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ABSTRACT
In this work, we continue to survey what has been done on the Roman domination. More pre-
cisely, we will present in two sections several variations of Roman dominating functions as well as
the signed version of some of these functions. It should be noted that a first part of this survey
comprising 9 varieties is published as a chapter book in “Topics in domination in graphs” edited
by T.W. Haynes, S.T. Hedetniemi and M.A. Henning. We recall that a function f : V ! f0, 1, 2g is a
Roman dominating function (or just RDF) if every vertex u for which f(u) ¼ 0 is adjacent to at least
one vertex v for which f(v) ¼ 2. The Roman domination number of a graph G, denoted by cRðGÞ,
is the minimum weight of an RDF on G.
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1. Introduction

For notation and graph theory terminology, we in general
follow Haynes, Hedetniemi and Slater [31]. Specifically, let
G be a graph with vertex set V(G) ¼ V and edge set E(G) ¼
E. The integers n ¼ nðGÞ ¼ jVðGÞj and m ¼ mðGÞ ¼ jEðGÞj
are the order and the size of the graph G, respectively. The
open neighborhood of vertex v is NGðvÞ ¼ NðvÞ ¼ fu 2
VðGÞjuv 2 EðGÞg, and the closed neighborhood of v is
NG½v� ¼ N½v� ¼ NðvÞ [ fvg: The degree of a vertex v is
degGðvÞ ¼ degðvÞ ¼ jNðvÞj: The minimum and maximum
degree of a graph G are denoted by dðGÞ ¼ d and DðGÞ ¼
D, respectively. A graph G is regular or r-regular if DðGÞ ¼
dðGÞ ¼ r: A vertex of degree zero is isolated, a vertex of
degree one is called a leaf and its neighbor is called a sup-
port vertex. If X � VðGÞ, then G½X� is the subgraph induced
by X. Let S � VðGÞ, and let u 2 S: We say that v is a pri-
vate neighbor of u (with respect to S) if N½v� \ S ¼ fug:
Furthermore, we define the private neighbor set of u, with
respect to S, to be pn½u, S� ¼ fv : N½v� \ S ¼ fugg: The
complement of a graph G is denoted by �G: Let Pn, Cn and
Kn be the path, cycle and complete graph of order n and Kp, q

the complete bipartite graph with one partite set of cardinal-
ity p and the other of cardinality q. A star is a complete
bipartite graph of the form K1, q: If H and G are graphs,
then G is called H-free if G does not contain any induced
subgraph isomorphic to H. A claw-free graph is a K1, 3-free
graph. A graph is a cactus graph if every edge belongs to at
most one cycle. A cactus graph having one cycle is called a
unicyclic graph, and a connected graph with no cycles is
called a tree. A tree is a double star if it contains exactly two
vertices that are not leaves. A double star with p and q

leaves adjacent to each support vertex, respectively, is
denoted by Sp, q: The corona of two graphs G1 and G2, as
defined in [30], is the graph G1 � G2 formed from one copy
of G1 and jVðG1Þj copies of G2, where the ith vertex of G1 is
adjacent to each vertex of the ith copy of G2. The distance
dGðu, vÞ between two vertices u and v in a connected graph
G is the length of a shortest u – v path in G. The diameter
of G, denoted by diamðGÞ, is the maximum value among
distances between all pairs of vertices of G.

A subset S � VðGÞ is a dominating set if every vertex not
in S has at least one neighbor in S. The domination number
cðGÞ represents the cardinality of a minimum dominating
set of G. A subset S � VðGÞ is said to be independent if
EðG½S�Þ ¼ ;: The independent domination number of G
denoted by i(G) is the size of the smallest maximal inde-
pendent set in G. A set S � VðGÞ is a 2-packing or packing
if for each pair of vertices u, v 2 S, N½u� \ N½v� ¼ ;: The
packing number qðGÞ is the cardinality of a maximum pack-
ing. A vertex cover of a graph G is a set of vertices that cov-
ers all the edges, and the minimum cardinality of a vertex
cover is the vertex cover number denoted by a0ðGÞ:

2. Variations of Roman dominating functions

For a positive integer k and a function f : V ! f0, 1, :::, kg,
the weight of f is wðf Þ ¼

P
v2V f ðvÞ, and for S � V we

define f ðSÞ ¼
P

v2S f ðvÞ: So wðf Þ ¼ f ðVÞ: For every i 2
f0, 1, :::, kg, let Vi be the set of vertices assigned the value i
under a function f. Note that there is a 1-to-1 correspond-
ence between the functions f : V ! f0, 1, :::, kg and the
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ordered k-tuple ðV0,V1, :::,VkÞ of V, so we will
write f ¼ ðV0,V1, :::,VkÞ:

We would like to point out that nine varieties have
already been published as a chapter book in “Topics in domin-
ation in graphs” edited by T.W. Haynes, S.T. Hedetniemi and
M.A. Henning. More precisely, it is about weak Roman dom-
ination, independent Roman domination, Roman k-domin-
ation, Roman{2}-domination, double Roman domination, total
Roman domination, perfect Roman domination, strong Roman
domination and edge Roman domination. In this section, we
present nine other varieties.

2.1. Unique response Roman domination

In [49], Rubalcaba and Slater defined a unique response
Roman function as a function f ¼ ðV0,V1,V2Þ such that (i)
if x 2 V0, then NðxÞ \ V2j j � 1; and (ii) if x 2 V1 [ V2,
then NðxÞ \ V2j j ¼ 0: A function f is a unique response
Roman dominating function (URRDF) if it is a unique
response Roman function and a Roman dominating func-
tion. The unique response Roman domination number of G,
denoted by uRðGÞ, is the minimum weight of an URRDF of
G. An URRDF on G with weight uRðGÞ is called an
uRðGÞ-function. Unique response Roman domination was
studied in [29, 34] and elsewhere. We recall that an RDF
f ¼ ðV0,V1,V2Þ is an independent Roman dominating func-
tion (IRDF) if the set V1 [ V2 is independent. The independ-
ent Roman domination number iRðGÞ is the minimum
weight of an IRDF on G. Independent Roman dominating
functions were defined in [15, 23].

It was noticed in Ebrahimi Targhi et al. [29] that cRðGÞ �
iRðGÞ � uRðGÞ for every graph G, and the difference uRðGÞ�
cRðGÞ can be arbitrarily large. For instance, if G is a double
star in which any support vertex is of degree tþ 2 for some
integer t � 2, then uRðGÞ ¼ t þ 4 while cRðGÞ ¼ 4:
Moreover, if G is a graph with cRðGÞ ¼ uRðGÞ, then every
uRðGÞ-function is a cRðGÞ-function. But not every cRðGÞ-func-
tion is an uRðGÞ-function as can be shown by the double star
S2, 3 which admits two cRðS2, 3Þ-functions but only one of them
is an uRðS2, 3Þ-function. This motivates the characterization of
graphs G with strong equality between cRðGÞ and uRðGÞ:
Jafari Rad and Liu [34] have provided a constructive character-
ization of trees T with cRðTÞ � uRðTÞ: Recently, Zhao, Li,
Zhao and Zhang [63] gavea constructive characterization of
trees T with cRðTÞ ¼ uRðTÞ: Also, Zhao et al. [63] have shown
that the decision problem corresponding to the problem of
computing uRðGÞ is NP-complete for triangle-free graphs.
Moreover, they proposed a linear algorithm for finding the
unique response Roman domination number of trees.

2.1.1 Bounds on uR
In the first result, we present a lower bound of the unique
response Roman domination number in terms of the dom-
ination number.

Theorem 2.1 ([29]). Let G be a graph of order n with
DðGÞ � 1: Then uRðGÞ � cðGÞ þ 1, with equality if and only
if G has a vertex of degree n� cðGÞ:

Theorem 2.2 ([29]). For a connected graph G of order n,
uRðGÞ ¼ cðGÞ þ 2 if and only if:

(i) G does not have a vertex of degree n� cðGÞ,
(ii) either G has a vertex of degree n� cðGÞ � 1, or G has

two vertices v, w such that N½v� [ N½w�j j ¼ N½v�j jþ
N½w�j j ¼ n� cðGÞ þ 2:

Theorem 2.3 ([29]). Let G be a graph of order n � 3, and
let m be an integer such that 1 � m � n�1

2 : If dðGÞ � n�m
mþ1 ,

then uRðGÞ � n�mðDðGÞ � 1Þ:

Theorem 2.4 ([29]). For any connected graph G of order at
least 2, uRðGÞ � n� DðGÞ þ 1, with equality if and only
if for any packing set S ¼ fa1, a2, :::, atg, DðGÞ �

Pt
i¼1

degGðaiÞ� t þ 1:

As an immediate consequence of Theorem 2.4, we obtain
uRðGÞ ¼ n� DðGÞ þ 1 for every graph G with diameter two.
An upper bound on the unique response Roman domination
number in terms of the Roman domination number and
maximum degree was given as follows.

Theorem 2.5 ([29]). For every graph G with maximum

degree at least three, uRðGÞ � iRðGÞ þ iRðGÞ�2
2 ðDðGÞ � 2Þ,

with equality if and only if iRðGÞ ¼ 2iðGÞ and uRðGÞ ¼
2þ DðGÞðiðGÞ � 1Þ:

Zhao et al. [63] conjectured that uRðTÞ � 4
5 n for every

tree T of order n � 3: But the following result shows that
this conjecture is false since it states that in the general case
there is no better bound for the unique response Roman
domination number of a graph G.

Theorem 2.6 ([29]). For any t 2 ð0, 1Þ there are an integer n
and a tree T on n vertices such that uRðTÞ > tn:

2.2. Maximal Roman domination

In this subsection, we are interested in maximal Roman
domination introduced by Abdollahzadeh Ahangar et al. in
2017 [4], and studied also in [5, 6]. A maximal Roman dom-
inating function (MRDF) for a graph G is a Roman domi-
nating function f ¼ ðV0,V1,V2Þ such that V0 is not a
dominating set of G. The maximal Roman domination num-
ber of a graph G, denoted by cmRðGÞ, equals the minimum
weight of an MRDF for G. A cmRðGÞ-function is a maximal
Roman dominating function for G with weight cmRðGÞ: It is
shown in [5] that the decision problem corresponding to the
problem of computing cmRðGÞ is NP-complete even when
restricted to bipartite or planar graphs. Moreover, as far as
we know no linear algorithm has been designed for comput-
ing the maximal Roman domination number for any tree.

The motivation for introducing this kind of functions
comes from maximal dominating sets defined by Kulli and
Janakiram [38] in 1997. A dominating set D is said to be a
maximal dominating set if V – D is not a dominating set of
G. The maximal domination number cmðGÞ is the minimum
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cardinality of a maximal dominating set of G. The following
observation was given in [5].

Observation 2.7. Let f ¼ ðV0,V1,V2Þ be a cmRðGÞ-function.
Then the following assertions hold:

(i) V1 [ V2 is a maximal dominating set of G.
(ii) Every vertex of V not dominated by V0 belongs to V1:
(iii) Each vertex of V2 has a private neighbor in V0:

The exact values on the maximal Roman domination
number for paths and cycles have been established in [4]. It
is shown that for k � 1, cmRðP3kÞ ¼ 2kþ 1, cmRðP3kþ1Þ ¼
2kþ 2 and cmRðP3kþ2Þ ¼ 2kþ 2: Also, for k � 1, cmRðC3kÞ ¼
2kþ 1, cmRðC3kþ1Þ ¼ 2kþ 2 and cmRðC3kþ2Þ ¼ 2kþ 3:

2.2.1. Relationships with cR and cm
Since every MRDF of a graph G is an RDF, it is obvious
that cRðGÞ � cmRðGÞ for every graph G. Also, it was shown
in [4] that for any graph G without isolated vertices,
cmRðGÞ � cRðGÞ þ dðGÞ: A characterization of graphs G
with cRðGÞ ¼ cmRðGÞ was given in [5] as follows.

Theorem 2.8 ([5]). Let G be a connected graph of order
n � 3: Then the following assertions are equivalent.

(i) cmRðGÞ ¼ cRðGÞ:
(ii) G contains a weak support vertex u such that cRðGÞ ¼

cRðG� uÞþ 1:
(iii) There exists a cR-function for G assigning the value 1

to a weak support vertex and its leaf.

Since V1 [ V2 is a maximal dominating set when f ¼
ðV0,V1,V2Þ is an MRDF, and since assigning a 2 to every
vertex of a maximal dominating set provides an MRDF, it
was observed that cmðGÞ � cmRðGÞ � 2cmðGÞ: The upper
bound has been slightly improved by Abdollahzadeh
Ahangar et al. [4] who proved that cmRðGÞ � 2cmðGÞ � 1
for all G. It has also been shown that cmðGÞ ¼ cmRðGÞ if
and only if G ¼ Kn or Kn : Moreover, graphs G with
cmRðGÞ 2 fcmðGÞ þ 1, cmðGÞ þ 2g have been characterized
by Abdollahzadeh Ahangar et al. [4] as follows.

