Taylor & Francis
Taylor & Francis Group

AKCE AKCE International Journal of Graphs and Combinatorics

INTE TIONAL J
GRAPHS AND CON

ISSN: 0972-8600 (Print) 2543-3474 (Online) Journal homepage: https://www.tandfonline.com/loi/uakc20

Semicomplete absorbent sets in digraphs

Laura Pastrana-Ramirez, Rocio Sanchez-Lépez & Miguel Tecpa-Galvan

To cite this article: Laura Pastrana-Ramirez, Rocio Sanchez-Lépez & Miguel Tecpa-Galvan
(2020): Semicomplete absorbent sets in digraphs, AKCE International Journal of Graphs and
Combinatorics, DOI: 10.1016/j.akcej.2019.06.010

To link to this article: https://doi.org/10.1016/j.akcej.2019.06.010

© 2020 The Author(s). Published with
license by Taylor & Francis Group, LLC

ﬁ Published online: 24 Apr 2020.

\]
[:J/ Submit your article to this journal (&

||I| Article views: 123

A
& View related articles &'

@ View Crossmark data ('

CrossMark

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=uakc20


https://www.tandfonline.com/action/journalInformation?journalCode=uakc20
https://www.tandfonline.com/loi/uakc20
https://www.tandfonline.com/action/showCitFormats?doi=10.1016/j.akcej.2019.06.010
https://doi.org/10.1016/j.akcej.2019.06.010
https://www.tandfonline.com/action/authorSubmission?journalCode=uakc20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uakc20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1016/j.akcej.2019.06.010
https://www.tandfonline.com/doi/mlt/10.1016/j.akcej.2019.06.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.akcej.2019.06.010&domain=pdf&date_stamp=2020-04-24
http://crossmark.crossref.org/dialog/?doi=10.1016/j.akcej.2019.06.010&domain=pdf&date_stamp=2020-04-24

AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS
https://doi.org/10.1016/j.akcej.2019.06.010

Taylor & Francis

Taylor &Francis Group

Semicomplete absorbent sets in digraphs

8 OPEN ACCESS ‘ ) Checkforupdates‘

Laura Pastrana-Ramirez, Rocio Sanchez-Lopez, and Miguel Tecpa-Galvan

Facultad de Ciencias, Universidad Nacional Auténoma de México, Ciudad Universitaria, Ciudad de México, México

ABSTRACT

Let D = (V(D),A(D)) be a digraph and S a subset of vertices of D, S is an absorbent set if for
every v in V(D) \ S there exists a vertex u in S such that (v,u) € A(D). A subset S of V(D) is a semi-
complete absorbent set if S is absorbent and the induced subdigraph D(S) is semicomplete. The
minimum (respectively maximum) of the cardinalities of the semicomplete absorbent sets is the
lower (respectively upper) semicomplete absorbent number, denoted by y..(D) (respectively
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I's(D)). In this paper we introduce the concept of semicomplete absorbent set; we will show
some structural properties on the digraphs which have a semicomplete absorbent set and we will
present some bounds for y,,(D) and T'y,s(D). Then we will study the Cartesian product, the com-
position of digraphs and the line digraph in relation with those numbers.

1. Introduction

For general concepts we refer the rader to [3] and [6]. Let
G = (V(G),E(G)) be a simple undirected graph. An isolated
vertex of G is a vertex whose degree is zero. We denote the
path and cycle with n vertices by P, and C,, respectively.
For a nonempty subset of V(G), say S, the subgraph induced
by S is denoted by (S). If S is such that (S) is complete,
then we say that S is a clique of G. We say that S is a domi-
nating set if for every x in V(G) \ S there exists z in S such
that xz € E(G).

Throughout the paper, D = (V(D), A(D)) denotes a loop-
less digraph with vertex set V(D) and arc set A(D). For an
arc (u,v), u and v are its end-vertices; we say that the end-
vertices are adjacent, we also say that 4 dominates v and v
absorbs u. We will say that the arc (u,v) is symmetric if
(v,u) € A(D). Let S be a subset of V(D) and x in V(D), we
say that x is absorbed by S (x is dominated by S) if z
absorbs x for some z in S (z dominates x for some z in S).
We will say that S is an absorbent set (dominating set) if
every vertex in V(D) \ S is absorbed by S (dominated by S).
If x is a vertex of D, then the ex-neighborhood of x is the
set {ze V(D) : (x,z) € A(D)}, denoted by N*(x), while
the in-neighborhood of x is the set {z € V(D): (z,x) €
A(D)}, denoted by N~ (x). The neighborhood of x is the set
Nt (x) UN~(x) and it is denoted by N(x). The out-degree
d; (x) of a vertex x is the number of vertices in N (x), while
the in-degree dp,(x) of a vertex x is the number of vertices in
N~ (x). Let S be a subset of V(D), the ex-neighborhood of S is
the set Uyes N (x), denoted by N*(S), while the in-neighbor-
hood of S is the set Uyes N (x), denoted by N~ (S). A vertex
v is called a sink if it has out-degree zero. A vertex v is called

isolated if d},(v) = 0 = dp(v). For a subset S of V(D) the sub-
digraph of D induced by S, denoted by D(S), has V(D(S)) =
S and A(D(S)) = {(wv) € AD): {u, v} C S}. A pair of
digraphs D and H are isomorphic, denoted by D = H, if there
exists a bijection f : V(D) — V(H) such that (u,v) € A(D) if
an only if (f(u),f(v)) € A(H). Let §; and S, be subsets of
V(D), an arc (u,v) of D will be called an §;S;—arc whenever u
€S andv e S, IfS; ={x} or S, = {x}, then we will write
x8;—arc or S§;x—arc, respectively.

