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Crossing number of Cartesian product of prism and path

Yip C. Yiew, Gek L. Chia, and Poh-Hwa Ong

Department of Mathematical and Actuarial Sciences, Universiti Tunku Abdul Rahman, Kajang, Selangor, Malaysia

ABSTRACT
An m-prism is the Cartesian product of an m-cycle and a path with 2 vertices. We prove that the
crossing number of the join of an m-prism (m � 4) and a graph with k isolated vertices is km for
each k 2 f1, 2g: We then use this result to prove that the crossing number of the Cartesian prod-
uct of a 5-prism and a path with n vertices is 10ðn� 1Þ: This answers partially the conjecture
raised by Peng and Yiew (in 2006) in the affirmative.
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1. Introduction

By a good drawing of a graph G we mean an embedding of
G on the plane such that (i) no edge intersect itself, (ii)
adjacent edges do not intersect each other, (iii) any pair of
edges do not touch each other and they intersect each other
at most once, and (iv) no three edges intersect at the same
point. If D is a good drawing of G, we let crDðGÞ denote the
number of pair-wise intersections of the edges of G in D. If
crDðGÞ achieves the minimum number, then D is called an
optimal drawing of G and the minimum number of cross-
ings is called the crossing number of G, denoted crðGÞ:

The Cartesian product of two graphs G and H, denoted
GwH is the graph with vertex set VðGÞ � VðHÞ and having
edges of the form ðu, u0Þðv, v0Þ where either u ¼ v and u0v0 2
EðHÞ or u0 ¼ v0 and uv 2 EðGÞ:

Let Pn and Cn denote the path and cycle on n vertices respect-
ively. By an m-prism, denoted PðmÞ, we mean the Cartesian
product CmwP2: The crossing numbers of the Cartesian product
of some special graphs with the path (or other graph) have been
the subject of investigation (see [2–13]). In particular, in [7], it
was proved that crðPð3ÞwPnÞ ¼ 4ðn� 1Þ for all natural num-
bers n � 1: Further, it was conjectured that crðPðmÞwPnÞ ¼
2mðn� 1Þ for all natural numbers m � 4: In this paper, we
prove that the conjecture is true for m ¼ 5 (see Theorem 3). The
casem ¼ 4 has earlier been established in [9].

Let GþH denote the join of two graphs G and H. The
proof of Theorem 3 rests on the result which states that
crðPðmÞ þ Kr Þ ¼ rm, 1 � r � 2 (see Theorems 1 and 2).
Here Kn denotes a graph with n isolated vertices. The proof
of this is given in Section 2.

2. Join of graphs

Throughout, unless otherwise stated, we let the two m-cycles
in PðmÞ be denoted by Z1 ¼ a0a1a2:::am�1a0 and Z2 ¼

b0b1b2:::bm�1b0: Also, we assume that aibi is an edge in
PðmÞ for each i 2 f0, 1, :::,m� 1g: Each edge aibi is called a
spoke of PðmÞ:

Let D be a good drawing of a graph G and let H be a
subgraph of G. The responsibility of H in D, denoted rDðHÞ,
is the total number of times edges in H are crossed. Note
that if two edges of H cross each other, then a contribution
of two is added to its responsibility.

Lemma 1. Let D be a good drawing of PðmÞ þ fwg such
that no triangle of the form waibiw has an edge crossed,
0 � i � m� 1. Then D has at least 2dm2e crossings, m � 3:

Proof. By the condition of the lemma, in D, no triangle of
the form waibiw is enclosed by another triangle of the form
wajbjw: As such, we may assume that edges of the form aibi
are drawn on the x-axis in an arbitrary manner with the
vertex w lying on the upper region of the x-axis and all
edges of Z1 [ Z2 are on the x -axis or are lying on the lower
region of the x-axis.

Alternatively, we may assume that edges of the form aibi
are on the boundary of convex polygon P on 2m vertices with
w lying on the “exterior” and the edges of Z1 [ Z2 are on the
boundary of P or lying in the “interior” of P. Figure 1 depicts
an example of such drawing with m ¼ 5:

We shall show that the number of crossings on the edges
of Z1 made by the edges of Z2 is at least 2dm2e:

We have the following observations.

(i) It is easy to see that an edge of Z1 which is on the
boundary of P has no crossing.

(ii) Clearly, any vertex of Z1 is incident to at most one
edge of Z1 which is a boundary edge of P.

