrom, and K Tew. “Termediator: Early Studies in Terminological
Mediation Between Disciplines.” Proceedings of the 2013 ACM conference on
Information technology research (2013).

Salton, G, A Wong, and C Yang. “A Vector Space Model for Automatic Indexing.”
Communications of the ACM 18, no. 11 (1975).
http://dl.acm.org/citation.cfm?id=361220 (accessed November 22, 2013).

Tryon, R. Cluster Analysis. Ann Arbor: Edwards Brothers, Inc, 1939. (accessed November 12,
2013).

Van Rijsbergen, C., S Robertson, and M Porter.New models in probabilistic information
retrieval. Computer Laboratory, University of Cambridge, 1980.

Willett, P. “Recent Trends in Hierarchic Document Clustering: A Critical Review.” Information
Processing & Management 24, no. 5 (January 1988): 577–597. Accessed March 12,
2014. http://linkinghub.elsevier.com/retrieve/pii/0306457388900271.

http://linkinghub.elsevier.com/retrieve/pii/0306457388900271

56

APPENDIX A. LIST OF STOPWORDS

When transforming the text during the glossary aggregation, the following words are

removed as they generally detract from the semantic meaning of the text:

a

about

above

across

afore

aforesaid

after

again

against

agin

ago

aint

albeit

all

almost

alone

along

alongside

already

also

although

always

am

american

amid

amidst

among

amongst

an

and

anent

another

any

anybody

anyone

anything

are

aren't

around

as

aslant

astride

at

athwart

away

57

b

back

bar

barring

be

because

been

before

behind

being

below

beneath

beside

besides

best

better

between

betwixt

beyond

both

but

by

c

can

cannot

can't

certain

circa

close

concerning

considering

cos

could

couldn't

couldst

d

dare

dared

daren't

dares

daring

despite

did

didn't

different

directly

do

does

doesn't

doing

done

don't

dost

doth

down

during

durst

e

each

early

either

em

english

enough

ere

even

ever

every

everybody

58

everyone

everything

except

excepting

f

failing

far

few

first

five

following

for

four

from

g

gonna

gotta

h

had

hadn't

hard

has

hasn't

hast

hath

have

haven't

having

he

he'd

he'll

her

here

here's

hers

herself

he's

high

him

himself

his

home

how

howbeit

however

how's

i

id

if

ill

i'm

immediately

important

in

inside

instantly

into

is

isn't

it

it'll

it's

its

itself

i've

j

just

k

l

59

large

last

later

least

left

less

lest

let's

like

likewise

little

living

long

m

many

may

mayn't

me

mid

midst

might

mightn't

mine

minus

more

most

much

must

mustn't

my

myself

n

near

'neath

need

needed

needing

needn't

needs

neither

never

nevertheless

new

next

nigh

nigher

nighest

nisi

no

no-one

nobody

none

nor

not

nothing

notwithstanding

now

o

o'er

of

off

often

on

once

one

oneself

only

onto

open

60

or

other

otherwise

ought

oughtn't

our

ours

ourselves

out

outside

over

own

p

past

pending

per

perhaps

plus

possible

present

probably

provided

providing

public

q

qua

quite

r

rather

re

real

really

respecting

right

round

s

same

sans

save

saving

second

several

shall

shalt

shan't

she

shed

shell

she's

short

should

shouldn't

since

six

small

so

some

somebody

someone

something

sometimes

soon

special

still

such

summat

supposing

sure

t

61

than

that

that'd

that'll

that's

the

thee

their

theirs

their's

them

themselves

then

there

there's

these

they

they'd

they'll

they're

they've

thine

this

tho

those

thou

though

three

thro'

through

throughout

thru

thyself

till

to

today

together

too

touching

toward

towards

true

'twas

'tween

'twere

'twill

'twixt

two

'twould

u

under

underneath

unless

unlike

until

unto

up

upon

us

used

usually

v

versus

very

via

vice

vis-a-vis

w

wanna

62

wanting

was

wasn't

way

we

we'd

well

were

weren't

wert

we've

what

whatever

what'll

what's

when

whencesoever

whenever

when's

whereas

where's

whether

which

whichever

whichsoever

while

whilst

who

who'd

whoever

whole

who'll

whom

whore

who's

whose

whoso

whosoever

will

with

within

without

wont

would

wouldn't

wouldst

x

y

ye

yet

you

you'd

you'll

your

you're

yours

yourself

yourselves

you've

z

63

APPENDIX B. CROWDSOURCING TOOL CODE

app.yaml

application: glass-radar-428
version: 1
runtime: python27
api_version: 1
threadsafe: true

libraries:
- name: numpy
 version: "latest"

handlers:
- url: /static
 static_dir: static

- url: /.*
 script: thesisapp.application

build_terms.py

""" Execute this script to build cache.json, the cache file used
for the semantic clustering application """

import scipy
import os
import porter
import re
import numpy
from lxml import etree
from gensim import corpora, models, similarities
import json
from scipy.cluster.hierarchy import linkage, inconsistent,
fcluster, maxdists, dendrogram, cophenet