A directed walk W in D is a sequence of vertices
(%05 X1, ... x,) such that (x;,xi:1) € A(D) for every i in
{0,1...,n—1}. We will say that W is a xgx,—walk. The
length of W is the number n. If x; # x; for all i and j such
that {i, j} C {0, ..., n} and i # j, then W is called a directed
path (xpx,—path). W is a Hamiltonian directed path if W is
a directed path and V(W) = V(D). Let {x;, x;} be a subset
of V(W), with i <j, the xjxj—walk (x; Xiy1,..., %1, X;) con-
tained in W will be denoted by (x;, W,x;). A directed cycle
is a directed walk (vy, v3, ..., v,,, v1) such that v; # v; for all
i and j such that {i, j} C {1, ..., n} and i # j. We will say
that D is weak connected if for every subset {x,z} of V(D)
there exists a walk between x and z which is not necessarily
a directed walk. D is strong if, for every pair of vertices u
and v in D, there exists a uv-walk and there exists a vu-walk
in D. A strong component of D is a maximal induced subdi-
graph of D which is strong. We will say that H is a terminal
strong component (initial strong component) of D if
Nt (x) C V(H) (N~ (x) C V(H)) for every x in V(H). D is
unilaterally connected if, for every pair of vertices x and z of
D, either there exists a xz—walk or there exists a zx—walk
(or both). Let S; and S, be two subsets of V(D), a uv-walk
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in D will be called an S;S,—path whenever u € §; and v €
S,. If §; = {x} or S, = {x}, then we will write xS,—path or
S1x—path, respectively. A vertex v in D is a k—king if for
every u in V(D) \ {v} there exists a uv—path of length at
most k. Landau proved in [9] the following result.

Theorem 1.1. ([9]) Every tournament has a 2-king.

For a graph G, a digraph D is called an orientation of G
if D is obtained from G by replacing each edge xy of G by
the arc either (x,y) or (y,x).

For three different vertices u, v and w, will say that D is
a transitive digraph whenever {(u,v), (v,w)} C A(D) implies
(u,w) € A(D). A digraph is semicomplete if for every u and
v in V(D) we have that {(u,v), (v,u)} NA(D) # 0. Let S be
a subset of vertices of D, S is said to be a semicomplete set
if D(S) is a semicomplete digraph. The semicomplete num-
ber of D, denoted by w*(D), is defined as max{|S| :
S is a semicomplete set of D}. A tournament is a semi-
complete digraph without symmetric arcs. We will say that
D is a transitive tournament if D is a tournament and D is a
transitive digraph. The transitive tournament of order three
is denoted by Ts. A digraph D is an oriented tree if D is an
orientation of a tree without symmetric arcs. A digraph T is
an out-tree (an in-tree) if T is an oriented tree with just one
vertex s of in-degree zero (out-degree zero). If an out-tree
(in-tree) T is a spanning subdigraph of a digraph D, T is
called an out-branching (in-branching). The line digraph of
D, denoted by L(D), is the digraph such that V(L(D)) =
A(D), and ((u,v),(w,2)) € A(L(D)) if and only if v=w.

The Cartesian product of two digraphs D and H, denoted
by DOH, is the digraph whose vertex set is V(D) x V(H)
and ((x,z), (4,v)) is an arc of DUH if and only if either
x=u and (z,v) € A(H) or z=v and (x,u) € A(D). The
horizontal level of the vertex x, in DOH is Hy, = {(x0,y) €
V(DUH) : y € V(H)} and the vertical level of the vertex
Yo is Dy, = {(x,y0) € V(DUH) : x € V(D)}. Notice that
(DOH)(H,,) 2 H and (DUH)(D,) = D for every x, in
V(D) and every z, in V(H), respectively. Let D be a digraph
and o = (Dy),cy(p be a sequence of digraphs which are
pairwise vertex disjoint. The composition of D respect to o,
denoted by D[«], is the digraph obtained from D replacing
every vertex v of D by the digraph D, and joining every ver-
tex from V(D,) to every vertex in V(D,) if and only if
(v,u) € A(D). Let D be a digraph of order p, with V(D) =
{u1,...,up}, and let Yy = (Dy, ..., D,) be a sequence of vertex
disjoint digraphs such that V(D;) N V(D) = ) for every i in
{1,..,p}. The corona of D with the sequence V, denoted by
Doy, is the digraph such that V(Do) = V(D) U (U2,
V(D;)) and  A(Doy) = A(D) U (ULAD)) U (UL {(x
ui) X E V(Dl)})