Theorem 2.9 ([4]). Let G be a connected graph of order n �
3 different from Kn. Then cmRðGÞ ¼ cmðGÞ þ 1 if and only if
there is a vertex v 2 V such that degGðvÞ � n� cmðGÞ and
N(v) has a subset of size n� cmðGÞ that is not a dominating
set of G.

Theorem 2.10 ([4]). Let G be a connected graph of order
n � 7 different from Kn. Then cmRðGÞ ¼ cmðGÞ þ 2 if and
only if:

(i) G does not have a vertex v 2 V such that degGðvÞ �
n� cmðGÞ and N(v) has a subset of size n� cmðGÞ
that is not a dominating set of G.

(ii) either G has a vertex v 2 V such that degGðvÞ �
n� cmðGÞ � 1 and N(v) has a subset of size n�
cmðGÞ � 1 that is not a dominating set of G, or G has

two vertices u and v such that NðuÞ [ NðvÞj j �
n� cmðGÞ and NðuÞ [ NðvÞ has a subset of size n�
cmðGÞ that is not a dominating set of G.

2.2.2. Graphs with large cmR

Since f ¼ ð;,VðGÞ, ;Þ is a maximal Roman dominating
function of G, we have cmRðGÞ � n: This bound has
been slightly improved for connected graphs G with
diameter at least four, where it has been shown in this
case that cmRðGÞ � n� dðGÞ � 1: A characterization of
graphs G of order n such that cmRðGÞ ¼ n was given in
[4] as follows.

Theorem 2.11 ([4]). Let G be a connected graph of order
n � 2: Then cmRðGÞ ¼ n if and only if G ¼ P2,P3, P4,
C3,C4,C5 or G ¼ Kn �M, where M is a matching of G.

The characterization of connected graphs G of order n
such that cmRðGÞ ¼ n� 1 was the main focus of the
paper by Abdollahzadeh Ahangar, Chellali, Kuziak and
Samodivkin [6], where a complete characterization has been
given for triangle-free graphs as well as connected graphs
with girth 3 and either diameter at least 3 or minimum
degree at least two. Hence to complete the characterization
of all connected graphs with maximal Roman domination
number equal to one less their order, it remains to study the
case in which G is any connected graph with girth three,
diameter two and minimum degree at least three. It is note-
worthy that the paper [6] contains an illustration of many
graphs for the description of these results that we cannot
report here. It is worth mentioning also that a characteriza-
tion of trees T of order n such that cmRðTÞ ¼ n� 2 was also
given in [5].

2.3. Mixed Roman domination

The study of the mixed version of Roman domination was
initiated by Abdollahzadeh Ahangar, Haynes and
Valenzuela-Tripodoro [12]. A mixed Roman dominating
function (MRDF) of a graph G ¼ ðV,EÞ is a function f :
V [ E ! f0, 1, 2g such that every element x 2 V [ E for
which f(x) ¼ 0, is adjacent or incident to at least one elem-
ent y 2 V [ E with f(y) ¼ 2. In other words, an element x
for which f ðxÞ 2 f1, 2g dominates itself, while an element x
with f(x) ¼ 0 is dominated by the mixed Roman function f
if it is adjacent or incident to at least one element y for
which f(y) ¼ 2. The minimum weight, wðf Þ ¼

P
x2V[E f ðxÞ,

of an MRDF is the mixed Roman domination number c	RðGÞ:
A MRDF with minimum weight is called a c	RðGÞ-function.
Note that each MRDF on G determines a partition of the
set V [ E ¼ ðV0 [ E0Þ [ ðV1 [ E1Þ [ ðV2 [ E2Þ, where Vi [
Ei ¼ fx 2 V [ E : f ðxÞ ¼ ig:

For mixed Roman domination, not only the cities (verti-
ces) that must be protected but also the roadways (edges)
must be secured from ambush attacks on travelers.
Adopting the same principles as for Roman domination,
legions can be placed at a camp on a road as well as sta-
tioned in a city, and both cities and roads must be
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protected. If no legion is stationed on a road, then such a
road must be adjacent to a secured road with two legions or
incident to a secured city with two legions. In this way any
city or road with two legions can deploy a legion to secure
any unsecured city or road adjacent or incident to it.

It is shown in [1] that the decision problem correspond-
ing to the problem of computing c	RðGÞ is NP-complete for
bipartite graphs. Moreover, as of this writing, a linear algo-
rithm for computing the mixed Roman domination number
for any tree has not yet designed.

Recall that if S � V [ E is a mixed dominating set, then
every element in ðV [ EÞnS is adjacent or incident to an elem-
ent in S. The mixed domination number c	ðGÞ of G is the
minimum cardinality of any mixed dominating set of G. The
following proposition gathers some properties of mixed Roman
dominating functions. For any x 2 V [ E, we denote by
Nm½x� ¼ fxg [ f y 2 V [ E : y is either adjacent or incident
with xg, and let f ½x� ¼ f ðNm½x�Þ ¼

P
v2Nm½x� f ðvÞ, for all

x 2 V [ E:

Proposition 2.12 ([12]). Let f ¼ ðV0 [ E0,V1 [ E1,V2 [ E2Þ
be an MRDF of a graph G. Then the following holds.

(i) Every element in V0 [ E0 is dominated by some elem-
ent of V2 [ E2:

(ii) V1 [ V2 [ E1 [ E2 is a mixed dominating set in G.
(iii)

P
v2V f ½v� þ

P
e¼uw2E f ½e� ¼

P
v2Vð2 degGðvÞÞ f ðvÞþP

e¼uw2EðdegGðuÞþ degGðwÞ þ 1Þf ðuwÞ:

The exact values on the mixed Roman domination number
for paths and cycles have been established in [12]. It is shown
that c	RðPnÞ ¼ d4n�2

5 e if n � 0, 1, 2, 3 ðmod 5Þ, and c	RðPnÞ ¼
d4n�2

5 e þ 1 if n � 4 ðmod 5Þ: Also, c	RðCnÞ ¼ d4n5 e if n �
0, 2, 3, 4 ðmod 5Þ, and c	RðCnÞ ¼ d4n5 e þ 1 if n � 1 ðmod 5Þ:

2.3.1. Upper and lower bounds on c	R
It is shown in [12] that for every graph G, c	ðGÞ � c	RðGÞ �
2c	ðGÞ, where equality holds in the lower bound if and only
if G is an edgeless graph. The upper bound is sharp for
complete bipartite graphs Kr, s, 1 � r � s, where c	RðKr, sÞ ¼
2r and c	ðKr, sÞ ¼ r: Moreover, graphs with the property
c	RðGÞ ¼ 2c	ðGÞ were called mixed Roman graphs. A charac-
terization of mixed Roman graphs has been given in [12].

Proposition 2.13 ([12]). A graph G is a mixed Roman graph
if and only if it has a c	RðGÞ-function f ¼ ðV0 [ E0,V1 [
E1,V2 [ E2Þ with V1 [ E1j j ¼ 0:

Additional upper bounds have been obtained by
Abdollahzadeh Ahangar et al. [12]. They showed that the
mixed Roman domination number of any graph G of order
n does not exceed n. The characterization of graphs G of
order n such that c	RðGÞ ¼ n was raised in [1], where the fol-
lowing results are obtained.

Theorem 2.14 ([1]). Let G be a connected graph of odd order
n. Then c	RðGÞ ¼ n if and only if G ¼ Kn:

Proposition 2.15 ([1]). Let G be a connected graph of even
ordern. If c	RðGÞ ¼ n, then G is a mixed Roman graph having
a perfect matching.

An upper bound on the mixed Roman domination num-
ber of a graph in terms of its order, size, and maximum
degree was obtained in [12] as well as a characterization of
the graphs attaining this bound. Let Gða, b, cÞ denote the
graph obtained from a non-trivial star K1, n�1 with center v
by adding edges from its complement such that Gða, b, cÞ �
v ¼ aK1 [ bK2 [ cP3, and for j � a, we let Gjða, b, cÞ be the
graph obtained from Gða, b, cÞ by subdividing (once) j pen-
dant edges. Let H be the family of graphs H ¼
fGða, b, cÞ,Gjða, b, cÞ : a, b, c � 0, j � ag satisfying that if G 2
H and ðb, cÞ 2 fð0, 0Þ, ð1, 0Þg, then either G ¼ Gð0, 1, 0Þ ¼
K3 or a> j.

Proposition 2.16 ([12]). Let G be a connected graph of order
n � 2, size m, and DðGÞ � 1: Then c	RðGÞ � mþ n�
2DðGÞ þ 1, with equality if and only if G 2 H:

For the class of trees T, two upper bounds on the mixed
Roman domination number are obtained in [1], one in
terms of the domination number cðTÞ, and the other in
terms of the order, number of leaves and support vertices of
T. Recall that a set S is an efficient dominating set if S is
both a dominating set and a packing of G.

Theorem 2.17 ([1]). For any nontrivial tree T,
c	RðTÞ � 3cðTÞ � 1, with equality only if T has a unique
cðTÞ-set D such that D is efficient and every vertex in V – D
has degree at most three.

If we consider the tree T obtained from a star K1, 3 by
subdividing two edges twice and the remaining edge four
times, then one can easily see that T has a unique cðTÞ-set
D of size 4 such that D is efficient and every vertex in V –
D has degree at most three but c	RðTÞ < 3cðTÞ � 1 ¼ 11:
This shows that the converse of Theorem 2.17 is not true.

Theorem 2.18 ([1]). If T is a tree of order n � 3 with ‘ðTÞ
leaves and s(T) support vertices, then c	RðTÞ � n� ‘ðTÞ þ
sðTÞ with equality if and only if every vertex of T is either a
leaf or a support vertex.

Sharp lower bounds for the mixed Roman domination
number of a graph in terms of its order, size, maximum
degree and maximum matching are obtained in [12]
and [1].

Proposition 2.19 ([12]). Let G be a graph of order n, size m,

and maximum degree D � d � 1: Then c	RðGÞ � d2ðmþnÞ
2Dþ1 e:

As an immediate consequence of Proposition 2.19, we

have c	RðGÞ � dðrþ2Þn
2rþ1 e for every r-regular graph of

order n.
Dehgardi [24] was interested in the relationship between

the mixed Roman domination number and the 2-independ-
ence number. Recall that the 2-independence number of a
graph G, denoted b2ðGÞ, is the maximum cardinality of a
set of vertices S whose induced subgraph has maximum
degree at most one. As shown in [24], in general c	RðGÞ may
be smaller or larger than b2ðGÞ: However, Dehgardi proved
that for every tree T, c	RðTÞ � 4

3 b2ðTÞ and provided a con-
structive characterization of trees attaining this bound.
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2.4. Outer-independent (total, double)
Roman domination

In [7], Abdollahzadeh Ahangar, Chellali and Samodivkin
defined a new variant of Roman domination which they
called outer-independent Roman domination. A function
f ¼ ðV0,V1,V2Þ is an outer-independent Roman dominating
function (OIRDF) on G if f is an RDF and V0 is an inde-
pendent set. The outer-independent Roman domination num-
ber coiRðGÞ is the minimum weight of an OIRDF on G. An
outer-independent Roman dominating function of weight
coiRðGÞ is called a coiRðGÞ-function. If we go back to the
defensive strategy of the Roman Empire, a location having
no army could be thought of as being vulnerable. If in add-
ition, it has one of its neighbors with no army stationed
there, then it will be even more vulnerable. Hence the best
situation for a location with no army is to be completely
surrounded by locations on which armies are stationed. This
leads us to seek a Roman dominating function f ¼
ðV0,V1,V2Þ for which V0 is independent, that is f is an
OIRDF. The following properties of an OIRDF were observed.

Observation 2.20. Let f ¼ ðV0,V1,V2Þ be an OIRDF of a
graph G. Then

(i) Every vertex of V2 has a private neighbor in V0 with
respect to V2:

(ii) V1 [ V2 is a dominating set in G.
(iii) V1 [ V2 is a vertex cover of G.

It is shown in [7] that the decision problem correspond-
ing to the problem of computing coiRðGÞ is NP-complete for
bipartite graphs. Moreover, the exact values on the outer-
independent Roman domination number for paths and
cycles have been established in [7]. Indeed, it is shown that
if G is a path or a cycle on n � 3 vertices, then coiRðGÞ ¼
3bn4c þ i, where n � i ðmod 4Þ and i 2 f0, 1, 2g, and
coiRðGÞ ¼ 3bn4c þ 2 otherwise.

2.4.1. Bounds on coiR
Trivially, coiRðGÞ � cRðGÞ for every graph G, since each
outer-independent Roman dominating function is a Roman
dominating function. So the problem of characterizing the
graphs G with coiRðGÞ ¼ cRðGÞ seems to be interesting. For
now, this problem has been considered only for trees, where
a constructive characterization was recently done in [45].