(iii) We assert that every edge of Z1 not lying on the
boundary of P is crossed by at least 2 edges of Z2:
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Evidently, the above observations imply the conclusion of
the lemma.

To prove (iii), let aiaiþ1 be an edge of Z1 not on the
boundary of P and consider the subgraph H induced by the
vertices of Z2 which are enclosed in the “interior” of the tri-
angle �i ¼ waiaiþ1w: Here we just need to consider the case
jVðHÞj � m=2: Clearly H is a union of paths.

If H has an isolated vertex v, then v is adjacent to two
vertices in the “exterior” region of �i giving two crossings
on the edge aiaiþ1 (see for example, v ¼ b3 for the case i ¼
1 in Figure 1). If H has no isolated vertices, then H has two
vertices u1, u2 each of degree 1 in H (see for example, u1 ¼
b0, u2 ¼ b1 for the case i ¼ 0 in Figure 1). Each of u1, u2 is
adjacent to some vertex in the “exterior” region of �i again
giving two crossings on the edge aiaiþ1: This completes
the proof. w

Theorem 1. crðPðmÞ þ fwgÞ ¼ m if m � 4:

Proof. By induction on m. We first show that the result
holds for m ¼ 4:

The drawing of Pð4Þ þ fwg in Figure 2 shows that its
crossing number is at most 4. It remains to show the reverse
inequality. We prove this by contradiction. Assume that
there is an optimal drawing D of Pð4Þ þ fwg with fewer
than 4 crossings.

We claim that no two vertex-disjoint 4-cycles of Pð4Þ
cross each other.

Suppose the contrary and let C0
4 and C00

4 be two vertex-
disjoint 4-cycles which cross each other.

Case (i) No edges in C0
4 [ C00

4 cross more than once.
Then C0

4 encloses at least one vertex of C00
4 and vice versa.

Since every vertex of Pð4Þ is adjacent to w, the number of
crossings in D is at least 4, a contradiction.

Case (ii) Some edges in C0
4 [ C00

4 cross at least two times.
Without loss of generality, assume that an edge, say xy of

C0
4 crosses two edges of C00

4 : Delete the edges xy,wx,wy
resulting in a graph H with dHðxÞ ¼ 2 ¼ dHðyÞ: Note that H
is a subdivision of Pð3Þ þ fwg which has crossing number 2
(see [7, Lemma 1]). But this implies that the number of
crossings in D is at least 4, a contradiction.

We now show that any 4-cycle in D has no self-crossing.
Suppose C is a 4-cycle with edges e1 and e2 which intersect
each other. Clearly e1 and e2 are non-adjacent. Hence there
is a 4-cycle C0 containing e1 but not e2 and there is a 4-cycle
C00 containing e2 but not e1: It is not difficult to show that
VðC0Þ \ VðC00Þ ¼ ;: But this is a contradiction by the pre-
ceding claim (since C0 and C00 are two vertex-disjoint 4-
cycles crossing each other).

It follows from the above observation that the sub-drawing
of Pð4Þ induced by D yields a plane drawing of Pð4Þ which
divides the plane into six 4-faces. Hence w is in one of the 4-
faces F. Since w is adjacent to every vertex of Pð4Þ, the edges
joining w and the vertices in VðPð4ÞÞ � VðFÞ must cross the
boundaries of F which means that D has at least 4 crossings.
This contradiction proves that crðPð4Þ þ fwgÞ ¼ 4:

Note that the drawing of Pð4Þ þ fwg in Figure 2 can eas-
ily be generalized to obtain a drawing of PðmÞ þ fwg with
at most m crossings.

Assume that crðPðmÞ þ fwgÞ ¼ m where m � 4:
Let D be a good drawing of Pðmþ 1Þ þ fwg: Assume

that D has at most m crossings. By Lemma 1, there is a tri-
angle of the form waibiw in Pðmþ 1Þ þ fwg with an edge
crossed in D. Now delete the edges waj,wbj and ajbj from
Pðmþ 1Þ þ fwg: The resulting graph is a subdivision of
PðmÞ þ fwg drawn with fewer than m crossings, a contra-
diction. This proves the theorem. w

Lemma 2. crðPðmÞ þ fx, ygÞ � 2m for any natural num-
ber m � 4:

Proof. We shall describe a drawing of PðmÞ þ fx, yg with 2m
crossings. Draw the cycle Z1 ¼ a0a1a2:::am�1a0 in the form of a
cycle on the plane. Draw Z2 ¼ b0b1b2:::bm�1b0 also in the form
of a cycle with Z2 enclosing Z1 and join all the edges aibi, i ¼
0, 1, 2, :::,m� 1 to obtain a plane drawing of PðmÞ:

Now put x in the region enclosed by Z1 and join x to all the
vertices in Z1 (with no crossing). Now join x and bi with an
edge so that xbi crosses only the edge aiaiþ1, i ¼ 0, 1, 2, :::,m�
1: Here am ¼ a0: See Figure 2 for the case m ¼ 4 with x ¼ w:
Put y on the unbounded region of PðmÞ and join y to all verti-
ces in Z2: Then join y and ai with an edge so that yai crosses

Figure 1. An illustration on the proof of Lemma 1 with m ¼ 5:
Figure 2. Pð4Þ þ fwg:
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only the edge bibi�1, i ¼ 0, 1, 2, :::,m� 1: Here b�1 ¼ bm�1:
The resulting drawing has only 2m crossings. w

The following lemma has been proved in [9]. Hence we
omit the proof.

Lemma 3. ([9], Lemma 4) crðPð4Þ þ fx, ygÞ ¼ 8:

Lemma 4. In any good drawing of PðmÞ þ fx, yg where
m � 4, there is a 4-cycle of the form xaiybix having at least
two crossings.

Proof. Assume on the contrary that every 4-cycle of the type
xaiybix has at most one crossing.

Consider the triangles �x ¼ xaibix and �y ¼ yaibiy:
We assert that x is not enclosed in �y: To see this, suppose

the contrary. Let S1, S2 be the regions bounded by �x, yaixbiy
respectively, and let S3 denote the exterior region of�y:

Note that if there is a pair of vertices aj, bj (j 6¼ i) that lie
in S1 or in S3, then xajybjx is a 4-cycle with at least 2 cross-
ings (which is impossible). Also, if aj is in S3 and bj is in
S1, then xajybjx is a 4-cycle with at least 2 crossings.

Now, suppose aj is in S3 and bj is in S2: Let ajþ1 be a
neighbor of aj and ajþ1 6¼ ai: Note that this is possible
because the degree of aj is 5. Apply the same argument to
the pair of vertices fajþ1, bjþ1g (which plays the role of
faj, bjg), it follows that ajþ1 is in S3 and bjþ1 is in S2: Since
aj is adjacent to bj, and ajþ1 is adjacent to bjþ1, there are at
least 2 crossings on xaiybix:

Hence we assume no vertex (other than ai, bi, y) is in S3
(so that Tx crosses no boundary of �y). If aj is in S1 and bj
is in S2, we proceed as in the proceeding case to obtain a
similar contradiction. Hence assume that all the vertices are
in S2: If the path aiai�1bi�1bi lies completely in S2, then it
separates x from y. As such, xaiþ1ybiþ1x is a 4-cycle that
intersects with the edges of this path at least two times. If
the path aiai�1bi�1bi does not lie completely in S2, then
aiai�1 crosses the edge xbi; in this case the path aiaiþ1biþ1bi
must lie completely in S2 (otherwise aiaiþ1 crosses the edge
xbi giving 2 crossings on xaiybix) and this path separates x
from y yielding a 4-cycle of the form xajybjx with 2 cross-
ings for some j 2 fi� 1, iþ 1g: This proves the assertion.

Likewise y is not enclosed by �x:
(i) First, we consider the case where no edge of Q is

crossed by an edge of Q. Let vw be an edge of PðmÞ � Q
which crosses xai, and let C� be a cycle containing vw:

Then one end of vw, say w is enclosed either by �x or by
�y: If w is adjacent to neither ai nor bi, then C� crosses Q
at least twice, a contradiction. Hence we assume that w is
adjacent to ai: As such, w 2 fai�1, aiþ1g, say w ¼ ai�1:

Since w is enclosed by either �x or �y, aibi is crossed by
either yw or by xw:

If bi�1 is enclosed by Q, then xai�1ybi�1x is a 4-cycle of
the same type having 2 crossings, a contradiction. Hence we
assume that bi�1 is not enclosed by Q. But this forces the 4-
cycle xaiybix to have at least 2 crossings.

(ii) Next, suppose there is a crossing on the edges of the
4-cycle Q ¼ xaiybix:

First we consider the case where there is an edge, say xai
of Q which crosses an edge ybi of Q.

