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ABSTRACT
The g-girth-thickness hðg,GÞ of a graph G is the minimum number of planar subgraphs of girth at
least g whose union is G. In this paper, we determine the 6-girth-thickness hð6, KnÞ of the com-
plete graph Kn in almost all cases. And also, we calculate by computer the missing value
of hð4, KnÞ:
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1. Introduction

In this paper, all graphs are finite and simple. A graph in
which any two vertices are adjacent is called a complete
graph and it is denoted by Kn if it has n vertices. If a graph
can be drawn in the Euclidean plane such that no inner
point of its edges is a vertex or lies on another edge, then
the graph G is called planar. The girth of a graph is the size
of its shortest cycle or 1 if it is acyclic. It is known that an
acyclic graph of order n has size at most n – 1 and a planar
graph of order n and finite girth g has size at most g

g�2 ðn�
2Þ, see [8].

The thickness hðGÞ of a graph G is the minimum number
of planar subgraphs whose union is G. Equivalently, it is the
minimum number of colors used in any edge coloring of G
such that each set of edges in the same chromatic class
induces a planar subgraph.

The concept of the thickness was introduced by Tutte
[19]. The problem to determine the thickness of a graph G
is NP-hard [15], and only a few of exact results are known,
for instance, when G is a complete graph [2, 5, 6], a com-
plete multipartite graph [7, 11, 18, 21, 22] or a hyper-
cube [14].

Generalizations of the thickness for the complete graphs
also have been studied such that the outerthickness ho,
defined similarly but with outerplanar instead of planar [12],
and the S-thickness hS, considering the thickness on a sur-
face S instead of the plane [4]. The thickness has many
applications, for example, in the design of circuits [1], in the

Ringel’s earth-moon problem [13], or to bound the achro-
matic numbers of planar graphs [3]. See also [16].

In [17], the g-girth-thickness hðg,GÞ of a graph G was
defined as the minimum number of planar subgraphs of
girth at least g whose union is G. Indeed, the g-girth thick-
ness generalizes the thickness when g¼ 3 and the arboricity
number when g ¼ 1:

This paper is organized as follows. In Section 2, we
obtain the 6-girth-thickness hð6,KnÞ of the complete
graph Kn getting that hð6,KnÞ equals dnþ2

3 e, except for
n ¼ 3t þ 1, t � 4 and n 6¼ 2, for which hð6,K2Þ ¼ 1: In
Section 3, we show that there exists a set of 3 planar tri-
angle-free subgraphs of K10 whose union is K10. The
decomposition was found by computer and, as a conse-
quence, we disproved the conjecture that appears in [17]
about the missing case of the 4-girth-thickness of the
complete graph.

2. Determining hð6,KnÞ
A planar graph of n vertices with girth at least 6 has size at
most 3ðn� 2Þ=2 for n � 6 and size at most n – 1 for 1 �
n � 5, therefore, the 6-girth-thickness hð6,KnÞ of the com-
plete graph Kn is at least

l nðn� 1Þ
3ðn� 2Þ

m
¼

l nþ 1
3

þ 2
3n� 6

m
¼

l nþ 2
3

m

for n � 6, as well as, dnþ2
3 e for n 2 f1, 3, 4, 5g: We have the

following theorem.
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Theorem 2.1. The 6-girth-thickness hð6,KnÞ of Kn is equal to
dnþ2

3 e except possibly when n ¼ 3t þ 1, for t � 4, and n 6¼ 2
for which hð6,K2Þ ¼ 1:

Proof. To begin with, Figure 1 displays equality for n ¼
2, 4, 7, 10 with hð6,KnÞ ¼ 1, 2, 3, 4, respectively. The rest of
the cases for 1 � n � 10 are obtained by the hereditary
property of the induced subgraphs. We remark that the
decomposition of K10 was found by computer using the
database of the connected planar graphs of order 10 that
appears in [9].

Now, we need to distinguish two main cases, namely,
when t is even or t is odd for n ¼ 3t, that is, when n ¼ 6k
and n ¼ 6kþ 3 for k � 2: The cases n ¼ 6k� 1 and n ¼
6kþ 2, i.e., for n ¼ 3t þ 1, are obtained by the hereditary
property of the induced subgraphs, that is, since K6k�1 �
K6k and K6kþ2 � K6kþ3, we have

2kþ 1 � hð6,K6k�1Þ � hð6,K6kÞ and
2kþ 2 � hð6,K6kþ2Þ � hð6,K6kþ3Þ, respectively:

Therefore, the case of n ¼ 6k shows a decomposition of K6k

into 2kþ 1 planar subgraphs of girth at least 6, while the
case of n ¼ 6kþ 3 shows a decomposition of K6kþ3 into
2kþ 2 planar subgraphs of girth at least 6. Both construc-
tions are based on the planar decomposition of K6k of
Beineke and Harary [5] (see also [2, 6, 20]) but we use the
combinatorial approach given in [3]. Then, for the sake of
completeness, we give a decomposition of K6k in order to
obtain its usual thickness. In the remainder of this proof, all
sums are taken modulo 2k.

