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An explicit construction of optimal dominating and [1, 2]–dominating sets
in grid

P. Sharifania,b�, M. R. Hooshmandasla,b#, and M. Alambardar Meybodia,b‡

aDepartment of Computer Science, Yazd University, Yazd, Iran; bThe Laboratory of Quantum Information Processing, Yazd University,
Yazd, Iran

ABSTRACT
A dominating set in a graph G is a subset of vertices D such that every vertex in V n D is a neigh-
bor of some vertex of D. The domination number of G is the minimum size of a dominating set of
G and it is denoted by c(G). A dominating set with cardinality c(G) is called optimal dominating
set. Also, a subset D of a graph G is a [1, 2]-set if, each vertex v 2 V n D is adjacent to either one
or two vertices in D and the minimum cardinality of [1, 2]-dominating set of G, is denoted by
c½1, 2�ðGÞ. Chang’s conjecture says that for every 16 � m � n, cðGm, nÞ ¼ bðnþ2Þðmþ2Þ

5 c � 4 and this
conjecture has been proven by Goncalves et al. This paper presents an explicit constructing
method to find an optimal dominating set for grid graph Gm,n where m, n � 16 in O (size of
answer). In addition, we will show that cðGm, nÞ ¼ c½1, 2�ðGm, nÞ where m, n � 16 holds in response
to an open question posed by Chellali et al.
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Grid graph; dominating set;
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1. Introduction

The concept of domination and dominating set is a well-
studied topic in graph theory and has many extensions and
applications. A discussion of some of these can be found in
[14, 15]. Many variations of domination problems have
shown to be NP-complete [2, 5, 6, 17, 19, 21, 24]. Also, many
algorithmic results have studied for these problems in differ-
ent classes of graphs. A subset S of vertices is a dominating
set if every vertex not in S has at least one neighbor in S. A
dominating set with minimum cardinality is called an optimal
dominating set of a graph G; its cardinality is called the dom-
ination number of G and is denoted by c(G). Note that
although the domination number of a graph, c(G), is unique,
there may be different optimal dominating sets. Grid graphs
are a special class of graphs and the dominating set of them
have many applications in robotics and sensor networks [3].
Due to the special structure of grids, their domination num-
ber can be determined optimally, although this number was
known recently by Goncalves et al., [10]. They proved that
for m� n grids, where m, n � 16,

cðGm, nÞ ¼
� ðnþ 2Þðmþ 2Þ

5

�
� 4:

The idea behind their proof is using a dynamic program-
ming method to store all dominating sets that occur in borders
of a grid. Various attempts have been made in recent years to
find an algorithm for the optimal dominating set. Chang [4], by

using diagonalization and projection, constructed a dominating
set for grids in polynomial-time, such that

cðGm, nÞ �
� ðnþ 2Þðmþ 2Þ

5

�
:

The cardinality of dominating set constructed by Chang’s
method is at most cðGm, nÞ þ 5, when 16 � m � n:

In [1], Alanko et al used brute-force computational tech-
nique to find optimal dominating set in grids of size up
to n ¼ m ¼ 29:

Fata et al. [8] presented a distributed algorithm for find-
ing near optimal dominating sets on grids. The size of the
dominating set provided by their algorithm is upper-

bounded by
l
ðnþ2Þðmþ2Þ

5

m
for m� n grids and its difference

from the optimal domination number of the grid is upper-
bounded by five.

P. Pisantechakool et al. [23] improved upon the distrib-
uted algorithm of Fata et al. and presented a new distributed
algorithm that computes a dominating set of sizel
ðnþ2Þðmþ2Þ

5

m
� 3 on an m� n grid, 8 � m, n and its differ-

ence from the optimal domination number of the grid is
upper-bounded by two.

There are numerous intermediate results for minimal
dominating set and cðGm, nÞ for small values of n and m by
a dynamic programming algorithm [12, 13, 18, 20, 24, 28].
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Most of those algorithms are not efficient in practice
when the values n or m be over 20.

One of the interesting issues that can be expressed in dif-
ferent types of domination problems is that under which
conditions the domination number of graph is equal to the
domination number of that particular domination problem
[7, 11, 16].

