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Semicomplete absorbent sets in digraphs

Laura Pastrana-Ram�ırez, Roc�ıo S�anchez-L�opez, and Miguel Tecpa-Galv�an

Facultad de Ciencias, Universidad Nacional Aut�onoma de M�exico, Ciudad Universitaria, Ciudad de M�exico, M�exico

ABSTRACT
Let D ¼ ðVðDÞ,AðDÞÞ be a digraph and S a subset of vertices of D, S is an absorbent set if for
every v in VðDÞ n S there exists a vertex u in S such that ðv, uÞ 2 AðDÞ: A subset S of V(D) is a semi-
complete absorbent set if S is absorbent and the induced subdigraph DhSi is semicomplete. The
minimum (respectively maximum) of the cardinalities of the semicomplete absorbent sets is the
lower (respectively upper) semicomplete absorbent number, denoted by csasðDÞ (respectively
CsasðDÞ). In this paper we introduce the concept of semicomplete absorbent set; we will show
some structural properties on the digraphs which have a semicomplete absorbent set and we will
present some bounds for csasðDÞ and CsasðDÞ: Then we will study the Cartesian product, the com-
position of digraphs and the line digraph in relation with those numbers.
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1. Introduction

For general concepts we refer the rader to [3] and [6]. Let
G ¼ ðVðGÞ,EðGÞÞ be a simple undirected graph. An isolated
vertex of G is a vertex whose degree is zero. We denote the
path and cycle with n vertices by Pn and Cn, respectively.
For a nonempty subset of V(G), say S, the subgraph induced
by S is denoted by hSi: If S is such that hSi is complete,
then we say that S is a clique of G. We say that S is a domi-
nating set if for every x in VðGÞ n S there exists z in S such
that xz 2 EðGÞ:

Throughout the paper, D ¼ ðVðDÞ,AðDÞÞ denotes a loop-
less digraph with vertex set V(D) and arc set A(D). For an
arc (u,v), u and v are its end-vertices; we say that the end-
vertices are adjacent, we also say that u dominates v and v
absorbs u. We will say that the arc (u,v) is symmetric if
(v,u) 2 A(D). Let S be a subset of V(D) and x in V(D), we
say that x is absorbed by S (x is dominated by S) if z
absorbs x for some z in S (z dominates x for some z in S).
We will say that S is an absorbent set (dominating set) if
every vertex in VðDÞ n S is absorbed by S (dominated by S).
If x is a vertex of D, then the ex-neighborhood of x is the
set fz 2 VðDÞ : ðx, zÞ 2 AðDÞg, denoted by NþðxÞ, while
the in-neighborhood of x is the set fz 2 VðDÞ : ðz, xÞ 2
AðDÞg, denoted by N�ðxÞ: The neighborhood of x is the set
NþðxÞ [ N�ðxÞ and it is denoted by N(x). The out-degree
dþDðxÞ of a vertex x is the number of vertices in NþðxÞ, while
the in-degree d�DðxÞ of a vertex x is the number of vertices in
N�ðxÞ: Let S be a subset of V(D), the ex-neighborhood of S is
the set [x2S NþðxÞ, denoted by NþðSÞ, while the in-neighbor-
hood of S is the set [x2S N�ðxÞ, denoted by N�ðSÞ: A vertex
v is called a sink if it has out-degree zero. A vertex v is called

isolated if dþDðvÞ ¼ 0 ¼ d�DðvÞ: For a subset S of V(D) the sub-
digraph of D induced by S, denoted by DhSi, has VðDhSiÞ ¼
S and AðDhSiÞ ¼ {(u,v) 2 A(D): {u, v} � S}. A pair of
digraphs D and H are isomorphic, denoted by D ffi H, if there
exists a bijection f : VðDÞ ! VðHÞ such that ðu, vÞ 2 AðDÞ if
an only if ðf ðuÞ, f ðvÞÞ 2 AðHÞ: Let S1 and S2 be subsets of
V(D), an arc (u,v) of D will be called an S1S2�arc whenever u
2 S1 and v 2 S2. If S1 ¼ fxg or S2 ¼ fxg, then we will write
xS2�arc or S1x�arc, respectively.

A directed walk W in D is a sequence of vertices
ðx0, x1, :::, xnÞ such that ðxi, xiþ1Þ 2 AðDÞ for every i in
f0, 1:::, n� 1g: We will say that W is a x0xn�walk. The
length of W is the number n. If xi 6¼ xj for all i and j such
that {i, j} � {0, :::, n} and i 6¼ j, then W is called a directed
path (x0xn�path). W is a Hamiltonian directed path if W is
a directed path and VðWÞ ¼ VðDÞ: Let {xi, xj} be a subset
of V(W), with i< j, the xixj�walk (xi, xiþ1, :::, xj�1, xj) con-
tained in W will be denoted by ðxi,W, xjÞ: A directed cycle
is a directed walk (v1, v2, :::, vn, v1) such that vi 6¼ vj for all
i and j such that {i, j} � {1, :::, n} and i 6¼ j. We will say
that D is weak connected if for every subset fx, zg of V(D)
there exists a walk between x and z which is not necessarily
a directed walk. D is strong if, for every pair of vertices u
and v in D, there exists a uv-walk and there exists a vu-walk
in D. A strong component of D is a maximal induced subdi-
graph of D which is strong. We will say that H is a terminal
strong component (initial strong component) of D if
NþðxÞ � VðHÞ (N�ðxÞ � VðHÞ) for every x in V(H). D is
unilaterally connected if, for every pair of vertices x and z of
D, either there exists a xz�walk or there exists a zx�walk
(or both). Let S1 and S2 be two subsets of V(D), a uv-walk
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in D will be called an S1S2�path whenever u 2 S1 and v 2
S2. If S1 ¼ fxg or S2 ¼ fxg, then we will write xS2�path or
S1x�path, respectively. A vertex v in D is a k�king if for
every u in VðDÞ n fvg there exists a uv�path of length at
most k. Landau proved in [9] the following result.