We recall that complete graphs of even order 2k are
decomposable into a cyclic factorization of Hamiltonian
paths, see [10]. Let Gx be a complete graph of order 2k, label
its vertex set VðGxÞ as fx1, x2, :::, x2kg and let F x

i be the
Hamiltonian path with edges

xixiþ1, xiþ1xi�1, xi�1xiþ2, xiþ2xi�2, :::, xiþkþ1xiþk,

for all i 2 f1, 2, :::, kg: The partition fEðF x
1Þ, EðF x

2Þ, :::,
EðF x

kÞg is such factorization of Gx. We remark that the cen-
ter of F x

i has the edge exi ¼ xiþdk2exiþd3k2 e, see Figure 2.
Let Gu, Gv and Gw be the complete subgraphs of K6k hav-

ing 2k vertices each of them and such that Gw is K6k n
ðVðGuÞ [ VðGvÞÞ: The vertices of VðGuÞ,VðGvÞ and VðGwÞ
are labeled as fu1, u2, :::, u2kg, fv1, v2, :::, v2kg and fw1,w2, :::,
w2kg, respectively.

Let x be an element of {u, v, w}. Take the cyclic factoriza-
tion fEðF x

1Þ,EðF x
2Þ, :::,EðF x

kÞg of Gx into Hamiltonian paths
and denote as Pxi and Pxiþk the subpaths of F x

i containing k
vertices and the leaves xi and xiþk, respectively. We define
the other leaves of Pxi and Pxiþk as f ðxiÞ and f ðxiþkÞ, respect-
ively and according to the parity of k, that is (see Figure 2),

f ðxiÞ ¼
xiþd3k2 e if k is odd,

xiþdk2e if k is even:
and

(

f ðxiþkÞ¼
xiþdk2e if k is odd,

xiþd3k2 e if k is even:

(

We remark that the set of edges fxixiþk : 1 � i � kg is the
same set of edges that ff ðxiÞf ðxiþkÞ : 1 � i � kg:

Figure 1. A decomposition of Kn into hð6, KnÞ planar subgraphs of girth at least 6: (a) for n¼ 2, (b) for n¼ 4, (c) for n¼ 7 and (d) for n¼ 10.
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Now, we construct the maximal planar subgraphs G1,
G2,… ,Gk and a matching Gkþ1 with 6k vertices each in the
following way. Let Gkþ1 be the perfect matching with the
edges ujujþk, vjvjþk and wjwjþk for j 2 f1, 2, :::, kg:

For each i 2 f1, 2, :::, kg, let Gi be the spanning planar
graph of K6k whose adjacencies are given as follows: we take
the 6 paths, Pui ,Puiþk ,Pvi , Pviþk ,Pwi and Pwiþk and insert them
in the octahedron with the vertices ui, uiþk, vi, viþk,wi and
wiþk as is shown in Figure 2 (Left). The vertex xj of each
path Pxj is identified with the vertex xj in the corresponding
triangle face and join all the other vertices of the path with
both of the other vertices of the triangle face, see
Figure 3 (Right).

By construction of Gi, K6k ¼ [i¼1
kþ1 Gi, see [2, 5] to

check a full proof. In consequence, the kþ 1 planar sub-
graphs Gi show that hð3,K6kÞ � kþ 1 and then, hð3,K6kÞ ¼

kþ 1 owing to the fact that hð3,K6kÞ �
6k
2

� �
3ð6k�2Þ

& ’
¼ kþ 1:

Now, we proceed to prove that hð6,K6kÞ � 2kþ 1 in
Case 1 and hð6,K6kþ3Þ � 2kþ 2 in Case 2. The main idea of
both cases is divide each Gi into two subgraphs of girth 6
for any i 2 f1, :::, kg:

1. Case n ¼ 6k:
Consider the set of planar subgraphs fG1,G2, :::,Gkþ1g
of K6k which is described above.
Step 1. For each i 2 f1, :::, kg, remove the six edges of
the triangles uiviwi and uiþkviþkwiþk:
Step 2. For each i 2 f1, :::, kg, divide the obtained sub-
graph into two subgraphs H1

i and H2
i as follows: The

maximum matching of Pxi incident to the vertex f ðxiÞ
belongs to H1

i (see dotted subgraph in Figure 4) while
the maximum matching of Pxiþk incident to the vertex
f ðxiþkÞ belongs to H2

i :
Next, the rest of the edges joined to the vertices of the
paths Pxi and Pxiþk , in an alternative way from the
exterior region to the region with the vertices
fui, vi,wig, belong to H1

i and H2
i respectively, such that

the edges f ðwiÞuiþk, f ðviÞwiþk and f ðuiÞviþk belong to
H1

i and the edges f ðwiÞviþk, f ðviÞuiþk and f ðuiÞwiþk

belong to H2
i , see Figure 4.

Figure 2. The Hamiltonian path F x
i : Left (a) The edge e

x
i in bold for k odd. Right (b) The edge exi in bold for k even.

Figure 3. (Left) The octahedron subgraph of the graph Gi. (Right) The graph Gi.

Figure 4. Partial modification of the subgraph Gi.
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Step 3. Consider the removed edges in Step 1, add the
edges f ðviþkÞf ðuiþkÞ and f ðuiþkÞf ðwiþkÞ to H1

i and the
edges f ðwiÞf ðviÞ and f ðviÞf ðuiÞ to H2

i , see Figure 5. The
rest of the edges removed in Step 1 are added to Gkþ1

getting the subgraph Hkþ1 which is the union of the
paths ff ðviÞ, f ðviþkÞ, f ðwiþkÞ, f ðwiÞ, f ðuiÞ, f ðuiþkÞg:

2. Case n ¼ 6kþ 3:
Consider the set of planar subgraphs fG1,G2, :::,Gkþ1g
of K6k which is described above as well as Step 1 and 2
of the previous case.

Step 3. Add three vertices u, v and w in the subgraphs
H1

i and H2
i , for each i 2 f1, :::, kg, and the edges uwi,

uf ðviþkÞ, vui, vf ðwiþkÞ, wvi, wf ðuiþkÞ into H1
i as well as

the edges uwiþk, uf ðviÞ, vuiþk, vf ðwiÞ,wviþk,wf ðuiÞ into
H2

i , see Figure 6.
Step 4. On one hand, remains to define the adjacencies
between u, v, w and all the adjacencies between u and
ui, v and vi, w and wi, for each j 2 f1, :::, kg: On the
other hand, the edges of the graph Gkþ1 together with
the removed edges of the Step 1 form a set of triangle

Figure 5. Subgraphs H1
i and H2

i for the Case 1.

Figure 6. Subgraphs H1
i and H2

i for Case 2.

Figure 7. Partial subgraphs H1
kþ1 and H2

kþ1:

4 H. CASTAÑEDA-LÓPEZ ET AL.



prisms which we split into two subgraphs called H1
kþ1

and H2
kþ1 in the following way:

(a) The adjacency vw is in H1
kþ1 while the adjacencies

uv and uw are in H2
kþ1, see Figure 7.

(b) The set of adjacencies vvjþk, wwj, wwjþk and
uujþk are in H1

kþ1 while the set of adjacencies vvj,
and uuj are in H2

kþ1, for each j 2 f1, :::, kg, see
Figure 7.

(c) The subgraph H1
kþ1 contains the adjacencies

vjþkvj, vjuj, ujwj and wjþkujþk (a set of subgraphs
P4 [ K2) and the subgraph H2

kþ1 contains the
adjacencies ujujþk, ujþkvjþk, vjþkwjþk,wjþkwj and
wjvj (a set of subgraphs P6) for all j 2 f1, :::, kg,
see Figure 7.

By the small cases and the two main cases, the the-
orem follows. w

3. The 4-girth thickness of K10

In [17], Rubio-Montiel gave a decomposition of Kn into
hð4,KnÞ ¼ dnþ2

4 e triangle-free planar subgraphs, except for
n¼ 10. In that case, it was bounded by 3 � hð4,K10Þ � 4
and conjectured that the correct value was the upper bound.
Using the database of the connected planar graphs of order
10 that appears in [9] and the SageMath program, we found
two decompositions of K10 into 3 planar subgraphs of girth
at least 4 illustrated in Figure 8. In summary, the correct
value of hð4,KnÞ was the lower bound and then, we have
the following theorem.

Theorem 3.1. The 4-girth-thickness hð4,KnÞ of Kn equals
dnþ2

4 e for n 6¼ 6 and hð4,K6Þ ¼ 3:
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