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ABSTRACT
Getting inspired by the famous no-three-in-line problem and by the general position subset selec-
tion problem from discrete geometry, the same is introduced into graph theory as follows. A set S
of vertices in a graph G is a general position set if no element of S lies on a geodesic between
any two other elements of S. The cardinality of a largest general position set is the general pos-
ition number gpðGÞ of G. The graphs G of order n with gpðGÞ 2 f2, n, n� 1g were already charac-
terized. In this paper, we characterize the classes of all connected graphs of order n � 4 with the
general position number n� 2:
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1. Introduction

The general position problem in graphs was introduced by
P. Manuel and S. Klav�zar [6] as a natural extension of the
well-known century old Dudeney’s no-three-in-line problem
and the general position subset selection problem from dis-
crete geometry [3, 4, 9]. The general position problem in
graph theory was introduced in [6] as follows. A set S of verti-
ces in a graph G is a general position set if no element of S lies
on a geodesic between any two other elements of S. A largest
general position set is called a gp-set and its size is the general
position number (gp-number, in short), gpðGÞ, of G.

The same concept was in use two years earlier in [2]
under the name geodetic irredundant sets. The concept was
defined in a different method, see the preliminaries below.
In [2] it is proved that for a connected graph of order n, the
complete graph of order n is the only graph with the largest
general position number n; and gpðGÞ ¼ n� 1 if and only if
G ¼ K1 þ [j mjKj with

P
mj � 2 or G ¼ Kn � fe1, e2, :::, ekg

with 1 � k � n� 2, where ei’s all are edges in Kn which are
incident to a common vertex v. In [6], certain general upper
and lower bounds on the gp-number are proved. In the
same paper it is proved that the general position problem is
NP-complete for arbitrary graphs. The gp-number for a
large class of subgraphs of the infinite grid graph, for the
infinite diagonal grid, and for Bene�s networks were obtained
in the subsequent paper [7]. Anand et al. [1] gives a charac-
terization of general position sets in arbitrary graphs. As a
consequence, the gp-number of graphs of diameter 2,
cographs, graphs with at least one universal vertex, bipartite
graphs and their complements were obtained. Subsequently,
gp-number for the complements of trees, of grids, and of

hypercubes were deduced in [1]. Recently, in [5] a sharp
lower bound on the gp-number is proved for Cartesian
products of graphs. In the same paper the gp-number for
joins of graphs, coronas over graphs, and line graphs of
complete graphs are determined. Recent developments on
general position number can be seen in [8].

2. Preliminaries

Graphs used in this paper are finite, simple and undirected.
The distance dGðu, vÞ between u and v is the minimum
length of an u, v-path. An u, v-path of minimum length is
also called an u, v- geodesic. The maximum distance between
all pairs of vertices of G is the diameter, diamðGÞ, of G. A
subgraph H of a graph G is isometric subgraph if dHðu, vÞ ¼
dGðu, vÞ for all u, v 2 VðHÞ: The interval IG½u, v� between
vertices u and v of a graph G is the set of vertices that lie
on some u, v-geodesic of G. For S � VðGÞ we set IG½S� ¼
[u, v2SIG½u, v�: We may simplify the above notation by omit-
ting the index G whenever G is clear from the context.

A set of vertices S � VðGÞ is a general position set of G if
no three vertices of S lie on a common geodesic in G. A gp-set
is thus a largest general position set. Call a vertex v 2 T �
VðGÞ to be an interior vertex of T, if v 2 I½T � fvg�: Now, T is
a general position set if and only if T contains no interior ver-
tices. In this way general position sets were introduced in [2]
under the name geodetic irredundant sets. The maximum
order of a complete subgraph of a graph G is denoted by
xðGÞ: Let gðGÞ be the maximum order of an induced com-
plete multipartite subgraph of the complement of G. Finally,
for n 2 N we will use the notation ½n� ¼ f1, :::, ng:

In this paper, we make use of the following results.
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Theorem 2.1. [2] Let G be a connected graph of order n and
diameter d. Then gpðGÞ � n� d þ 1:

Theorem 2.2. [2] For any cycle Cn ðn � 5Þ, gpðCnÞ ¼ 3:
We recall the characterization of general position sets

from [1], for which we need some additional information.
Let G be a connected graph, S � VðGÞ, and P ¼ fS1, :::, Spg
a partition of S. Then P is distance-constant if for any i, j 2
½p�, i 6¼ j, the distance d(u, v), where u 2 Si and v 2 Sj is
independent of the selection of u and v. If P is a distance-
constant partition, and i, j 2 ½p�, i 6¼ j, then let dðSi, SjÞ be
the distance between a vertex from Si and a vertex from Sj.
Finally, we say that a distance-constant partition P is in-
transitive if dðSi, SkÞ 6¼ dðSi, SjÞ þ dðSj, SkÞ holds for arbitrary
pairwise different i, j, k 2 ½p�:

Theorem 2.3. [1] Let G be a connected graph. Then S �
VðGÞ is a general position set if and only if the components
of G½S� are complete subgraphs, the vertices of which form an
in-transitive, distance-constant partition of S.

Theorem 2.4. [1] If diamðGÞ ¼ 2, then gpðGÞ ¼
maxfxðGÞ, gðGÞg:

3. The characterization

In the following, we characterize all connected graphs G of
order n � 4 with the gp- number n� 2: Since the complete
graph Kn is the only connected graph of order n with the
gp-number n, by Theorem 2.1, we need to consider only
graphs with diameter 2 or 3. First, we introduce four fami-
lies of graphs with the diameter 3; and four families of
graphs with the diameter 2.

Let F 1 be the collection of all graphs obtained from the
cycle C : u1, u2, u3, u4, u1 by adding k new vertices
v1, v2, :::, vk(k � 1Þ and joining each vi, i 2 ½k� to the vertex
u1: Graphs from the family F 1 are presented in Figure 1.

Let F 2 be the collection of all graphs obtained from the
path P2 : x, y and complete graphs Kn1 ,Kn2 , :::,Knrðr � 1Þ,
Km1 ,Km2 , :::,Kmsðs � 1Þ and Kl1 ,Kl2 , :::,Klt (possibly complete
graphs of this kind may be empty), by joining both x and y
to all vertices of Kl1 ,Kl2 , :::,Klt ; joining x to all vertices of
Kn1 ,Kn2 , :::,Knr ; and joining y to all vertices of
Km1 ,Km2 , :::,Kms : Graphs from the family F 2 are presented
in Figure 2. Trees with diameter 3 are called double stars
and they belong to the class F 2:

Let F 3 be the collection of all graphs obtained from the
path P4 : u, x, y, v and a complete graph Krðr � 1Þ by joining
both u and x to all vertices of Kr and joining y to a subset S of
vertices of VðKrÞ (possibly S may be empty or S ¼ VðKrÞ).
Graphs from the family F 3 are presented in Figure 3.

Let F 4 be the collection of all graphs obtained from the
path P3 : x, y, v and complete graphs Kq,Kn1 ,Kn2 , :::,Knrðr �
1Þ, Km1 ,Km2 , :::,Kmsðs � 1Þ by joining x to all vertices of
Kn1 ,Kn2 , :::,Knr ; joining x and v to all vertices of
Km1 ,Km2 , :::,Kms ; joining x and y to all vertices of Kq:
Graphs from the family F 4 are presented in Figure 4.

Figure 1. Family F 1:

Figure 2. Family F 2:

Figure 3. Family F 3:
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Next, we introduce four families of graphs with diam-
eter 2.

Let F 5 be the collection of all graphs obtained from the
complete graph Kn�2ðn � 5Þ by adding two new vertices u
and v, joining u to all vertices of non-empty subset S of
VðKn�2Þ of size at most n – 3; and joining v to all vertices
of non-empty subset T of VðKn�2Þ of size at most n� 3:
The set S must intersect with the set T so that, the diameter
of each graph from the family F 5 is 2. Graphs from the
family F 5 are presented in Figure 5.

Let F 6 be the collection of all graphs obtained from the
family F 5 by adding the edge uv. Moreover; in this case, the
set S may be disjoint with the set T. Graphs from the family
F 6 are presented in Figure 6.