Theorem 1.1. ([9]) Every tournament has a 2-king.
For a graph G, a digraph D is called an orientation of G

if D is obtained from G by replacing each edge xy of G by
the arc either (x,y) or (y,x).

For three different vertices u, v and w, will say that D is
a transitive digraph whenever {(u,v), (v,w)} � A(D) implies
(u,w) 2 A(D). A digraph is semicomplete if for every u and
v in V(D) we have that fðu, vÞ, ðv, uÞg \ AðDÞ 6¼ ;: Let S be
a subset of vertices of D, S is said to be a semicomplete set
if DhSi is a semicomplete digraph. The semicomplete num-
ber of D, denoted by x�ðDÞ, is defined as maxfjSj :
S is a semicomplete set of Dg: A tournament is a semi-
complete digraph without symmetric arcs. We will say that
D is a transitive tournament if D is a tournament and D is a
transitive digraph. The transitive tournament of order three
is denoted by T3. A digraph D is an oriented tree if D is an
orientation of a tree without symmetric arcs. A digraph T is
an out-tree (an in-tree) if T is an oriented tree with just one
vertex s of in-degree zero (out-degree zero). If an out-tree
(in-tree) T is a spanning subdigraph of a digraph D, T is
called an out-branching (in-branching). The line digraph of
D, denoted by L(D), is the digraph such that VðLðDÞÞ ¼
AðDÞ, and ((u,v),(w,z)) 2 AðLðDÞÞ if and only if v¼w.

The Cartesian product of two digraphs D and H, denoted
by DwH, is the digraph whose vertex set is VðDÞ � VðHÞ
and ððx, zÞ, ðu, vÞÞ is an arc of DwH if and only if either
x¼ u and ðz, vÞ 2 AðHÞ or z¼ v and ðx, uÞ 2 AðDÞ: The
horizontal level of the vertex x0 in DwH is Hx0 ¼ fðx0, yÞ 2
VðDwHÞ : y 2 VðHÞg and the vertical level of the vertex
y0 is Dy0 ¼ fðx, y0Þ 2 VðDwHÞ : x 2 VðDÞg: Notice that
ðDwHÞhHx0i ffi H and ðDwHÞhDz0i ffi D for every x0 in
V(D) and every z0 in V(H), respectively. Let D be a digraph
and a ¼ ðDvÞv2VðDÞ be a sequence of digraphs which are

pairwise vertex disjoint. The composition of D respect to a,
denoted by D½a�, is the digraph obtained from D replacing
every vertex v of D by the digraph Dv and joining every ver-
tex from VðDvÞ to every vertex in VðDuÞ if and only if
ðv, uÞ 2 AðDÞ: Let D be a digraph of order p, with V(D) ¼
fu1, :::, upg, and let w ¼ ðD1, :::,DpÞ be a sequence of vertex
disjoint digraphs such that VðDiÞ \ VðDÞ ¼ ; for every i in
f1, :::, pg: The corona of D with the sequence w, denoted by
D � w, is the digraph such that VðD � wÞ ¼ VðDÞ [ ð[p

i¼1

VðDiÞÞ and AðD � wÞ ¼ AðDÞ [ ð[p
i¼1AðDiÞÞ [ ð[p

i¼1fðx,
uiÞ : x 2 VðDiÞgÞ:

Several kinds of dominating sets in graphs have been
studied for some researches by adding conditions on the
induced subgraph hSi, where S is a dominating set. For
example, a subset S of vertices of G is a total dominating set
if S is a dominating set and hSi has no isolated vertices.
This concept was introduced by Cockayne, Dawes and
Hedetniemi in [5] and similar concepts were given in
digraphs. A subset S of vertices of a digraph D is a total

dominating set if S is an absorbent set and hSi has no iso-
lated vertices. S is an open dominating set if every vertex in
V(D) is dominated by S. Both concepts were given by
Arumugam, Jacob and Volkmann in [1]. A subset S of verti-
ces of a graph is a connected dominating set if S is a domi-
nating set and hSi is connected, this concept was introduced
by Sampathkumar and Walinkar in [13] and it is a particu-
lar case of total dominating sets. In [1] Arumugam, Jacob
and Volkmann established the concept of connected domi-
nating set in digraphs. A dominating set S in a digraph is a
weak connected set if DhSi is weak connected; in the same
way, a unilaterally connected set and a strong connected set
are defined. For a comprehensive survey see [6].

Another kind of dominating set is the dominating clique
set which is a subset of vertices S of a graph G such that S
is a dominating set and hSi is a clique. The minimum of the
cardinalities of the dominating clique sets is the clique dom-
inating number, denoted by cclðGÞ: Notice that every domi-
nating clique is a connected dominating set. In [10] Cozzens
and Kelleher introduced these concept and proved the fol-
lowing theorem:

Theorem 1.2. If G is a connected graph without neither
induced P5 nor induced C5, then G has a dominating clique.

