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Anti-Ramsey theory on complete bipartite graphs
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ABSTRACT
We consider quadruples of positive integers ða, b,m, nÞ with a � b and m � n such that every
proper edge-coloring of the complete bipartite graph Km, n contains a rainbow Ka, b subgraph. We
show that every such quadruple with m � a and n > ða2 � aþ 1Þðb� 1Þ satisfies this property
and find an infinite sequence where this bound is sharp. We also define and compute some new
anti-Ramsey numbers.
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1. Introduction

An edge-colored graph is said to be rainbow if no two edges
have the same color. Similarly, an edge-coloring of a graph
is said to be a proper coloring if no two adjacent edges have
the same color. A typical anti-Ramsey problem concerns
properly edge-coloring complete graphs Kn in order to for-
bid or guarantee the existence of certain rainbow subgraphs
[1–3]. However, proper edge-colorings of complete bipartite
graphs have received considerably less attention. It is our
goal to prove results about proper edge-colorings of com-
plete bipartite graphs in an anti-Ramsey-theoretic setting.
Namely, we will investigate quadruples of positive integers
ða, b,m, nÞ with a � b and m � n such that every proper
edge-coloring of Km, n contains at least one rainbow Ka, b

subgraph. We denote this property by Km, n !R Ka, b:
Specifically, we prove in Section 2 that Km, n !R Ka, b if

n > ða2 � aþ 1Þðb� 1Þ: Conversely, we use a result of
Singer in finite projective geometry to show that if m< b,
a – 1 is a prime power, and n � ða2 � aþ 1Þðb� 1Þ, then
Km, n 6!R Ka, b: We also show how to generate a sequence of
latin rectangles avoiding larger and larger rainbow subrec-
tangles, which relates to anti-Ramsey problem concerning
complete bipartite graphs through a standard correspond-
ence between complete bipartite graphs and latin rectangles.
In Section 3, we prove that K3, 6 !R K2, 3: We also define
vertex anti-Ramsey numbers and edge anti-Ramsey numbers
and calculate these numbers in some cases.

2. General bounds

We will make use of the following canonical correspondence
between properly edge-colored complete bipartite graphs

and latin rectangles. Let G be a properly edge-colored copy
of Km, n: Let A be the set of m nonadjacent vertices in G,
and let B be the set of n nonadjacent vertices in G. Then we
may construct an m� n latin rectangle R so that each row
of R corresponds to a vertex in A and each column in R
corresponds to a vertex in B. Furthermore, every symbol in
R corresponds to the color assigned to the edge connecting
the vertices that correspond to the row and column in
which that symbol is placed. The fact that no two adjacent
edges in G have the same color corresponds to the fact that
no symbol appears more than once in any row or column
of R. An x� y subrectangle of a latin rectangle R is the
intersection of x rows and y columns of R. Finally, we will
use the word “rainbow” to describe any subrectangle whose
symbols are all distinct.

Theorem 2.1. Let a, b,m, n be positive integers such that
a � b, a � m � n, and

n > ða2 � aþ 1Þðb� 1Þ:
Every properly edge-colored Km, n contains a rainbow Ka, b

subgraph. That is, Km, n !R Ka, b:

Proof. It suffices to show that any properly edge-colored
Ka, n contains a rainbow Ka, b subgraph. Suppose we have a
proper edge-coloring of Ka, n, and let R be the correspond-
ing a� n latin rectangle. Because R is latin, we may choose
any column of R to obtain a rainbow a� 1 subrectangle of
R. Now, suppose that we have managed to find a rainbow
a� t subrectangle of R for some t 2 f1, 2, :::, b� 1g, and
call this subrectangle T. Each of the at distinct symbols in T
may appear at most a – 1 times outside of T because it can
appear no more than once in each row of R. Furthermore,
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because there are n – t columns of R outside of T and n�
t > ða2 � aþ 1Þðb� 1Þ � t � ða2 � aþ 1Þt � t ¼ atða� 1Þ,
we see that there is some column of R containing none of
the at symbols that appear in T. We may annex this add-
itional column to T to form a rainbow a� ðt þ 1Þ subrec-
tangle of R. By induction, we see that we may construct a
rainbow a� b subrectangle of R, so the proof is complete. w

It is natural to ask how good the bound n > ða2 � aþ
1Þðb� 1Þ used in Theorem 2.1 is. In other words, if n �
ða2 � aþ 1Þðb� 1Þ, can we always find a proper edge-
coloring of Km, n that forbids the appearance of a rainbow Ka, b

subgraph? Theorem 2.3 makes progress toward answering this
question. First, we need a couple of preliminary results.