Since y is not enclosed by �x, ybi partitions �x into two
regions R1,R2 with R1 bounded by bix, aix, biy and R2

bounded by biai, aix, biy: Note that no vertex in Z1 ¼
a0a1 � � � am�1a0 is enclosed by Rk for any k ¼ 1, 2 otherwise
there is a 4-cycle of the type xajybjx with 2 or more cross-
ings. Likewise no vertex in Z2 ¼ b0b1 � � � bm�1b0 is enclosed
by Rk for any k ¼ 1, 2:

With this restriction, we consider the sub-drawing D0 on
the subgraph induced by the edges of the 4-cycles Q,Q1 ¼
xaiþ1ybiþ1x and Q�1 ¼ xai�1ybi�1x: In view of the observa-
tion in case (i), we may assume that any 4-cycle of the
form xajybjx has a self-crossing. Note that among the vari-
ous sub-drawings of D0 on Q [ Q1, there is a vertex z 2
fai�1, bi�1g such that z is separated from x (or from y) (see
Figure 3 for some examples of drawings of D0). As such,
the edge zx (or zy) must be crossed (in addition to the
self-crossing in Q�1), yielding 2 crossings on the
4-cycle xai�1ybi�1x:

We now assume that the edges of any 4-cycle of the type
xaiybix have no crossing. Since PðmÞ þ fx, yg is non-planar,
for some i, the edge aibi must be crossed by some edge,
say vw:

We can assume without loss of generality that �x con-
tains one end, say w of vw: Then the edge wy (which
belongs to the 4-cycle xwyvx) crosses aibi: By the assump-
tion in the preceding paragraph, fv,wg 6¼ faj, bjg for any j:
If fv,wg ¼ faj, ajþ1g or fv,wg ¼ fbj, bjþ1g, then it is easy
to see that there is a 4-cycle xajybjx with at least two cross-
ings, a contradiction. w

Theorem 2. crðPðmÞ þ fx, ygÞ ¼ 2m for any natural num-
ber m � 4:

Figure 3. Some drawings of D0:
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Proof. By Lemma 2, we have crðPðmÞ þ fx, ygÞ � 2m:
We prove the reverse inequality by induction on m. By

Lemma 3, the result is true for m ¼ 4: Assume that the
result is true for m ¼ k where k � 4: Suppose there is a
good drawing of Pðkþ 1Þ þ fx, yg with fewer than 2ðkþ
1Þ crossings.

By Lemma 4, there exists a 4-cycle xaiybix with at least
two crossings. Now delete all the edges of these 4-cycles
together with the edge aibi, the resulting graph is a subdiv-
ision of the graph PðkÞ þ fx, yg drawn with fewer than 2k
crossings. This contradiction proves the result. w

3. Cartesian product of graphs

In [1], Beineke and Ringeisen proved that crðC4wCnÞ ¼ 2n:
Since PðmÞwP2 is isomorphic to CmwC4, we have
crðPðmÞwP2Þ ¼ 2m where m � 4:

For each i ¼ 1, 2, :::, n, let PiðmÞ denote the i-th copy of
PðmÞ in PðmÞwPn and Ei ¼ EðPiðmÞÞ: Also, let Lj denote the
set of all edges joining PjðmÞ and Pjþ1ðmÞ, j ¼ 1, 2, :::, n� 1:

Suppose D is a good drawing of PðmÞwPn and suppose
H, J � EðPðmÞwPnÞ: Let crDðH, JÞ denote the number of
crossings in D which are made on H by J. In particular,
crDðEi, EiÞ stands for the number of self-crossings among the
edges in Ei: On the other hand, let crDðEiÞ denote the total
number of crossings in D on the edges in Ei:

Lemma 5. Let D be a good drawing of Pð5ÞwPn. If
crDðEi, Li�1Þ ¼ 0 or crDðEi, LiÞ ¼ 0, then crDðEi,EiÞ � 6:

Proof. It suffices to prove the following statement.
Let D be a good drawing of Pð5Þ with all its vertices lying

in the same region. Then D has at least 6 crossings.
Since all the vertices are in the same region, we may

assume without loss of generality, as in the proof of Lemma
1 that the vertices of Pð5Þ are all on the boundary of a con-
vex 10-gon P and that any edge of Pð5Þ is either on the
boundary or in the “interior” region of P. Suppose the verti-
ces of P are x0, x1, :::, x9 (in cyclic order).