Several kinds of dominating sets in graphs have been
studied for some researches by adding conditions on the
induced subgraph (S), where S is a dominating set. For
example, a subset S of vertices of G is a total dominating set
if § is a dominating set and (S) has no isolated vertices.
This concept was introduced by Cockayne, Dawes and
Hedetniemi in [5] and similar concepts were given in
digraphs. A subset S of vertices of a digraph D is a total

dominating set if S is an absorbent set and (S) has no iso-
lated vertices. S is an open dominating set if every vertex in
V(D) is dominated by S. Both concepts were given by
Arumugam, Jacob and Volkmann in [1]. A subset S of verti-
ces of a graph is a connected dominating set if S is a domi-
nating set and (S) is connected, this concept was introduced
by Sampathkumar and Walinkar in [13] and it is a particu-
lar case of total dominating sets. In [1] Arumugam, Jacob
and Volkmann established the concept of connected domi-
nating set in digraphs. A dominating set S in a digraph is a
weak connected set if D(S) is weak connected; in the same
way, a unilaterally connected set and a strong connected set
are defined. For a comprehensive survey see [6].

Another kind of dominating set is the dominating clique
set which is a subset of vertices S of a graph G such that S
is a dominating set and (S) is a clique. The minimum of the
cardinalities of the dominating clique sets is the clique dom-
inating number, denoted by 7,(G). Notice that every domi-
nating clique is a connected dominating set. In [10] Cozzens
and Kelleher introduced these concept and proved the fol-
lowing theorem:

Theorem 1.2. If G is a connected graph without neither
induced Ps nor induced Cs, then G has a dominating clique.

Also, in [10], Cozzens and Kelleher gave a polynomial time
algorithm in order to find a dominating clique set in graphs
without neither induced Ps nor Cs and, in [7], they gave some
applications of dominating cliques in social networks.
Moreover, in [2], Bascé and Tuza proved the following:

Theorem 1.3. In a connected graph G, every connected sub-
graph contains a dominating clique if and only if G has no
neither induced Ps nor Cs.

On the other hand, in [8], Kratsch proved that find a
dominating clique set is an NP-complete problem.

In digraph theory also there exist similar concepts of
domination, for example, the absorbent number of a digraph
D, denoted by y,(D), is the the minimum cardinality of an
absorbent set of D. An absorbent set that is an independent
set is called a kernel. This concept was introduced by von
Neumann and Morgernstern in [11] and Chvatal proved in
[4] that find a kernel is an NP-complete problem.

In this paper we introduce the concept of clique domi-
nating number for a digraph. If D is a digraph and S is a
subset of V(D), S is a semicomplete absorbent set if S is an
absorbent set and D(S) is a semicomplete digraph. The min-
imum (maximum) of the cardinalities of the semicomplete
absorbent sets in a digraph D is the lower (upper) semicom-
plete absorbent number, denoted by y,(D) (Iss(D)). A
semicomplete absorbent set of D with y,(D) vertices is
called a y,,,—set and in the same way a semicomplete
absorbent set with 'y, (D) vertices is called a I'ys—set. In
this paper we will present some basic results for semicom-
plete absorbent sets in digraphs. We will give some bounds
for the lower and upper semicomplete absorbent number; in
addition we will establish a relation between 7,(D) and
I'ses(D). We are going to present a characterization of tour-
naments with relation to I'ys(D). We will study structural



properties of semicomplete absorbent sets in the compos-
ition, the Cartesian product and the line digraph and then
we will show some bounds for the upper semicomplete
absorbent set in those digraphs.

We will need the following results.

Theorem 1.4 ([3]). Every transitive tournament has a sink.

Theorem 1.5 ([3]). Every semicomplete digraph has a
Hamiltonian directed path.

The following result characterize the line digraphs.

Corollary 1.1 ([3]). A digraph D is a line digraph if and
only if D does not contain, as an induced subdigraph, any
directed pseudograph’ that can be obtained from one of the
pseudographs in Figure 1 (dotted arcs are missing) by adding
zero or more arcs (other than the dotted ones).

Theorem 1.6 ([12]). Let D be a digraph. If D is a transitive
digraph, then D has a kernel. Moreover, every kernel is obtained
by choosing one vertex in each terminal strong component of D.
So, all the kernels of D have the same cardinality.

2. Existence

Proposition 2.1. Let {p,s,t} be a subset of N such that 1 <
s<t<pand p=s+t. There exists a digraph D of order p
such that T'ys(D) = t and y.,,(D) = s.