The following result that gives a lower bound on the outer-
independent Roman domination number for any graph in
terms of the order, maximum and minimum degrees.

Proposition 2.21 ([7]). If G is a connected graph of order
n � 2, then coiRðGÞ � ddn=ðdþ DÞe þ 1:

By Proposition 2.21, coiRðGÞ � dn=2e þ 1 for all regular
graphs of order n. Moreover, a characterization of trees T
attaining the lower bound in Proposition 2.21 is given
as follows.

Proposition 2.22 ([7]). Let T be a tree of order n. Then
coiRðTÞ ¼ dn=ðDþ 1Þe þ 1 if and only if T is a star or T is

obtained from a star by subdividing exactly one of its
edges once.

Since f ¼ ð;,VðGÞ, ;Þ is an OIDRF of G, we have
coiRðGÞ � n: As shown in [7], this bound is sharp if and
only if G ¼ Kn: For graphs G of order n such that coiRðGÞ ¼
n� 1, we have the following.

Proposition 2.23 ([7]). Let G be a connected graph of order
n � 2. Then the following conditions are equivalent:

(i) coiRðGÞ ¼ n� 1:
(ii) G is a ðK1, 3, 2K1, 2Þ-free graph different from Kn.
(iii) G has a coiRðGÞ-function f ¼ ðV0,V1,V2Þ such that

V2j j ¼ 1 and V0j j ¼ 2:

For the purpose of characterizing all trees T of order n
such that coiRðTÞ ¼ n� 2, let i, j and k be three integers
such that 0 � i � j � k, and let Ti, j, k be the tree obtained
from a star K1, 3 by subdividing one edge i times, the second
edge j times and the third edge k times. Thus T0, 0, 0 ¼ K1, 3:
Also, let i, j, k and l be four integers and let Ti, j, k, l be the
tree obtained from a double star S2, 2 by subdividing two
pendant edges incident with one support vertex i and j
times and the two other pendant edges k and l
times. T0, 0, 0, 0 ¼ S2, 2:

Proposition 2.24 ([7]). Let T be a tree of order n. Then
coiRðTÞ ¼ n� 2 if and only if:

(i) T 2 fP7, P8, P9,P10g, or
(ii) T ¼ Ti, j, k with k � 3, where either i ¼ 0 and 0 �

jþ k � 6, or i ¼ 1 and 2 � jþ k � 5, or
(iii) T¼Ti, j,k, l with maxfi, j,k, lg� 2, iþ j� 3 and kþ l� 3:

The next result relates the outer-independent Roman
domination number to the vertex cover number for arbitrary
graphs without isolated vertices.

Proposition 2.25 ([7]). If G is a graph without isolated verti-
ces, then a0ðGÞ þ 1 � coiRðGÞ � 2a0ðGÞ:

Note that the lower bound in Proposition 2.25 is sharp
for K2 and K3, while the upper bound is sharp for any
graph G for which each vertex is either a leaf or a support
vertex and each support vertex is a adjacent to at least two
leaves. Moreover, graphs G for which coiRðGÞ ¼ 2a0ðGÞ have
been called vertex cover Roman graphs or VC-Roman graphs
for short. It is shown in [7] that agraph G is VC-Roman if
and only if it has a coiRðGÞ-function f ¼ ðV0,V1,V2Þ
with V1 ¼ ;:

Recently, Mart�ınez, Kuziak and Yero [41] have provided
a constructive characterization of VC-Roman trees. They
showed that no graph with minimum degree at least two is
VC-Roman. In addition they proved the following.

Proposition 2.26 ([41]). Let G be a VC-Roman graph and
let f ¼ ðV0,V1,V2Þ be a coiRðGÞ-function. Then

(i) V0 is a maximum independent set in G.
(ii) V2 is a minimum vertex cover in G.
(iii) Every vertex in V2 has a private neighbor in V0.
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For the class of trees, Dehgardi and Chellali [25] showed
that if T is a tree of order n � 3 with s(T) support vertices,

then coiRðTÞ � minf5n6 ,
3nþsðTÞ

4 g: Moreover, trees attaining
each bound have been characterized.

2.4.2. Outer independent total Roman domination
Recently, Mart�ınez et al. [42] considered the outer-inde-
pendent property for total Roman dominating functions. We
recall that a total Roman dominating function f ¼
ðV0,V1,V2Þ is an RDF such that V1 [ V2 induces a subgraph
without isolated vertices. Let coitRðGÞ denote the minimum
weight of an outer-independent total Roman dominating
function on G. Mart�ınez et al. [42] showed that the decision
problem corresponding to the problem of computing
coitRðGÞ is NP-complete even when restricted to planar
graphs of maximum degree at most 3. Moreover, Li et al.
[39] proposed a dynamic programming algorithm to com-
pute coitRðTÞ for any tree T.

The parameters coiRðGÞ and coitRðGÞ are related by the
following result given in [42].

Theorem 2.27 ([42]). Let G be any graph without isolated
vertices and let f ¼ ðV0,V1,V2Þ be any coiRðGÞ-function. Then
coiRðGÞ � coitRðGÞ � 2coiRðGÞ � V2j j: Moreover, coitRðGÞ ¼
2coiRðGÞ � V2j j if and only if G is a star with at least
two leaves.

In addition, Mart�ınez et al. [42] gave upper and lower
bounds for coitRðGÞ in terms of the vertex cover number
a0ðGÞ and the total co-independent domination number
ct, coiðGÞ defined to be the minimum cardinality of a total
dominating set D such that V – D is independent and
not empty.

Theorem 2.28 ([42]). Let G be a graph without isolated ver-
tices. Then

(i) a0ðGÞ þ 1 � coitRðGÞ � 3a0ðGÞ: Moreover, coitRðGÞ ¼
3a0ðGÞ if and only if G is a star with at least
two leaves.

(ii) ct, coiðGÞ þ 1 � coitRðGÞ � 2ct, coiðGÞ:

According to [42], a graph G is said to be total co-inde-
pendent Roman graph (or TCI-Roman graph) if coitRðGÞ ¼
2ct, coiðGÞ: Thus, the problem of characterizing all TCI-
Roman graphs is naturally posed. However, this problem
has been addressed for trees in [42].

2.4.3. Outer independent double Roman domination
The concept of double Roman dominating functions
(DRDF) was introduced by Beeler et al. [21]. A DRDF is a
function h : VðGÞ ! f0, 1, 2, 3g for which each vertex with
label 0 is adjacent to a vertex with label 3 or at least two
vertices with label 2, and each vertex with label 1, is adjacent
to a vertex with label greater than 1. Outer-independent
double Roman dominating functions (OIDRDFs) has
recently been investigated in [11], where an OIDRDF is a
DRDF h ¼ ðV0,V1,V2,V3Þ for which V0 is an independent
set. The minimum weight of an OIDRDF of G is the outer

independent double Roman domination number coidRðGÞ: It
was shown in [11] that the decision problem corresponding
to the problem of computing coidRðGÞ is NP-complete for
bipartite and chordal graphs. Among the various bounds
established in [11], it has been shown that for any graph G
of order n, dðGÞ þ 2 � coidRðGÞ � nþ cðGÞ and a0ðGÞ þ
2 � coidRðGÞ � 3a0ðGÞ: Moreover, if dðGÞ � 2, then
coidRðGÞ � 2a0ðGÞ: In addition, nontrivial graphs G with
coidRðGÞ ¼ a0ðGÞ þ 2 are characterized as follows.

Theorem 2.29 ([11]). For each graph G of order n � 2,
coidRðGÞ ¼ a0ðGÞ þ 2 if and only if one of the follow-
ing holds:

(i) There is a vertex v with degGðvÞ ¼ p� 1;
(ii) There are two vertices z1, z2 with VðGÞ ¼ Nðz1Þ [

Nðz2Þ [ fz1, z2g and each maximum independent set of
G½Nðz1Þ \ Nðz2Þ� is a maximum independent of G.

Restricted to the class of trees, the authors showed that
for each tree T of order n � 3 with s(T) support vertices,

coidRðTÞ � pþ sðTÞ
2 : The authors also established Nordhaus-

Gaddum bounds for coidRðGÞ þ coidRð�GÞ:
Theorem 2.30 ([11]). For a graph G on n � 2 vertices,

(i) coidRðGÞ þ coidRð�GÞ � 3nþ 1, with equality if and
only if G 2 fKn,Kng:

(ii) coidRðGÞ þ coidRð�GÞ � b5n2 c þ 2, when minfdðGÞ,
dð�GÞg � 1:

(iii) coidRðGÞ þ coidRð�GÞ � nþ 5:

2.5. Independent double Roman domination

Independent double Roman dominating functions (IDRDFs)
has recently been introduced in [40], where an IDRDF is a
DRDF h ¼ ðV0,V1,V2,V3Þ for which V1 [ V2 [ V3 is an
independent set. The minimum weight of an IDRDF of G is
the independent double Roman domination number cidRðGÞ:
It was shown in [40] that the decision problem correspond-
ing to the problem of computing cidRðGÞ is NP-complete for
bipartite graphs. The parameters idRðGÞ, i(G), iRðGÞ and
ifR2gðGÞ are related by the following results.

Theorem 2.31.
(i) [43] For each graph G,

maxf2iðGÞ, iðGÞ þ ifR2gðGÞg � idRðGÞ � 3iðGÞ:

(ii) [40] For each graph G of order n � 1, iRðGÞ þ 1 �
idRðGÞ � 2iRðGÞ with equality in upper bound if and
only if G ¼ Kn :

(iii) [43] For each graph G, 3
2 ifR2gðGÞ � idRðGÞ � 2ifR2gðGÞ:

Theorem 2.32 ([40]). For any connected graph G of order
n � 3 with maximum degree D > 0,

idRðGÞ �
2n
D

þ D� 2
D

iðGÞ:

This bound is sharp for even cycles and paths of order 3k.
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Theorem 2.33 ([43]). If G is a connected graph of order n
with minimum degree d, then idRðGÞ � 2n� ð2d� 1ÞqðGÞ:

Restricted to the class of trees, the authors in [40] showed
that for each tree T of order n � 3, cidRðTÞ � 5n

4 : Mojdeh
and Mansouri [43] showed that for each tree T of order n �
2, 2iðTÞ þ 1 � idRðTÞ � 3iðTÞ: They also proved that any
ordered pair (a, b) is realizable as the independent domin-
ation and independent double Roman dominations num-
bers, respectively, of some nontrivial tree if and only if
2aþ 1 � b � 3a: Moreover, Rahmouni et al. [47] were
interested in trees T with idRðTÞ ¼ 3iðTÞ, called independent
double Roman trees, where they gave a constructive charac-
terization of such trees.

2.6. Global Roman domination

The study of the global Roman domination was initiated
independently by Atapour et al. [20] and Roushini Leely
Pushpam and Padmapriea [48]. A global Roman dominating
function (GRDF) on a graph G is a function f ¼ ðV0,V1,V2Þ
such that f is a Roman dominating function for both G and
its complement �G: The global Roman domination number of
G, denoted by cgRðGÞ, is the minimum weight of a GRDF
on G. A cgRðGÞ-function is a GRDF of G with weight
cgRðGÞ: The motivation for introducing this kind of func-
tions comes from global dominating sets defined by
Sampathkumar in 1989 [50]. A dominating set of G is global
if it dominates both G and its complement �G: The global
domination number cgðGÞ is the minimum cardinality of a
global dominating set in G. A global dominating set of G
with minimum cardinality is called a cgðGÞ-set. The follow-
ing properties of cgRðGÞ-functions were observed in [48].

Proposition 2.34 ([48]). Let f ¼ ðV0,V1,V2Þ be any
cgRðGÞ-function. Then:

(i) V2j j 6¼ 1:
(ii) For every v 2 V0, V2 6�NðvÞ:
(iii) V2 is a cgðHÞ-set, where H ¼ G½V0 [ V2�:
(iv) Each v 2 V2 has at least two private neighbors in H

with respect to V2:

2.6.1. Relationships with cg and cR
Since for every GRDF f ¼ ðV0,V1,V2Þ, V1 [ V2 is a global
dominating set of G, and since assigning a 2 to every vertex
of a global dominating set provides a GRDF, it follows that
cgðGÞ � cgRðGÞ � 2cgðGÞ for all G. Roushinin Leely
Pushpam and Padmapriea [48] showed that cgRðGÞ ¼ cgðGÞ
if and only if G is a complete graph. They also showed that
cgRðGÞ ¼ cgðGÞ þ 1 if and only if G is a complete graph
minus an edge, that is G ¼ Kn � e:

Moreover, since also every global Roman dominating
function of G is an RDF of G and �G, cgRðGÞ �
maxfcRðGÞ, cRð�GÞg: A characterization of graphs G such
that cgRðGÞ ¼ cRðGÞ was given in [48] as follows.