Let F 7 be the collection of all graphs obtained from the
complete graphs Kn1 ,Kn2 , :::,Knrðr � 2Þ by adding two new
vertices x and y, joining x to a non-empty subset Si of
VðKniÞ for all i 2 ½r�; and y to a non-empty subset Ti of
VðKniÞ for all i 2 ½r� (the edges are in a way that for any
u 2 VðKniÞ and v 2 VðKnjÞ with i 6¼ j must have a common
neighbor). Moreover, for some i 2 ½r�; the set Si must

intersect with the set Ti so that, the diameter of each graph
from the family F 7 is 2. Graphs from the family F 7 are pre-
sented in Figure 7. It is clear that both C4 and C5 belong to
class F 7:

Let F 8 the collection of all graphs obtained from the
family F 7 by adding the edge xy. In this case, the set Si may
be disjoint with the set Ti for all i 2 ½r�: Graphs from the
family F 8 are presented in Figure 8.

Theorem 3.1. Let G be a connected graph of order n � 4,
then gpðGÞ ¼ n� 2 if and only if G belongs to the fam-
ily [8

i¼1F i:

Proof . First, suppose that G is a connected graph of order
n with gpðGÞ ¼ n� 2: Then it follows from Theorem 2.1
that diamðGÞ is either 2 or 3. We consider the following
two cases.

Case 1: diam(G) ¼ 3. If G is a tree, then G is a double star
and hence it belongs to F 2: So, assume that G has cycles.
Let girthðGÞ denotes the length of a shortest cycle in G.

Let C be any shortest cycle in G. Then it is clear that C is
an isometric subgraph of G. This shows that if S is a general
position set in G, then S \ VðCÞ is a general position set in C.
Hence it follows from Theorem 2.2 that any general position

Figure 4. Family F 4:

Figure 5. Family F 5:

Figure 6. Family F 6:

Figure 7. Family F 7:
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set of G contains at most three vertices from the cycle C. Now,
since gpðGÞ ¼ n� 2, we have that the length of C is at most 5
and so girthðGÞ � 5:

Next, we claim that there is no connected graph of order
n with girthðGÞ ¼ 5 and gpðGÞ ¼ n� 2: For, assume the
contrary that there is a connected graph of order n with
girthðGÞ ¼ 5 and gpðGÞ ¼ n� 2: Let C : u1, u2, u3, u4, u5, u1
be a shortest cycle of length 5 in G. Since girthðGÞ ¼ 5, it
follows that the vertices from NðuiÞ are independent for all
i 2 ½5�: Also, as above we have that any general position set
of G has at most three vertices from the cycle C. Let S be a
general position set in G. Since gpðGÞ ¼ n� 2, we have that
S ¼ VðGÞ n fui, ujg: If ui and uj are sucessive vertices in C,
then it follows that the induced subgraph of S has a P3,
which is impossible. Hence without loss of generality, we
may assume that i¼ 1 and j ¼ 3: So S ¼ VðGÞ n fu1, u3g:
Now, since u2, u4, u5 2 S and NðuiÞ is independent, by
Theorem 2.3, it follows that degðuiÞ � 3 for i ¼ 2, 4, 5: Now
we claim that degðu2Þ ¼ degðu4Þ ¼ degðu5Þ ¼ 2: Otherwise,
we may assume that degðu2Þ ¼ 3 and let x be the neighbour
of u2 different from u1 and u3: Since girthðGÞ ¼ 5, it follows
that x is not adjacent with the remaining vertices of C. Now,
since u2, u5, x 2 S, by Theorem 2.3, dðu5, xÞ ¼ dðu5, u2Þ ¼ 2:
Let P : u5, y, x be a u5, x-geodesic of length 2. Then it is clear
that y 62 VðCÞ and so y 2 S: This leads to the fact that
induced subgraph of S has a P3, impossible in a general pos-
ition set. Hence degðu2Þ ¼ 2: Similarly degðu4Þ ¼
degðu5Þ ¼ 2:

Now, if Nðu1Þ 6¼ ;, then u5 2 I½x, u4� for all x 2 Nðu1Þ
(otherwise S contains an induced P3), impossible. Hence
Nðu1Þ ¼ ;: Similarly, Nðu2Þ ¼ ;: Hence G ffi C5: But
gpðC5Þ ¼ 3 ¼ n� 2 and diamðGÞ ¼ diamðC5Þ ¼ 2: Hence
there is no connected graph of order n with diamðGÞ ¼ 3,
girthðGÞ ¼ 5 and gpðGÞ ¼ n� 2: Hence girthðGÞ is at
most 4.