Proof. Let W = {w;,wy,...,ws} and X = {x1,%,,...,%} be
two sets, and U = {uy,...,ux} a possibly empty set, where
k =t —s. Consider the following sets A; = {(w;, wj) : i#
j}, Ay = {(Lli, u]) : 1#]}, A; = {(ui, W]) i€ {1,2, ...,S},
je{1,2,..,k}} and Ag = {(x,w;) : i€{L,2,...,s}}. Let D
the digraph with set of vertices WU U U X and set of arcs
Ay UA; UAs U A, By construction, D has order p and W U
U is a Ty — set of D, which implies that T'y,s(D) =¢. On
the other hand, if S is an absorbent set of D, by construction
of D it holds that either x; €S or w; € S for every i in
{1,...,s}. Therefore s < |§|, in particular, s < y,,(D). Since
W is a semicomplete absorbent set, by construction of D, of
order s, we conclude that y,, (D) =s. O

The relation y,, (D) < I'y,(D) can be strict as shows the
following result.

Corollary 2.1. If 1 <p, then there exists a digraph D of
order p such that

ysas(D) < FSﬂS(D)'

Proof. We will consider two possible cases on p. If p=2,
then K, is the desire digraph. If p>2, there exist s and ¢
positive integers such that s<t and p —s=t. It follows
from Proposition 2.1 that there exists a digraph D of order
p such that I',s(D) = ¢t and y, (D) = s. O

In the following proposition we use Theorem 1.2 in order
to show a family of digraphs with a semicomplete absorb-
ent set.
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Figure 1. Forbbiden directed pseudographs.

Proposition 2.2. If G is a graph without neither induced Ps
nor induced Cs, then there exists an orientation D of G such
that D has a semicomplete absorbent set.

Proof. If G is a graph without neither Ps nor Cs as induced
subgraphs, then G has a dominating clique S, which implies
that for every x in V(G)\ S there exists a vertex s(x) in S
such that xs(x) € E(G). If D is an orientation of G such that
the edge xs(x) is oriented from x to s(x) in D and the
remaining edges have an arbitrary orientation, then § is a
semicomplete absorbent set in D. 0

Proposition 2.3. Let p > 4 be an even natural number. There
exists a digraph D of order p such that T'y(D) = 74,(D).

Proof. Let D be a tournament of order £, with V(D) =
{wi, wa, o} Y = (D15, Dy) a sequence of vertex disjoint
digraphs such that V(D;) = {u;}. We claim that y,, (Do) =
(D o l//>

Notice that V(D) is a I'ys-set in D oy (by definition of
corona and because D is a tournament). Since y, (Do
) <|V(D)|, then in order to prove that y, (Do) =
|V(D)|, we can proceed by contradiction and suppose
that (D o ) < V(D).

Let N be a yg-set in D oy, by our supposition we have
that |[N| < |V(D)|, which implies that there exists w; in
V(D) \ N such that u; ¢ N. On the other hand, by defin-
ition of Do, since Ngow(“i) = {w;}, we have that u; is
not absorbed by N, a contradiction. Therefore, y,,.(D o) =
|[V(D)|; that is, (D o ) = [gs(D o ). |

3. Some properties of the digraphs which have
semicomplete absorbent sets

Proposition 3.1. If D is a digraph with at least one semi-
complete absorbent set, then D has a unique terminal
strong component.

Proof. Let S be a semicomplete absorbent set in D and H a
terminal strong component of D. By contradiction, suppose
that there exists a terminal strong component H' of D
such that H' # H. Notice that V(H)NS # 0, because
NT(V(H)) C V(H) and analogously, V(H')NS# (. Let
we V(H)NS and w € V(H') NS, since D(S) is semicom-
plete, either (w,w') € A(D) or (w,w) € A(D), which con-
tradicts that either H is a terminal strong component or H’
is a terminal strong component. O
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If a digraph has only one terminal strong component,
then it does not necessarily have a semicomplete absorbent
set. Py has only one terminal strong component but it has
not a semicomplete absorbent set. However the converse of
Proposition 3.1 is true in transitive digraphs.

Proposition 3.2. Let D be a transitive digraph. D has a
unique terminal strong component if and only if D has a
semicomplete absorbent set.

Proof. Suppose that D has a semicomplete absorbent set. It
follows from Proposition 3.1 that D has a unique terminal
strong component.

On the other hand, suppose that D has a unique terminal
strong component.

It follows from Theorem 1.6 that D has a kernel K and
since D has a unique terminal strong component then we
get that |K| = 1. Therefore, K is a semicomplete absorbent
set in D. O

Proposition 3.3. Let D be a digraph of order p > 1. Suppose
that D has at least a semicomplete absorbent set. Then

1. Ty(D)>1,
if M is a I'y;s — set, then for every u in V(D) \ M there
exists v in M such that u# and v are not adjacent,

3. if Misay, —set and |[M| > 1, then there exist u in M
and w in N(u) N (V(D)\ M) such that for every v

in M\ {u}, (w,v) € A(D).

Proof.

1. Let S be a y,,—set in D. Consider two cases on S.
Case 1. |S| > 1.
In this case we have that 1 < |S| = y,,,(D) < T'i(D),
which implies that 1 < I'y(D).
Case 2. |S| = 1.
Suppose that S = {x}. Since p > 2, then there exists z
in V(D) \ S, which implies that (z,x) € A(D) (because
S is an absorbent set). Therefore, {x,z} is a semicom-
plete absorbent set in D and so I'ys(D) > [{x,2}|, that
is, Tss(D) > 1.