Also, in [10], Cozzens and Kelleher gave a polynomial time
algorithm in order to find a dominating clique set in graphs
without neither induced P5 nor C5 and, in [7], they gave some
applications of dominating cliques in social networks.
Moreover, in [2], Basc�o and Tuza proved the following:

Theorem 1.3. In a connected graph G, every connected sub-
graph contains a dominating clique if and only if G has no
neither induced P5 nor C5.

On the other hand, in [8], Kratsch proved that find a
dominating clique set is an NP-complete problem.

In digraph theory also there exist similar concepts of
domination, for example, the absorbent number of a digraph
D, denoted by caðDÞ, is the the minimum cardinality of an
absorbent set of D. An absorbent set that is an independent
set is called a kernel. This concept was introduced by von
Neumann and Morgernstern in [11] and Chv�atal proved in
[4] that find a kernel is an NP-complete problem.

In this paper we introduce the concept of clique domi-
nating number for a digraph. If D is a digraph and S is a
subset of V(D), S is a semicomplete absorbent set if S is an
absorbent set and DhSi is a semicomplete digraph. The min-
imum (maximum) of the cardinalities of the semicomplete
absorbent sets in a digraph D is the lower (upper) semicom-
plete absorbent number, denoted by csasðDÞ (CsasðDÞ). A
semicomplete absorbent set of D with csasðDÞ vertices is
called a csas�set and in the same way a semicomplete
absorbent set with CsasðDÞ vertices is called a Csas�set: In
this paper we will present some basic results for semicom-
plete absorbent sets in digraphs. We will give some bounds
for the lower and upper semicomplete absorbent number; in
addition we will establish a relation between cað�DÞ and
CsasðDÞ: We are going to present a characterization of tour-
naments with relation to CsasðDÞ: We will study structural
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properties of semicomplete absorbent sets in the compos-
ition, the Cartesian product and the line digraph and then
we will show some bounds for the upper semicomplete
absorbent set in those digraphs.

We will need the following results.

Theorem 1.4 ([3]). Every transitive tournament has a sink.

Theorem 1.5 ([3]). Every semicomplete digraph has a
Hamiltonian directed path.

The following result characterize the line digraphs.

Corollary 1.1 ([3]). A digraph D is a line digraph if and
only if D does not contain, as an induced subdigraph, any
directed pseudograph1 that can be obtained from one of the
pseudographs in Figure 1 (dotted arcs are missing) by adding
zero or more arcs (other than the dotted ones).

Theorem 1.6 ([12]). Let D be a digraph. If D is a transitive
digraph, then D has a kernel. Moreover, every kernel is obtained
by choosing one vertex in each terminal strong component of D.
So, all the kernels of D have the same cardinality.

2. Existence

Proposition 2.1. Let fp, s, tg be a subset of N such that 1 	
s 	 t 	 p and p ¼ sþ t. There exists a digraph D of order p
such that CsasðDÞ ¼ t and csasðDÞ ¼ s:

Proof. Let W ¼ fw1,w2, :::,wsg and X ¼ fx1, x2, :::, xsg be
two sets, and U ¼ fu1, :::, ukg a possibly empty set, where
k ¼ t � s: Consider the following sets A1 ¼ fðwi,wjÞ : i 6¼
jg, A2 ¼ fðui, ujÞ : i 6¼ jg, A3 ¼ fðui,wjÞ : i 2 f1, 2, :::, sg,
j 2 f1, 2, :::, kgg and A4 ¼ fðxi,wiÞ : i 2 f1, 2, :::, sgg: Let D
the digraph with set of vertices W [ U [ X and set of arcs
A1 [ A2 [ A3 [ A4: By construction, D has order p and W [
U is a Csas � set of D, which implies that CsasðDÞ ¼ t: On
the other hand, if S is an absorbent set of D, by construction
of D it holds that either xi 2 S or wi 2 S for every i in
f1, :::, sg: Therefore s 	 jSj, in particular, s 	 csasðDÞ: Since
W is a semicomplete absorbent set, by construction of D, of
order s, we conclude that csasðDÞ ¼ s: w

The relation csasðDÞ 	 CsasðDÞ can be strict as shows the
following result.

Corollary 2.1. If 1 < p, then there exists a digraph D of
order p such that

csasðDÞ < CsasðDÞ:

Proof. We will consider two possible cases on p. If p¼ 2,
then K2 is the desire digraph. If p> 2, there exist s and t
positive integers such that s< t and p� s ¼ t: It follows
from Proposition 2.1 that there exists a digraph D of order
p such that CsasðDÞ ¼ t and csasðDÞ ¼ s: w

In the following proposition we use Theorem 1.2 in order
to show a family of digraphs with a semicomplete absorb-
ent set.

Proposition 2.2. If G is a graph without neither induced P5
nor induced C5, then there exists an orientation D of G such
that D has a semicomplete absorbent set.

