Characterization of classes of graphs with large general position number

Elias John Thomas \& Ullas Chandran S. V.

To cite this article: Elias John Thomas \& Ullas Chandran S. V. (2020): Characterization of classes of graphs with large general position number, AKCE International Journal of Graphs and Combinatorics, DOI: 10.1016/j.akcej.2019.08.008

To link to this article: https://doi.org/10.1016/j.akcej.2019.08.008

© 2020 The Author(s). Published with
license by Taylor \& Francis Group, LLC

Published online: 24 Apr 2020.

Submit your article to this journal

Article views: 85

View related articles

View Crossmark data \quad ß

Characterization of classes of graphs with large general position number

Elias John Thomas ${ }^{\text {a }}$ and Ullas Chandran S. V. ${ }^{\text {b }}$ (D)
${ }^{\text {a }}$ Department of Mathematics, Mar Ivanios College, University of Kerala, Thiruvananthapuram, Kerala, India; ${ }^{\text {b }}$ Department of Mathematics, Mahatma Gandhi College, Kesavadasapuram, Thiruvananthapuram, Kerala, India

Abstract

Getting inspired by the famous no-three-in-line problem and by the general position subset selection problem from discrete geometry, the same is introduced into graph theory as follows. A set S of vertices in a graph G is a general position set if no element of S lies on a geodesic between any two other elements of S. The cardinality of a largest general position set is the general position number $\operatorname{gp}(G)$ of G. The graphs G of order n with $\operatorname{gp}(G) \in\{2, n, n-1\}$ were already characterized. In this paper, we characterize the classes of all connected graphs of order $n \geq 4$ with the general position number $n-2$.

KEYWORDS

Diameter; girth; general position set; general position number

AMS SUBJECT
CLASSIFICATION
05C12; 05C69

1. Introduction

The general position problem in graphs was introduced by P. Manuel and S. Klavžar [6] as a natural extension of the well-known century old Dudeney's no-three-in-line problem and the general position subset selection problem from discrete geometry [3, 4, 9]. The general position problem in graph theory was introduced in [6] as follows. A set S of vertices in a graph G is a general position set if no element of S lies on a geodesic between any two other elements of S. A largest general position set is called a $g p$-set and its size is the general position number ($g p$-number, in short), $\operatorname{gp}(G)$, of G.

The same concept was in use two years earlier in [2] under the name geodetic irredundant sets. The concept was defined in a different method, see the preliminaries below. In [2] it is proved that for a connected graph of order n, the complete graph of order n is the only graph with the largest general position number n; and $\operatorname{gp}(G)=n-1$ if and only if $G=K_{1}+\cup_{j} m_{j} K_{j}$ with $\sum m_{j} \geq 2$ or $G=K_{n}-\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$ with $1 \leq k \leq n-2$, where e_{i} 's all are edges in K_{n} which are incident to a common vertex v. In [6], certain general upper and lower bounds on the $g p$-number are proved. In the same paper it is proved that the general position problem is NP-complete for arbitrary graphs. The $g p$-number for a large class of subgraphs of the infinite grid graph, for the infinite diagonal grid, and for Beneš networks were obtained in the subsequent paper [7]. Anand et al. [1] gives a characterization of general position sets in arbitrary graphs. As a consequence, the $g p$-number of graphs of diameter 2 , cographs, graphs with at least one universal vertex, bipartite graphs and their complements were obtained. Subsequently, $g p$-number for the complements of trees, of grids, and of
hypercubes were deduced in [1]. Recently, in [5] a sharp lower bound on the $g p$-number is proved for Cartesian products of graphs. In the same paper the $g p$-number for joins of graphs, coronas over graphs, and line graphs of complete graphs are determined. Recent developments on general position number can be seen in [8].