A dominating set like D of graph G(V, E), called [1, 2]-
dominating set if each vertex v 2 V n D is adjacent to at most
two vertices in D. The concept of [1, 2]-dominating set, as a
special case of ½q, r�-dominating set [26], is introduced by
Chellali et al [6]. They studied [1, 2]-dominating sets in graphs
and posed a number of open problems. Some of those prob-
lems are solved in [9, 27]. One of the proposed questions is:

Question: Is it true for grid graphs Gm,n that cðGm, nÞ ¼
c½1, 2�ðGm, nÞ?

We show that the answer to this question is positive by
constructing a c-set for Gm,n which is also a c½1, 2�-set.

The main result of this paper is a construction to find an
optimal dominating set for grid Gm,n where m, n � 16: The
rest of this paper proceeds as follows. In Section 2 we
describe some notations and definitions are needed. In sec-
tion 3, we present our construction and the correctness
argument for it. Also to ease of understanding we illustrate
some examples. Finally, in section 4 we prove that
cðGm, nÞ ¼ c½1, 2�ðGm, nÞ for m, n � 16:

2. Terminology

In this section, we introduce some definitions and notations
that will be needed in the sequel. For all terminologies and
notations are not defined here, we refer to [22]. Let G ¼
ðV, EÞ be a simple graph, the neighborhood of a vertex v 2
V is the set of all vertices adjacent to v and is denoted by
N(v), i.e. NðvÞ ¼ u 2 Vjuv 2 Ef g: The closed neighborhood
of a vertex v is defined N½v� ¼ NðvÞ [ fvg: A set S is called
a dominating set of G if every vertex is either in S or adja-
cent to a vertex in S. The size of the smallest dominating
sets of a graph G is denoted by cðGÞ: Any such set is called
a c-set or minimal dominating set of G.

A set S � V is called a [1, 2]-set of G if for each v 2
V n S we have 1 � jNðvÞ \ Sj � 2, i.e. v is adjacent to at
least one but not more than two vertices in S. The size of
the smallest [1, 2]-sets of G is denoted by c½1, 2�ðGÞ: Any
such set is called a c½1, 2�-set of G. We know that for every
graph G, cðGÞ � c½1, 2�ðGÞ � n [6]. In some classes of graphs,
the domination number and [1, 2]-domination number are
equal. This equality holds for cycles, caterpillars, claw-free
graphs, P4-free graphs, and nontrivial graph G with DðGÞ �
jVðGÞj � 3, are proved in [6].

An m� n grid graph Gm, n ¼ ðV;EÞ has vertex set V ¼
fvi, j : 1 � i � m, 1 � j � ng and edge set E ¼ fðvi, j, vi, j0 Þ :
jj� j0j ¼ 1g [ fðvi, j, vi0 , jÞ : ji� i0j ¼ 1g: For ease of expos-
ition, we will fix an orientation and labeling of the vertices,
so that vertex v1, 1 is the upper-left vertex and vertex vm, n is
the lower-right vertex of the grid.

We also require the following definitions.

Definition 2.1. The boundary of grid Gm,n, denoted by
B(G), is the set of vertices like v 2 V such that jNðvÞj < 4:

Definition 2.2. A sub-grid of Gm,n is induced graph by vertices
V ¼ fvi, j : 2� i�m� 1, 2� j� n� 1g n fv2, 2, v2,n�1,vm�1, 2,
vm�1,n�1g (see Figure 1).

3. Construction of dominating set in grid

The idea behind our method is choosing a proper pattern
that dominates every vertex in sub-grid exactly once. Our
purpose is selecting most of the vertices of dominating set
from sub-grid as soon it is possible because every vertex in
sub-grid dominates at most five vertices (its four neighbors
and itself). These selected vertices are indicated by black
disks. Since, just by selecting vertices of sub-grid, the bound-
ary vertices of the grid may be not dominated, then we have
to add some vertices of the boundary, indicated by white
squares, to the dominating set. To do so, we identify vertices
of the optimal dominating set by two following steps:

Step 1: Identifying domination points (black disks) to
dominate the vertices of sub-grid and some of the vertices
of the boundary.