Proposition 2.35 ([48]). Let G be any graph. Then cgRðGÞ ¼
cRðGÞ if and only if there exists a cgRðGÞ-function f ¼
ðV0,V1,V2Þ such that for every vertex in V0 there is a vertex
in V2 such that they are not adjacent.

Upper bounds on the global Roman domination number
of a graph in terms of the Roman domination number were
established by Atapour et al. [20].

Proposition 2.36 ([20]). Let G be a graph of order n. Then

(i) If diamðGÞ � 5, then cgRðGÞ � cRðGÞ þ 1:
(ii) If diamðGÞ 2 f3, 4g, then cgRðGÞ � cRðGÞ þ 4:
(iii) If n � 4, then cgRðGÞ � cRðGÞ þ dðGÞ þ 1:

By Proposition 2.36-(iii), if T is a tree of order n � 4,
then cgRðTÞ � cRðTÞ þ 2: A characterization of trees T such
that cgRðTÞ ¼ cRðTÞ þ 2 or cgRðTÞ ¼ cRðTÞ þ 1 was given by
Atapour et al. [20]. Recall that a spider St is the graph
formed by subdividing j ðj � 0Þ edges of a star K1, t , for t �
2: Let B1 be the family of spiders St for some t � 2 except
stars and P5; B2 the family of trees T obtained from spiders
Sr1 , Sr2 , :::, Srj with centers y1, y2, :::, yj ðj � 2Þ, where rk � 2
for every k 2 f1, :::, jg except P4 and P5, by adding a new
vertex x and joining x to every yj; B3 the family of trees T
obtained from a tree in class B2, say T1, by adding a new
vertex z attached at x, where x is the vertex added to con-
struct the tree T1 from spiders. Let B ¼ B1 [ B2 [ B3:

Theorem 2.37 ([20]). Let T be a tree of order n � 4. Then
cgRðTÞ ¼ cRðTÞ þ 2 if and only if T is the star K1, t for
some t � 3:

Theorem 2.38 ([20]). Let T be a tree of order n � 4. Then
cgRðTÞ ¼ cRðTÞ þ 1 if and only if T 2 B:

2.6.2. Bounds on cgR
Obviously f ¼ ð;,VðGÞ, ;Þ is a GRDF of a graph G and thus
cgRðGÞ � n: It is shown in [48], that cgRðGÞ ¼ n only if G
has diameter at most three. Moreover, they showed that a
graph G of order n with diameter three satisfies cgRðGÞ ¼ n
if and only if G ¼ P4 or G is a corona of K3 or a corona of
K3 minus a leaf. Atapour et al. [20] gave the following
necessary and sufficient condition for graphs G of order n
such that cgRðGÞ ¼ n:

Proposition 2.39 ([20]). Let G be a graph of order n. Then
cgRðGÞ ¼ n if and only if for every set S of vertices with jSj �
2 and each subset B of NGðSÞ � S with jBj > jSj, there is a
vertex x 2 B such that S � NGðxÞ:

Additional upper bounds on the global Roman domin-
ation number of a graph in terms of the order, maximum
and minimum degrees are obtained in [20]. The following
result was obtained by using a probabilistic approach.

Theorem 2.40 ([20]). Let G be a graph of order n and d0 ¼
minfdðGÞ, dð�GÞg � 1: Then cgRðGÞ � 2n 1� d0

ð1þd0Þ1þ
1
d0

� �
:
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Proposition 2.41 ([20]). Let G be a graph of order n � 4
and u, v 2 VðGÞ. If uv 62 EðGÞ, then cgRðGÞ � n� degGðuÞ�
degGðvÞþ 2 NðuÞ \ NðvÞj j þ 2:

Corollary 2.42. If G is a connected triangle-free graph of
order n�3, then cgRðGÞ�minfn�DðGÞ�dðGÞþ4,cRðGÞþ2g:

2.7. Distance Roman domination

For an integer k � 1, a k-distance Roman dominating func-
tion (kDRDF) on a graph G is a function f : VðGÞ !
f0, 1, 2g such that for every vertex u with f(u) ¼ 0 there is a
vertex v at distance at most k from u such that f ðvÞ ¼ 2:
The k-distance Roman domination number of a graph G,
denoted by ckRðGÞ, equals the minimum weight of a k-dis-
tance Roman dominating function on G. A ckRðGÞ-function
is a k-distance Roman dominating function of G with weight
ckRðGÞ: It is worth noting that the 1-distance Roman domin-
ation number c1RðGÞ is the usual Roman domination number
cRðGÞ: The concept of k-distance Roman domination was
introduced in 2013 by Aram et al. [17].

For a vertex v 2 VðGÞ, let Nk,GðvÞ ¼ fu 2 VðGÞ : u 6¼ v
and dðu, vÞ � kg and Nk,G½v� ¼ Nk,GðvÞ [ fvg: The k-degree
of a vertex v is defined as degk,GðvÞ ¼ Nk,GðvÞj j: The min-
imum and maximum k-degree of a graph G are denoted by
dkðGÞ and DkðGÞ, respectively. Let k � 1 be an integer. A set
D � VðGÞ is a k-distance dominating set of G if every vertex
in VðGÞ � D is within distance k of at least one vertex in D.
The k-distance domination number ckðGÞ is the minimum
cardinality among all k-distance dominating sets of G.

Since V1 [ V2 is a k-distance dominating set when f ¼
ðV0,V1,V2Þ is a kDRDF, and since assigning a 2 at the verti-
ces of a k-distance dominating set provides a kDRDF, we
have ckðGÞ � ckRðGÞ � 2ckðGÞ: It is shown that ckRðGÞ ¼
2ckðGÞ if and only if G has a ckRðGÞ-function f ¼
ðV0,V1,V2Þ with V1j j ¼ 0: The following properties general-
ize those already obtained for Roman dominating functions.

Proposition 2.43 ([17]). Let f ¼ ðV0,V1,V2Þ be any
ckRðGÞ-function of a graph G. Then

(i) DkðG½V1�Þ � 1:
(ii) If w 2 V1, then Nk,GðwÞ \ V2 ¼ ;:
(iii) If u 2 V0, then V1 \ Nk,GðuÞj j � 2:
(iv) V2 is a minimum k-dominating set of the induced sub-

graph G½V0 [ V2�:
(v) Let H ¼ G½V0 [ V2�: Then each vertex v 2 V2 with

Nk,GðvÞ \ V2 6¼ ; has at least two private neighbors
relative to V2 in the graph H.

Additional results have been obtained in [17] and are
gathered by the following proposition.

Proposition 2.44 ([17]). Let k � 1 be an integer and G a
connected graph of order n. Then

(i) If n � kþ 2, then ckRðGÞ � 4n=ð2kþ 3Þ, with equality
if and only if G is C2kþ3 or obtained from n

2kþ3 P2kþ3

by adding a connected subgraph on the set of centers
of the components of n

2kþ3 P2kþ3:
(ii) If n� DðGÞ � k � 0, then ckRðGÞ � n� DðGÞ � kþ 2:

(iii) If D ¼ DðGÞ � 3, then ckRðGÞ �
2nðD�2Þ

DðD�1Þk�2
:

Sharifi and Jafari Rad [54] presented a probabilistic upper
bound for the distance Roman domination number. They
also studied distance Roman domination number in
Random graphs. The following Nordhaus-Gaddum inequal-
ity is given by Aram et al. [17].

Theorem 2.45 ([17]). Let k � 2 be an integer, and let G be a
graph of order n � 3. Then ckRðGÞ þ ckRð�GÞ � nþ 2, with
equality if and only if G or �G is isomorphic to rK1 [ sK2 for
two integers r, s � 0:

A variation close to 2-distance Roman domination,
namely hop Roman domination, is introduced by Shabani
et al. [52] and further studied in [37, 46, 51]. A hop Roman
dominating function (HRDF) on a graph G is a function f :
VðGÞ ! f0, 1, 2g such that for every vertex u 2 V with f(u)
¼ 0 there is a vertex v with f(v) ¼ 2 and dGðu, vÞ ¼ 2: The
minimum weight of an HRDF on G is called the hop Roman
domination number of G and is denoted by chRðGÞ: An
HRDF f is a hop Roman independent dominating function
(HRIDF) if for any pair v, w with non-zero labels under f,
dGðv,wÞ 6¼ 2: The minimum weight of an HRIDF on G is
called the hop Roman independent domination number of G.
It is shown in [37] that the decision problems related to the
hop Roman domination and hop Roman independent dom-
ination are NP-complete even when restricted to planar
bipartite graphs or planar chordal graphs. Moreover, a linear
time algorithm to compute the hop Roman domination
number in trees is given in [46]. A characterization of
graphs G of order n with chRðGÞ 2 fn� 1, ng is provided
in [51].

2.8. Roman {3}-domination

In [44], Mojdeh and Volkmann defined a variant of double
Roman domination, namely Roman {3}-domination or
double Italian domination. For a graph G, a Roman {3}-
dominating function is a function f : VðGÞ ! f0, 1, 2, 3g
having the property that f ðN½u�Þ � 3 for every vertex u 2
VðGÞ with f ðuÞ 2 f0, 1g: The minimum weight of a Roman
{3}-dominating function is the Roman {3}-domination num-
ber, denoted by cfR3gðGÞ: Clearly, cfR3gðGÞ � cdRðGÞ, since
every double Roman dominating function is a Roman {3}-
dominating function. Therefore each upper bound of cdRðGÞ
is also an upper bound of cfR3gðGÞ: If T is a tree, then we
even have cfR3gðTÞ ¼ cdRðTÞ, and if Cn is a cycle of order n,
then cfR3gðCnÞ ¼ n (see [44]). In addition, the authors in
[44] determined the Roman {3}-domination number of any
complete r-partite graph for r � 2:

Observation 2.46 ([44]). If G is a graph of order n � 2, then
cfR3gðGÞ � 3, with equality if and only if DðGÞ ¼ n� 1:

Observation 2.47 ([44]). If G is a graph of order n with
minimum degree d � 2, then cfR3gðGÞ � nþ 2� d:
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Theorem 2.48 ([44]). If G is a graph, then cðGÞ þ 2 �
cfR3gðGÞ � 3cðGÞ:

Different examples in [44] show that Observation 2.47
and Theorem 2.48 are sharp. Next we present lower
bounds on cfR3gðGÞ in terms of order and max-

imum degree.

Theorem 2.49 ([44]). If G is a connected graph of order n
and maximum degree D, then

cfR3gðGÞ �
3n

Dþ 3
:

If D is great, then the next bound is an improvement of
Theorem 2.49

Theorem 2.50 ([44]). If G is a connected graph of order n
and maximum degree D, then

cfR3gðGÞ � min
3n

Dþ 2
,
2nþ D
Dþ 1

� �
:

In [22], the authors have shown that the decision
problem corresponding to the problem of computing
cfR2gðGÞ is NP-complete for bipartite graphs. Using this

result, the authors in [44] show that the Roman {3}-
domination problem is also NP-complete for bipart-
ite graphs.

2.9. Locating Roman domination

Jafari Rad, Rahbani and Volkmann [36] considered Roman
dominating functions f ¼ ðV0,V1,V2Þ with a further condi-
tion that for each vertex x 2 V0 the set NðxÞ \ V2 is unique.
That is, any two vertices x, y in V0 are distinguished in the
sense that there is a vertex v 2 V2 with jNðvÞ \ fx, ygj ¼ 1:
An RDF f ¼ ðV0,V1,V2Þ is called a locating Roman domi-
nating function (or just LRDF) if NðvÞ \ V2 6¼ NðuÞ \ V2 for
any pair u, v of distinct vertices of V0. The locating Roman
domination number cLRðGÞ is the minimum weight of an
LRDF of G. Note that cLRðGÞ is defined for any graph G,
since ð;,VðGÞ, ;Þ is an LRDF for G. Jafari Rad et al. studied
the complexity issue and showed that the decision problem
corresponding to the problem of computing cLRðGÞ is NP-
complete for bipartite and chordal graphs. They also showed
that the locating Roman domination numbers of a graph G
and its complement graph �G differ by one unit, that is,
jcLRðGÞ � cLRð�GÞj � 1: For paths and cycles, they established
that for n � 3, cLRðPnÞ ¼ cLRðCnÞ ¼ d4n5 e:

2.9.1. cLRðGÞ versus cRðGÞ, cLðGÞ or cLRð�GÞ
A set D of vertices in a graph G ¼ ðV,EÞ is a locating-domi-
nating set if for every two vertices u, v of V n D the sets
NðuÞ \ D and NðvÞ \ D are non-empty and different. The
locating-domination number cLðGÞ is the minimum cardinal-
ity of a locating-dominating set. Locating-domination was
introduced by Slater [55, 56].