2. Preliminaries

Graphs used in this paper are finite, simple and undirected. The distance $d_{G}(u, v)$ between u and v is the minimum length of an u, v-path. An u, v-path of minimum length is also called an u, v-geodesic. The maximum distance between all pairs of vertices of G is the diameter, $\operatorname{diam}(G)$, of G. A subgraph H of a graph G is isometric subgraph if $d_{H}(u, v)=$ $d_{G}(u, v)$ for all $u, v \in V(H)$. The interval $I_{G}[u, v]$ between vertices u and v of a graph G is the set of vertices that lie on some u, v-geodesic of G. For $S \subseteq V(G)$ we set $I_{G}[S]=$ $\cup_{u, v \in S} I_{G}[u, v]$. We may simplify the above notation by omitting the index G whenever G is clear from the context.

A set of vertices $S \subseteq V(G)$ is a general position set of G if no three vertices of S lie on a common geodesic in G. A $g p$-set is thus a largest general position set. Call a vertex $v \in T \subseteq$ $V(G)$ to be an interior vertex of T, if $v \in I[T-\{v\}]$. Now, T is a general position set if and only if T contains no interior vertices. In this way general position sets were introduced in [2] under the name geodetic irredundant sets. The maximum order of a complete subgraph of a graph G is denoted by $\omega(G)$. Let $\eta(G)$ be the maximum order of an induced complete multipartite subgraph of the complement of G. Finally, for $n \in \mathbb{N}$ we will use the notation $[n]=\{1, \ldots, n\}$.

In this paper, we make use of the following results.

[^0]Theorem 2.1. [2] Let G be a connected graph of order n and diameter d. Then $\operatorname{gp}(G) \leq n-d+1$.

Theorem 2.2. [2] For any cycle $C_{n}(n \geq 5), \operatorname{gp}\left(C_{n}\right)=3$.
We recall the characterization of general position sets from [1], for which we need some additional information. Let G be a connected graph, $S \subseteq V(G)$, and $\mathcal{P}=\left\{S_{1}, \ldots, S_{p}\right\}$ a partition of S. Then \mathcal{P} is distance-constant if for any $i, j \in$ $[p], i \neq j$, the distance $d(u, v)$, where $u \in S_{i}$ and $v \in S_{j}$ is independent of the selection of u and v. If \mathcal{P} is a distanceconstant partition, and $i, j \in[p], i \neq j$, then let $d\left(S_{i}, S_{j}\right)$ be the distance between a vertex from S_{i} and a vertex from S_{j}. Finally, we say that a distance-constant partition \mathcal{P} is intransitive if $d\left(S_{i}, S_{k}\right) \neq d\left(S_{i}, S_{j}\right)+d\left(S_{j}, S_{k}\right)$ holds for arbitrary pairwise different $i, j, k \in[p]$.

Theorem 2.3. [1] Let G be a connected graph. Then $S \subseteq$ $V(G)$ is a general position set if and only if the components of $G[S]$ are complete subgraphs, the vertices of which form an in-transitive, distance-constant partition of S.

Theorem 2.4. [1] If $\operatorname{diam}(G)=2$, then $\operatorname{gp}(G)=$ $\max \{\omega(G), \eta(G)\}$.

3. The characterization

In the following, we characterize all connected graphs G of order $n \geq 4$ with the $g p$ - number $n-2$. Since the complete graph K_{n} is the only connected graph of order n with the g p-number n, by Theorem 2.1, we need to consider only graphs with diameter 2 or 3 . First, we introduce four families of graphs with the diameter 3; and four families of graphs with the diameter 2 .

Let \mathcal{F}_{1} be the collection of all graphs obtained from the cycle $C: u_{1}, u_{2}, u_{3}, u_{4}, u_{1}$ by adding k new vertices $v_{1}, v_{2}, \ldots, v_{k}(k \geq 1)$ and joining each $v_{i}, i \in[k]$ to the vertex u_{1}. Graphs from the family \mathcal{F}_{1} are presented in Figure 1.