64

import sem_cluster
import itertools
from math import ceil, sqrt
import matplotlib.pyplot as plt
import csv

terms = sem_cluster.terms
sim_algorithms = sem_cluster.sim_algorithms
linkage_types = sem_cluster.linkage_types

def get_sim_matrix(sim_algorithm):
 """ Takes a similarity algorithm and returns a condensed
similarity matrix with every term """

 # Check if the matrix already exists. If so, load it.
Otherwise build a new one
 try:
 matrix =
similarities.MatrixSimilarity.load(sim_algorithm + ".index")
 except IOError:
 stoplist = [w.strip() for w in open('../stopwords.txt',
'r').readlines()]
 splitter = re.compile ("[a-z\-']+", re.I)
 stemmer = porter.PorterStemmer()
 glossary = etree.parse("../glossary.xml")
 source = []
 glossary_source = []
 for subdir, dirs, files in os.walk("../DatabaseFiles"):
 for file in files:
 filename = subdir+'/'+file
 bok = etree.parse(filename)
 for node in bok.iter():
 if node.text and (node.tag == "name" or
node.tag == "text" or node.tag == "learningOutcome"):

source.append(node.text.encode('ascii','ignore').strip().lower()
)
 for entry in glossary.findall("Entry"):
 for concept in entry.findall("Concept"):

glossary_source.append(concept.text.encode('ascii','ignore').str
ip().lower())

 texts = [[stemmer.stem(word, 0, len(word)-1) for word in
splitter.findall(document) if word not in stoplist]
 for document in source]
 clean_texts = [text for text in texts if text]

65

 dictionary = corpora.Dictionary(clean_texts)
 corpus = [dictionary.doc2bow(text) for text in
clean_texts]

 glossary_texts = [[stemmer.stem(word, 0, len(word)-1)
for word in splitter.findall(document) if word not in stoplist]
 for document in glossary_source]
 dictionary = corpora.Dictionary(glossary_texts)
 glossary_corpus = [dictionary.doc2bow(text) for text in
glossary_texts]

 if sim_algorithm == "lsi":
 tfidf = models.TfidfModel(glossary_corpus + corpus)
 corpus_tfidf = tfidf[glossary_corpus + corpus]
 lsi = models.LsiModel(corpus_tfidf,
id2word=dictionary, num_topics=400)
 lsi.save('lsi.model')
 matrix =
similarities.MatrixSimilarity(lsi[glossary_corpus])
 matrix.save('lsi.index')
 elif sim_algorithm == "lda":
 lda = models.LdaModel(corpus + glossary_corpus,
id2word=dictionary, num_topics=400)
 lda.save('lda.model')
 matrix =
similarities.MatrixSimilarity(lda[glossary_corpus])
 matrix.save('lda.index')
 else:
 raise

 return matrix

def get_term_sim_list(term, sim_algorithm):
 """ Returns a condensed proximity matrix specific for the
term and sim_algorithn """

 # Load the term_sim_list cache if it exists
 try:
 with open(sim_algorithm + "_term_dict.json") as f:
 term_dict = json.load(f)
 except:
 term_dict = {}

 # If the term_sim_list is in the cache, load it. Otherwise
build a new term_sim_list
 if term in term_dict:
 term_sim_list = term_dict[term]

66

 else:
 glossary = etree.parse("../glossary.xml")
 if sim_algorithm == "cosine":
 stoplist = [w.strip() for w in
open('../stopwords.txt', 'r').readlines()]
 splitter = re.compile ("[a-z\-']+", re.I)
 stemmer = porter.PorterStemmer()