2. Proceeding by contradiction, suppose that M is a
I';ss—set in D such that for every v in V(D) \ M and
for every x in M, v and x are adjacent. Therefore, for
every v in V(D) \ M we have that M =M U {v} is a
semicomplete absorbent set such that |M'| > |[M|=
I'ys(D), which is not possible. Thus, for every v in
V(D) \ M there exists x in M such that v and x are
not adjacent.

3. Proceeding by contradiction, suppose that M is a yg,-
set, with |[M| > 1, such that for every x in M and for
every w in N(x) N (V(D) \ M) there exists y in M \ {x}
such that (w,y) € A(D). Since |[M|>1 and M is a
semicomplete set, we have that there exists x in M such
that d, (x) > 1.

We claim that M’ = M \ {x} is a semicomplete absorbent
set. Clearly M’ is a semicomplete set because M is semi-
complete; on the other hand, by our supposition M’
absorbs N(x), which implies that M’ is an absorbent set

(because the fact M absorbent implies that M’ also absorbs
V(D) \ (M UN(x)).
Therefore, since |M'| < |M| = y,,,(D), we obtain a contra-
diction. Thus, there exists w in N(x) N (V(D) \ M) such that
for every y in M \ {x} we have that (w,y) & A(D). O

Corollary 3.1. If D is a digraph with at least one semicom-
plete absorbent set, then every I'y;s—set of D is an absorbent
set in D. In particular, y,(D) < Tys(D).

Proof. Let D be a digraph with at least one semicomplete
absorbent set and S a I'y,;—set of D. By Proposition 3.3
(2) we have that for every vertex u in V(D) \ S there exists
v in S such that u and v are not adjacent, so (u, v) is an
arc of D, that is, S is an absorbent set in D.

Therefore, y,(D) < Tys(D). O

Corollary 3.2. If D is an asymmetric digraph with at least
one semicomplete absorbent set, then y,,(D) < Tys(D).

Proof. Let D be an asymmetric digraph and S a semicom-
plete absorbent set of D. Since D is an asymmetric digraph,
we have that D(S) is a tournament, so D(S) is a tournament.
On the other hand, by Corollary 3.1 we have that S is an
absorbent set in D, which implies that S is a semicomplete
absorbent set in D, hence y,,,(D) < T'ys(D). O

Corollary 3.3. Let D be a digraph and S a I's;s—set of D. If
S is a complete set, then S is a kernel of D.

Proof. Since S is a complete set in D, then S is an independ-
ent set in D, which implies that S is a kernel in D, by
Corollary 3.1.

Proposition 3.4. Let D be a digraph and M a semicomplete
absorbent set in D. For every x in V(D) \ M we have that
MU {x} is not a semicomplete absorbent set in D if and only
if for every w in V(D) \ M there exists z in M such that w
and z are not adjacent in D.

Proof. Suppose that for every w in V(D) \ M there exists z,
in M such that w and z,, are not adjacent in D. Then, it fol-
lows that for every w in V(D) \ M, M U {w} is not a semi-
complete set in D (because w and z,, are not adjacent in D).
Therefore, for every x in V(D) \ M we have that M U {x} is
not a semicomplete absorbent set in D.

Suppose that for every x in V(D) \ M we have that M U
{x} is not a semicomplete absorbent set in D. Since M is an
absorbent set, we get that M U {x} is an absorbent set for
every x in V(D) \ M. Therefore, M U {x} is not a semicom-
plete set for every x in V(D) \ M; that is, for every x in
V(D) \ M there exists u, in M such that x and u, are not
adjacent in D (because M is semicomplete). O

Proposition 3.5. Let D be a digraph. If D has a semicomplete
absorbent set S, then D has a 3—king. Moreover, if S is a
semicomplete absorbent set such that |S| = t, for some t € N,
then D has a t-king.



Proof. Let S be a semicomplete absorbent set of D. By
Theorem 1.1 we have that D(S) has a 2—king, say x. It is
straightforward to see that x is a 3—king of D.

On the other hand, suppose that |S| =T and consider
P = (xo,...,x;—1) be a Hamiltonian path in D(S) (there exists
P by Theorem 1.5). We claim that x,_; is a t-king. Since for
every u in V(D) \ S there exists w, in S such that (u,w,) €
A(D) then we get that (u,w,) U (wy, P,x;—;1) is a ux,_;-path
of length at most . Therefore, x;_; is a t-king. O

In [3] we can found the following proposition.

Proposition 3.6. Let D be a weak connected digraph. D con-
tains an out-branching (in-branching) if and only if D has
only one initial (terminal) strong component.

It follows from Proposition 3.1 and Proposition 3.6 that
every digraph D with at least one semicomplete absorbent
set has an in-branching. Moreover, Proposition 3.5 shows
that the in-branching T is the digraph such that V(T) =
V(D) and A(T)=AP)U{(u,w,) € A(D):uecV(D)\
S and w, in V(P)}. On the other hand, we get from
Proposition 3.2 and Proposition 3.6 that for a transitive
digraph D it holds that D has at least one semicomplete
absorbent set if and only if D has an in-branching.