Let \mathcal{F}_{2} be the collection of all graphs obtained from the path $P_{2}: x, y$ and complete graphs $K_{n_{1}}, K_{n_{2}}, \ldots, K_{n_{r}}(r \geq 1)$, $K_{m_{1}}, K_{m_{2}}, \ldots, K_{m_{s}}(s \geq 1)$ and $K_{l_{1}}, K_{l_{2}}, \ldots, K_{l_{t}}$ (possibly complete graphs of this kind may be empty), by joining both x and y to all vertices of $K_{l_{1}}, K_{l_{2}}, \ldots, K_{l_{t}}$; joining x to all vertices of $K_{n_{1}}, K_{n_{2}}, \ldots, K_{n_{r}} ;$ and joining y to all vertices of $K_{m_{1}}, K_{m_{2}}, \ldots, K_{m_{s}}$. Graphs from the family \mathcal{F}_{2} are presented in Figure 2. Trees with diameter 3 are called double stars and they belong to the class \mathcal{F}_{2}.

Let \mathcal{F}_{3} be the collection of all graphs obtained from the path $P_{4}: u, x, y, v$ and a complete graph $K_{r}(r \geq 1)$ by joining both u and x to all vertices of K_{r} and joining y to a subset S of vertices of $V\left(K_{r}\right)$ (possibly S may be empty or $S=V\left(K_{r}\right)$). Graphs from the family \mathcal{F}_{3} are presented in Figure 3.

Let \mathcal{F}_{4} be the collection of all graphs obtained from the path $P_{3}: x, y, v$ and complete graphs $K_{q}, K_{n_{1}}, K_{n_{2}}, \ldots, K_{n_{r}}(r \geq$ 1), $K_{m_{1}}, K_{m_{2}}, \ldots, K_{m_{s}}(s \geq 1)$ by joining x to all vertices of $K_{n_{1}}, K_{n_{2}}, \ldots, K_{n_{r}} ;$ joining x and v to all vertices of $K_{m_{1}}, K_{m_{2}}, \ldots, K_{m_{s}}$; joining x and y to all vertices of K_{q}. Graphs from the family \mathcal{F}_{4} are presented in Figure 4.

Figure 1. Family \mathcal{F}_{1}.

Figure 2. Family \mathcal{F}_{2}.

Figure 3. Family \mathcal{F}_{3}.

Figure 4. Family \mathcal{F}_{4}.

Figure 5. Family \mathcal{F}_{5}.

Next, we introduce four families of graphs with diameter 2.

Let \mathcal{F}_{5} be the collection of all graphs obtained from the complete graph $K_{n-2}(n \geq 5)$ by adding two new vertices u and v, joining u to all vertices of non-empty subset S of $V\left(K_{n-2}\right)$ of size at most $n-3$; and joining v to all vertices of non-empty subset T of $V\left(K_{n-2}\right)$ of size at most $n-3$. The set S must intersect with the set T so that, the diameter of each graph from the family \mathcal{F}_{5} is 2 . Graphs from the family \mathcal{F}_{5} are presented in Figure 5.

Let \mathcal{F}_{6} be the collection of all graphs obtained from the family \mathcal{F}_{5} by adding the edge $u v$. Moreover; in this case, the set S may be disjoint with the set T. Graphs from the family \mathcal{F}_{6} are presented in Figure 6.

Let \mathcal{F}_{7} be the collection of all graphs obtained from the complete graphs $K_{n_{1}}, K_{n_{2}}, \ldots, K_{n_{r}}(r \geq 2)$ by adding two new vertices x and y, joining x to a non-empty subset S_{i} of $V\left(K_{n_{i}}\right)$ for all $i \in[r]$; and y to a non-empty subset T_{i} of $V\left(K_{n_{i}}\right)$ for all $i \in[r]$ (the edges are in a way that for any $u \in V\left(K_{n_{i}}\right)$ and $v \in V\left(K_{n_{j}}\right)$ with $i \neq j$ must have a common neighbor). Moreover, for some $i \in[r]$; the set S_{i} must

Figure 6. Family \mathcal{F}_{6}.