Let e be an edge of Zi not on the boundary of P, i 2
f1, 2g: Call e a separating diagonal edge (s:d:edge) on Z3�i if
the vertices of Z3�i are being separated by e into two differ-
ent segments of P.

If Zi has at least three s.d. edges, then, as in the proof of
Lemma 1, D has at least 6 crossings since each s.d. edge is
crossed by at least two edges of Z3�i: Hence we assume that
Zi has at most two s:d: edges. It is easy to see that neither
Z1 nor Z2 can have precisely one s.d. edge.

Case (1): Zi has no s.d. edge.
In this case, we may assume that the vertices of Z1 lay on

the segment x0, x1, :::, x4 (which also denote the vertices of
Z1) while those of Z2 lay on the segment x5, x6, :::, x9: We
shall show that the number of crossings on the edges of Zi

is at least 3 for each i ¼ 1, 2:
Suppose x0xj is an edge of Z1:
If j ¼ 4, then each spoke of Pð5Þ incident to a vertex in

fx1, x2, x3g must cross the edge x0x4:
If j ¼ 3, then each spoke of Pð5Þ incident to a vertex in

fx1, x2g must cross the edge x0x3: Moreover the edge joining
x4 to a vertex in fx1, x2g must cross the edge x0x3:

So assume that j ¼ 2: If x4 is adjacent to x1, the situation
is similar to the case j ¼ 3: Hence x4 is adjacent to x2 and
x3: But this also implies that x1x3 is an edge of Z1 which is
crossed by x0x2, x4x2: Also, the spoke incident to x2 must
cross the edge x1x3:

By applying the same arguments to Z2 we obtain the
required conclusion.

Case (2): Zi has only two s.d. edges.
Since the two s.d. edges e1, e2 of Z1 give raise to at least 4

crossings on fe1, e2g, it remains to show that some edge of
Zi is crossed by some spoke of Pð5Þ for each i ¼ 1, 2:

For this purpose, we observe that in any drawing of Zi

with only two s.d. edges (there are in fact only 12 such
drawings as is depicted in Figure 5), there is a vertex vi of
Zi whose spoke incident to it crosses some edge of
Zi, i ¼ 1, 2: Figure 4 illustrates some of these drawings. We
conclude that D has at least 6 crossings in this case.

This completes the proof. w

Lemma 6. Suppose D is an optimal drawing of Pð5ÞwPn
where n � 3. If Pið5Þ and Pjð5Þ cross each other, i 6¼ j,
then crDðEi,EjÞ � 4:

Proof. Clearly every edge in Pð5Þ is an edge of some cycle in
Pð5Þ: Let Z be a cycle in Pið5Þ that crosses some edge
of Pjð5Þ:

If Z encloses two or more vertices of Pjð5Þ, then clearly
there are at least 4 crossings on the boundary of Z.

Suppose Z encloses only one vertex, say v of Pjð5Þ: Let Z0

be a cycle in Pjð5Þ containing an edge incidents to v. If Z0

encloses a vertex of Z, then clearly crDðEi, EjÞ � 4: Hence we
assume that Z0 encloses no vertex of Z. We can further
assume that any cycle in Pjð5Þ which contains an edge inci-
dent to the vertex v encloses no vertex of Z. But this means
that the three edges e1, e2, e3 of Pjð5Þ incident to v are all
crossed by an edge e of Z (see Figure 6). Since the degree of

Figure 4. Some drawings of Z1 [ Z2:
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v in Pð5ÞwPn is either 4 or 5, by detouring the edge e as
shown in Figure 6, we obtain a drawing of Pð5ÞwPn with
fewer crossings. This contradicts the optimality of D. w

Lemma 7. Let D be an optimal drawing of Pð5ÞwPn where
n � 3. Then either crDðEiÞ � 10 for some 1 � i � n or
else crDðPð5ÞwPnÞ � 10ðn� 1Þ:

Proof. Suppose each copy of Pð5Þ in Pð5ÞwPn has at most
9 crossings.

To establish crDðPð5ÞwPnÞ � 10ðn� 1Þ, we shall first
show that

(1) any two distinct copies of Pð5Þ in Pð5ÞwPn do not
cross each other.