Step 2: Identifying domination points (white squares) to
dominate the boundary vertices which are not dominated by
black disks.

In the step 1, according to the number of columns, we
select the index of first appropriate column that a black disk
must be located in row p, denoted ap. In other words, the
vertex vp, ap is the first position in row p that a domination
point is located.

For the first row, ap is defined as

a1 ¼ 2 if n 	 0 ðmod 5Þ,
n mod 5 otherwise,

�

and for other rows, ap 	 a1 þ 3ðp� 1Þ ðmod 5Þ:

Figure 1. Example of dominating set of size 60 for grid G16, 16 and its sub-grid
is highlighted by a red dashed line. The intersection of each row and column is
a vertex of grid.
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Then, we construct the set Dd as union of the following
sets

DF ¼ v1, 5kþa1 : 3 � 5kþ a1 � n� 2 for some kf g,
DM ¼ vp, 5kþap : 2 � p � n� 1 and 1 � 5kþ a1 � n for some k

� �
,

DL ¼ vm, 5kþan : 3 � 5kþ a1 � n� 2 for some kf g,

where DF, DM and DL are the sets of all black disks in first
row, middle rows and last row, respectively.

In the step 2, at first we define the set Aði, jÞ
k as

Aði, jÞ
k ¼ 5t þ k j i � t � j

� �
:

Also, we set S ¼ bn5c and T ¼ bm5c:
In order to cover vertices in the borders which are not

dominated, the following vertices are added to the dominat-
ing set. These vertices are indicated by white squares.

First Row: Selecting the white squares in first row is just
depend on n and is independent from m. The set of all
white squares of first row is defined by DFR

s : This set is
selected as follow:

DFR
s ¼

v1,p : p 2 Að1, S�1Þ
4

n o
[ v1, 3f g if n 	 0 ðmod 5Þ,

v1,p : p 2 Að1, S�2Þ
3

n o
[ v1, 2, v1,n�2f g if n 	 1 ðmod 5Þ,

v1,p : p 2 Að1, S�2Þ
4

n o
[ v1, 3, v1,n�2f g if n 	 2 ðmod 5Þ,

v1,p : p 2 Að1, S�1Þ
0

n o
[ v1,n�2f g if n 	 3 ðmod 5Þ,

v1,p : p 2 Að1, S�1Þ
1

n o
[ v1,n�2f g if n 	 4 ðmod 5Þ,

8>>>>>>>>>>>><
>>>>>>>>>>>>:

Left-Right Columns and Last Row: Selecting the white
squares in these borders, aside from the first row, depend
on both m and n. The sets of all white squares in the first,
last columns and last row are denoted by DFC

s , DLC
s and

DLR
s , respectively. These points are selected as follow:

Case 1: n 	 0 ðmod 5Þ

DFC
s ¼

vp, 1 : p 2 Að0,T�2Þ
2

n o
[ vm�3, 1f g if m 	 0 ðmod 5Þ,

vp, 1 : p 2 Að0,T�1Þ
2

n o
if m 	 1, 2 ðmod 5Þ,

vp, 1 : p 2 Að0,TÞ
2

n o
if m 	 3 ðmod 5Þ,

vp, 1 : p 2 Að0,T�1Þ
2

n o
[ vm�1, 1f g if m 	 4 ðmod 5Þ:

8>>>>>>>>><
>>>>>>>>>:

DLC
s ¼

vp,n : p 2 Að1,T�1Þ
4

n o
[ v3,nf g if m 	 0, 3, 4 ðmod 5Þ,

vp,n : p 2 Að1,T�2Þ
4

n o
[ v3,n, vm�1,nf g if m 	 1 ðmod 5Þ,

vp,n : p 2 Að1,T�2Þ
4

n o
[ v3,n, vm�2,nf g if m 	 2 ðmod 5Þ:

8>>>>><
>>>>>:

DLR
s ¼

vm, p : p 2 Að0, S�2Þ
2

n o
[ vm,n�2f g if m 	 0 ðmod 5Þ,

vm, p : p 2 Að1, S�1Þ
0

n o
if m 	 1 ðmod 5Þ,

vm, p : p 2 Að1, S�1Þ
1

n o
if m 	 3 ðmod 5Þ,

vm, p : p 2 Að1, S�2Þ
3

n o
[ vm, 2, vm,n�1f g if m 	 2 ðmod 5Þ,

vm, p : p 2 Að1, SÞ
4

n o
[ vm, 3f g if m 	 4 ðmod 5Þ:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

Case 2: n 	 1 ðmod 5Þ

DFC
s ¼

vp, 1 : p 2 Að1,T�1Þ
4

n o
[ v3, 1f g if m 	 0, 3, 4 ðmod 5Þ,

vp, 1 : p 2 Að1,T�2Þ
4

n o
[ v3, 1, vm�1, 1f g if m 	 1 ðmod 5Þ,

vp, 1 : p 2 Að1,T�2Þ
4

n o
[ v3, 1, vm�2, 1f g if m 	 2 ðmod 5Þ:

8>>>><
>>>>:

DLC
s ¼

vp,n : p 2 Að1,T�2Þ
3

n o
[ v2,n, vm�1,nf g if m 	 0 ðmod 5Þ,

vp,n : p 2 Að1,T�2Þ
3

n o
[ v2,nf g if m 	 2, 3 ðmod 5Þ,

vp,n : p 2 Að1,T�2Þ
3

n o
[ v2,n, vm�2,nf g if m 	 1 ðmod 5Þ,

vp,n : p 2 Að1,T�1Þ
3

n o
[ v2,n, vm�2,nf g if m 	 4 ðmod 5Þ:

8>>>>>>><
>>>>>>>:

DLR
s ¼

vm, p : p 2 Að1, S�1Þ
1

n o
if m 	 0 ðmod 5Þ,

vm, p : p 2 Að1, S�1Þ
4

n o
[ vm, 3, vm,n�1f g if m 	 1 ðmod 5Þ,

vm, p : p 2 Að0, S�1Þ
2

n o
if m 	 2 ðmod 5Þ,

vm, p : p 2 Að1, SÞ
0

n o
if m 	 3 ðmod 5Þ,

vm, p : p 2 Að1, S�2Þ
3

n o
[ vm, 2, vm,n�2f g if m 	 4 ðmod 5Þ:

8>>>>>>>>>>><
>>>>>>>>>>>:

Case 3: n 	 2 ðmod 5Þ

DFC
s ¼

vp, 1 : p 2 Að0,T�2Þ
2

n o
[ vm�2, 1f g if m 	 0 ðmod 5Þ,

vp, 1 : p 2 Að0,T�1Þ
2

n o
if m 	 1, 2, 3 ðmod 5Þ,

vp, 1 : p 2 Að0,T�1Þ
2

n o
[ vm�1, 1f g if m 	 4 ðmod 5Þ:

8>>>><
>>>>:

DLC
s ¼

vp,n : p 2 Að1,T�2Þ
3

n o
[ v2,nvm�1,nf g if m 	 0 ðmod 5Þ,

vp,n : p 2 Að1,T�2Þ
3

n o
[ v2,nvm�2,nf g if m 	 1 ðmod 5Þ,

vp,n : p 2 Að1,T�1Þ
3

n o
[ v2,nf g if m 	 2, 3 ðmod 5Þ,

vp,n : p 2 Að1,TÞ
3

n o
[ v2,nf g if m 	 4 ðmod 5Þ:

8>>>>>>><
>>>>>>>:

DLR
s ¼

vm,p : p 2 Að0, S�1Þ
2

n o
if m 	 0 ðmod 5Þ,

vm,p : p 2 Að1, S�1Þ
0

n o
[ vm,n�1f g if m 	 1 ðmod 5Þ,

vm,p : p 2 Að1, S�1Þ
3

n o
[ vm, 2f g if m 	 2 ðmod 5Þ,

vm,p : p 2 Að1, SÞ
1

n o
if m 	 3 ðmod 5Þ,

vm,p : p 2 Að1, S�2Þ
4

n o
[ vm, 3, vm,n�2f g if m 	 4 ðmod 5Þ:

8>>>>>>>>>>><
>>>>>>>>>>>:

Case 4: n 	 3 ðmod 5Þ

DFC
s ¼

vp, 1 : p 2 Að1,T�1Þ
0

n o
if m 	 0 ðmod 5Þ,

vp, 1 : p 2 Að1,TÞ
0

n o
if m 	 1, 4 ðmod 5Þ,

vp, 1 : p 2 Að1,T�1Þ
0

n o
[ vm�1, 1f g if m 	 2 ðmod 5Þ,

vp, 1 : p 2 Að1,T�1Þ
0

n o
[ vm�2, 1f g if m 	 3 ðmod 5Þ:

8>>>>>>><
>>>>>>>:

DLC
s ¼

vp,n : p 2 Að1,T�2Þ
3

n o
[ v2,n, vm�1,nf g if m 	 0 ðmod 5Þ,

vp,n : p 2 Að1,T�2Þ
3

n o
[ v2,n, vm�2,nf g if m 	 1 ðmod 5Þ,

vp,n : p 2 Að1,T�1Þ
3

n o
[ v2,nf g if m 	 2, 3 ðmod 5Þ,

vp,n : p 2 Að1,TÞ
3

n o
[ v2,nf g if m 	 4 ðmod 5Þ:

8>>>>>>><
>>>>>>>:

DLR
s ¼

vm,p : p 2 Að1,S�1Þ
3

n o
[ vm, 2f g if m 	 0 ðmod 5Þ,

vm,p : p 2 Að1,S�1Þ
1

n o
[ vm,n�1f g if m 	 1 ðmod 5Þ,

vm,p : p 2 Að1,S�1Þ
4

n o
[ vm, 3f g if m 	 2 ðmod 5Þ,

vm,p : p 2 Að0,SÞ
2

n o
if m 	 3 ðmod 5Þ,

vm,p : p 2 Að1,S�1Þ
0

n o
[ vm,n�2f g if m 	 4 ðmod 5Þ:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS 3



Case 5: n 	 4 ðmod 5Þ

DFC
s ¼

vp, 1 : p 2 Að1,T�2Þ
3

n o
[ v2, 1, vm�1, 1f g if m 	 0 ðmod 5Þ,

vp, 1 : p 2 Að1,T�2Þ
3

n o
[ v2, 1, vm�2, 1f g if m 	 1 ðmod 5Þ,

vp, 1 : p 2 Að1,T�1Þ
3

n o
[ v2, 1f g if m 	 2, 3, 4 ðmod 5Þ,

8>>>><
>>>>:

DLC
s ¼

vp,n : p 2 Að1,T�2Þ
3

n o
[ v2,n, vm�1,nf g if m 	 0 ðmod 5Þ,

vp,n : p 2 Að1,T�2Þ
3

n o
[ v2,n, vm�2,nf g if m 	 1 ðmod 5Þ,

vp,n : p 2 Að1,T�1Þ
3

n o
[ v2,nf g if m 	 2, 3, 4 ðmod 5Þ:

8>>>><
>>>>:

DLR
s ¼

vm,p : p 2 Að1,S�1Þ
4

n o
[ vm, 3f g if m 	 0 ðmod 5Þ,

vm,p : p 2 Að0,S�1Þ
2

n o
[ vm,n�1f g if m 	 1 ðmod 5Þ,

vm,p : p 2 Að1,SÞ
0

n o
, if m 	 2 ðmod 5Þ,

vm,p : p 2 Að1,SÞ
3

n o
[ vm, 2f g if m 	 3 ðmod 5Þ,

vm,p : p 2 Að1,S�1Þ
1

n o
[ vm,n�2f g if m 	 4 ðmod 5Þ:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

Now, we show that the union of constructed sets builds a
dominating set for Gm,n. We define Ds and Dout as follows

Ds ¼ DFR
s [DFC

s [DLR
s [DLC

s (1)

and

Dout ¼ Dd [Ds: (2)

In Theorem 3.5, we will prove that the set Dout is an opti-
mal dominating set for Gm,n.