It was observed in [36] that for any connected graph G
of order n, cRðGÞ � cLRðGÞ � n and cLðGÞ � cLRðGÞ �

2cLðGÞ: Moreover, the authors provided a constructive char-
acterization for trees T with cLRðTÞ ¼ cRðTÞ:

Proposition 2.52 ([36]). Let G be a graph of order n. Then

(i) cLRðGÞ ¼ cLðGÞ if and only if G ¼ Kn :

(ii) cLRðGÞ ¼ cLðGÞ þ 1 if and only if G is a complete graph
or a star of order at least two.

We will say that a graph G is a locating Roman graph if
cLRðGÞ ¼ 2cLðGÞ: It was shown that for n � 3, a path Pn is
locating Roman if and only if n � 0, 2 or 4 (mod 5), and a
cycle Cn is locating Roman if and only if n � 0, 2 or 4
(mod 5). Jafari Rad et al. [36] gave the following equivalent
conditions for locating Roman graphs

Theorem 2.53 ([36]). Let G be a graph. Then the following
conditions are equivalent.

(i) G is a locating Roman graph.
(ii) cLðGÞ � cLðG� SÞ þ jSj=2 for any independent set S.
(iii) G has a cLRðGÞ-function f ¼ ðV0,V1,V2Þ with jV1j ¼ 0:

Proposition 2.54 ([36]). If G is a locating Roman graph of

order n � 2, then cLRðGÞ � max b2 log 2nc, 4n
3þD

n o
:

2.9.2. Bounds on cLRðGÞ
Restricted to the class of trees, Jafari Rad and Rahbani [35]
obtained upper and lower bounds for the locating Roman
domination number.

Theorem 2.55 ([35]). For any tree T of order n � 2 with ‘

leaves and s support vertices, cLRðTÞ � ð2nþ ð‘� sÞ þ 2Þ=3:

Corollary 2.56 ([35]). For any tree T of order nP2, cLRðTÞ �
ð2nþ 2Þ=3:

Theorem 2.57 ([35]). For any tree T of order n � 2, with ‘

leaves and s support vertices, cLRðTÞ � ð4nþ ‘þ sÞ=5:

We note that a constructive characterization of all trees
achieving equality in the bounds of Theorem 2.55 or
Theorem 2.57 can be found in [35].

3. Signed Roman domination parameters in graphs

In this section, we present different results concerning the
signed version of nine types of Roman dominating func-
tions, where for each function negative weight can be
assigned to vertices or edges.

3.1. Signed Roman domination number in graphs

Constantine’s model (see [23]) did not achieve the desired
goal of being both cost effective and of defending the
Roman Empire. Following the paper [13], the authors
explored an alternative model which would save the
Emperor substantial costs of maintaining legions, while still
defending the Roman Empire. The 4th century A.D. saw a
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very large number of new, small legions created, a process
which began under Constantine II. In particular, auxiliary
cohortes (about a tenth the size of a legion) and auxilia pala-
tina were formed. Auxiliary troops were mainly recruited
from peregrini, i.e., free provincial subjects of the Roman
Empire who did not hold Roman citizenship, in contrast to
the legions, which only admitted Roman citizens. Auxiliary
troops were considered second-class soldiers and were
looked down on by the elite troops of the comitatensis who
were paid regularly and were much better equipped. As a
cost effective way of securely defending the Roman Empire,
Emperor Constantine’s strategy would be to minimize the
number of legions stationed by placing auxiliary troops at
every unsecured location provided that the number of
legions stationed at a location and its neighboring location
always exceeded the number of auxiliary troop stationed
there for every location in the Roman Empire.

In graph theoretic terms, Ahangar, Henning, L€owenstein,
Zhao and Samodivkin [13] defined a signed Roman dominat-
ing function (SRDF) on a graph G as a function f : VðGÞ !
f�1, 1, 2g satisfying the condition that f is a dominating
function (that is, the sum of the values assigned to a vertex
and its neighbors is at least 1 for every vertex), and every
vertex u for which f ðuÞ ¼ �1 is adjacent to at least one ver-
tex v for which f(v) ¼ 2. The weight of an SRDF f on a
graph G is defined by xðf Þ ¼

P
v2VðGÞ f ðvÞ: The signed

Roman domination number, denoted csRðGÞ, is the min-
imum weight of an SRDF in G. An SRDF of weight csRðGÞ
is called a csRðGÞ-function. In the earlier model where a ver-
tex in the graph represents a location in the Roman Empire,
an assignment of –1 equates to stationing of an auxiliary
cohorte or auxilia palatina at that location, while as before
aþ 1 and þ 2 equates to stationing one or two legions,
respectively, at that location.

For an SRDF f on G, let Vi ¼ Viðf Þ ¼ fv 2 VðGÞ : f ðvÞ ¼
ig for i ¼ �1, 1, 2: An SRDF f can be represented by the
ordered partition ðV�1,V1,V2Þ of V(G). The definitions
immediately lead to the first observation.

Observation 3.1 ([13]). If f ¼ ðV�1,V1,V2Þ is an SRDF on a
graph G of order n, then the following holds.

(a) jV�1j þ jV1j þ jV2j ¼ n:
(b) xðf Þ ¼ jV1j þ 2jV2j � jV�1j:
(c) Every vertex in V�1 is dominated by a vertex of V2.
(d) V1 [ V2 is a dominating set of G.

3.1.1. Exact values
In this part, the signed Roman domination numbers of stars,
complete graphs, cycles, paths and complete bipartite graphs
Kp, p are determined. For a star, we assign to the central ver-
tex the value 2 and to as many leaves as possible the value
–1 and to the remaining leaves the value 1. This leads to
csRðK1, n�1Þ ¼ 1 if n is even, and csRðK1, n�1Þ ¼ 2 for odd n.

Proposition 3.2 ([13]). For n � 1, we have csRðKnÞ ¼ 1,
unless n¼ 3 in which case csRðK3Þ ¼ 2:

Proposition 3.3 ([13]). For the classes of paths Pn and cycles
Cn, csRðPnÞ ¼ bð2nÞ=3c and csRðCnÞ ¼ dð2nÞ=3e:

Proposition 3.4 ([33]). For p � 3, we have csRðKp, pÞ ¼ 4:

3.1.2. Bounds on the signed Roman domination number
Theorem 3.5 ([13]). If G is an r-regular graph of order n
with r � 1, then csRðGÞ � n=ðr þ 1Þ:

Theorem 3.6 ([13]). If G is a graph of order n, minimum
degree d and maximum degree D such that d < D, then

csRðGÞ �
�2Dþ 2dþ 3
2Dþ dþ 3

� �
n:

Theorem 3.7 ([13]). If G is a graph of order n, then the fol-
lowing holds.

(a) csRðGÞ � n, with equality if an only if G ¼ Kn :
(b) csRðGÞ � 2cðGÞ � n, with equality if an only if G ¼ Kn :

For k � 1, let Fk be the graph obtained from the disjoint
union of k stars K1, 2k�1 by adding all edges between the
central vertices of the k stars. Let F ¼ fFk j k � 1g:

Theorem 3.8 ([13]). If G is a graph of order n, then
csRðGÞ � 3ffiffi

2
p

ffiffiffi
n

p
� n, with equality if and only if G 2 F :

For k � 1, let Lk be the graph obtained from a graph H
of order k by adding 2degHðvÞ þ 1 pendant edges to each
vertex v of H. Let H ¼ fLk j k � 1g:

Theorem 3.9 ([13]). If G is a graph of order n and size m
without isolated vertices, then csRðGÞ � 3n�4m

2 , with equality if
and only if G 2 H:

For k � 1, let Bk be the bipartite graph obtained from
Kk, k by adding 2kþ 1 pendant edges to each vertex of the
complete bipartite graph. Let B ¼ fBk j k � 1g:

Theorem 3.10 ([13]). If G is a bipartite graph of order n,
then csRðGÞ � 3

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
� n� 3, with equality if and only

if G 2 B:

A signed dominating function is defined in [28] as a func-
tion f : VðGÞ ! f�1, 1g such that f ðN½v�Þ � 1 for all v 2
VðGÞ: The signed domination number, denoted csðGÞ, is the
minimum weight of a signed dominating function in G. A
signed Roman dominating function combines properties of
both a Roman dominating function and a signed dominating
function. Some bounds for the signed Roman domination
number in terms of the signed domination number are given
in [13]. For k � 1, let Gk be a graph obtained from a bipartite
graph H of order 3k with partite sets L and R, where every
component of H is isomorphic to P3 or C6 and where every
vertex in L has degree 2 in H, by adding edges between verti-
ces of R in such a way that if v 2 R and v belongs to a P3-
component of H, then degGk

ðvÞ � degHðvÞ þ 1 ¼ 2 and if v 2
R and v belongs to a C6-component of H, then degGk

ðvÞ �
degHðvÞ þ 2 � 4: Let G ¼ fGk j k � 1g:

Theorem 3.11 ([13]). If G is a graph of order n, then
csRðGÞ � csðGÞ þ n

3, with equality if and only if G 2 G:

Recently, Volkmann [60] defined the weak signed Roman
dominating function (WSRDF) of a graph G as a function f :
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VðGÞ ! f�1, 1, 2g having the property f ðN½v�Þ � 1 for each
v 2 VðGÞ: The weight of a WSRDF is the valueP

u2VðGÞ f ðuÞ: The weak signed Roman domination number,

denoted by cwsRðGÞ, is the minimum weight of a WSRDF in
G. The definitions lead to cwsRðGÞ � csRðGÞ: Therefore each
lower bound of cwsRðGÞ is also a lower bound of csRðGÞ: In
[60] it is shown that many lower bounds on csRðGÞ are also
valid for cwsRðGÞ: In particular, Volkmann [60] proved that
Theorems 3.5, 3.6, 3.7 and 3.9 also hold for the weak signed
Roman domination number. In addition, the difference
csRðGÞ � cwsRðGÞ can be arbitrarily large.

3.2. Signed Roman k-domination in graphs

For every integer k � 1, the signed Roman k-dominating func-
tion (SRkDF) on a graph G is defined by Henning and
Volkmann in [33] as a function f : VðGÞ ! f�1, 1, 2g such
that f ðN½v�Þ � k for every v 2 VðGÞ, and every vertex u for
which f ðuÞ ¼ �1 is adjacent to a vertex v for which f(v) ¼ 2.
The weight of an SRkDF f on a graph G is xðf Þ ¼P

v2VðGÞ f ðvÞ: The signed Roman k-domination number cksRðGÞ
of G is the minimum weight of an SRkDF on G. The special
case k¼ 1 was introduced and investigated in [13] (see
Subsection 2.1). A cksRðGÞ-function is a signed Roman k-domi-
nating function on G of weight cksRðGÞ: For an SRkDF f on G,
let Vi ¼ Viðf Þ ¼ fv 2 VðGÞ : f ðvÞ ¼ ig for i ¼ �1, 1, 2: An
SRkDF f can be represented by the ordered partition
ðV�1,V1,V2Þ of V(G). Note that the signed Roman k-domin-
ation number exists when d � k

2 � 1:

3.2.1. Signed Roman k-domination in special classes
of graphs

Below we summarize the results on the signed Roman
k-domination in some special classes of graphs.

Proposition 3.12 ([33]). If n � k � 2 are integers, then
cksRðKnÞ ¼ k:

Proposition 3.13 ([33]). If k � 1 and p � kþ 2 are integers,
then cksRðKp, pÞ ¼ 2kþ 2:

Proposition 3.14 ([33]). Let k � 1 and k� 1 � p � kþ 1
be integers.

(a) If k � 2, then cksRðKk�1, k�1Þ ¼ 2k� 2:

(b) c1sRðK1, 1Þ ¼ 1 and if k � 2, then cksRðKk, kÞ ¼ 2k:

(c) cksRðKkþ1, kþ1Þ ¼ 2kþ 1:

Proposition 3.15 ([33]). (1) If 2 � n � 7, then c2sRðPnÞ ¼ n,
and if n � 8, then c2sRðPnÞ ¼ d2nþ5

3 e:
(2) For n � 3, we have c2sRðCnÞ ¼ d2n3 e þ dn3e � bn3c:

Proposition 3.16 ([16]). (1) For n � 4, we have c3sRðPnÞ ¼
nþ 2:
(2) For n � 3, we have c4sRðPnÞ ¼ d4n3 e þ 2:

3.2.2. Bounds on the signed Roman k-domination number
Theorem 3.17 ([62]). Let G be a graph of order n with
dðGÞ � dk2e � 1. Then cksRðGÞ � 2n, with equality if and only

if k is even, dðGÞ ¼ k
2 � 1, and each vertex of G is of min-

imum degree or adjacent to a vertex of minimum degree.