Corollary 3.4. Let D be a digraph.

1. If D is transitive then D has at least one semicomplete
absorbent set if and only if D has an in-branching.

2. Every digraph D with at least one semicomplete absorb-
ent set has an in-branching.

4. Some bounds for I';,;(D) y y,,.(D)

Proposition 4.1. Let D be a digraph of size q. If D has a

semicomplete absorbent set, then l"m(D)2 —T'ws(D) < 2g.

Proof. Let S be a I'y;s—set of D and p the order of D. Since
D(S) is a semicomplete digraph, then |A(D(S))| > w
On the other hand, for every x in V(D) \ S there exists y in S
such that (x, y) € A(D), because S is an absorbent set, then

S|(IS] — 1
a2 [V(D)\ S|+ AD(S)] > (p— ) + =D
ISP =318l +2p
- . ,
which  implies  that 2g > Tye(D)* — 3T4s(D) +2p >
rsas(D)z - rsas(D)~ O

Proposition 4.2. Let D be a digraph with at least one semi-
complete absorbent set. Then D is a tournament if and only

if 29 = T4ue(D)* — Tyue(D).

Proof. If D is a tournament of order p, then p = I'y(D)
and so,

2q=p(p — 1) = Tews(D)* — Teus(D).

On the other hand, let D be a digraph such that 2q =
I m(D)Z — I'ys(D) and by contradiction, suppose that D is
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not a tournament. Notice that D is not a semicomplete
digraph, otherwise since D is not a tournament it has at
least one symmetric arc, then p =T (D) and 2g >
p(p —1), that is 2g > [y (D)” — Teue(D), which contradicts
the hypothesis. Therefore D is not a semicomplete digraph.
Let S be a T'g;—set of D, then 2g5 > l“m(D)2 —T'us(D),
where gs is the size of D(S), since D is not a semicomplete
set, then S C V(D), which implies that there exists u in
V(D)\ S and v in S such that (u,v) € A(D). Thus 2g >

2qs > FW(D)Z — T'ws(D), a contradiction. Therefore, D is
a tournament. O

Proposition 4.3. If D is a digraph of order p, such that D
has at least one semicomplete absorbent set, then

Yeas(D) < 1%1. Moreover, if there exists a y.,,—set S of D such
that D(S) has no sinks, then (D) < 2.

Proof. Let S be a y,,;—set of Dand §' ={x€§ : dzg (x) #
0}. Notice that for every x in § there exists y in VgD) \S
that satisfies N*(y) NS = {x}, otherwise, if there exists x in
S’ such that for every y in V(D) \ S,NT(y) NS # {x}, then
by choice of x, every vertex in V(D) \ S is absorbed by a
vertex in S\ {x} and by definition of §' we have that x is
absorbed by S\ {x}. Moreover, since S\ {x} C S, then S\
{x} is a semicomplete set and therefore S\ {x} is a semi-
complete absorbent set, a contradiction. Therefore for every
x in § there exists y in V(D) \ S that satisfies NT(y) NS =
{x} and thus |§'| < |V(D)\ §|; that is, |S|+ |S| < |V(D)]
and by choice of § we have that y (D) + |§| < |V(D)].

On the other hand, since D(S) is a semicomplete digraph,
it has at most one sink, then |§'| > |S| — 1, concluding that
Veas(D) < 1%1. In particular, if D(S) has no sinks, then |S| =

|S'| and therefore y, (D) <£. O

Let p an odd natural number, say p =2n+ 1 for some
natural number #, D a transitive tournament of order n+ 1,
with V(D) = {wy,wp, ... wp11}, and ¢ = (Dy,...,D,y1) a
sequence of vertex disjoint digraphs such that V(D;) = {u;}.
Since D has a sink (by Theorem 1.4), suppose without loss
of generality that d*(w,;;) = 0. Consider the digraph H =
Doy (V(D)U{uy,....,u,}). It is straightforward to see that
V(D) is the only one semicomplete absorbent set in H,
which implies that y ., (H) = ‘%1, that is, H achieve the first
bound in Proposition 4.3.

Let p be an even natural number, D a complete digraph of
order g, with V(D) = {wl,wz,...,w§}, and = (Dbu-,Dg)

a sequence of vertex disjoint digraphs such that V(D;) = {u;}.
Notice that V(D) is the only one semicomplete absorbent set
in Do, which implies that y,(Doy) =2, that is, Doy
achieve the second bound in Proposition 4.3.

In Proposition 2.3, we proved that given an even natural
number p > 4 there exists a digraph D of order p such that
I'ys(D) = ,4(D). In the following corollary we show an
uper bound for I'y,(D) for this kind of digraphs.