Suppose on the contrary that Pið5Þ crosses Pjð5Þ, i 6¼ j:
Case (1): Suppose 2 � i � n� 1 and 1 � j � n:
By Lemma 6, crDðEi, EjÞ � 4:
(i) Suppose j 2 fi� 1, iþ 1g:
Without loss of generality assume that j ¼ i� 1: If

Piþ1ð5Þ does not cross Pið5Þ, then we contract Piþ1ð5Þ to a
single vertex w (to get a subgraph isomorphic to
Pið5Þ þ fwg). Since crðPið5Þ þ fwgÞ ¼ 5 by Theorem 1, we
have crDðEi, Ei [ LiÞ � 5:

If crDðEi, Li�1Þ � 1, we have crDðEiÞ � crDðEi, Ei�1Þ
þ crDðEi,Ei [ LiÞ þcrDðEi, Li�1Þ � 4þ 5þ 1 a contradiction.

If crDðEi, Li�1Þ ¼ 0, we have crDðEiÞ � crDðEi, EiÞ þ
crDðEi, Ei�1Þ � 6þ 4 (by Lemma 5), a contradiction.

On the other hand, if Piþ1ð5Þ crosses Pið5Þ, then
crDðEi,Eiþ1Þ � 4 by Lemma 6. Further, if crDðEi, Li�1 [ LiÞ � 2,
then

crDðEiÞ � crDðEi, Li�1 [ LiÞ þ crDðEi,Ei�1Þ þ crDðEi,Eiþ1Þ
� 2þ 4þ 4

a contradiction. If crDðEi, Li�1 [ LiÞ � 1, then either
crDðEi, Li�1Þ ¼ 0 or crDðEi, LiÞ ¼ 0: In either case,
crDðEi, EiÞ � 6 by Lemma 5 and this leads to

crDðEiÞ � crDðEi, EiÞ þ crDðEi, Ei�1Þ þ crDðEi, Eiþ1Þ
� 6þ 4þ 4

again a contradiction.
(ii) Suppose j 62 fi� 1, iþ 1g:
Note that Pið5Þ is crossed by at most one of its neighbor-

ing copies. This is true otherwise crDðEi, EkÞ � 4 for each
k 2 fi� 1, iþ 1, jg and we have crDðEiÞ � 12:

Contract a neighboring copy of Pið5Þ which does not
cross with Pið5Þ to a single vertex.

If the other neighboring copy of Pið5Þ crosses Pið5Þ, then
we have crDðEiÞ � 4þ 4þ 5 (by Lemma 6 and Theorem 1).

If the other neighboring copy of Pið5Þ does not cross
Pið5Þ, we contract Pi�1ð5Þ (and Piþ1ð5Þ) into a single vertex
x (respectively y) to get a subgraph isomorphic to Pð5Þ þ
fx, yg which has crossing number 10 by Theorem 2. As
such, we have a contradiction because

Figure 5. A list of all 5 -cycles Zi with only 2 s.d. edges.
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crDðEiÞ � crDðEi, EiÞ þ crDðEi, Li�1Þ þ crDðEi, LiÞ
� crðPð5Þ þ fx, ygÞ ¼ 10:

Case (2): Suppose i ¼ 1 and j ¼ n:
By Lemma 6, crDðE1,EnÞ � 4:
Let Z0 be a cycle in P1ð5Þ that intersects with a cycle Z00

of Pnð5Þ: Since D is a good drawing, we may assume with-
out loss of generality that Z0 encloses a vertex v of Pnð5Þ: As
such, the edge in Ln�1 incident to v must cross the bound-
ary of Z0:

By the result in Case (1), P2ð5Þ does not cross with
P1ð5Þ: Contract P2ð5Þ to a single vertex w. Since crðP1ð5Þ þ
fwgÞ � 5, we have crDðE1Þ � 4þ 5þ 1, a contradiction.

This shows that Pið5Þ does not cross Pjð5Þ for i 6¼ j:
Next we show that
(2) crDðEi, LjÞ ¼ 0 if j 62 fi� 1, ig:
Suppose the contrary and let xy be an edge in Lj that crosses

Pið5Þ: Suppose x 2 VðPjð5ÞÞ and y 2 VðPjþ1ð5ÞÞ: Consider a
sub-drawing D0 of D induced by the vertices of Pið5Þ:

(a) Suppose x and y are in different regions of D0:
This means that all the vertices of Pjð5Þ are in the same

region as x while all the vertices of Pjþ1ð5Þ are in the same
region as y (because Pið5Þ does not cross other copies of
Pð5Þ). But this means that the edges in Lj cross the bound-
ary of the region at least 10 times (yielding crDðEiÞ � 10), a
contradiction.