Theorem 3.18 ([33]). Let G be a graph of order n with
dðGÞ � k� 1. Then cksRðGÞ � n. If dðGÞ � kþ 2t � 1 for an
integer t � 1, then cksRðGÞ � n� t:

Theorem 3.19 ([33]). If G is an r-regular graph of order n
with r � k� 1, then cksRðGÞ � kn

rþ1 :

If H is a ðk� 1Þ-regular graph of order n, then it follows
from Theorem 3.19 that cksRðHÞ � n and thus cksRðHÞ ¼ n,
according to Theorem 3.18. This example shows that
Theorems 3.18 and 3.19 are both sharp. As an immediate
consequence of Theorems 3.18 and 3.19, we obtain
c3sRðCnÞ ¼ n:

Theorem 3.20 ([33]). If G is a graph of order n with
dðGÞ � k� 1, then

cksRðGÞ � kþ 1þ DðGÞ � n:

Proposition 3.12 shows that Theorem 3.20 is sharp.

Theorem 3.21 ([33]). Let G be a graph of order n, minimum
degree d � k� 1 and maximum degree D. If d < D, then

cksRðGÞ �
�2Dþ 2dþ 3k
2Dþ dþ 3

� �
n:

In [33] are given examples which show that Theorem
3.21 is sharp for each k � 1: Theorems 3.5 and 3.6 are the
special case k¼ 1 of Theorems 3.19 and 3.21.

Theorem 3.22 ([33]). If G is a graph of order n with dðGÞ �
k� 1 and packing number qðGÞ, then

cksRðGÞ � qðGÞðkþ dðGÞ þ 1Þ � n:

In [33] the reader can find examples which show that
Theorem 3.22 is sharp. As an application of Theorem 3.19,
we next present a Nordhaus-Gaddum type inequality for the
signed Roman k-domination number of regular graphs.

Theorem 3.23 ([33]). If G is an r-regular graph of order n
such that r � k� 1 and n� r � 1 � k� 1, then

cksRðGÞ þ cksRð�GÞ �
4kn
nþ 1

:

If n is even, then cksRðGÞ þ cksRð�GÞ � 4kðnþ 1Þ=ðnþ 2Þ:

Let k � 1 be an odd integer, and let H and �H be ðk� 1Þ
-regular graphs of order n ¼ 2k� 1: As seen above, we have
cksRðHÞ ¼ cksRð�HÞ ¼ n: Consequently,

cksRðHÞ þ cksRð�HÞ ¼ 2n ¼ 4kn
nþ 1

:

Thus the Nordhaus-Gaddum bound of Theorem 3.23 is
sharp for odd k.
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The Dutch-windmill graph, KðpÞ
3 , is a graph which con-

sists of p copies of K3 with one vertex in common.

Theorem 3.24 ([16]). Let k � 2 be an integer, and let G be a
graph of order n and size m such that dðGÞ � k. Then

cksRðGÞ �
3

kþ 7
5kþ 8

3
n� 4m

� �
:

This bound is sharp for the Dutch-windmill graph KðpÞ
3

(p � 2) when k¼ 2.

Theorem 3.25 ([33]). Let G be a connected cubic graph of
order n. Then the following holds.

(a) n
2 � c2sRðGÞ � 7n

8 :
(b) 3n

4 � c3sRðGÞ � n:

Question 1 ([33]). Is it true that if G is a cubic graph of
order n, then c2sRðGÞ � 5n=6?

For an integer k � 1, Volkmann [62] recently defined
the weak signed Roman k-dominating function (WSRkDF) of
a graph G as a function f : VðGÞ ! f�1, 1, 2g having the
property f ðN½v�Þ � k for each v 2 VðGÞ: The weight of a
WSRkDF is the value

P
u2VðGÞ f ðuÞ: The weak signed Roman

k-domination number, denoted by ckwsRðGÞ, is the minimum
weight of a WSRkDF on G. The definitions lead to
ckwsRðGÞ � cksRðGÞ: Therefore each lower bound of ckwsRðGÞ is
also a lower bound of cksRðGÞ: In [62] it is shown that many
lower bounds on cksRðGÞ are also valid for ckwsRðGÞ: In par-
ticular, Volkmann [62] proved that Theorems 3.19, 3.20,
3.21 and 3.22 also hold for the weak signed Roman k-dom-
ination number.

3.2.3. Signed Roman k-domination number in trees
The aim in the subsection is to determine lower and upper
bounds on the signed Roman k-domination number of trees
in terms of its order for k¼ 2, 3, 4.

Let T be the family of trees constructed as follows. Let T0

be an arbitrary tree of order n0 � 2: For each vertex v 2
VðT0Þ, add 2degT0 ðvÞ vertex disjoint copies of a star K1, 3

and join v to a leaf from each of the added 2degT0 ðvÞ stars.
Let T be the resulting tree and let T be the family of all
such trees.

Theorem 3.26 ([32]). If T is a tree of order n � 4, then
c2sRðTÞ � 10nþ24

17 , with equality if and only if T 2 T :

Theorem 3.27 ([16]). Let T be a tree of order n � 2. Then

(a) c3sRðTÞ � 3n
2 , with equality if and only if T is the cor-

ona of some tree T0:
(b) c4sRðTÞ � 2n, with equality if and only if every vertex

of T is either a leaf or a support vertex.
(c) c4sRðTÞ � nþ 2, with equality if and only if T ¼ P2:

Note that Theorem 3.27 (b) is a special case of Theorem
3.17. In [16], one can find the following statement. If T is a
tree of order n � 2, then c3sRðTÞ � 4nþ7

5 , with equality if

and only if T ¼ P2: The next example (see [62]) demon-
strates that this statement is not valid.

Let Pn ¼ v1v2:::v2pþ1 be a path of order 2pþ 1 with an
integer p � 1: Now attach two pendant edges to v1 and
v2pþ1 and three pendant edges to v2iþ1 for 1 � i � p� 1:
The resulting tree T5pþ2 is of order 5pþ 2: Define the func-
tion f : VðT5pþ2Þ ! f�1, 1, 2g by f ðv2iþ1Þ ¼ 2 for 0 � i � p,
f ðv2iÞ ¼ �1 for 1 � i � p and f(x) ¼ 1 otherwise. Then f is
an SR3DF on T5pþ2 of weight

xðf Þ ¼ 2ðpþ 1Þ � pþ 3pþ 1 ¼ 4pþ 3 ¼ 4nðT5pþ2Þ þ 7

5
:

Therefore c3sRðT5pþ2Þ � 4nðT5pþ2Þþ7
5 : Since f ðuÞ þ f ðvÞ � 3 if v

is a leaf and u its support vertex, it is easy to verify

that c3sRðT5pþ2Þ ¼ 4nðT5pþ2Þþ7
5 :

In [62], Volkmann conjectured that the bound c3sRðTÞ �
4nþ7
5 is really valid for each tree of order n � 2: However, he

only could prove the weaker bound c3sRðTÞ � 3nþ6
4 :

3.3. Nonnegative signed Roman domination in graphs

A nonnegative signed Roman dominating function (NNSRDF)
on a graph G is defined by Dehgardi and Volkmann in [26] as
a function f : VðGÞ ! f�1, 1, 2g such that f ðN½v�Þ � 0 for
every v 2 VðGÞ, and every vertex u for which f ðuÞ ¼ �1 is
adjacent to a vertex v for which f(v) ¼ 2. The weight of an
NNSRDF f on a graph G is xðf Þ ¼

P
v2VðGÞ f ðvÞ: The nonneg-

ative signed Roman domination number c0sRðGÞ of G is the
minimum weight of an NNSRDF on G.

Observation 3.28 ([26]). If G is a graph of order n,
then c0sRðGÞ � DðGÞ þ 1� n:

Proposition 3.29 ([26]). For n � 1, we have c0sRðK1, nÞ ¼ 0
with exception of the cases that n¼ 1 or n¼ 3, in which cases
we have c0sRðK1, 1Þ ¼ c0sRðK1, 3Þ ¼ 1:

Proposition 3.30 ([26]). For n � 1, we have c0sRðKnÞ ¼ 1
when n¼ 1, 2, 4 and c0sRðKnÞ ¼ 0 otherwise.

Propositions 3.29 and 3.30 show that Observation 3.28
is sharp.

Proposition 3.31 ([26]). (1)For n � 1, we have c0sRðPnÞ ¼ 0
when n � 0 ðmod 3Þ and c0sRðPnÞ ¼ 1 otherwise.
(2) For n � 3, we have c0sRðCnÞ ¼ 0 when n �
0 ðmod 3Þ, c0sRðCnÞ ¼ 2 when n � 1 ðmod 3Þ and c0sRðCnÞ ¼
1 when n � 2 ðmod 3Þ:
(3) For n � m � 2, we have c0sRðKm, nÞ ¼ 3 when m¼ 3 and
c0sRðKm, nÞ ¼ 2 otherwise.

In the following we present some sharp upper and lower
bounds on the nonnegative signed Roman domination number.

Theorem 3.32 ([26]). If G is a graph of order n, then
c0sRðGÞ � n, with equality if and only if G ¼ Kn :

Theorem 3.33 ([26]). If G is a regular graph,
then c0sRðGÞ � 0:
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Proposition 3.30 demonstrates that Theorem 3.33
is sharp.

Theorem 3.34 ([26]). If G is a graph of order n, minimum
degree d and maximum degree D such that d < D, then

c0sRðGÞ �
2nðd� DÞ
2Dþ dþ 3

:

In [26], the reader can find examples which show that
Theorem 3.34 is sharp.

Let F k ¼ fFk j k � 1g be a family of graphs defined as
follows. Let X be the vertex set of the complete graph Kk,
and let Fk be the graph obtained from Kk by adding 2k new
vertices to each vertex of the complete graph such that for
each new vertex x, 1 � degðxÞ � 2 and for every vertex u 2
X, degðuÞ ¼ 3k� 1: Let F ¼ [k�1 F k:

Theorem 3.35 ([26]). If G is a graph of order n, then

c0sRðGÞ � 3
4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8nþ 1

p
� 1

� �
� n, with equality if and only

if G 2 F :

Theorem 3.36 ([26]). If G is a connected graph of order n �
2 and size m, then c0sRðGÞ � 8n�12m

7 :

Examples in [26] show that Theorem 3.36 is sharp.
Let Bk ¼ fBk j k � 1g be a family of bipartite graphs

defined as follows. Let X and Y be the partite sets of the
complete bipartite graph Kk, k, and let Bk be the bipartite
graph obtained from Kk, k by adding 2kþ 2 new vertices to
each vertex of the complete bipartite graph such that for
each new vertex x, 1 � degðxÞ � 2 and for every vertex u 2
X [ Y , degðuÞ ¼ 3kþ 2: Let B ¼ [k�1 Bk:

Theorem 3.37 ([26]). If G is a bipartite graph of order n,

then c0sRðGÞ � 3
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4nþ 9

p
� 3

� �
� n, with equality if and only

if G 2 B:

3.4. Signed total Roman k-domination in graphs

If k � 0 is an integer, then the signed total Roman k-domi-
nating function (STRkDF) on a graph G is defined by
Volkmann [59] as a function f : VðGÞ ! f�1, 1, 2g such
that f ðNðvÞÞ � k for every v 2 VðGÞ, and every vertex u for
which f ðuÞ ¼ �1 is adjacent to a vertex v for which f(v) ¼
2. The weight of an STRkDF f on a graph G is xðf Þ ¼P

v2VðGÞ f ðvÞ: The signed total Roman k-domination number

ckstRðGÞ of G is the minimum weight of an STRkDF on G. A

ckstRðGÞ-function is a signed total Roman k-dominating func-

tion on G of weight ckstRðGÞ: For an STRkDF f on G, let
Vi ¼ fv 2 VðGÞ : f ðvÞ ¼ ig for i ¼ �1, 1, 2: A signed total
Roman k-dominating function f : VðGÞ ! f�1, 1, 2g can be
represented by the ordered partition ðV�1,V1,V2Þ of V(G).

The signed total Roman k-domination number exists
when dðGÞ � k

2 : The special cases k¼ 0 and k¼ 1 were
introduced and investigated in [27] and [57].

3.4.1. Signed total Roman k-domination in special classes
of graphs

We summarize below the signed total Roman k-domination
numbers of some special classes of graphs.

Observation 3.38 ([27, 57]). For n � 1, we have
c0stRðK1, nÞ ¼ 2. For n � 2, we have c1stRðK1, nÞ ¼ 3:

Proposition 3.39 ([27, 57, 59]). For n � kþ 2, we have
ckstRðKnÞ ¼ kþ 2:

Proposition 3.40 ([57, 59]). If k � 1 and p � k are integers,
then ckstRðKp, pÞ ¼ 2k, with exception of the case that k¼ 1
and p¼ 3, in which case c1stRðK3, 3Þ ¼ 4:

Proposition 3.41 ([27]). For n � 2, we have c0stRðK2, nÞ ¼ 2
when n¼ 2 or n¼ 4 and c0stRðK2, nÞ ¼ 1 otherwise.