 source = []
 for entry_obj in glossary.findall("Entry"):
 cur_term = entry_obj.find("Term").text.lower()
 if cur_term == term:
 for concept_obj in
entry_obj.findall("Concept"):
 source.append(concept_obj.text)
 texts = [[stemmer.stem(word.lower(), 0, len(word)-1)
for word in splitter.findall(document) if word not in stoplist]
 for document in source]
 dictionary = corpora.Dictionary(texts)
 corpus = [dictionary.doc2bow(text) for text in
texts]
 cosine = models.TfidfModel(corpus)
 matrix = similarities.MatrixSimilarity(corpus)
 else:
 matrix = get_sim_matrix(sim_algorithm)
 valid_ids = []
 term_sim_list = []
 total_num = 0
 source = []
 term_concept_dict = {}
 try:
 with open("term_concept_dict.json") as f:
 term_concept_dict = json.load(f)
 except:
 term_concept_dict = {}
 for num, entry_obj in
enumerate(glossary.findall("Entry")):
 term_name = entry_obj.find("Term").text.lower()
 for concept_num, concept_obj in
enumerate(entry_obj.findall("Concept")):
 if term == term_name:
 valid_ids.append(total_num)
 source.append(concept_obj.text)
 total_num += 1
 term_concept_dict[term] = source
 with open("term_concept_dict.json", "w") as f:
 json.dump(term_concept_dict, f)

67

 id_len = len(valid_ids) - 1
 result_num = 0
 while id_len > 0:
 result_num += id_len
 id_len -= 1
 if sim_algorithm == "cosine":
 valid_ids = range(len(valid_ids))
 min_id = min(valid_ids)
 max_id = max(valid_ids)
 for id_num in valid_ids:
 if id_num == max_id:
 break
 vec = matrix.index[id_num]
 for x in matrix[vec][id_num+1:max_id+1]:
 val = 1-x
 if val < 0:
 val = 0
 term_sim_list.append(val)
 term_dict[term] = term_sim_list

 # Save the newly created term_sim_list in the cache
 with open(sim_algorithm + "_term_dict.json", "w") as f:
 json.dump(term_dict, f)

 return term_sim_list

def cluster(X, t, method):
 """ Slightly modifies the default SciPy hierarchical
clustering function """
 Z = linkage(X, method=method)
 R = inconsistent(Z, d=2)
 T = fcluster(Z, criterion="distance", depth=2, R=R, t=t)

 return T

def getClusterDistances(clusterList, term_sim_list):
 """ Takes a list of clusters along with the proximity matrix
and returns the max intracluster distance for each cluster as a
list """
 distances = []
 val = 0
 n = 0
 while val != len(term_sim_list):
 n += 1
 val = n*(n-1)/2
 combo = list(itertools.combinations(range(n), 2))

68

 for x in range(max(clusterList)):
 indices = [i for i, cluster in enumerate(clusterList) if
cluster == x+1]
 tempDistances = [0]
 for y in list(itertools.combinations(indices, 2)):
 for index, z in enumerate(combo):
 if y == z:
 tempDistances.append(term_sim_list[index])
 break
 num = max(tempDistances)
 dist = ceil(num * 1000) / 1000.0
 if dist > 1:
 dist = 1
 distances.append(dist)

 return distances

def printTopNConfusingTerms(cache, n):
 """ Evaluates the cache and produces a list of the top n
polysemous terms for each similarity measure and linkage type
"""

 data_store = {}
 for term in cache:
 for sim_algorithm in sim_algorithms:
 sim_store = data_store.setdefault(sim_algorithm, {})
 for linkage_type in linkage_types:
 link_store = sim_store.setdefault(linkage_type,
[])
 cool =
cache[term]["data"][sim_algorithm][linkage_type]
 temp_thres = 0
 temp_dia = []
 for threshold in range(100):
 cur_thres = str(threshold)
 cur_dia = cool[cur_thres][0]
 if cur_dia != temp_dia:
 temp_dia = cur_dia
 temp_thres = cur_thres
 link_store.append(temp_thres)
 glossary = etree.parse("../glossary.xml")
 term_concept_count = {}
 for entry in glossary.findall("Entry"):
 term = entry.find("Term").text.lower()
 term_concept_count[term] = len(entry.findall("Concept"))
 for sim in data_store:
 for link in data_store[sim]:

69

 threshold = str(int(round(numpy.mean(map(int,
data_store[sim][link])))))
 results = []
 for term in cache:
 concept_count = term_concept_count[term]

results.append((max(cache[term]["data"][sim][link][threshold][0]
), term, concept_count))
 results = sorted(results, reverse=True)
 print sim, link
 counter = 0
 for result in results:
 print '\t',result[1],'-', result[0],'clusters -
', result[2],'concepts'
 counter += 1
 if counter == n:
 break
 print '\n'

def experimentalData(cache, show=False):
 """ Test function for building graphs when seeking to
initialize threshold sliders in the crowdsourcing application
"""

 datapointStringList = ["MaxClusterWidths",
"NormalizedClusterDensity"]
 valueStringList = ["Median","Mean","Sum","Root-mean-
squared","Variance"]

 test = {}
 for sim_algorithm in sim_algorithms:
 test[sim_algorithm] = {}
 for linkage_type in linkage_types:
 test[sim_algorithm][linkage_type] = [[] for i in
range(len(datapointStringList)*len(valueStringList))]

 for term in cache:
 for sim_algorithm in sim_algorithms:
 for linkage_type in linkage_types:
 vals = []
 thres = []
 data = [[] for i in
range(len(datapointStringList)*len(valueStringList))]
 for threshold in range(0, 101, 1):

70

 clusterList =
cache[term]["data"][sim_algorithm][linkage_type][str(threshold)]
[0]
 clusterDiameters =
cache[term]["data"][sim_algorithm][linkage_type][str(threshold)]
[1]

 datapointsList = []

 #This method uses a list of max cluster
widths
 datapointsList.append(clusterDiameters)

 #This method takes the number of cluster
members / max width of cluster + 1

datapointsList.append([clusterList.count(x+1)/((clusterDiameters
[x] + 1)) for x in range(max(clusterList))])

 for ind, datapoints in
enumerate(datapointsList):
 #This method takes the median
 data[len(valueStringList)*ind +
0].append(numpy.median(datapoints))

 #This method takes the mean
 data[len(valueStringList)*ind +
1].append(numpy.mean(datapoints))

 #This method takes the sum
 data[len(valueStringList)*ind +
2].append(sum(datapoints))

 #This method takes the root mean squared
 data[len(valueStringList)*ind +
3].append(sqrt(sum(result ** 2 for result in
datapoints)/len(datapoints)))

 #This method takes the variance
 data[len(valueStringList)*ind +
4].append(numpy.var(datapoints))

 thres.append(threshold)
 for index, values in enumerate(data):
 zippedList = zip(values, thres)

71

 if len(zippedList) > 0:
test[sim_algorithm][linkage_type][index].append(max(zippedList,k
ey=lambda item:item[0])[1])
 dataindex, valueindex = (index /
len(valueStringList), index % len(valueStringList))
 if datapointStringList[dataindex] ==
"NormalizedClusterDensity" and valueStringList[valueindex] ==
"Mean":
 plt.plot(thres, values,'',
label=""+term+" " +sim_algorithm+" "+linkage_type)
plt.plot(thres, data[0],'', label=""+term+" "
+sim_algorithm+" "+linkage_type)
 plt.ylabel("Computed Value")
 plt.xlabel("Threshold")
 plt.legend(loc=2)
 if show:
 plt.show()

 for sim_algorithm in test:
 print sim_algorithm
 for linkage_type in test[sim_algorithm]:
 print '\t',linkage_type
 for index, values in
enumerate(test[sim_algorithm][linkage_type]):
 dataindex, valueindex = (index /
len(valueStringList), index % len(valueStringList))
 mean = numpy.mean(values)
 stdev = numpy.std(values)
 if stdev <= 10 and mean >= 60 and mean <= 95:
 print '\t\t', mean, stdev,
datapointStringList[dataindex], valueStringList[valueindex]
 print '\t\t\t', values

if __name__ == '__main__':
 """ Builds the cache file required for clustering
application """
 from pprint import pprint
 stoplist = [w.strip() for w in open('../stopwords.txt',
'r').readlines()]
 splitter = re.compile ("[a-z\-']+", re.I)
 stemmer = porter.PorterStemmer()

 try:
 with open("cache.json") as f:
 cache = json.load(f)
 except:
 cache = {}

72

 source = []

 glossary = etree.parse("../glossary.xml")

 terms = []
 for entry in glossary.findall("Entry"):
 if len(entry.findall("Concept")) > 3:
 terms.append(entry.find("Term").text.lower())

 issue = False
 data_store = {}
 for term in terms:
 if issue:
 print "\tIssue Detected"
 issue = False
 print "Starting", term, "..."
 current_entry = ''
 for entry in glossary.findall("Entry"):
 if term == entry.find("Term").text.lower():
 current_entry = entry
 break
 domains = []
 concepts = []
 for concept in current_entry.findall("Concept"):
 concepts.append(concept.text)
 source = concept.find("ConceptAnnotation").text

domains.append(glossary.find("GlossaryRef[@id='"+source+"']").fi
nd("OriginDomain").text.replace(" ",""))
 for sim_algorithm in sim_algorithms:
 sim_store = data_store.setdefault(sim_algorithm, {})
 term_sim_list = get_term_sim_list(term.lower(),
sim_algorithm)
 for linkage_type in linkage_types:
 link_store = sim_store.setdefault(linkage_type,
[])
 temp_dia = []
 temp_thres = 0
 for threshold in range(0, 101, 1):
 try:
 clusters = cluster(term_sim_list,
threshold/float(100), linkage_type)
 clusterList = clusters.tolist()
 except UnboundLocalError:
 issue = True
 clusters = [1]
 clusterList = clusters