Definition 2.1. Let P be the set of all possible orders of a
finite projective plane (by convention, we let 1 2 P).

We will make use of a theorem of Singer [4] from 1938,
which we state now.

Theorem 2.2. (Singer) Let q be a power of a prime.1 The
automorphism group of PG(2, q) contains a cyclic subgroup
hri that acts regularly on points and regularly on lines.

Singer’s result allows us to prove the following import-
ant lemma.

Lemma 2.1. Let a be an integer. If there exists an a� ða2 �
aþ 1Þ latin rectangle without any rainbow a� 2 subrectan-
gles, then a� 1 2 P. If a – 1 is a prime power, then there
exists an a� ða2 � aþ 1Þ latin rectangle without any rain-
bow a� 2 subrectangles.

Proof. Suppose R is an a� ða2 � aþ 1Þ latin rectangle with-
out a rainbow a� 2 subrectangle. Note that any two col-
umns of R have a common element. Given any column C of
R, each of the other aða� 1Þ columns must contain one of
the a elements in C. Thus each of the elements of C is, on
average, in at least a – 1 other columns.

Now, assume that one of these elements is in strictly fewer
than a – 1 other columns. Then another element would have
to be in at least a other columns. Clearly this is impossible –
along with C such an element is in at least aþ 1 columns,
implying that two must be in a common row.

Thus every element is in exactly a different columns and
every column has exactly a different elements. Furthermore
it is easy to see by the same reasoning that no two columns
can intersect in more than one element. Thus the columns
of R satisfy the axioms of a projective plane of order a – 1.

We now assume that a – 1 is a prime power and con-
sider a projective plane P of order a – 1. We aim to con-
struct a latin rectangle of the asserted size.

Take a line B from P and use its elements to form the
first edge of our latin rectangle; the orders of the elements
are not important. By Theorem 2.2 there exists a cyclic sub-
group hri which acts regularly on the points and regularly
on lines. For each i, apply r to the ith member of the first
column to obtain the ith member of the second column. In
general, obtain each successive column by applying r to
the previous.

Recall that a projective plane of order a – 1 has
ða� 1Þ2 þ ða� 1Þ þ 1 ¼ a2 � aþ 1 points, so r is simply a
cyclic ordering of these. Thus, the ith row is simply a list of
all a2 � aþ 1 elements which follows this ordering and
starts with the ith member of the first column. Given this, it’s
clear that each row has distinct entries. Furthermore, since B
has distinct members it is also clear that each successive col-
umn has distinct entries. Indeed, if two entries were the same
then that implies that the two rows are completely the same,
as each successive entry is obtained by repeatedly applying r.
In particular their two entries in B are the same. But this is a
contradiction as B was a single line in P and hence has distinct
members. This completes the proof. w

Example 2.1. For the seven-point plane, consider r ¼
ð1, 3, 5, 7, 2, 4, 6Þ and B ¼ f1, 2, 4g: Then a corresponding
latin rectangle is

1 3 5 7 2 4 6
2 4 6 1 3 5 7
4 6 1 3 5 7 2

Theorem 2.3. Let a, b,m, n be positive integers satisfying
a � b,m � n, m< b, and n � ða2 � aþ 1Þðb� 1Þ. If a – 1 is
a prime power, then Km, n 6!R Ka, b:

Proof. Suppose a – 1 is a prime power. By Lemma 2.1, there
exists an a� ða2 � aþ 1Þ latin rectangle that contains no
rainbow a� 2 subrectangle. We prove that there exists an
m� n latin rectangle containing no rainbow a� b or b� a
subrectangle. Because m< b, there are no b� a subrectan-
gles of any m� n latin rectangle, so it suffices to construct
an m� n latin rectangle with no rainbow a� b subrectan-
gles. Furthermore, it is easy to see that it suffices to con-
struct such a rectangle for the case in which m ¼ b� 1
and n ¼ ða2 � aþ 1Þðb� 1Þ:

Let m ¼ b� 1 and n ¼ ða2 � aþ 1Þðb� 1Þ: Let L be an
m� n latin rectangle. We first partition L into m subrectan-
gles A1,A2, :::,Am, each of size m� ða2 � aþ 1Þ: By the
Pigeonhole Principle, every a� b subrectangle of L must
contain at least two columns from Ak for some k 2
f1, 2, :::,mg: In other words, any a� b subrectangle of L
contains an m� 2 subrectangle of Ak for some k 2
f1, 2, :::,mg: We will fill L with symbols in such a manner
so as to ensure that, for every k 2 f1, 2, :::,mg, there is no
rainbow m� 2 subrectangle of Ak, which will then imply
the desired result. We may fill L with symbols so that, for
any distinct j, k 2 f1, 2, :::,mg, no symbol appears in both
Aj and Ak. This will ensure that the choice of symbols in Aj

does not affect where we may choose to place symbols in Ak

and vice versa. Therefore, it suffices to show that we may
fill an m� ða2 � aþ 1Þ latin rectangle with symbols so that
any two columns have a symbol in common. To do so, we
simply extend the a� ða2 � aþ 1Þ latin rectangle that we
assumed exists to an m� ða2 � aþ 1Þ latin rectangle. w

We close this section with a final result concerning a pro-
cedure that generates a sequence of latin rectangles that
avoid larger and larger rainbow subrectangles.
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Theorem 2.4. Let m, n, a, b, r, s be positive integers. Let J be
the m� n all-1s matrix, and let A be an m� n latin rectangle
consisting of positive integers whose maximum entry is t. Let
B be an r� s latin rectangle whose entries are nonnegative
integers. Let

A0 ¼ J � Aþ tB� J

¼

Aþ tB11J Aþ tB12J � � � Aþ tB1rJ

Aþ tB21J Aþ tB22J � � � Aþ tB2rJ

..

. ..
. . .

. ..
.

Aþ tBr1J Aþ tBr2J � � � Aþ tBrrJ

2
666664

3
777775
:

Then A0 is an rm� sn latin rectangle. If A has no rainbow
a� b subrectangles, then A0 has no rainbow rða� 1Þ þ 1�
sðb� 1Þ þ 1 subrectangles. In particular, if Km, n 6!R Ka, b

then Krm, rn 6!R Krða�1Þþ1, rðb�1Þþ1:

Proof. We defined A0 to be a block matrix with rs blocks, each
of the form Aþ tBijJ: Because t is the largest entry in A and
the entries of A and B are nonnegative integers, two blocks
Aþ tBijJ and Aþ tBk‘J cannot have any common entries
unless Bij ¼ Bk‘: Therefore, since A and B are latin, it is easy
to see that A0 must also be latin. Let T be an rða� 1Þ þ 1�
sðb� 1Þ þ 1 subrectangle of A0: By the pigeonhole principle,
there must be a rows of T and b columns of T which intersect
in a single block of A0, say Aþ tBuvJ: The intersection of
these rows and columns forms an a� b subrectangle R of Aþ
tBuvJ: Since A contains no rainbow a� b subrectangles, Aþ
tBuvJ cannot contain a rainbow a� b subrectangle. This
implies that R is not rainbow. Since R is a subrectangle of T, T
cannot be rainbow. As T was arbitrary, this shows that A0 con-
tains no rainbow rða� 1Þ þ 1� sðb� 1Þ þ 1 subrectangles.