Figure 7. Family \mathcal{F}_{7}.
intersect with the set T_{i} so that, the diameter of each graph from the family \mathcal{F}_{7} is 2 . Graphs from the family \mathcal{F}_{7} are presented in Figure 7. It is clear that both C_{4} and C_{5} belong to class \mathcal{F}_{7}.

Let \mathcal{F}_{8} the collection of all graphs obtained from the family \mathcal{F}_{7} by adding the edge $x y$. In this case, the set S_{i} may be disjoint with the set T_{i} for all $i \in[r]$. Graphs from the family \mathcal{F}_{8} are presented in Figure 8.

Theorem 3.1. Let G be a connected graph of order $n \geq 4$, then $\operatorname{gp}(G)=n-2$ if and only if G belongs to the family $\cup_{i=1}^{8} \mathcal{F}_{i}$.

Proof . First, suppose that G is a connected graph of order n with $\operatorname{gp}(G)=n-2$. Then it follows from Theorem 2.1 that $\operatorname{diam}(G)$ is either 2 or 3 . We consider the following two cases.

Case 1: $\operatorname{diam}(G)=3$. If G is a tree, then G is a double star and hence it belongs to \mathcal{F}_{2}. So, assume that G has cycles. Let $\operatorname{girth}(G)$ denotes the length of a shortest cycle in G.

Let C be any shortest cycle in G. Then it is clear that C is an isometric subgraph of G. This shows that if S is a general position set in G, then $S \cap V(C)$ is a general position set in C. Hence it follows from Theorem 2.2 that any general position

Figure 8. Family \mathcal{F}_{8}.
set of G contains at most three vertices from the cycle C. Now, since $\operatorname{gp}(G)=n-2$, we have that the length of C is at most 5 and so $\operatorname{girth}(G) \leq 5$.

Next, we claim that there is no connected graph of order n with $\operatorname{girth}(G)=5$ and $\operatorname{gp}(G)=n-2$. For, assume the contrary that there is a connected graph of order n with $\operatorname{girth}(G)=5$ and $\operatorname{gp}(G)=n-2$. Let $C: u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{1}$ be a shortest cycle of length 5 in G. Since $\operatorname{girth}(G)=5$, it follows that the vertices from $N\left(u_{i}\right)$ are independent for all $i \in[5]$. Also, as above we have that any general position set of G has at most three vertices from the cycle C. Let S be a general position set in G. Since $\operatorname{gp}(G)=n-2$, we have that $S=V(G) \backslash\left\{u_{i}, u_{j}\right\}$. If u_{i} and u_{j} are sucessive vertices in C, then it follows that the induced subgraph of S has a P_{3}, which is impossible. Hence without loss of generality, we may assume that $i=1$ and $j=3$. So $S=V(G) \backslash\left\{u_{1}, u_{3}\right\}$. Now, since $u_{2}, u_{4}, u_{5} \in S$ and $N\left(u_{i}\right)$ is independent, by Theorem 2.3, it follows that $\operatorname{deg}\left(u_{i}\right) \leq 3$ for $i=2,4,5$. Now we claim that $\operatorname{deg}\left(u_{2}\right)=\operatorname{deg}\left(u_{4}\right)=\operatorname{deg}\left(u_{5}\right)=2$. Otherwise, we may assume that $\operatorname{deg}\left(u_{2}\right)=3$ and let x be the neighbour of u_{2} different from u_{1} and u_{3}. Since girth $(G)=5$, it follows that x is not adjacent with the remaining vertices of C. Now, since $u_{2}, u_{5}, x \in S$, by Theorem 2.3, $d\left(u_{5}, x\right)=d\left(u_{5}, u_{2}\right)=2$. Let $P: u_{5}, y, x$ be a u_{5}, x-geodesic of length 2 . Then it is clear that $y \notin V(C)$ and so $y \in S$. This leads to the fact that induced subgraph of S has a P_{3}, impossible in a general position set. Hence $\operatorname{deg}\left(u_{2}\right)=2$. Similarly $\operatorname{deg}\left(u_{4}\right)=$ $\operatorname{deg}\left(u_{5}\right)=2$.