73

 term_cache = cache.setdefault(term, {})
 domain_cache =
term_cache.setdefault("domains", domains)
 concept_cache =
term_cache.setdefault("concepts", concepts)
 data_cache = term_cache.setdefault("data",
{})
 sim_algorithm_cache =
data_cache.setdefault(sim_algorithm, {})
 linkage_type_cache =
sim_algorithm_cache.setdefault(linkage_type, {})
 clusterDiameters =
getClusterDistances(clusterList, term_sim_list)
 cur_thres = str(threshold)
 if clusterDiameters != temp_dia:
 temp_dia = clusterDiameters
 temp_thres = cur_thres

 linkage_type_cache[threshold] =
(clusterList, clusterDiameters)

Z = linkage(term_sim_list,
method=linkage_type)
dendrogram(Z)
plt.show()
if temp_thres != "0" and temp_thres != "1":
link_store.append(temp_thres)
for sim in data_store:
print sim
for lin in data_store[sim]:
data = map(int, data_store[sim][lin])
print '\t',lin
print '\t\t', numpy.mean(data)
with open(sim + '_' + lin + '.csv', 'w') as f:
writer = csv.writer(f)
writer.writerows([data])
 with open("cache.json", "w") as f:
 json.dump(cache, f)

sem_cluster.py

""" Contains helper functions for thesisapp.py to use in AJAX
calls """

import json
import numpy

74

import math

terms = ["html", "constraint", "process", "database", "ftp",
"atm", "virus", "bandwidth", "firewall", "browser", "software",
"internet", "url", "gif", "download", "upload"]
sim_algorithms = ["lsi", "lda", "cosine"]
linkage_types = ["complete", "average"]

def get_clusters(term, sim_algorithm, linkage_type, threshold):
 text = ''
 with open("term_concept_dict.json") as f:
 term_concept_dict = json.load(f)
 source = term_concept_dict[term]
 with open("cache.json") as f:
 cache = json.load(f)
 clusters =
cache[term]["data"][sim_algorithm][linkage_type][str(int(float(t
hreshold)))][0]
 domains = cache[term]["domains"]
 clusterWidths =
cache[term]["data"][sim_algorithm][linkage_type][str(int(float(t
hreshold)))][1]
 clusterColors = get_cluster_colors(clusterWidths)
 clusters = numpy.array(clusters)
 for x in range(max(clusters)):
 clusterFrequency = clusters.tolist().count(x+1)
 clusterWidth = clusterWidths[x]
 text += "<div class='cluster' style='background-
color:rgba(" + clusterColors[x] + ",.2)'><h4>Group " + str(x+1)
+ '</h4>'
 for y in range(clusterFrequency):
 domain =
domains[numpy.flatnonzero(clusters==x+1)[y]]
 text += "<p class='"+ domain + "' title='" + domain
+ "'>" + source[numpy.flatnonzero(clusters==x+1)[y]] +
'</p><hr>'
 #remove trailing horizontal rule
 text = text[:-4]
 text += '</div>'
 text += '<div class="clear"></div>'

 return text

if __name__ == '__main__':
 get_clusters("html", "lsi", "complete", float(50)/100)

75

thesisapp.py

""" The main script for the Crowdsourcing Application """
import webapp2
import sem_cluster
import json
from google.appengine.ext import ndb

class ClustererResponse(ndb.Model):
 """Models a clusterer's response with content and date."""
 gender = ndb.StringProperty()
 age = ndb.StringProperty()
 techy = ndb.StringProperty()
 term = ndb.StringProperty()
 lsi_complete = ndb.IntegerProperty()
 lsi_complete_rating = ndb.IntegerProperty()
 lsi_average = ndb.IntegerProperty()
 lsi_average_rating = ndb.IntegerProperty()
 lda_complete = ndb.IntegerProperty()
 lda_complete_rating = ndb.IntegerProperty()
 lda_average = ndb.IntegerProperty()
 lda_average_rating = ndb.IntegerProperty()
 cosine_complete = ndb.IntegerProperty()
 cosine_complete_rating = ndb.IntegerProperty()
 cosine_average = ndb.IntegerProperty()
 cosine_average_rating = ndb.IntegerProperty()
 date = ndb.DateTimeProperty(auto_now_add=True)