(b) Suppose x and y are in the same region of D0:
Let Z be a cycle containing xy which crosses Ei: Since D

is a good drawing, Z must enclose some vertex of Pið5Þ
(otherwise xy crosses the same edge of Pið5Þ at least twice).

Suppose Z encloses only one vertex v of Pið5Þ: This means
that the edge xy crosses three edges of Pið5Þ incident to v. By
detouring the edge xy as shown in Figure 6, we obtain a draw-
ing of Pð5ÞwPn with fewer crossings, contradicting the opti-
mality of D. Hence assume that Z encloses at least two vertices

of Pið5Þ: As such, we have crDðZ, EiÞ � 4: Since no neighbor-
ing copies of Pð5Þ cross each other (by the result in case (1)),
we contract a neighboring copy of Pið5Þ to a single vertex w
(to get crðPið5Þ þ fwgÞ � 5) so that crDðEi, Li�1Þ � 5 or
crDðEi, LiÞ � 5: By using an argument similar to Case (1)(i),
we obtain crDðEiÞ � 10, a contradiction.

We shall now show that crDðPð5ÞwPnÞ � 10ðn� 1Þ:
For this purpose, let Qi denote the subgraph of Pð5ÞwPn

induced by the set of vertices in Pi�1ð5Þ [ Pið5Þ [ Piþ1ð5Þ
for each i ¼ 2, :::, n� 1: Define

f ðQiÞ ¼ crDðEi, Li�1 [ LiÞ þ crDðLi�1, LiÞ þ crDðEi, EiÞ:
It is easy to see that a crossing in D contributes at most one to
the sum F ¼ Pn�1

i¼2 f ðQiÞ: Let Di denote the subdrawing of D
that corresponds to Qi: By observation (1), we have
crDiðEr,EsÞ ¼ 0 for any distinct r, s 2 fi� 1, i, iþ 1g: Also,
by observation (2), we have crDiðLi�1,Eiþ1Þ ¼ 0 and
crDiðLi, Ei�1Þ ¼ 0: As such, by contracting Pi�1ð5Þ and Piþ1ð5Þ
into two vertices xi and yi respectively, the resulting graph is
isomorphic to Pið5Þ þ fxi, yig which has crossing number 10
by Theorem 2. This means that f ðQiÞ � crDðPið5Þ þ
fxi, yigÞ � 10 and that F ¼ Pn�1

i¼2 f ðQiÞ � 10ðn� 2Þ:
Finally consider the subgraph H of Pð5ÞwPn induced by

the set of vertices in P1ð5Þ [ P2ð5Þ: By observation (1), we
can contract P2ð5Þ (of H) into a single vertex w to obtain a
graph isomorphic to Pð5Þ þ fwg which has crossing number
5 by Theorem 1. This means that, in D, there are at least 5
crossings on E1: By symmetry (since we can just relabel the
subscripts on Pið5Þ in reverse order), there are at least 5
crossings on En: None of these crossings are counted in F.
Consequently, the number of crossings in D is at least F þ
10 ¼ 10ðn� 1Þ and the proof is complete. w

Theorem 3. crðPð5ÞwPnÞ ¼ 10ðn� 1Þ for all natural num-
ber n � 1:

Figure 6. Detouring an edge.
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Proof. Figure 7 depicts a drawing of Pð5ÞwPn with 10ðn� 1Þ
crossings where n � 3: This proves the upper bound. It
remains to show that crðPð5ÞwPnÞ � 10ðn� 1Þ:

Since Pð5Þ is a planar graph and that Pð5ÞwP2 is iso-
morphic to C5wC4 as remarked earlier, the result is true
for n � 2:

Assume that crðPð5ÞwPkÞ � 10ðk� 1Þ where k � 3 and
that there is a drawing D of Pð5ÞwPkþ1 with fewer than 10k
crossings. By Lemma 7, Pð5ÞwPkþ1 contains a copy Pið5Þ
with at least 10 crossings. By deleting all edges of Pið5Þ in
Pð5ÞwPkþ1, the resulting graph is either a subdivision of
Pð5ÞwPk or else contains the subgraph Pð5ÞwPk each with
fewer than 10ðk� 1Þ crossings, a contradiction. w
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