Now, if $N\left(u_{1}\right) \neq \emptyset$, then $u_{5} \in I\left[x, u_{4}\right]$ for all $x \in N\left(u_{1}\right)$ (otherwise S contains an induced P_{3}), impossible. Hence $N\left(u_{1}\right)=\emptyset$. Similarly, $N\left(u_{2}\right)=\emptyset$. Hence $G \cong C_{5}$. But $\operatorname{gp}\left(C_{5}\right)=3=n-2$ and $\operatorname{diam}(G)=\operatorname{diam}\left(C_{5}\right)=2$. Hence there is no connected graph of order n with $\operatorname{diam}(G)=3$, $\operatorname{girth}(G)=5$ and $\operatorname{gp}(G)=n-2$. Hence $\operatorname{girth}(G)$ is at most 4.

Now, assume that $\operatorname{girth}(G)=4$ and let C : $u_{1}, u_{2}, u_{3}, u_{4}, u_{1}$ be a shortest cycle of length 4 in G. Since $\operatorname{diam}(G)=3$, we have that $G \nVdash C_{4}$. Now, we may assume that $u_{1} \in V(C)$ be a vertex such that $\operatorname{deg}\left(u_{1}\right) \geq 3$ and let x be a neighbour of u_{1} such that $x \notin V(C)$. Since S is a general position set and $|S|=n-2$, we have that S contains exactly 2 vertices from C. We claim that $u_{1} \notin S$. For otherwise assume that $u_{1} \in S$. Since $|S|=n-2$ and $x, u_{1} \in S$, it follows from Theorem 2.3 that $u_{2}, u_{4} \notin S$ and $u_{3} \in S$. This shows that the path x, u_{1}, u_{2}, u_{3} must be a x, u_{3} - geodesic
(otherwise, since $|S|=n-2, S$ contains an induced P_{3}. Hence $d\left(x, u_{3}\right) \neq d\left(u_{1}, u_{3}\right)$, which is impossible in a general position set. Hence $u_{1} \notin S$.

Now, we claim that u_{1} is the unique vertex in C with degree at least 3 . Assume the contrary that there exists $u_{j} \in$ C with $j \neq 1$ and $\operatorname{deg}\left(u_{j}\right) \geq 3$. Then as above we have that $u_{j} \notin S$. Now, if u_{i} and u_{j} are adjacent vertices in C, then we can assume that $j=2$. It follows from the fact that S is a general position set of size $n-2, \quad d\left(u_{3}, x\right)=3$ and u_{3}, u_{4}, u_{1}, x is a geodesic in G, where x is a neighbour of u_{1} such that $x \notin V(C)$. This shows that the vertices x, u_{4}, u_{3}, x lie on a common geodesic, a contradiction. Similarly if u_{1} and u_{j} are non adjacent vertices in C then $u_{j}=u_{3}$ and u_{2}, u_{4} belong to S. Moreover, as above S is a general position set of size $n-2$, we have that $x, y \in S$ and $d(x, y)=4$, where $x \in N\left(u_{1}\right) \backslash V(C)$ and $y \in N\left(u_{3}\right) \backslash V(C)$, which is impossible. Thus u_{1} is the unique vertex in C with $\operatorname{deg}\left(u_{1}\right) \geq 3$. Also, since $\operatorname{girth}(G)=4$, we have that $N\left(u_{1}\right)$ induces an independent set. Hence the graph belongs to \mathcal{F}_{1}.