Proof. If G is a graph without neither P5 nor C5 as induced
subgraphs, then G has a dominating clique S, which implies
that for every x in VðGÞ n S there exists a vertex s(x) in S
such that xsðxÞ 2 EðGÞ: If D is an orientation of G such that
the edge xs(x) is oriented from x to s(x) in D and the
remaining edges have an arbitrary orientation, then S is a
semicomplete absorbent set in D: w

Proposition 2.3. Let p 
 4 be an even natural number. There
exists a digraph D of order p such that CsasðDÞ ¼ csasðDÞ:

Proof. Let D be a tournament of order p
2 , with VðDÞ ¼

fw1,w2, :::,wp
2
g,w ¼ D1, :::,Dp

2

� �
a sequence of vertex disjoint

digraphs such that VðDiÞ ¼ fuig: We claim that csasðD � wÞ ¼
CsasðD � wÞ:

Notice that V(D) is a Csas-set in D � w (by definition of
corona and because D is a tournament). Since csasðD �
wÞ 	 jVðDÞj, then in order to prove that csasðD � wÞ ¼
jVðDÞj, we can proceed by contradiction and suppose
that csasðD � wÞ < jVðDÞj:

Let N be a csas-set in D � w, by our supposition we have
that jNj < jVðDÞj, which implies that there exists wi in
VðDÞ n N such that ui 62 N: On the other hand, by defin-
ition of D � w, since Nþ

D�wðuiÞ ¼ fwig, we have that ui is

not absorbed by N, a contradiction. Therefore, csasðD � wÞ ¼
jVðDÞj; that is, csasðD � wÞ ¼ CsasðD � wÞ: w

3. Some properties of the digraphs which have
semicomplete absorbent sets

Proposition 3.1. If D is a digraph with at least one semi-
complete absorbent set, then D has a unique terminal
strong component.

Proof. Let S be a semicomplete absorbent set in D and H a
terminal strong component of D. By contradiction, suppose
that there exists a terminal strong component H0 of D
such that H0 6¼ H: Notice that VðHÞ \ S 6¼ ;, because
NþðVðHÞÞ � VðHÞ and analogously, VðH0Þ \ S 6¼ ;: Let
w 2 VðHÞ \ S and w0 2 VðH0Þ \ S, since DhSi is semicom-
plete, either ðw,w0Þ 2 AðDÞ or ðw0,wÞ 2 AðDÞ, which con-
tradicts that either H is a terminal strong component or H0

is a terminal strong component. w

Figure 1. Forbbiden directed pseudographs.
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If a digraph has only one terminal strong component,
then it does not necessarily have a semicomplete absorbent
set. ~P4 has only one terminal strong component but it has
not a semicomplete absorbent set. However the converse of
Proposition 3.1 is true in transitive digraphs.

Proposition 3.2. Let D be a transitive digraph. D has a
unique terminal strong component if and only if D has a
semicomplete absorbent set.

Proof. Suppose that D has a semicomplete absorbent set. It
follows from Proposition 3.1 that D has a unique terminal
strong component.

On the other hand, suppose that D has a unique terminal
strong component.

It follows from Theorem 1.6 that D has a kernel K and
since D has a unique terminal strong component then we
get that jKj ¼ 1: Therefore, K is a semicomplete absorbent
set in D. w

Proposition 3.3. Let D be a digraph of order p> 1. Suppose
that D has at least a semicomplete absorbent set. Then

1. CsasðDÞ > 1,
2. if M is a Csas � set, then for every u in VðDÞ nM there

exists v in M such that u and v are not adjacent,
3. if M is a csas � set and jMj > 1, then there exist u in M

and w in NðuÞ \ ðVðDÞ nMÞ such that for every v
in M n fug, ðw, vÞ 62 AðDÞ:

Proof.
1. Let S be a csas�set in D. Consider two cases on S.

Case 1. jSj > 1:
In this case we have that 1 < jSj ¼ csasðDÞ 	 CsasðDÞ,
which implies that 1 < CsasðDÞ:
Case 2. jSj ¼ 1:
Suppose that S ¼ fxg: Since p 
 2, then there exists z
in VðDÞ n S, which implies that ðz, xÞ 2 AðDÞ (because
S is an absorbent set). Therefore, fx, zg is a semicom-
plete absorbent set in D and so CsasðDÞ 
 jfx, zgj, that
is, CsasðDÞ > 1:

2. Proceeding by contradiction, suppose that M is a
Csas�set in D such that for every v in VðDÞ nM and
for every x in M, v and x are adjacent. Therefore, for
every v in VðDÞ nM we have that M0 ¼ M [ fvg is a
semicomplete absorbent set such that jM0j > jMj ¼
CsasðDÞ, which is not possible. Thus, for every v in
VðDÞ nM there exists x in M such that v and x are
not adjacent.

3. Proceeding by contradiction, suppose that M is a csas-
set, with jMj > 1, such that for every x in M and for
every w in NðxÞ \ ðVðDÞ nMÞ there exists y in M n fxg
such that ðw, yÞ 2 AðDÞ: Since jMj > 1 and M is a
semicomplete set, we have that there exists x in M such
that dþhMiðxÞ > 1:
We claim that M0 ¼ M n fxg is a semicomplete absorbent
set. Clearly M0 is a semicomplete set because M is semi-
complete; on the other hand, by our supposition M0

absorbs N(x), which implies that M0 is an absorbent set

(because the fact M absorbent implies that M0 also absorbs
VðDÞ n ðM [ NðxÞÞ:

Therefore, since jM0j < jMj ¼ csasðDÞ, we obtain a contra-
diction. Thus, there exists w in NðxÞ \ ðVðDÞ nMÞ such that
for every y in M n fxg we have that ðw, yÞ 62 AðDÞ: w