Proposition 3.42 ([27]). For n � m � 3, we have
c0stRðKm, nÞ ¼ 2 when n ¼ m ¼ 4, c0stRðKm, nÞ ¼ 1 when m¼ 3
and n¼ 4 or m¼ 4 and n � 5 and c0stRðKm, nÞ ¼ 0 otherwise.

Proposition 3.43 ([27]). For n � 3, we have c0stRðCnÞ ¼ dn2e
when n � 0, 1, 3 ðmod 4Þ and c0stRðCnÞ ¼ n

2 þ 1 when n �
2 ðmod 4Þ:

Proposition 3.44 ([57]). For n � 3, we have c1stRðCnÞ ¼ n
2

when n � 0 ðmod 4Þ and c1stRðCnÞ ¼ nþ3
2 when n �

1, 3 ðmod 4Þ and c1stRðCnÞ ¼ nþ6
2 when n � 2 ðmod 4Þ:

Proposition 3.45 ([27]). For n � 3, we have c0stRðPnÞ ¼ dn2e
when n � 0, 1, 3 ðmod 4Þ and c0stRðPnÞ ¼ n

2 þ 1 when n �
2 ðmod 4Þ:

Proposition 3.46 ([57]). For n � 3, we have c1stRðPnÞ ¼ n
2

when n � 0 ðmod 4Þ and c1stRðPnÞ ¼ dnþ3
2 e otherwise.

3.4.2. Bounds on the signed total Roman k-domination
number

We will present below upper and lower bounds on the
signed total Roman k-domination number.

Proposition 3.47 ([27, 57, 59]). If G is a graph of order n
with dðGÞ � k, then ckstRðGÞ � n:

Theorem 3.48 ([58]). If G is a graph of order n with dðGÞ �
1 and DðGÞ � 3, then c1stRðGÞ � n� 1:

As a simple consequence of Theorem 3.48, Propositions
3.44 and 3.46, we obtain the next result.

Corollary 3.49 ([58]). Let G be a graph of order n with
dðGÞ � 1. Then c1stRðGÞ ¼ n if and only if the components of
G are K2, K3, P3 or C6.

Theorem 3.50 ([27, 59]). If G is a graph of order n � 2 with
minimum degree d � kþ 2, then

ckstRðGÞ � nþ 1� 2

	
d� k
2



:

AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS 13



Theorem 3.51 ([27, 57, 59]). If G is an r-regular graph of
order n with r � maxf1, kg, then ckstRðGÞ � kn

r :

For the special case k¼ 1 and r¼ 3, the following
improvement of Theorem 3.51 is valid.

Theorem 3.52 ([58]). If G is a 3-regular graph of order n,
then c1stRðGÞ � 2n

3 , with equality if and only if jV�1j ¼ jV1j ¼
jV2j for every c1stRðGÞ-function f ¼ ðV�1,V1,V2Þ on G.

Theorem 3.53 ([27, 57, 59]). Let G be a graph of order n,
minimum degree d � k and maximum degree D. If d < D,
then

ckstRðGÞ �
ð2dþ 3k� 2DÞn

2Dþ d
:

We note that Theorems 3.51 and 3.53 are sharp as it is
shown in [27, 57, 59].

Theorem 3.54 ([57, 59]). Let k � 1 be an integer. If G is an
r-regular graph of order n such that r � k and n� r � 1 � k,
then

ckstRðGÞ þ ckstRð�GÞ �
4kn
n� 1

:

Theorem 3.55 ([57]). If G is a graph of order n � 3 with
dðGÞ � 1, then

c1stRðGÞ �
3
2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

p� �
� n:

This bound is sharp.

Next we determine a similar result for the signed total
Roman 0-domination number. For this purpose, we define a
family of graphs. Let F p ¼ fFp j p � 2g be the following
family of graphs. Let X be the vertex set of the complete
graph Kp, and let Fp be the graph obtained from Kp by add-
ing 2p� 2 new vertices to each vertex of the complete graph
such that for each new vertex x, 1 � degðxÞ � 3 and for
every u 2 X, degðuÞ ¼ 3ðp� 1Þ: Let F ¼ [p�2 F p:

Theorem 3.56 ([27]). If G is a graph of order n � 2 with
dðGÞ � 1, then

c0stRðGÞ �
3
4

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
8nþ 1

p� �
� n,

with equality if and only if G 2 F :

Theorem 3.57 ([27, 57]). If G is a connected graph of order
n � 3 and size m, then c1stRðGÞ � 11n�12m

4 and c0stRðGÞ �
10n�12m

5 :

Theorem 3.58 ([27, 57]). If G is a bipartite graph of order
n � 3 with dðGÞ � 1, then c1stRðGÞ � 3

ffiffiffi
n

p
� n and c0stRðGÞ �

3
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4nþ 1

p
� 1

� �
� n:

Examples in [27] and [57] demonstrate that all the
bounds in Theorems 3.57 and 3.58 are sharp.

Recently, Volkmann [61] introduced the signed total
Italian dominating function (STIDF) of a graph G as

function f : VðGÞ ! f�1, 1, 2g having the property thatP
x2NðvÞ f ðxÞ � 1 for each v 2 VðGÞ and if f ðuÞ ¼ �1, then

the vertex must have a neighbor v with f(v) ¼ 2 or two
neighbors w and z with f ðwÞ ¼ f ðzÞ ¼ 1: The weight of an
STIDF f is

P
v2VðGÞ f ðvÞ: The signed total Italian domination

number of G, denoted by cstIðGÞ, is the minimum weight of
an STIDF in G. The definitions lead to cstIðGÞ � cstRðGÞ �
nðGÞ: Therefore each lower bound of cstIðGÞ is also a lower
bound of cstRðGÞ: In [61] it is shown that many lower bounds
on cstRðGÞ are also valid for cstIðGÞ: In particular, Volkmann
[60] proved that Theorems 3.51 and 3.53 in the case k¼ 1 also
hold for the signed total Italian domination number. In add-
ition, the difference cstRðGÞ � cstIðGÞ can be arbitrarily large.

For k � 2, let Lk be the graph obtained from a connected
graph H of order k by adding 2degHðvÞ � 1 pendant edges
to each v of H. Let F ¼ fLkjk � 2g: As a generalization of
the first bound in Theorem 3.57, Volkmann [61] proved the
following result.

Theorem 3.59 ([61]). If G is a connected graph of order n �
3 and size m, then

cstIðGÞ �
11n� 12m

4
,

with equality if and only if G 2 F :

Furthermore, the next sharp bound in terms of the total
domination number and the order is valid.

Theorem 3.60 ([61]). If G is a graph of order n with
dðGÞ � 1, then cstIðGÞ � 2ctðGÞ � n, with equality if an only
if G ¼ sK2 for an integer s � 1:

3.5. Signed double Roman domination in graphs

A signed double Roman dominating function (SDRDF) on a
graph G ¼ ðV,EÞ is a function f : VðGÞ ! f�1, 1, 2, 3g such
that (i) every vertex v with f ðvÞ ¼ �1 is adjacent to at least
two vertices assigned a 2 or to at least one vertex w with
f ðwÞ ¼ 3, (ii)every vertex v with f(v) ¼ 1 is adjacent to at
least one vertex w with f ðwÞ � 2 and (iii) f ½v� ¼ f ðN½v�Þ ¼P

u2N½v� f ðuÞ � 1 holds for any vertex v. The signed double

Roman domination number csdRðGÞ is the minimum weight
of an SDRDF on G. Signed double Roman domination have
been mainly studied in [9, 10]. It is shown in [9] that the
decision problem corresponding to the problem of comput-
ing csdRðGÞ is NP-complete for bipartite and chordal graphs.
However, in special classes of graphs, including complete
graphs, paths, cycles and complete bipartite graphs, exact
values of the signed double Roman domination number
have been well established. Below the results obtained.

Proposition 3.61 ([10]). For n � 2, csdRðKnÞ ¼
2 if n ¼ 2 or 4:
1 otherwise:

�

Proposition 3.62 ([9]). For n � 2,

csdRðPnÞ ¼
n=3 if n � 0 mod 3ð Þ,
d n
3e þ 1 if n � 1, 2 mod 3ð Þ:

(
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Proposition 3.63 ([10]). For n � 3,

csdRðCnÞ ¼
n=3 if n � 0 mod 3ð Þ,
d n
3e þ 2 if n � 1 mod 3ð Þ,

d n
3e þ 1 if n � 2 mod 3ð Þ:

8>><
>>:

Proposition 3.64 ([10]). For 2 � m � n,

csdRðKm, nÞ ¼
3 if m ¼ 2 and n � 3,
4 if m � 4 or m ¼ n ¼ 2,
5 if m ¼ 3:

8<
:

3.5.1. Bounds on csdR
Before presenting some sharp bounds on the signed double
Roman domination number in graphs, we point out, as seen
in [9], that there exist graphs with signed double Roman
domination numbers which are positive or negative. In par-
ticular, it was shown that for every integer k � 0, there
exists a tree Tkþ2 such that csdRðTkþ2Þ � �k: The example of
the tree Tkþ2 that was given is obtained from kþ 2 stars
K1, 4 by adding a new vertex attached to each center vertex
of the star. Consequently, the problem that may arise is to
characterize the graphs G for which csdRðGÞ � 0: It should
be noted that the authors [9] have shown that there is no
forbidden induced subgraph characterization of such graphs.

Proposition 3.65 ([10]). If G is a graph of order n, min-
imum degree d and maximum degree D, then

csdRðGÞ �
�3Dþ 3dþ 4
3Dþ dþ 4

� �
n:

Proposition 3.66 ([10]). For any graph G, csdRðGÞ �
DðGÞ þ 2� n: This bound is sharp for complete graphs except
K4.

For k � 1, let Mk be the graph obtained from a graph H
of order k by adding 3degHðvÞ þ 2 pendant edges to each
vertex v of H. Note that M1 ¼ K1, 2: Let S ¼ fMkjk � 1g:
Theorem 3.67 ([10]). Let G be a graph of order n and size
m with no isolated vertex. Then

csdRðGÞ �
19n� 24m

9

with equality if and only if G 2 S:

For k � 1, let Fk be the graph obtained from the com-
plete graph Kk by adding 3k� 1 pendant edges at each ver-
tex and let AðFkÞ be the family of graphs obtained from Fk
by adding edges (possibly none) between the leaves of Fk so
that to be independent. Let F ¼ [k�1AðFkÞ:

Theorem 3.68 ([10]). Let G be a graph of order n. Then
csdRðGÞ � 4

ffiffi
n
3

p
� n, with equality if and only if G 2 F :

The next result relates the signed double Roman domin-
ation number to the double Roman domination and domin-
ation numbers of any graph.

Proposition 3.69 ([10]). For every graph G of order
n, cdRðGÞ � csdRðGÞ þ cðGÞ � n:

Using a result of Beeler et al. [21] stating that cdRðGÞ �
2cðGÞ for any graph G, we derive from Proposition 3.69 the
following corollary.

Corollary 3.70. For any graph G, csdRðGÞ � 3cðGÞ � n:

Clearly, by the previous corollary csdRðGÞ � 0 for all
graphs G of order n with cðGÞ � n=3: Which gives a partial
answer to the problem concerning a characterization of
graphs G for which csdRðGÞ � 0:

3.5.2. Signed double Roman domination in trees
Restricted to the class of trees, lower and upper bound on
the signed double Roman domination number have been
obtained. Moreover, a characterization of trees attaining
each bound is provided.

For any tree T, let FT be the tree obtained from T by
adding 3degTðvÞ þ 2 pendant edges at v for each v 2 VðTÞ:
Assume that T ¼ fFT jT is a treeg:

Theorem 3.71 ([9]). Let T be a tree of order n � 2. Then

csdRðTÞ �
�5nþ 24

9

with equality if and only if T 2 T :

The double Roman domination number that may be
greater than the order of a graph G (see [8] and [21]), but
as observed in [9], it seems that it is not the same for the
signed double Roman domination number. The authors
conjectured that csdRðGÞ � n holds for every connected
graph G of order n � 2: This conjecture has been proven
for trees.

Theorem 3.72 ([9]). Let T be a tree of order n � 2. Then

csdRðTÞ � n

with equality if and only if T ¼ P2:

As an immediate consequence to Theorem 3.72 we have
the following corollary.

Corollary 3.73. If T is a tree of order n � 3, then csdRðTÞ �
n� 1, and this bound is sharp.