Now, consider $\operatorname{girth}(G)=3$ and $\operatorname{diam}(G)=3$. Let P : u, x, y, v be a u, v - shortest path in G of length 3. Then S contains atmost 2 vertices from $V(P)$. Since $|S|=n-2$, we have that S contains exactly two vertices from $V(P)$. We consider the following four cases.
Subcase 1.1: $u, v \in S$. Then $x, y \notin S$. Moreover, $S=$ $V(G) \backslash\{x, y\}$. Now, let z be any neighbour of u. Since S is a general position set of size $n-2$, it follows that $I[z, v] \subseteq$ $V(P)$. This shows that $d(z, v) \leq 3$. If $d(z, v)=2$, then z must be adjacent with y and so u, z, y, v is a u, v^{-}geodesic, which contradicts the fact that S is a general position set. Hence $d(z, v)=3$ and since $I[z, v] \subseteq V(P)$, we have that z is adjacent with x but it is not adjacent with y. Similarly, we have that any neighbour of v is adjacent with y but nonadjacent with x. Now, assume that z be any vertex in G such that $z \notin V(P)$ and z is non-adjacent with both u and v. Then as in the previous case, we have that $I[z, v] \subseteq V(P)$. Also, we have $d(z, v) \in\{2,3\}$ and $d(z, u) \in\{2,3\}$. Hence it follows that z is adjacent to x or y or both. Also, by Theorem 2.3, we have that the components of S are in-transitive distance-constant cliques. Hence the graph reduces to the class \mathcal{F}_{2}.
Subcase 1.2: $u, x \in S$. Then $y, v \notin S$ and $S=V(G) \backslash\{y, v\}$. Now, let z be any vertex in G such that $z \notin V(P)$. Then, we have that $I[z, u] \subseteq V(P)$. Moreover, by Theorem 2.3, $d(z, u)=d(z, x)$. If $d(z, x)=2$, then $I[z, x] \subseteq V(P)$, we have that z is adjacent to y. But in this case $d(z, u)$ cannot be equal to 2 . Similarly, if $d(z, x)=3$ then z is adjacent with v but not y. Then it is clear that $d(z, u) \neq 3$. Hence it follows that $d(z, u)=d(z, x)=1$. Again by Theorem 2.3, $V(G) \backslash$ $\{y, v\}$ induces a clique. Hence the graph reduces to the class \mathcal{F}_{3}.
Subcase 1.3: $u, y \in S$. Then $x, v \notin S$ and $S=V(G) \backslash\{x, v\}$. Now, for any $z \notin V(P)$, we have that $I[z, y] \subseteq V(P)$ and $I[z, u] \subseteq V(P)$. Thus $d(z, y) \leq 3$ for all $z \notin V(P)$. If $d(z, y)=$ 3, then z must be adjacent to u and so by Theorem 2.3, $d(u, y)=3, \quad$ a contradiction. Thus $d(z, y) \in\{1,2\}$. If $d(z, y)=1$, then again by Theorem 2.3, we have that
$d(u, z)=2$ and so z must be adjacent to x. Moreover, $\{z \notin$ $V(P): d(z, y)=1\}$ induces a clique. Now, if $d(z, y)=2$, then by using the same argument, we have that z is either adjacent to x or z is adjacent to both x and v. Hence the graph reduces to class \mathcal{F}_{4}.
Subcase 1.4: $x, y \in S$. Then $u, v \notin S$ and $S=V(G) \backslash\{u, v\}$. Now, for any $z \notin V(P)$, as in the previous case we have that $I[z, x] \subseteq V(P)$ and $I[z, y] \subseteq V(P)$. Moreover, by Theorem 2.3, $d(z, x)=d(z, y)$. Now, if $d(z, x) \neq 1$, then $d(z, y) \neq 1$. This shows that z must be adjacent to both u and v, which is impossible. Hence $d(z, x)=d(z, y)=1$. Hence it follows from Theorem 2.3, $V(G) \backslash\{u, v\}$ induces a clique. Moreover, since both x and y belong to S, it is clear that $d(u, z)=d(v, z)=2$ for all $z \notin V(P)$. Hence in this case the graph reduces to the family \mathcal{F}_{2}.
Case 2: $\operatorname{diam}(G)=2$. Then by Theorem 2.4, we have $\operatorname{gp}(G)=\max \{\omega(G), \eta(G)\}=n-2$. We consider the following two subcases.
Subcase 2.1: $\omega(G) \geq \eta(G)$. Then $\operatorname{gp}(G)=\omega(G)=n-2$. Let K be a clique of order $n-2$ and let $u, v \in V(G)$ be such that $u, v \notin V(K)$. Then it is clear that $1 \leq \operatorname{deg}(u) \leq n-3$ and $1 \leq \operatorname{deg}(v) \leq n-3$. Now, if u and v are adjacent in G, then G belongs to the family \mathcal{F}_{6}. Otherwise, G belongs to the family \mathcal{F}_{5}.
Subcase 2.2: $\eta(G)>\omega(G)$. Then $\operatorname{gp}(G)=\eta(G)=n-2$. This shows that the complement of G has complete mulipartite subgraph H of order $n-2$. Thus the components of the induced subgraphs of H in G are cliques, say $K_{n_{1}}, K_{n_{2}}, \ldots, K_{n_{r}}$. Moreover $d(u, v)=2$ for all $u \in V\left(K_{n_{i}}\right)$ and $v \in V\left(K_{n_{j}}\right)$. Now, let x and y be the vertices in G such that $x, y \notin V(H)$. Then it is clear that the graph reduces to the family \mathcal{F}_{8}, when x and y are adjacent in G. Otherwise it belongs to the family \mathcal{F}_{7}.