Now, assume that girthðGÞ ¼ 4 and let C :
u1, u2, u3, u4, u1 be a shortest cycle of length 4 in G. Since
diamðGÞ ¼ 3, we have that G6ffiC4: Now, we may assume
that u1 2 VðCÞ be a vertex such that degðu1Þ � 3 and let x
be a neighbour of u1 such that x 62 VðCÞ: Since S is a gen-
eral position set and jSj ¼ n� 2, we have that S contains
exactly 2 vertices from C. We claim that u1 62 S: For other-
wise assume that u1 2 S: Since jSj ¼ n� 2 and x, u1 2 S, it
follows from Theorem 2.3 that u2, u4 62 S and u3 2 S: This
shows that the path x, u1, u2, u3 must be a x, u3- geodesic

(otherwise, since jSj ¼ n� 2, S contains an induced P3:
Hence dðx, u3Þ 6¼ dðu1, u3Þ, which is impossible in a general
position set. Hence u1 62 S:

Now, we claim that u1 is the unique vertex in C with
degree at least 3. Assume the contrary that there exists uj 2
C with j 6¼ 1 and degðujÞ � 3: Then as above we have that
uj 62 S: Now, if ui and uj are adjacent vertices in C, then we
can assume that j ¼ 2: It follows from the fact that S is a
general position set of size n� 2, dðu3, xÞ ¼ 3 and
u3, u4, u1, x is a geodesic in G, where x is a neighbour of u1
such that x 62 VðCÞ: This shows that the vertices x, u4, u3, x
lie on a common geodesic, a contradiction. Similarly if u1
and uj are non adjacent vertices in C then uj ¼ u3 and u2,
u4 belong to S. Moreover, as above S is a general position
set of size n� 2, we have that x, y 2 S and dðx, yÞ ¼ 4,
where x 2 Nðu1Þ n VðCÞ and y 2 Nðu3Þ n VðCÞ, which is
impossible. Thus u1 is the unique vertex in C with
degðu1Þ � 3: Also, since girthðGÞ ¼ 4, we have that Nðu1Þ
induces an independent set. Hence the graph belongs
to F 1:

Now, consider girthðGÞ ¼ 3 and diamðGÞ ¼ 3: Let P :
u, x, y, v be a u, v- shortest path in G of length 3. Then S
contains atmost 2 vertices from VðPÞ: Since jSj ¼ n� 2, we
have that S contains exactly two vertices from VðPÞ: We
consider the following four cases.
Subcase 1.1: u, v 2 S: Then x, y 62 S: Moreover, S ¼
VðGÞ n fx, yg: Now, let z be any neighbour of u. Since S is a
general position set of size n� 2, it follows that I½z, v� �
VðPÞ: This shows that dðz, vÞ � 3: If dðz, vÞ ¼ 2, then z
must be adjacent with y and so u, z, y, v is a u, v� geodesic,
which contradicts the fact that S is a general position set.
Hence dðz, vÞ ¼ 3 and since I½z, v� � VðPÞ, we have that z is
adjacent with x but it is not adjacent with y. Similarly, we
have that any neighbour of v is adjacent with y but non-
adjacent with x. Now, assume that z be any vertex in G such
that z 62 VðPÞ and z is non-adjacent with both u and v.
Then as in the previous case, we have that I½z, v� � VðPÞ:
Also, we have dðz, vÞ 2 f2, 3g and dðz, uÞ 2 f2, 3g: Hence it
follows that z is adjacent to x or y or both. Also, by
Theorem 2.3, we have that the components of S are in-tran-
sitive distance-constant cliques. Hence the graph reduces to
the class F 2:
Subcase 1.2: u, x 2 S: Then y, v 62 S and S ¼ VðGÞ n fy, vg:
Now, let z be any vertex in G such that z 62 VðPÞ: Then, we
have that I½z, u� � VðPÞ: Moreover, by Theorem 2.3,
dðz, uÞ ¼ dðz, xÞ: If dðz, xÞ ¼ 2, then I½z, x� � VðPÞ, we have
that z is adjacent to y. But in this case d(z, u) cannot be
equal to 2. Similarly, if dðz, xÞ ¼ 3 then z is adjacent with v
but not y. Then it is clear that dðz, uÞ 6¼ 3: Hence it follows
that dðz, uÞ ¼ dðz, xÞ ¼ 1: Again by Theorem 2.3, VðGÞ n
fy, vg induces a clique. Hence the graph reduces to the
class F 3:
Subcase 1.3: u, y 2 S: Then x, v 62 S and S ¼ VðGÞ n fx, vg:
Now, for any z 62 VðPÞ, we have that I½z, y� � VðPÞ and
I½z, u� � VðPÞ: Thus dðz, yÞ � 3 for all z 62 VðPÞ: If dðz, yÞ ¼
3, then z must be adjacent to u and so by Theorem 2.3,
dðu, yÞ ¼ 3, a contradiction. Thus dðz, yÞ 2 f1, 2g: If
dðz, yÞ ¼ 1, then again by Theorem 2.3, we have that