class MainPage(webapp2.RequestHandler):

 def get(self):
 html = ""
 html += '<script src="static/jquery.js"></script>'
 html += '<script src="static/script.js"></script>'
 html += '<script src="static/bootstrap-
slider.js"></script>'
 html += '<link rel="stylesheet"
href="static/style.css">'
 html += '<link rel="stylesheet"
href="static/bootstrap.css">'
 html += '<link rel="stylesheet"
href="static/slider.css">'
 html += '<h1>Instructions:</h1>'
 html += '<p class="instructionParagraph">The first
section is a simple survey designed to gather general data about
your background. No personally identifiable information will be
collected so please answer as accurately as you can.'

76

 html += '<p class="instructionParagraph">The following
section consists of first choosing a term. Six different
interactive windows will then appear beneath. Each term has a
number of different definitions which have been found and
gathered from all over the internet. For each interactive
window, your task is to drag the slider (or click the + and -
buttons) found in the top left until the definitions are grouped
together by meaning as best as you can. As the slider
moves from left to right, the definitions will begin to group
together more and more until eventually (when the slider is all
the way to the right) they will be in a single group. The total
number of definitions never changes, only their groupings with
eachother. It may be easier to start the slider all the way to
the right and then slowly move it left until an ideal set of
groups is formed. This will need to be done six times for the
chosen term in order to evaluate different test variables in the
experiment. The groupings will most likely not be perfect, so
try to find the spot on the slider where it is the CLOSEST to
how you would group them if you were told to group the
definitions manually by meaning. After each slider you
will find a simple question asking you to rate the resulting
groups by how well they group concepts by meaning.</p>'
 html += '<p class="instructionParagraph">The background
color of each group will change from green to red according to
definition density. In other words, greener groups are more
closely related (according to the computer) while redder groups
are less closely related. While it is intended to be an aid to
your task, you may ignore it when finding your ideal groups.
Each definition also has a dotted colored border which
identifies the domain from which the definition was retrieved.
Hovering over a definition will reveal this domain if so
desired.</p>'
 html += '<p class="instructionParagraph">After you
complete the exercise, click the submit button at the bottom of
the page. If you want, you can then hit the back button on your
browser and select a different term and repeat the exercise.
Either way, thank you so much for your help with this and have
fun!'

 html += '<h3 style="float:right"> - Owen</h3>

'
 html += '<h1>Part 1 - Survey</h1>'
 html += '<form action="/storeData" method="post">'
 html += '<h4>My gender is:</h4>'
 html += '<input type="radio" name="gender" value="m"
required>Male
'
 html += '<input type="radio" name="gender"
value="f">Female
'

77

 html += '<h4>My age range is:</h4>'
 html += '<input type="radio" name="age" value="10-19"
required>10-19
'
 html += '<input type="radio" name="age" value="20-
29">20-29
'
 html += '<input type="radio" name="age" value="30-
39">30-39
'
 html += '<input type="radio" name="age" value="40-
49">40-49
'
 html += '<input type="radio" name="age" value="50-
59">50-59
'
 html += '<input type="radio" name="age" value="60"><span
class="survey">60+
'
 html += '<h4>I would consider myself as being computer
savvy or "techy"</h4>'
 html += '<input type="radio" name="techy" value="true"
required>True
'
 html += '<input type="radio" name="techy"
value="false">False
'

 html += '<h1>Part 2 - Grouping</h1>'
 html += '<label>Term : </label><select
id="termSelect" name="termSelect"><option> - Select a Term -
</option>'
 for term in sem_cluster.terms:
 html += '<option value="' + term + '">' + term +
'</option>'
 html += '</select>'
 html += '<div id="termDiv"></div>'
 html += '</form>'

 self.response.write(html)

class getCache(webapp2.RequestHandler):

 def get(self):
 cache = []
 with open("cache.json") as f:
 cache = json.load(f)
 jsonObject = json.dumps(cache)
 self.response.write(jsonObject)

class getTerm(webapp2.RequestHandler):

 def get(self):
 html = ''
 term = self.request.get('term')