On the other hand, if G belongs to the family $\cup_{i=1}^{8} \mathcal{F}_{i}$, by Theorems 2.1 and 2.3, one can easily verify that $\operatorname{gp}(G)=$ $n-2$. This completes the proof.

Acknowledgements

The authors are grateful to the anonymous referees for their valuable suggestions and comments. E.J. acknowledges the University of Kerala for providing JRF for the research work.

Disclosure statement

No potential conflict of interest was reported by the author(s).

ORCID

Ullas Chandran S. V. (ID http://orcid.org/0000-0002-2081-9094

References

[1] Anand, B. S., Chandran S. V, U., Changat, M., Klavžar, S, Thomas, E. J. (2019). A characterization of general position sets and its application to cographs and bipartite graphs. Appl. Math. Comput. 359: 84-89.
[2] Chandran S. V, U., Parthasarathy, G. J. (2016). The geodesic irredundant sets in graphs. Int. J. Math. Combin. 4: 135-143.
[3] Dudeney, H. E. (1917). Amusements in Mathematics. Edinburgh: Nelson.
[4] Froese, V., Kanj, I., Nichterlein, A, Niedermeier, R. (2017). Finding points in general position. Int. J. Comput. Geom. Appl. 27(04): 277-296.
[5] Ghorbani, M., Maimani, H. R., Momeni, M., Mahid, F. R., Klavžar, S., Rus, G. (in press). The general position problem on Kneser graphs and on some graph operations. Discussiones Mathematicae Graph Theory.
[6] Manuel, P, Klavžar, S. (2018). A general position problem in graph theory. Bull. Aust. Math. Soc. 98(2): 177-187.
[7] Manuel, P, Klavžar, S. (2018). The graph theory general position problem on some interconnection networks. Fund Inform. 163(4): 339-350.
[8] Patkós, B. (2019). On the general position problem on Kneser graphs. arXiv preprint arXiv:1903.08056.
[9] Payne, M, Wood, D. R. (2013). On the general position subset selection problem. SIAM J. Discrete Math. 27(4): 1727-1733.

[^0]: CONTACT Ullas Chandran S. V. svuc.math@gmail.com Department of Mathematics, Mahatma Gandhi College, Kesavadasapuram, Thiruvananthapuram, Kerala 695004, India.