Now, suppose Km, n 6!R Ka, b: Then we may let A be an
m� n latin rectangle that contains no rainbow a� b subrec-
tangles and contains no rainbow b� a subrectangles. Setting
r¼ s in the first part of the theorem, we obtain an rm � rn
latin rectangle A0 that contains no rainbow rða� 1Þ þ 1�
rðb� 1Þ þ 1 subrectangles. However, since A also has no
rainbow b� a subrectangles, we may interchange the roles
of a and b in the first part of the theorem to see that A0 also
has no rainbow rðb� 1Þ þ 1� rða� 1Þ þ 1 subrectangles.
Hence, Krm, rn 6!R Krða�1Þþ1, rðb�1Þþ1: w

3. Anti-Ramsey numbers

Returning to Theorem 2.3, we find it particularly interesting
to consider the case a¼ 2, n ¼ 2m ¼ 2b: That is, we wish to
find positive integers m such that every proper edge-color-
ing of Km, 2m contains a rainbow K2,m subgraph. Theorem
2.1 shows that any proper edge-coloring of K2, 4 contains a
rainbow K2, 2 subgraph, and the following theorem deals
with the case m¼ 3.

Theorem 3.1. Every properly edge-colored K3, 6 contains a
rainbow K2, 3 subgraph.

Proof. We prove the equivalent statement that every 3� 6 latin
rectangle contains a rainbow 2� 3 or 3� 2 subrectangle. To

do so, suppose there exists some latin rectangle R with no
2� 3 or 3� 2 subrectangle. We will refer to the symbols in R
as” colors” in order to maintain the correspondence between R
and a properly edge-colored K3, 6: We will let ½r1, r2 : c1, c2, c3�
denote the 2� 3 subrectangle of R that is the intersection of
rows r1 and r2 and columns c1, c2, and c3. Let us denote the
color in the ith row and the jth column of R by Rij. Note that
we may swap any two columns of R without changing the fact
that R does not contain a rainbow 2� 3 or 3� 2 subrectangle.
We will let S(i, j) denote the operation of swapping columns i
and j of R. Furthermore, at any time, we may exchange any
two colors r and s so that all entries of R colored r are recol-
ored s and vice versa. Let C(r, s) denote the operation of
exchanging colors r and s, and note that this operation does
not change the fact that there is no rainbow 2� 3 or 3� 2
subrectangle of R. Even after swapping columns and exchang-
ing colors of R, we will continue to refer to the rectangle as R.

Now, call a coloring of R with the property that R1j ¼ j
for all j 2 f1, 2, :::, 6g a “primal” coloring. Without loss of
generality, we may assume R is primally colored. Consider
the 2� 3 subrectangle [1,2:1,2,3] of R. Because this subrec-
tangle is not rainbow, one or more of the following equal-
ities must hold:

R22 ¼ 1,R23 ¼ 1,R21 ¼ 2,R23 ¼ 2,R21 ¼ 3,R22 ¼ 3:

Suppose R23 ¼ 1: Then, performing the operation S(2, 3)
followed by C(2, 3), we reach a primal coloring in which
R22 ¼ 1: Next, suppose that R21 ¼ 2: Performing the oper-
ation S(1, 2) followed by C(1, 2), we reach a primal coloring
in which R22 ¼ 1: A similar argument shows that we may
assume, without loss of generality, that R is primally colored
and R22 ¼ 1: Now, consider the 2� 3 subrectangle ½1, 2 :
3, 4, 5�: By the same argument as before, we see that, without
loss of generality, we may assume that R is primally colored,
R22 ¼ 1, and R24 ¼ 3: This is because, in order to ensure
that R is primally colored with R24 ¼ 3, we only need to use
some combination of some of the operations S(3, 4), S(3, 5),
S(4, 5), C(3, 4), C(3, 5), and C(4, 5), none of which change
the fact that R22 ¼ 1: Consider the subrectangle ½1, 2 : 1, 3, 6�
of R. Because this subrectangle is not rainbow, we require
either R21 ¼ 6 or R23 ¼ 6: If R23 ¼ 6, perform the operations
S(1, 3), S(2, 4), C(1, 3), and C(2, 4) to obtain a primal coloring
of R in which R22 ¼ 1,R24 ¼ 3, and R21 ¼ 6: If R21 ¼ 6, then
we do not need to perform any operations to obtain such a
coloring. If we now consider the subrectangle ½1, 2 : 1, 3, 5�, it
is easy to see that we must have R23 ¼ 5: Considering ½1, 2 :
2, 3, 6�, we see that we must have R25 ¼ 4:

If we now consider ½1, 3 : 3, 4, 5�, we see that we must
have R33 ¼ 4,R34 ¼ 5, or R35 ¼ 3: No matter what, there
must be some column A of R that contains the colors 3, 4,
and 5. Similarly, if we consider ½1, 3 : 1, 2, 6�, we see that we
must have R31 ¼ 2,R32 ¼ 6, or R36 ¼ 1: No matter what,
there must be some column B of R containing the colors 1,
2, and 6. However, this is a contradiction because the union
of A and B is a rainbow 3� 2 subrectangle of R. w

Given Ka, b we wish to find the “smallest” complete
bipartite graph Km, n for which Km, n !R Ka, b: Here we use
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the number of vertices mþ n as our “smallest” metric. To
this end we define the following.

Definition 3.1. Let Km, n be the complete bipartite graph
with the fewest vertices for which Km, n !R Ka, b: Then we
define the vertex anti-Ramsey number ARVðKa, bÞ to be the
number of vertices mþ n of this minimal example.

We begin the study of these numbers by finding some
specific values.

Theorem 3.2. For each integer b � 2,

ARVðK2, bÞ ¼ 3b:

Proof. By Theorem 2.1, K2, 3b�2 !R K2, b, so ARVðK2, bÞ �
3b: Now, let m and n be positive integers with mþ n < 3b:
We wish to show that Km, n 6!R K2, b: We may assume 2 �
m � n: If m< b, then we may use Theorem 2.3 (with a¼ 2)
to deduce that Km, n 6!R K2, b: Therefore, let us assume m �
b: Since mþ n < 3b, n < 2b: Since m � n, it is possible to
properly edge-color Km, n with n colors. Such a coloring
must necessarily forbid the existence of a rainbow K2, b sub-
graph because any K2, b subgraph has 2b edges. w

Definition 3.2. Let Km, n be a complete bipartite graph with
the fewest edges for which Km, n !R Ka, b: Then we define
the edge anti-Ramsey number AREðKa, bÞ to be the number
of edges mn of this minimal example.

Note that this generalizes the notion of size anti-Ramsey
numbers given in [2]. From Theorem 3.2 we know that
AREðK2, 3Þ � 18: We initiate the study of these size anti-
Ramsey numbers with the following theorem.

Theorem 3.3. If a and b are integers such that a – 1 is a
prime power and b � aða� 1Þ, then

AREðKa, bÞ ¼ a2ða� 1Þðb� 1Þ þ ab:

Proof. Suppose a and b are integers with a – 1 a
prime power and b � aða� 1Þ: By Theorem 2.1,

Ka, ða2�aþ1Þðb�1Þþ1 !R Ka, b, so

AREðKa, bÞ � aðða2 � aþ 1Þðb� 1Þ þ 1Þ
¼ a2ða� 1Þðb� 1Þ þ ab:

Now, let m and n be positive integers with mn <

a2ða� 1Þðb� 1Þ þ ab: We wish to show that Km, n 6!R Ka, b:

We may assume a � m � n: Since m � n, it is possible to
properly edge-color Km, n with n colors. If n < ab, then
such a coloring must necessarily forbid the existence of a
rainbow Ka, b subgraph because every Ka, b subgraph has ab
edges. Therefore, let us assume that n � ab: Since mn <

a2ða� 1Þðb� 1Þ þ ab and aða� 1Þ � b,

m <
a2ða� 1Þðb� 1Þ þ ab

n
� abðb� 1Þ þ ab

n
� b:

Hence, we may use Theorem 2.3 to conclude that
Km, n 6!R Ka, b: w

Note

1. In this paper, we consider 1 to be a prime power.
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