78

 html += "<h2>Term - " + term + "</h2>"
 count = 0
 for sim_algorithm in sem_cluster.sim_algorithms:
 for linkage_type in sem_cluster.linkage_types:
 count += 1
 html += "<h3>" + term + " " + str(count) + " ("
+ sim_algorithm + " similarity - " + linkage_type + "
linkage)</h3>"
 html += """<div class='clusterWrapper'>
 <input type='button' value='-'
class='adjuster'><input type='text' class='termSlider' value=''
data-slider-min='50' data-slider-max='100' data-slider-step='1'
data-slider-tooltip='hide' data-slider-value='50' data-term='"""
+ term + """' data-sim_algorithm='""" + sim_algorithm + """'
data-linkage_type='""" + linkage_type + """'/> <input
type='button' value='+' class='adjuster'/>
 <div class="clusterContents"></div>
 <input type='hidden'
class='clusterslider' name='clusterslider' id='""" + term + "_"
+ sim_algorithm + "_" + linkage_type + """' value='0'>
 </div>"""
 html += "<center><h4>The groups above are"
 html += "<input type='radio'
id='1"+sim_algorithm+linkage_type+"' name='termRating" +
str(count) + "' value='1' required><label
for='1"+sim_algorithm+linkage_type+"'>Barely</label>"
 html += "<input type='radio'
id='2"+sim_algorithm+linkage_type+"' name='termRating" +
str(count) + "' value='2'><label
for='2"+sim_algorithm+linkage_type+"'>Somewhat</label>"
 html += "<input type='radio'
id='3"+sim_algorithm+linkage_type+"' name='termRating" +
str(count) + "' value='3'><label
for='3"+sim_algorithm+linkage_type+"'>Mostly</label>"
 html += "<input type='radio'
id='4"+sim_algorithm+linkage_type+"' name='termRating" +
str(count) + "' value='4'><label
for='4"+sim_algorithm+linkage_type+"'>Exactly</label>"
 html += " grouped by
meaning</h4></center>"

 html += '

<center><input type="submit"
value="Submit"></center>'
 self.response.write(html)

class getClusters(webapp2.RequestHandler):

79

 def get(self):
 self.response.headers['Content-Type'] = 'text/plain'

 term = self.request.get('term')
 sim_algorithm = self.request.get('sim_algorithm')
 linkage_type = self.request.get('linkage_type')
 threshold = self.request.get('threshold')
 text = sem_cluster.get_clusters(term, sim_algorithm,
linkage_type, threshold)
 self.response.write(text)

class storeData(webapp2.RequestHandler):

 def post(self):
 sliders = self.request.get_all('clusterslider')
 rating1 = self.request.get('termRating1')
 rating2 = self.request.get('termRating2')
 rating3 = self.request.get('termRating3')
 rating4 = self.request.get('termRating4')
 rating5 = self.request.get('termRating5')
 rating6 = self.request.get('termRating6')
 term = self.request.get('termSelect')
 clustererResponse = ClustererResponse(gender =
self.request.get('gender'),
 age =
self.request.get('age'),
 techy =
self.request.get('techy'),
 term =
self.request.get('termSelect'),
 lsi_complete =
int(sliders.pop(0)),
 lsi_complete_rating
= int(rating1),
 lsi_average =
int(sliders.pop(0)),
 lsi_average_rating
= int(rating2),
 lda_complete =
int(sliders.pop(0)),
 lda_complete_rating
= int(rating3),
 lda_average =
int(sliders.pop(0)),
 lda_average_rating
= int(rating4),
 cosine_complete =

80

int(sliders.pop(0)),
 cosine_complete_rating
= int(rating5),
 cosine_average =
int(sliders.pop(0)),

cosine_average_rating = int(rating6))
 clustererResponse.put()
 html = "<h2>Your responses have been stored. Thanks so
much for your help and have a wonderful day!</h2>"
 html += "<h2>If you wish to evaluate another term,
please hit your back button and choose a different one.</h2>"
 html += "<h3>Otherwise, you may now close your
browser</h3>"
 self.response.write(html)

application = webapp2.WSGIApplication([
 ('/', MainPage),
 ('/getTerm', getTerm),
 ('/getClusters', getClusters),
 ('/storeData', storeData),
 ('/cache', getCache),
], debug=True)

script.js

// Contains all custom JS needed for clustering app

$(document).ready(function() {
 var cache;
 $.getJSON("/cache", function(data) {
 cache = data;
 });