Corollary 4.1. If D is a digraph such that T's(D) = y,,,(D),
then T'y(D) < ‘%1
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Proof. If follows from Proposition 4.3 that "%1 > 7.as(D),
which implies that 1%1 > T'is(D) (by hypothesis). 0O

5. Semicomplete absorbent numbers in the
Cartesian product, the composition of digraphs
and the line digraph

We give some bounds for the lower and upper semicom-
plete absorbent number in these operations.

Lemma 5.1. Let D and H be two digraphs, DUH the
Cartesian product and U C V(DUH). If U is a semicomplete
set, then U is contained either in H,, for some xy € V(D) or
U is contained in D, for some zy € V(H).

Proof. Notice that if |U| =1, the result holds. Otherwise, let
{(%,9),(z,w)} C U. Since (U) is semicomplete we can sup-
pose, without loss of generality, that ( (x,y),(z,w) )€
A(DUOH). So, there are only two cases respect these vertices.

If x=z and (y,w) € A(H), then we claim that U C H,.
Otherwise, there exists a vertex (u, v) in U such that u # x,
and then (1, v) and (x, y) are adjacent, concluding that y=v. In
the same way (1, v) and (z, w) are adjacent, then v=w, and
this implies that y = w, this contradicts that (y, w) € A(H).

In the same way, if y=w and (x,z) € A(D), the we claim
that U C D,,. Then some level of D[JH contains U. O

Proposition 5.1. If D and H are two nontrivial digraphs,
then DUH has a semicomplete absorbent set if and only if
either D is a semicomplete digraph and y,(H) =1 or H is a
semicomplete digraph and v, (D) = 1.

Proof. Let D and H be two digraphs and suppose that DUJH
has a semicomplete absorbent set, say S. We claim that
either S= H,, for some x, € V(D) or S= D, for some
zo € V(H). According to Lemma 5.1, S is contained either
in H,, for some xy € V(D) or S is contained in D, for
some zy € V(H). We can suppose without loss of generality
that S C H,, for some xy € V(D). For the other inclusion,
let (xp,z) be a vertex in H, and consider (x;,z) €
V(DUH) \ Hy,. Since S is an absorbent set, there exists
(x0,w) € S that dominates (x;,z) and by definition of DLJH
we conclude that w=2z and then (xp,z) € S. It follows that
S = H,, and, since (DUH)(H,,) = H, we conclude that H
is a semicomplete digraph. On the other hand, we claim
that x, is an absorbent vertex in D. If y € V(D) \ {xo}, then
(y,u) € V(DOH)\ S for some u € V(H). Since S = H,, is
an absorbent set of DUOH, then ( (y,u),(x,u) )€
A(DUH) concluding that (y,x0) € A(D). Hence, 7,,(D) =
1 and H is a semicomplete digraph. A similar proof shows
that if S C D, for some y, € V(H), then 7., (H) =1 and D
is a semicomplete digraph.

On the other hand, suppose that H is a semicomplete
digraph and 7., (D) =1, let x, an absorbent vertex in D.
Since (DUH)(H,,) = H, it follows that (DOJH)(H,,) is a
semicomplete digraph. Moreover, by choice of xo, if (u,v) €
V(DUH) \ Hy,, then ( (u,v),(x0,v) ) € A(DUH),
cluding that H,, is a semicomplete absorbent set of DLIH.

con-

A similar proof shows that the result holds if D is a semi-
complete digraph and y,,,(H) = 1. O

Proposition 5.1 is a characterization of semicomplete
absorbent sets in the Cartesian product and it can be used
to determinate the upper and lower semicomplete absorbent
number in that operation.

Corollary 5.1. If D and H are two digraphs such that
D O H has a semicomplete absorbent set, then
Fs(DOH) € {p1.p2} and y,(DOH) € {p1,p2}, where p,
is the order of D and p; is the order of H.

Proof. If D and H are two digraphs and S is a I'gs—set of
DOH, by Proposition 5.1, S is some level of DLIH, so
I'ys(DUH) € {p1,p>}. Analogously, y,.(DUH) € {p1,p>}. O

Now we will show an upper bound for the upper semi-
complete absorbent number in the composition of digraphs.

Proposition 5.2. If D is a digraph and o= (D,),cy(p) is a
sequence of digraphs such that Dlo| has a semicomplete
absorbent set, then D has a semicomplete absorbent set.

Proof. Let §' be a semicomplete absorbent set of D[a], we
claim that S={v e V(D) : § NV(D,) # ()} is a semicom-
plete absorbent set of D. Let {u,v} C S, notice that if x €
V(D,)NS and z € V(D,) NS, then x and z are adjacent in
D[«] because D[x](S') is a semicomplete digraph, and then u
and v are adjacent in D. In other case, if w € V(D) \ S then
D, NS =10, it follows that if x € V(D,) there exists z € §
such that (x,z) € A(D[o]), in particular z € V(D,) for some
v € V(D). Therefore v € S and (w,v) € A(D). O

Proposition 5.3. Let D be a digraph, o= ( Dy),cyp) @
sequence of digraphs and S a semicomplete absorbent set
without sinks in D. If R, is a semicomplete set in D, for every
veS, then S =U,sR, is a semicomplete absorbent set
in D[a].