Example 3.1. The resulting dominating sets for grids
G24, 20,G24, 21,G24, 22,G24, 23 and G24, 24 are illustrated in
Figure 2(a–e).

3.1. Correctness and time complexity

We consider two case when the remainder m by five be zero
or not. In the first case, we partition the grid Gm,n into
B1,B2, :::BT such that every block Bi, 1 � i � T be a grid
P5 � Pn: In the second case, we divide the grid Gm,n into
B1,B2, :::BTþ1 such that every block Bi, 1 � i � T be a grid
P5 � Pn and the last block, BTþ1, is a grid Pm�5T � Pn that
is denoted by Bl. We remember that T ¼ bm5c, S ¼ bn5c and

the blocks are distinct. The number of black disks in the
blocks is summarized in Table 1.

Also the sum of all white square that locate on boundary
of grid are summarized in Table 2.

Lemma 3.2. The set Dout is a dominating set for Gm,n.

Proof. Let vp, q 2 V and ap	5ðnþ 3ðp� 1ÞÞ, where 2 � p �
m� 1, be the first column in row p such that a black disk
is appeared. If q ¼ 5kþ ap, then vp, q 2 Dout:

Let p 2 1,mf g and q 2 1, 2, n, n� 1f g: If ap 2 1, 2f g,
then vp, q is not added to Dout in step 1. Therefore, there are
at most four 4–degree vertices v2, 2, v2, n�1, vm�1, 2, vm�1, n�1f g
which may be not dominated by black disks. If one of them
is not dominated in step 1, then it is dominated in step 2.

We consider other four cases:

Case 1: If q 	 ap þ 1 ðmod 5Þ: Since that all 5k0 þ ap in row
p was added to Dout then there exist a k00 such that
q� 1 ¼ 5k00 þ ap, therefor vp, q�1 2 Dout: Also vp�1, q,
vpþ1, q, vp, qþ1 are not selected in step 1, because q 6¼
ap�1, apþ1, ap þ 4 ðmod 5Þ:

Case 2: If q 	 ap þ 2 ðmod 5Þ: In this case, if p � 1 then
vp�1, q 2 Dout because

q 	 ap þ 2 	 ap�1 ðmod 5Þ:
Also similar to previous case vp, q�1, vp, qþ1, vpþ1, q are
not selected in step 1, because q 6¼ ap þ 1, ap þ
5, apþ1 ðmod 5Þ:

Case 3: If q 	 ap þ 3 ðmod 5Þ: In this case, if pþ 1 � m then
vpþ1, q 2 Dout because

q 	 ap þ 3 	 apþ1 ðmod 5Þ,
and vp, q�1, vp, qþ1, vp�1, q are not selected in step 1,
because q 6¼ ap þ 2, ap þ 4, ap�1 ðmod 5Þ:

Case 4: If q 	 ap þ 4 ðmod 5Þ: Since that all 5k0 þ ap in the
row p were added to Dout, then there exist a k00 such
that qþ 1 	 5k00 þ ap ðmod 5Þ and vp, qþ1 was added
to Dout and vp, q�1, vp�1, q, vpþ1, q are not selected in
step 1, because q 6¼ ap þ 3, ap�1, apþ1 ðmod 5Þ:

It is clear that every vertex of degree four is dominated
by at most one black disk.

Table 1. Number of black disks in blocks.

m, n n¼ 5k n¼ 5kþ 1 n¼ 5kþ 2 n¼ 5kþ 3 n¼ 5kþ 4

First block m� 1 5S– 2 5S– 1 5S 5Sþ 2 5Sþ 3
Middle blocks m� 1 5S 5Sþ 11 5Sþ 2 5Sþ 3 5Sþ 4

m¼ 5l 5S– 2 5Sþ 1 5Sþ 1 5Sþ 2 5Sþ 3
m¼ 5lþ 1 S S – 1 S S S

Last block m¼ 5lþ 2 2S– 1 2S 2Sþ 1 2Sþ 1 2Sþ 1
m¼ 5lþ 3 3S 3Sþ 1 3Sþ 1 3Sþ 1 3Sþ 2
m¼ 5lþ 4 4S– 1 4S 4S 4Sþ 2 4Sþ 2