 $("#termSelect").change(function() {
 var term = $(this).val();
 $.get("/getTerm", { term:term }, function(data) {
 $("#termDiv").html(data);
 $(".adjuster").unbind().click(function() {
 value = $(this).val();
 val = parseInt($(".clusterslider",
$(this).parent()).val());
 if (value == "+") {
 val += 1;
 }
 else {

81

 val -= 1;
 }
 $(".clusterslider", $(this).parent()).val(val);
 $(".termSlider",
$(this).parent()).slider('setValue', val).trigger("slide");

 });
 $(".termSlider").slider()
 .on('slide', {cool:$(this).attr("data-term")},
function(ev) {
 var text = "";
 var term = $(this).attr("data-term");
 var sim_algorithm = $(this).attr("data-
sim_algorithm");
 var linkage_type = $(this).attr("data-
linkage_type");
 var threshold =
$(this).data('slider').getValue();
 var clusters =
cache[term].data[sim_algorithm][linkage_type][threshold][0];
 var domains = cache[term].domains;
 var concepts = cache[term].concepts;
 var widths =
cache[term].data[sim_algorithm][linkage_type][threshold][1];
 var clusterColors =
get_cluster_colors(widths);
 var temp = []
 for (var i = 0; i < clusters.length; i++) {
 value = clusters[i] - 1;
 if (temp[value] instanceof Array) {
 temp[value].push(i);
 }
 else {
 temp[value] = [i];
 }
 }
 for (var i = 0; i < temp.length; i++) {
 text += "<div class='cluster'
style='background-color:rgba(" + clusterColors[i] +
",.2)'><h4>Group " + (i+1) + '</h4>'
 for (var j = 0; j < temp[i].length; j++)
{
 originIndex = temp[i][j];
 originText = concepts[originIndex]
 domain = domains[originIndex]
 text += "<p class='"+ domain + "'
title='" + domain + "'>" + originText + '</p><hr>';

82

 }
// text = text[:-4]
 text = text.substring(0, text.length -
4);

 text += '</div>'
 }
 text += '<div class="clear"></div>'
 $(this).parent().next().next().html(text);

$("#"+term+"_"+sim_algorithm+"_"+linkage_type).val(threshold);
 });
 $(".termSlider").trigger("slide");
 });
 });

 function get_cluster_colors(clusterWidths) {
 colors = [];
 for (var i = 0; i < clusterWidths.length; i++) {
 width = clusterWidths[i];
 if (width >= 1) {
 width = .99;
 }
 width *= 511;

 redValue = 0;
 greenValue = 0;
 if (width < 255) {
 greenValue = 255;
 redValue = Math.round(Math.sqrt(width) * 16);
 }
 else {
 redValue = 255;
 width = width - 255;
 greenValue = 256 - Math.round(width * width /
255);
 }
 colors.push(redValue + "," + greenValue + "," +
"0");
 }

 return colors
 }
});

style.css

83

body {
 font-size: 12px
!important;
 margin:10px !important;
}

.clear {
 clear:both;
}

.cluster {
 display:inline-table;
 width:200px;
 margin-right:5px;
 white-space:normal;
 padding:5px;
}

.clusterContents {
 height:650px;
 overflow:auto;
}

.clusterWrapper {
 white-space:nowrap;
 margin-left:25px;
 border: solid 1px gray;
 background-
color:lightgray;
}

h2 {
 margin-left:15px;
}

h3 {
 margin-left:25px;
 margin-bottom:0px;
}

input[type="radio"] {
 margin-left:15px
!important;
}

.instructionParagraph {
 font-size:18px;

}
p {
 margin-top:0px;
}

.cluster p {
 padding:3px;
 border-style: dotted;
 border-width: 1px;
 border-radius: 5px;
}

hr {
 border-top-color:black
!important;
 margin-top:5px
!important;
 margin-bottom:10px
!important;
}

.survey {
 font-size:15px;
 margin-left:5px;
 position:relative;
 top:-2px;
}

.GraphicDesign {
 border-color: red;
}

.InformationTechnology {
 border-color: blue;
}

.Telecommunications {
 border-color: green;
}

.UserExperienceDesign {
 border-color: purple;
}

.ComputerScience {
 border-color: orange;
}

84

.SoftwareEngineering {
 border-color: yellow;
}

.Workflow {
 border-color: cyan;
}

.SoftwareandSystemEngineering
{
 border-color: white;
}

.RequirementsEngineering {
 border-color: fuchsia;
}

.BusinessProcessManagement {
 border-color: peru;
}

.InformationSecurity {
 border-color: teal;
}

.InformationSystems {
 border-color: chartreuse;
}