Corollary 3.1. If D is a digraph with at least one semicom-
plete absorbent set, then every Csas�set of D is an absorbent
set in �D. In particular, cað�DÞ 	 CsasðDÞ:

Proof. Let D be a digraph with at least one semicomplete
absorbent set and S a Csas�set of D. By Proposition 3.3
(2) we have that for every vertex u in VðDÞ n S there exists
v in S such that u and v are not adjacent, so (u, v) is an
arc of �D, that is, S is an absorbent set in �D:

Therefore, cað�DÞ 	 CsasðDÞ: w

Corollary 3.2. If D is an asymmetric digraph with at least
one semicomplete absorbent set, then csasð�DÞ 	 CsasðDÞ:

Proof. Let D be an asymmetric digraph and S a semicom-
plete absorbent set of D. Since D is an asymmetric digraph,
we have that DhSi is a tournament, so �DhSi is a tournament.
On the other hand, by Corollary 3.1 we have that S is an
absorbent set in �D, which implies that S is a semicomplete
absorbent set in D, hence csasð�DÞ 	 CsasðDÞ: w

Corollary 3.3. Let D be a digraph and S a Csas�set of D. If
S is a complete set, then S is a kernel of �D:

Proof. Since S is a complete set in D, then S is an independ-
ent set in �D, which implies that S is a kernel in �D, by
Corollary 3.1.

Proposition 3.4. Let D be a digraph and M a semicomplete
absorbent set in D. For every x in VðDÞ nM we have that
M [ fxg is not a semicomplete absorbent set in D if and only
if for every w in VðDÞ nM there exists z in M such that w
and z are not adjacent in D.

Proof. Suppose that for every w in VðDÞ nM there exists zw
in M such that w and zw are not adjacent in D. Then, it fol-
lows that for every w in VðDÞ nM,M [ fwg is not a semi-
complete set in D (because w and zw are not adjacent in D).
Therefore, for every x in VðDÞ nM we have that M [ fxg is
not a semicomplete absorbent set in D.

Suppose that for every x in VðDÞ nM we have that M [
fxg is not a semicomplete absorbent set in D. Since M is an
absorbent set, we get that M [ fxg is an absorbent set for
every x in VðDÞ nM: Therefore, M [ fxg is not a semicom-
plete set for every x in VðDÞ nM; that is, for every x in
VðDÞ nM there exists ux in M such that x and ux are not
adjacent in D (because M is semicomplete). w

Proposition 3.5. Let D be a digraph. If D has a semicomplete
absorbent set S, then D has a 3�king. Moreover, if S is a
semicomplete absorbent set such that jSj ¼ t, for some t 2 N,
then D has a t-king.
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Proof. Let S be a semicomplete absorbent set of D. By
Theorem 1.1 we have that DhSi has a 2�king, say x. It is
straightforward to see that x is a 3�king of D.

On the other hand, suppose that jSj ¼ T and consider
P ¼ ðx0, :::, xt�1Þ be a Hamiltonian path in DhSi (there exists
P by Theorem 1.5). We claim that xt�1 is a t-king. Since for
every u in VðDÞ n S there exists wu in S such that ðu,wuÞ 2
AðDÞ then we get that ðu,wuÞ [ ðwu,P, xt�1Þ is a uxt�1-path
of length at most t. Therefore, xt�1 is a t-king. w

In [3] we can found the following proposition.

Proposition 3.6. Let D be a weak connected digraph. D con-
tains an out-branching (in-branching) if and only if D has
only one initial (terminal) strong component.

It follows from Proposition 3.1 and Proposition 3.6 that
every digraph D with at least one semicomplete absorbent
set has an in-branching. Moreover, Proposition 3.5 shows
that the in-branching T is the digraph such that VðTÞ ¼
VðDÞ and AðTÞ ¼ AðPÞ [ fðu,wuÞ 2 AðDÞ : u 2 VðDÞ n
S and wu in VðPÞg: On the other hand, we get from
Proposition 3.2 and Proposition 3.6 that for a transitive
digraph D it holds that D has at least one semicomplete
absorbent set if and only if D has an in-branching.

Corollary 3.4. Let D be a digraph.

1. If D is transitive then D has at least one semicomplete
absorbent set if and only if D has an in-branching.

2. Every digraph D with at least one semicomplete absorb-
ent set has an in-branching.

4. Some bounds for CsasðDÞ y csasðDÞ

Proposition 4.1. Let D be a digraph of size q. If D has a
semicomplete absorbent set, then CsasðDÞ2 � CsasðDÞ 	 2q:

Proof. Let S be a Csas�set of D and p the order of D. Since

DhSi is a semicomplete digraph, then jAðDhSiÞj 
 jSjðjSj�1Þ
2 :

On the other hand, for every x in VðDÞ n S there exists y in S
such that ðx, yÞ 2 AðDÞ, because S is an absorbent set, then

q 
 jVðDÞ n Sj þ jAðDhSiÞj 
 ðp� jSjÞ þ jSjðjSj � 1Þ
2

¼ jSj2 � 3jSj þ 2p
2

,

which implies that 2q 
 CsasðDÞ2 � 3CsasðDÞ þ 2p 

CsasðDÞ2 � CsasðDÞ: w

Proposition 4.2. Let D be a digraph with at least one semi-
complete absorbent set. Then D is a tournament if and only
if 2q ¼ CsasðDÞ2 � CsasðDÞ:

Proof. If D is a tournament of order p, then p ¼ CsasðDÞ
and so,

2q ¼ pðp� 1Þ ¼ CsasðDÞ2 � CsasðDÞ:
On the other hand, let D be a digraph such that 2q ¼

CsasðDÞ2 � CsasðDÞ and by contradiction, suppose that D is

not a tournament. Notice that D is not a semicomplete
digraph, otherwise since D is not a tournament it has at
least one symmetric arc, then p ¼ CsasðDÞ and 2q >

pðp� 1Þ, that is 2q > CsasðDÞ2 � CsasðDÞ, which contradicts
the hypothesis. Therefore D is not a semicomplete digraph.
Let S be a Csas�set of D, then 2qS 
 CsasðDÞ2 � CsasðDÞ,
where qS is the size of DhSi, since D is not a semicomplete
set, then S � VðDÞ, which implies that there exists u in
VðDÞ n S and v in S such that ðu, vÞ 2 AðDÞ: Thus 2q >

2qS 
 CsasðDÞ2 � CsasðDÞ, a contradiction. Therefore, D is
a tournament. w

Proposition 4.3. If D is a digraph of order p, such that D
has at least one semicomplete absorbent set, then
csasðDÞ 	 pþ1

2 . Moreover, if there exists a csas�set S of D such
that DhSi has no sinks, then csasðDÞ 	 p

2 :

Proof. Let S be a csas�set of D and S0 ¼ fx 2 S : dþhSiðxÞ 6¼
0g: Notice that for every x in S0 there exists y in VðDÞ n S
that satisfies NþðyÞ \ S ¼ fxg, otherwise, if there exists x in
S0 such that for every y in VðDÞ n S,NþðyÞ \ S 6¼ fxg, then
by choice of x, every vertex in VðDÞ n S is absorbed by a
vertex in S n fxg and by definition of S0 we have that x is
absorbed by S n fxg: Moreover, since S n fxg � S, then S n
fxg is a semicomplete set and therefore S n fxg is a semi-
complete absorbent set, a contradiction. Therefore for every
x in S0 there exists y in VðDÞ n S that satisfies NþðyÞ \ S ¼
fxg and thus jS0j 	 jVðDÞ n Sj; that is, jS0j þ jSj 	 jVðDÞj
and by choice of S we have that csasðDÞ þ jS0j 	 jVðDÞj:

On the other hand, since DhSi is a semicomplete digraph,
it has at most one sink, then jS0j 
 jSj � 1, concluding that
csasðDÞ 	 pþ1

2 : In particular, if DhSi has no sinks, then jSj ¼
jS0j and therefore csasðDÞ 	 p

2 : w

Let p an odd natural number, say p ¼ 2nþ 1 for some
natural number n, D a transitive tournament of order nþ 1,
with VðDÞ ¼ fw1,w2, :::,wnþ1g, and w ¼ ðD1, :::,Dnþ1Þ a
sequence of vertex disjoint digraphs such that VðDiÞ ¼ fuig:
Since D has a sink (by Theorem 1.4), suppose without loss
of generality that dþðwnþ1Þ ¼ 0: Consider the digraph H ¼
D � whVðDÞ [ fu1, :::, ungi: It is straightforward to see that
V(D) is the only one semicomplete absorbent set in H,
which implies that csasðHÞ ¼ pþ1

2 , that is, H achieve the first
bound in Proposition 4.3.

Let p be an even natural number, D a complete digraph of
order p

2 , with VðDÞ ¼ fw1,w2, :::,wp
2
g, and w ¼ D1, :::,Dp

2

� �
a sequence of vertex disjoint digraphs such that VðDiÞ ¼ fuig:
Notice that V(D) is the only one semicomplete absorbent set
in D � w, which implies that csasðD � wÞ ¼ p

2 , that is, D � w
achieve the second bound in Proposition 4.3.

In Proposition 2.3, we proved that given an even natural
number p 
 4 there exists a digraph D of order p such that
CsasðDÞ ¼ csasðDÞ: In the following corollary we show an
uper bound for CsasðDÞ for this kind of digraphs.

Corollary 4.1. If D is a digraph such that CsasðDÞ ¼ csasðDÞ,
then CsasðDÞ 	 pþ1

2 :
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Proof. If follows from Proposition 4.3 that pþ1
2 
 csasðDÞ,

which implies that pþ1
2 
 CsasðDÞ (by hypothesis). w

5. Semicomplete absorbent numbers in the
Cartesian product, the composition of digraphs
and the line digraph

We give some bounds for the lower and upper semicom-
plete absorbent number in these operations.

Lemma 5.1. Let D and H be two digraphs, DwH the
Cartesian product and U � VðDwHÞ. If U is a semicomplete
set, then U is contained either in Hx0 for some x0 2 VðDÞ or
U is contained in Dz0 for some z0 2 VðHÞ:
Proof. Notice that if jUj ¼ 1, the result holds. Otherwise, let
fðx, yÞ, ðz,wÞg � U: Since hUi is semicomplete we can sup-
pose, without loss of generality, that ð ðx, yÞ, ðz,wÞ Þ 2
AðDwHÞ: So, there are only two cases respect these vertices.