Table 2. Number of white squares in boundary.

n\m 5k 5kþ 1 5kþ 2 5kþ 3 5kþ 4

n¼ 5l 2Tþ 2S 2Tþ 2S– 1 2Tþ 2S 2Tþ 2S–1 2Tþ 2Sþ 2
n¼ 5lþ 1 2Tþ 2S–1 2Tþ 2Sþ 1 2Tþ 2S–1 2Tþ 2S–1 2Tþ 2Sþ 1
n¼ 5lþ 2 2Tþ 2Sþ 1 2Tþ 2S 2Tþ 2S 2Tþ 2S 2Tþ 2Sþ 2
n¼ 5lþ 3 2Tþ 2S–1 2Tþ 2S 2Tþ 2S 2Tþ 2Sþ 1 2Tþ 2Sþ 1
n¼ 5lþ 4 2Tþ 2Sþ 1 2Tþ 2Sþ 1 2Tþ 2S 2Tþ 2Sþ 1 2Tþ 2S
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For the boundary vertices, we discuss just the correctness
of first row and the argument for the other vertices in
boundary is the same manner. In the first row, selection of
dominating vertices only depend on n and independent
from m. In Table 3, we summarize black disks and white
squares that are selected according to different n.

For instance, let n 	 0 ðmod 5Þ: Then

DFR ¼ DFR
d [ DFR

s ¼ v1, p : p 2 A1, S�1
2 [ A1, S�1

4

n o
[ v1, 3f g:

Therefore, every vertex in the first row except v1, 1, is either
in the set DFR or it is dominated by a vertex in DFR. Since

Figure 2. Examples of some grids.
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in all cases, the vertex v2, 1 is selected as a white square, so
vertex v1, 1 also is dominated.

In other cases, n 6	 0 ðmod 5Þ, all vertices in the first
row are dominated except maybe v1,1 and v1, n: In the case 1
and 3, the vertex v2, 1 in the first column and in the case 4
and 5, the vertices v2, 1 and v2, n always are selected in step 2.
Hence every vertex in the first row is dominated. w

So, every vertex of degree four is dominated by at most
one black disk.

Lemma 3.3. The cardinality of the set Dout is
j
ðnþ2Þðmþ2Þ

5

k
� 4:

Proof. It is straightforward to investigate jDoutj ¼ cðGm, nÞ
as follows.

The black disks of the set Dout are divided into three
part: black disks in the first block, middle blocks and last
block. Hence

Dd ¼ DdðB1Þ þ ðT � 2ÞDdðBiÞ þ DdðBlÞ, if m ¼ 5k,
DdðB1Þ þ ðT � 1ÞDdðBiÞ þ DdðBlÞ, otherwise:

�

For instance, we show for m, n if they are multiples of
five, Dout ¼ Dd [ Ds, where Ds is defined in Eq. (1). The
other cases are similar.

Dout ¼ Dd [ Ds ¼ 5S� 2þ ðT � 2Þð5SÞ þ 5S� 2þ 2T þ 2S

¼
� ðnþ 2Þðmþ 2Þ

5

�
� 4:

w

Lemma 3.4. The set Dout can be computed in time O (size
of answer).

Proof. By lemma 3.3, jDoutj is equal to cðGm, nÞ: w

According to Lemmas 3.2, 3.3 and 3.4, we have the fol-
lowing theorem.

Theorem 3.5. The set Dout is an optimal dominating set for
Gm,n and is computed in O (size of answer) time.

4. [1, 2]-Domination number of grid

In this section, we follow the construction is proposed in
the Section 3 to obtain a [1, 2]-dominating set for grid Gm,n,
where 16 � m � n: It is not hard to investigate that
c½1, 2�ðGm, nÞ for n,m � 16 by constructions are presented in

[4]. We also show that c½1, 2�ðGm, nÞ ¼ cðGm, nÞ where m, n �
16 which is a positive answer to open question is posed
in [6].