Figure 8. Family F 8:
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dðu, zÞ ¼ 2 and so z must be adjacent to x. Moreover, fz 62
VðPÞ : dðz, yÞ ¼ 1g induces a clique. Now, if dðz, yÞ ¼ 2,
then by using the same argument, we have that z is either
adjacent to x or z is adjacent to both x and v. Hence the
graph reduces to class F 4:
Subcase 1.4: x, y 2 S: Then u, v 62 S and S ¼ VðGÞ n fu, vg:
Now, for any z 62 VðPÞ, as in the previous case we have that
I½z, x� � VðPÞ and I½z, y� � VðPÞ: Moreover, by Theorem
2.3, dðz, xÞ ¼ dðz, yÞ: Now, if dðz, xÞ 6¼ 1, then dðz, yÞ 6¼ 1:
This shows that z must be adjacent to both u and v, which
is impossible. Hence dðz, xÞ ¼ dðz, yÞ ¼ 1: Hence it follows
from Theorem 2.3, VðGÞ n fu, vg induces a clique.
Moreover, since both x and y belong to S, it is clear that
dðu, zÞ ¼ dðv, zÞ ¼ 2 for all z 62 VðPÞ: Hence in this case the
graph reduces to the family F 2:
Case 2: diamðGÞ ¼ 2: Then by Theorem 2.4, we have
gp(G)¼ maxfxðGÞ, gðGÞg ¼ n� 2: We consider the follow-
ing two subcases.
Subcase 2.1: xðGÞ � gðGÞ: Then gp(G)¼ xðGÞ ¼ n� 2: Let
K be a clique of order n – 2 and let u, v 2 VðGÞ be such
that u, v 62 VðKÞ: Then it is clear that 1 � degðuÞ � n� 3
and 1 � degðvÞ � n� 3: Now, if u and v are adjacent in G,
then G belongs to the family F 6: Otherwise, G belongs to
the family F 5:
Subcase 2.2: gðGÞ > xðGÞ: Then gp(G)¼ gðGÞ ¼ n� 2:
This shows that the complement of G has complete mulipar-
tite subgraph H of order n� 2: Thus the components of the
induced subgraphs of H in G are cliques, say
Kn1 ,Kn2 , :::,Knr : Moreover dðu, vÞ ¼ 2 for all u 2 VðKniÞ and
v 2 VðKnjÞ: Now, let x and y be the vertices in G such that
x, y 62 VðHÞ: Then it is clear that the graph reduces to the
family F 8, when x and y are adjacent in G. Otherwise it
belongs to the family F 7:

On the other hand, if G belongs to the family [8
i¼1F i, by

Theorems 2.1 and 2.3, one can easily verify that gpðGÞ ¼
n� 2: This completes the proof. w
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