If x¼ z and ðy,wÞ 2 AðHÞ, then we claim that U � Hx:
Otherwise, there exists a vertex (u, v) in U such that u 6¼ x,
and then (u, v) and (x, y) are adjacent, concluding that y¼ v. In
the same way (u, v) and (z, w) are adjacent, then v¼w, and
this implies that y¼w, this contradicts that ðy,wÞ 2 AðHÞ:

In the same way, if y¼w and ðx, zÞ 2 AðDÞ, the we claim
that U � Dw: Then some level of DwH contains U: w

Proposition 5.1. If D and H are two nontrivial digraphs,
then DwH has a semicomplete absorbent set if and only if
either D is a semicomplete digraph and csasðHÞ ¼ 1 or H is a
semicomplete digraph and csasðDÞ ¼ 1:

Proof. Let D and H be two digraphs and suppose that DwH
has a semicomplete absorbent set, say S. We claim that
either S ¼ Hx0 for some x0 2 VðDÞ or S ¼ Dz0 for some
z0 2 VðHÞ: According to Lemma 5.1, S is contained either
in Hx0 for some x0 2 VðDÞ or S is contained in Dz0 for
some z0 2 VðHÞ: We can suppose without loss of generality
that S � Hx0 for some x0 2 VðDÞ: For the other inclusion,
let ðx0, zÞ be a vertex in Hx0 and consider ðx1, zÞ 2
VðDwHÞ nHx0 : Since S is an absorbent set, there exists
ðx0,wÞ 2 S that dominates ðx1, zÞ and by definition of DwH
we conclude that w¼ z and then ðx0, zÞ 2 S: It follows that
S ¼ Hx0 and, since ðDwHÞhHx0i ffi H, we conclude that H
is a semicomplete digraph. On the other hand, we claim
that x0 is an absorbent vertex in D. If y 2 VðDÞ n fx0g, then
ðy, uÞ 2 VðDwHÞ n S for some u 2 VðHÞ: Since S ¼ Hx0 is
an absorbent set of DwH, then ð ðy, uÞ, ðx0, uÞ Þ 2
AðDwHÞ concluding that ðy, x0Þ 2 AðDÞ: Hence, csasðDÞ ¼
1 and H is a semicomplete digraph. A similar proof shows
that if S � Dy0 for some y0 2 VðHÞ, then csasðHÞ ¼ 1 and D
is a semicomplete digraph.

On the other hand, suppose that H is a semicomplete
digraph and csasðDÞ ¼ 1, let x0 an absorbent vertex in D.
Since ðDwHÞhHx0i ffi H, it follows that ðDwHÞhHx0i is a
semicomplete digraph. Moreover, by choice of x0, if ðu, vÞ 2
VðDwHÞ nHx0 , then ð ðu, vÞ, ðx0, vÞ Þ 2 AðDwHÞ, con-
cluding that Hx0 is a semicomplete absorbent set of DwH:

A similar proof shows that the result holds if D is a semi-
complete digraph and csasðHÞ ¼ 1: w

Proposition 5.1 is a characterization of semicomplete
absorbent sets in the Cartesian product and it can be used
to determinate the upper and lower semicomplete absorbent
number in that operation.

Corollary 5.1. If D and H are two digraphs such that
D w H has a semicomplete absorbent set, then
CsasðDwHÞ 2 fp1, p2g and csasðDwHÞ 2 fp1, p2g, where p1
is the order of D and p2 is the order of H.

Proof. If D and H are two digraphs and S is a Csas�set of
DwH, by Proposition 5.1, S is some level of DwH, so
CsasðDwHÞ 2 fp1, p2g: Analogously, csasðDwHÞ 2 fp1, p2g: w

Now we will show an upper bound for the upper semi-
complete absorbent number in the composition of digraphs.

Proposition 5.2. If D is a digraph and a ¼ ðDvÞv2VðDÞ is a
sequence of digraphs such that D½a� has a semicomplete
absorbent set, then D has a semicomplete absorbent set.

Proof. Let S0 be a semicomplete absorbent set of D½a�, we
claim that S ¼ fv 2 VðDÞ : S0 \ VðDvÞ 6¼ ;g is a semicom-
plete absorbent set of D. Let fu, vg � S, notice that if x 2
VðDvÞ \ S0 and z 2 VðDuÞ \ S0, then x and z are adjacent in
D½a� because D½a�hS0i is a semicomplete digraph, and then u
and v are adjacent in D. In other case, if w 2 VðDÞ n S then
Dw \ S ¼ ;, it follows that if x 2 VðDwÞ there exists z 2 S0

such that ðx, zÞ 2 AðD½a�Þ, in particular z 2 VðDvÞ for some
v 2 VðDÞ: Therefore v 2 S and ðw, vÞ 2 AðDÞ: w

Proposition 5.3. Let D be a digraph, a ¼ ð DvÞv2VðDÞ a
sequence of digraphs and S a semicomplete absorbent set
without sinks in D. If Rv is a semicomplete set in Dv for every
v 2 S, then S0 ¼ [v2S Rv is a semicomplete absorbent set
in D½a�:

Proof. Let fx, zg � S0 and consider two cases for x and z. If
fx, zg � Rv for some v 2 S, by choice of Rv there exists an
arc between x and z in D½a�: In other case, if x 2 Rv and z 2
Ru for some fu, vg � S with u 6¼ v, since DhSi is a semi-
complete subdigraph of D, then there exists an arc between
u and v in D, which implies that x and z are adjacent in
D½a�, concluding that D½a�hS0i is a semicomplete subdigraph
of D½a�:

On the other hand, if x 2 VðD½a�Þ n S0, in particular x 2
VðDvÞ for some v 2 VðDÞ: If v 2 VðDÞ n S, then there exist
u in S such that ðv, uÞ 2 AðDÞ, concluding that ðx, zÞ 2
AðD½a�Þ for some z in Ru and therefore x is absorbed by S0:
In other case, since S has no sinks, there exist u in S such
that ðv, uÞ 2 AðDÞ and by definition of D½a� we have that
every vertex in Dv is dominated by Du, concluding that
ðx, zÞ 2 AðD½a�Þ for some z in Ru. Therefore, S0 is a semi-
complete absorbent set in D½a�:

Corollary 5.2. Let D be a digraph and a ¼ ð DvÞv2VðDÞ a
sequence of digraphs. If S is a semicomplete absorbent set
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without sinks in D, then there exists a semicomplete absorb-
ent set in D½a� of order Pv2S x

�ðDvÞ:

Proof. Let Rv be a semicomplete set in Dv with x�ðDvÞ verti-
ces for every v in S. By Proposition 5.3, S0 ¼ [v2S Rv is a
semicomplete absorbent set in D½a�, it follows
that jS0j ¼ P

v2S x
�ðDvÞ: w

Corollary 5.3. Let D be a digraph and a ¼ ðDvÞv2VðDÞ a
sequence of digraphs such that D½a� has a semicomplete
absorbent set without sinks. If S is the family of semicom-
plete absorbent sets without sinks in D, then

max
S2S

X
v2S

x�ðDvÞ
� �

	 CsasðD a½ �Þ:

Proof. By Corollary 5.1, for every S in S there exists a semi-
complete absorbent set in D½a�, say S0, such thatP

v2S x
�ðDvÞ ¼ jS0j, in particular

P
v2S x

�ðDvÞ 	 CsasðD½a�Þ
for every S in S, concluding that

max
S2S

X
v2S

x�ðDvÞ
� �

	 CsasðD a½ �Þ:
w

For the line digraph, we will give an upper bound for the
upper absorbent semicomplete number in this digraph.

Proposition 5.4. Let D be a digraph and L(D) its line
digraph. If L(D) has a semicomplete absorbent set, then
Csasð LðDÞ Þ 	 3. Moreover

1. CsasðLðDÞÞ ¼ 1 if and only if D is either (a) or (b) as
Figure 2 shows.

2. CsasðLðDÞÞ ¼ 2 if and only if D is either (c), (d), (e), (f),
(g), ðh) or (i) as Figure 2 shows.

3. CsasðLðDÞÞ ¼ 3 if and only if D is either (j), (k), (l) or
(m) as Figure 2 shows.

Proof. Let S be a Csas�set of L(D). Suppose that jSj 
 4 and
let S1 ¼ fw, x, y, zg be a subset of S. Since LðDÞhSi is semi-
complete, then by Corollary 1.1 we can suppose that
fðw, xÞ, ðx, zÞ, ðz,wÞg � AðLðDÞÞ (because in particular L(D)
has no transitive subtournaments of orden 3). In the same
way, for the set fx, y,wg we have that fðx, yÞ, ðy,wÞg �
Að LðDÞ Þ because ðw, xÞ 2 Að LðDÞ Þ: Therefore,
LðDÞhfw, z, ygi has a transitive subtournament of orden 3
which is no possible. Therefore, Csasð LðDÞ Þ 	 3:

Let S be a Csas�set in L(D). Consider the follow-
ing cases.

� Case 1. jSj ¼ 1:
In this case we have that S ¼ fðu, vÞg for some fu, vg �
VðDÞ: Since S is an absorbent set in L(D) we have that
for every arc (x, y) in AðDÞ n S, ððx, yÞ, ðu, vÞÞ 2 AðLðDÞÞ,
which implies that y ¼ u. Hence, since S is a Csas�set, D
is either (a) or (b) as Figure 2 shows.

� Case 2. jSj ¼ 2:
In this case we have that S ¼ fðu, vÞ, ðs,wÞg for some
fu, v,w, sg � VðDÞ: Since S is a semicomplete set in
L(D), we may assume that v ¼ s. On the other hand,
since S is an absorbent set in L(D), for every arc (x, y) in
AðDÞ n S we have that y 2 fu, vg: Hence, since S is a
Csas�set, if w 6¼ u, then D is one of (c), (d), (e) or (f)
showed in Figure 2. If w ¼ u then D is one of (g), (h) or
(i) as Figure 2 shows.

� Case 3. jSj ¼ 3:
In this case, S ¼ fðs, tÞ, ðu, vÞ, ðw, zÞg for some
fs, t, u, v,w, zg � VðDÞ: According to Corollary 1.1 we
have that LðDÞhSi contains no transitive tournament of
order three, which implies that LðDÞhSi is a cycle.
Suppose that t ¼ u, v ¼ w and z ¼ s. Since S is an
absorbent set in L(D), we have that for every arc (x, y) in
AðDÞ n S we have that y 2 fz, u, vg: Therefore, D is one
of (j), (k), (l) or (m) as Figure 2 shows. w

Figure 2. Digraphs whose line digraph contains a semicomplete absorbent set. Dotted arcs indicate that can there exist symmetric arcs.
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Note

A pseudograph is a graph that may contains parallel edges or loops.
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