Theorem 4.1. Let m, n � 16 and Gm,n be a m� n grid, then

c 1, 2½ �ðGm, nÞ ¼ cðGm, nÞ:

Proof. We show that every vertex vp, q 2 V is dominated by
at most two vertices in Dout and according to the c½1, 2�ðGÞ �
cðGÞ, the result is obtained.

In proof of Lemma 3.3, we show that every vertex of
sub-grid is dominated exactly by one black disk. Also, the
distance between every two white squares is at least 5. Then
every vertex vp, q is dominated at most twice.

In Table 4, the white squares in Dout that dominate verti-
ces v2, 2, v2, n�1, vm�1, 2 and vm�1, n�1 are shown.

By Table 4, it can be seen that none of white square pairs
v1, 2, v2, 1f g, v2, n, v1, n�1f g, vn�1, 1, vn, 2f g and vn�1, n, vn, n�1f g
appears in any cell. So the vertices v2, 2, v2, n�1, vn�1, 2,f
vn�1, n�1g are not dominated more than two times.

These claims are appeared in Figures 3 and 4. In fact,
Figure 3(a–d), show that the vertex v2, 2 is dominated at
most twice according to different a1. Since selecting the
domination vertices at the right-up corner depend on a1
and n. Therefor two cases occur, as can be seen in Figure
4(a,b). These figures show that the vertex v2, n�1 is

Table 3. Dominating vertices in first row (in the case 1 and 3, v1, 1 is not dominated and in the case 4 and 5 both of v1, 1 and v1, n are
not dominated).

Case n Black disks White squares

1 n ¼ 5l fv1, p : p 2 Að1, S�1Þ
2 g fv1, p : p 2 Að1, S�1Þ

4 g [ fv1, 3g
2 n ¼ 5l þ 1 fv1, p : p 2 Að1, S�1Þ

1 g fv1, p : p 2 Að1, S�2Þ
3 g [ fv1, a, v1, n�2g

3 n ¼ 5l þ 2 fv1, p : p 2 Að1, S�1Þ
2 g fv1, p : p 2 Að1, S�2Þ

4 g [ fv1, aþ1, v1, n�2g
4 n ¼ 5l þ 3 fv1, p : p 2 Að1, S�1Þ

3 g fv1, p : p 2 Að1, S�1Þ
0 g [ fv1, n�2g

5 n ¼ 5l þ 4 fv1, p : p 2 Að1, S�1Þ
4 g fv1, p : p 2 Að1, S�1Þ

1 g [ fv1, n�2g

Table 4. White squares that dominate fv2, 2, v2, n�1, vn�1, 2, vn�1, n�1g:
n\m 5k 5kþ 1 5kþ 2 5kþ 3 5kþ 4

5l fv2, 1, v1, n�1, vn, 2, vn�1, ng fv2, 1, v1, n�1, vn�1, ng fv2, 1, v1, n�1, vn, 2, vn, n�1g fv2, 1, v1, n�1, vn�1, 1g fv2, 1, v1, n�1, vn�1, 1, vn, n�1g
5lþ 1 fv1, 2, vn�1, ng fv1, 2, vn, n�1g fv1, 2, vn, 2g fv1, 2, vn, n�1g fv1, 2, vn�1, ng
5lþ 2 fv2, 1, vn, 2, vn�1, ng fv2, 1g fv2, 1, vn, 2g fv2, 1, vn�1, 1, vn, n�1g fv2, 1, vn�1, 1, vn�1, ng
5lþ 3 fvn, 2, vn�1, ng fvn�1, 1, vn, n�1g fvn�1, 1g fvn, 2, vn, n�1g fvn�1, ng
5lþ 4 fv1, 2, vn�1, 1, vn�1, ng fv1, 2, vn, 2, vn, n�1g fv1, 2g fv1, 2, vn, 2, vn, n�1g fv1, 2, vn�1, 1, vn�1, ng
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dominated at most twice. For the other corners, we have a
similar argument.

So, every vertex of Gm,n is dominated at least one and at
most twice by vertices of Dout. w
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Figure 3. Left-up corner of grid.

Figure 4. Right-up corner of grid.
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