Proof. Let {x,z} C § and consider two cases for x and z. If
{x,z} C R, for some v € S, by choice of R, there exists an
arc between x and z in D[«]. In other case, if x € R, and z €
R, for some {u,v} C S with u # v, since D(S) is a semi-
complete subdigraph of D, then there exists an arc between
u and v in D, which implies that x and z are adjacent in
Dlo], concluding that D[x](S') is a semicomplete subdigraph
of D[a].

On the other hand, if x € V(D[«]) \ §, in particular x €
V(D,) for some v € V(D). If v € V(D) \ S, then there exist
u in S such that (v,u) € A(D), concluding that (x,z) €
A(Dlo]) for some z in R, and therefore x is absorbed by §'.
In other case, since S has no sinks, there exist u in S such
that (v,u) € A(D) and by definition of D[] we have that
every vertex in D, is dominated by D,, concluding that
(x,2) € A(D[a]) for some z in R,. Therefore, §' is a semi-
complete absorbent set in D[].

Corollary 5.2. Let D be a digraph and o= ( Dy),cyp) a
sequence of digraphs. If S is a semicomplete absorbent set
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Figure 2. Digraphs whose line digraph contains a semicomplete absorbent set. Dotted arcs indicate that can there exist symmetric arcs.

without sinks in D, then there exists a semicomplete absorb-
ent set in D(a] of order ) ¢ @*(D,).

Proof. Let R, be a semicomplete set in D, with w*(D,) verti-
ces for every v in S. By Proposition 5.3, & = U,sR, is a
semicomplete  absorbent set in Dfa], it follows

that |§'] = > g @*(Dy). 0

Corollary 5.3. Let D be a digraph and o= (D,),cyp) a
sequence of digraphs such that Dlo] has a semicomplete
absorbent set without sinks. If & is the family of semicom-
plete absorbent sets without sinks in D, then

max {VEZS CU*(Dv)} < Tias(D[ot])-

Proof. By Corollary 5.1, for every S in & there exists a semi-
complete absorbent set in Do), say S, such that
Y ves @ (Dy) = |8, in particular )" o *(D,) < go(D[a])
for every S in &, concluding that

max {; " (Dv)} < Tias(D[d]). ]

For the line digraph, we will give an upper bound for the
upper absorbent semicomplete number in this digraph.

Proposition 5.4. Let D be a digraph and L(D) its line
digraph. If L(D) has a semicomplete absorbent set, then
Iws( L(D) ) < 3. Moreover

1. Tyw(L(D)) =1 if and only if D is either (a) or (b) as
Figure 2 shows.

2. Tu(L(D)) =2 if and only if D is either (c), (d), (e), (f),
(9), (h) or (i) as Figure 2 shows.

3. Twus(L(D)) =3 if and only if D is either (j), (k), (I) or
(m) as Figure 2 shows.

Proof. Let S be a I'y;s—set of L(D). Suppose that |S| > 4 and
let S; = {w,x,y,2z} be a subset of S. Since L(D)(S) is semi-
complete, then by Corollary 1.1 we can suppose that
{(w,x), (x,2),(z,w)} C A(L(D)) (because in particular L(D)
has no transitive subtournaments of orden 3). In the same
way, for the set {x,y,w} we have that {(x,y),(y,w)} C
A(L(D) )  because  (w,x) € A( L(D) ).  Therefore,
L(D){({w,z,y}) has a transitive subtournament of orden 3
which is no possible. Therefore, I'y,s( L(D) ) < 3.

Let S be a I'y,—set in L(D). Consider the follow-
ing cases.

e Casel. |S|=1.
In this case we have that S = {(u,v)} for some {u,v} C
V(D). Since S is an absorbent set in L(D) we have that
for every arc (x, y) in A(D)\ S, ((x,y), (u,v)) € A(L(D)),
which implies that y = u. Hence, since S is a I';;;—set, D
is either (a) or (b) as Figure 2 shows.

e Case 2. |S| =2.
In this case we have that S= {(u,v),(s,w)} for some
{u,v,w,s} C V(D). Since S is a semicomplete set in
L(D), we may assume that v = s. On the other hand,
since S is an absorbent set in L(D), for every arc (x, y) in
A(D)\'S we have that y € {u,v}. Hence, since S is a
Isos—set, if w# u, then D is one of (¢), (d), (e) or (f)
showed in Figure 2. If w = u then D is one of (g), (h) or
(i) as Figure 2 shows.

e Case 3. |S| = 3.
In this case, S={(s,t),(u,v),(w,z)} for some
{s,t,u,v,w,z} C V(D). According to Corollary 1.1 we
have that L(D)(S) contains no transitive tournament of
order three, which implies that L(D)(S) is a cycle.
Suppose that t = u, v = w and z = s. Since S is an
absorbent set in L(D), we have that for every arc (x, y) in
A(D)\ S we have that y € {z,u,v}. Therefore, D is one
of (j), (k), (I) or (m) as Figure 2 shows. O
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Note

A pseudograph is a graph that may contains parallel edges or loops.
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