The sharpness of the bound in Corollary 3.73 can be seen
for the corona of K1, 2 and K1, 3, where csdRðcorðK1, 2ÞÞ ¼ 5
and csdRðcorðK1, 3ÞÞ ¼ 7:

3.5.3. Signed total double Roman domination
In [14], Abdollahzadeh Ahangar et al. studied the total ver-
sion of signed double Roman dominating functions, defined
as follows: a signed total double Roman dominating function
(STDRDF) on a graph G ¼ ðV ,EÞ is a function f : VðGÞ !
f�1, 1, 2, 3g such that (i) every vertex v with f ðvÞ ¼ �1 is
adjacent to at least two vertices assigned a 2 or to at least
one vertex w with f ðwÞ ¼ 3, (ii) every vertex v with f(v) ¼
1 is adjacent to at least one vertex w with f ðwÞ � 2 and (iii)
f ðvÞ ¼

P
u2NðvÞ f ðuÞ � 1 holds for any vertex v. The signed

total double Roman domination number ctsdRðGÞ is the min-
imum weight of a STDRDF on G. It is shown in [14] that
the decision problem corresponding to the problem of

AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS 15



computing ctsdRðGÞ is NP-complete even when restricted to
bipartite and chordal graphs. Among the various lower and upper
bounds established in [14, 53] on ctsdR, we give the following.

Theorem 3.74 ([53]). Let G be a graph of order n and size
m with no isolated vertex. Then

ctsdRðGÞ �
11n� 12m

3
:

The bound of Theorem 3.74 is sharp for the following
infinite family of graphs. For t � 2, let Ft be the graph
obtained from a connected graph F of order t by attaching
at each vertex v of F, 3degFðvÞ � 1 new vertices.

Theorem 3.75 ([53]). Let G be a graph of order n. Then

ctsdRðGÞ �
&
3

ffiffiffi
n
2

r
þ 1
2

’
� nþ 1:

This bound is sharp for K2, K3.

Recall that the matching number a0ðGÞ of a graph G is
the size of a maximum independent edge set in G.

Theorem 3.76 ([14]). For any graph G of order n � 2 with
dðGÞ � 1, then

ctsdRðGÞ � nþ a0ðGÞ

This bound is sharp for G ¼ mK2 ðm � 1Þ:

3.6. Signed Roman edge domination in graphs

The open neighborhood NGðeÞ ¼ NðeÞ of an edge e 2 EðGÞ is
the set of all edges adjacent to e. Its closed neighborhood
NG½e� ¼ N½e� ¼ NðeÞ [ feg: In [2], Ahangar, Amjadi,
Sheikholeslami, Volkmann and Zhao defined a signed
Roman edge dominating function (SREDF) on a graph G as
a function f : EðGÞ ! f�1, 1, 2g satisfying f ðN½e�Þ � 1 for
each edge e and every edge e for which f ðeÞ ¼ �1 is adja-
cent to an edge e0 for which f ðe0Þ ¼ 2: The signed Roman
edge domination number, denoted c0sRðGÞ, is the minimum
weight of an SREDF in G.

The following observation follows immediately from
the definition.

Observation 3.77 ([2]). For any nonempty graph G of order
n � 2, we have c0sRðGÞ ¼ csRðLðGÞÞ, where L(G) is the line
graph of G.

Using Observation 3.77 and Propositions 3.2 and 3.3, we
obtain the next results immediately.

Proposition 3.78 ([2]). For n � 1, we have c0sRðK1, nÞ ¼ 1,
unless n¼ 3 in which case c0sRðK1, 3Þ ¼ 2:

For n � 3, we have c0sRðCnÞ ¼ dð2nÞ=3e:
For n � 3, we have c0sRðPnÞ ¼ bð2ðn� 1ÞÞ=3c:

Observation 3.79 ([2]). If G is a graph of size m, maximum
degree D and minimum degree d, then c0sRðGÞ � Dþ d�m.
Furthermore, this bound is sharp for stars K1, r with r 6¼ 3:

Let F be the family of trees obtained from a subdivided
star SðK1, rÞ, r � 1, by adding 2r � 2 pendant edges at the
center of K1, r:

Theorem 3.80 ([2]). Let T be a tree of order n � 3. Then
c0sRðTÞ � 7�n

4 , with equality if and only if T 2 F :

Theorem 3.81 ([2]). If T is a tree of order n � 3,

then c0sRðTÞ �
2ðn�1Þ

3 :

Since c0sRðPnÞ ¼ bð2ðn� 1ÞÞ=3c, according to Proposition
3.78, we see that Theorem 3.81 is sharp.

Theorem 3.82 ([2]). If G is a graph of size m, minimum
degree d � 1 and maximum degree D, then c0sRðGÞ �
2md
2D�1� m:

Theorem 3.83 ([2]). Let G be a connected graph of size
m � 2. Then c0sRðGÞ � m� 1, and c0sRðGÞ ¼ m� 1 if and
only if G 2 fP3, P4,C3,C4,C5,K1, 3g:

3.7. Signed total Roman edge domination in graphs

In [19], Asgharsharghi and Sheikholeslami defined a signed
total Roman edge dominating function (STREDF) on a graph
G as a function f : EðGÞ ! f�1, 1, 2g satisfying f ðNðeÞÞ � 1
for each edge e and every edge e for which f ðeÞ ¼ �1 is
adjacent to an edge e0 for which f ðe0Þ ¼ 2: The signed total
Roman edge domination number, denoted c0stRðGÞ, is the
minimum weight of an STREDF in G.

Observation 3.84 ([19]). For any connected graph G of order
n � 3, we have c0stRðGÞ ¼ cstRðLðGÞÞ:

Using Observation 3.84 and Propositions 3.39, 3.44 and
3.46, the next results follow immediately.

Proposition 3.85 ([19]). For n � 2, we have c0stRðK1, nÞ ¼ 2
when n¼ 2 and c0stRðK1, nÞ ¼ 3 otherwise.

For n � 3, we have c0stRðCnÞ ¼ n
2 when n � 0 ðmod 4Þ

and c0stRðCnÞ ¼ nþ3
2 when n � 1, 3 ðmod 4Þ and c0stRðCnÞ ¼

nþ6
2 when n � 2 ðmod 4Þ:
For n � 4, we have c0stRðPnÞ ¼ n�1

2 when n � 1 ðmod 4Þ
and c0stRðPnÞ ¼ dnþ2

2 e otherwise.
Let r be a positive integer, and let Tr be the tree obtained

from the star K1, 3rþ1 with central vertex x and leaves
x1, x2, :::, x3rþ1 by adding two pendant edges at xi for each
1 � i � r þ 2: Let T ¼ fTr j r � 1g:

Theorem 3.86 ([19]). Let T be a tree of order n � 4. Then
c0stRðTÞ � 17�2n

5 , with equality if and only if T 2 T :

Theorem 3.87 ([19]). If G is a graph of size m, minimum

degree d and maximum degree D � 2, then c0stRðGÞ �
mð2d�1Þ
2ðD�1Þ � m. This bound is sharp.

For regular graphs there is the following Nordhaus-
Gaddum type inequality.

Theorem 3.88 ([19]). If G is an r-regular graph with r � 2 of
order n � 4 such that G and �G are connected and r � n�1

2 , then

c0stRðGÞ þ c0stRð�GÞ �
rn

n� 3
:
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Theorem 3.89 ([19]). Let G be a connected graph of order
n � 3 and size m. Then c0stRðGÞ � m, and c0stRðGÞ ¼ m if and
only if G 2 fP3, P4,C3,C4,C6,K1, 3g:

Problem 1 ([19]). Prove or disprove: For any tree T of order
n � 3, c0stRðTÞ � dnþ2

2 e:

3.8. Signed mixed Roman domination in graphs

For an element x 2 VðGÞ [ EðGÞ, the mixed open
neighborhood of x is the set NmðxÞ ¼ fy 2 VðGÞ [
EðGÞ j y is adjacent or incident to xg: The mixed closed
neighborhood of x is Nm½x� ¼ NmðxÞ [ fxg:

In [3], Ahangar, Asgharsharghi, Sheikholeslami and
Volkmann defined a signed mixed Roman dominating func-
tion (SMRDF) on a graph G as a function f : VðGÞ [
EðGÞ ! f�1, 1, 2g satisfying f ðNm½x�Þ � 1 for each x 2
VðGÞ [ EðGÞ and every element x 2 VðGÞ [ EðGÞ for which
f ðxÞ ¼ �1 is adjacent or incident to an element y 2
VðGÞ [ EðGÞ for which f(y) ¼ 2. The signed mixed Roman
domination number, denoted c	sRðGÞ, is the minimum weight
of an SMRDF in G.

Proposition 3.90 ([3]). For n � 1, we have c	sRðK1, nÞ ¼ 2:

Proposition 3.91 ([3]). For n � 3, we have c	sRðCnÞ ¼ d2n5 e
when n � 0, 1 ðmod 5Þ, c	sRðCnÞ ¼ d2n5 e þ 1 when n �
2, 3 ðmod 5Þ and c	sRðCnÞ ¼ d2n5 e þ 2 when n � 4
ðmod 5Þ:

Proposition 3.92 ([3]). For n � 3, we have c	sRðPnÞ ¼ d2nþ1
5 e

when n � 0 ðmod 5Þ, c	sRðPnÞ ¼ d2nþ1
5 e þ 2 when n �

1, 2 ðmod 5Þ and c	sRðPnÞ ¼ d2nþ1
5 e þ 1 when n � 3, 4

ðmod 5Þ:

Observation 3.93 ([3]). If G is a connected graph of order
n � 2 and size m, then c	sRðGÞ � mþ n� 1, with equality if
and only if G ¼ K2:

For D � 2, Observation 3.93 can be improved.

Observation 3.94 ([3]). If G is a connected graph of order
n � 2, size m and DðGÞ � 2, then c	sRðGÞ � mþ n�
2DðGÞþ 1:

Proposition 3.90 shows that Observation 3.94 is sharp.

Theorem 3.95 ([3]). If G is an r-regular graph of order n
and size m with r � 2, then c	sRðGÞ � nþm

2rþ1 :

If G is 1-regular, then Proposition 3.90 implies that
c	sRðGÞ ¼ n:

Theorem 3.96 ([3]). Let G be a graph of order n, size m, min-
imum degree d and maximum degree D. If 2 � d < D, then

c	sRðGÞ �
�4Dþ 4dþ 3
4Dþ 2dþ 3

ðnþmÞ:

Theorem 3.97 ([3]). If G is a graph of order n and size m,
then

c	sRðGÞ � 2

�
�1
4

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
16

þ nþm

r �
þ 1� n�m:

3.9. Signed strong Roman domination in graphs

The defensive strategy of signed Roman domination is based
on the fact that every place in which there is established a
Roman legion (a label 1) is able to protect itself under exter-
nal attacks; and that every place with an auxiliary troop (a
label -1) must have at least a stronger neighbor (a label 2).
In that way, if an unsecured place (a label -1) is attacked,
then a stronger neighbor could send one of its two legions
in order to defend the weak neighbor vertex (label -1) from
the attack. If several simultaneous attacks to weak places are
developed, then the only stronger place will not be able to
defend its neighbors efficiently. With this motivation in
mind, Asgharsharghi, Khoeilar and Sheikholeslami [18],
introduced the concept of signed strong Roman dominating
functions as follows. For this purpose, they consider that a
strong place should be able to defend itself and at least half
of its weak neighbors.

In graph theoretic terms, a signed strong Roman dominat-
ing function (SStRDF) on a graph G is defined in [18] as a
function f : VðGÞ ! f�1, 1, 2, 3, :::, dD2e þ 1g satisfying the
conditions that f ðN½v�Þ � 1 for each v 2 VðGÞ and every
vertex v for which f ðvÞ ¼ �1 is adjacent to at least one ver-
tex u for which f ðuÞ � 1þ d12 jNðuÞ \ V�1je, where V�1 ¼
fx 2 VðGÞ j f ðxÞ ¼ �1g: The signed strong domination
number, denoted cssRðGÞ, is the minimum weight of an
SStRDF in G. First the authors note that cssRðGÞ ¼ csRðGÞ
for each graph G with DðGÞ � 2: Therefore Proposition 3.3
immediately implies that for n � 3, cssRðCnÞ ¼ dð2nÞ=3e
and cssRðPnÞ ¼ bð2nÞ=3c: Signed strong Roman domination
numbers in some special classes of graphs are determined
as follows.

Proposition 3.98 ([18]). (1) For n � 4, we have cssRðKnÞ ¼ 1:
(2) For n � 3, we have cssRðK1, nÞ ¼ 1:
(3) For p � 3, we have cssRðKp, pÞ ¼ 4:

A few bounds on the signed strong domination number
have been established in [18] which are summarized in the
following result.

Theorem 3.99 ([18]). If G is a connected graph of order n,
then the following holds.

(a) cssRðGÞ � DðGÞ þ 2� n:
(b) cssRðGÞ � n, with equality if and only if G ¼ Kn :
(c) cssRðGÞ � 2cðGÞ � n, with equality if and only

if G ¼ Kn :
(d) If n � 4, then cssRðGÞ � 3� bn=2c:
(e) If G is a tree and n � 3, then cssRðGÞ � 2n

3 , with equal-
ity if and only if T ¼ P3t:
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