Crossing number of Cartesian product of prism and path

Yip C. Yiew, Gek L. Chia \& Poh-Hwa Ong

To cite this article: Yip C. Yiew, Gek L. Chia \& Poh-Hwa Ong (2020): Crossing number of Cartesian product of prism and path, AKCE International Journal of Graphs and Combinatorics, DOI: 10.1016/j.akcej.2019.12.003

To link to this article: https://doi.org/10.1016/j.akcej.2019.12.003

© 2020 The Author(s). Published with
license by Taylor \& Francis Group, LLC

Published online: 27 Apr 2020.

Submit your article to this journal

Article views: 113

View related articles

View Crossmark data \nearrow

Crossing number of Cartesian product of prism and path

Yip C. Yiew, Gek L. Chia, and Poh-Hwa Ong
Department of Mathematical and Actuarial Sciences, Universiti Tunku Abdul Rahman, Kajang, Selangor, Malaysia

Abstract

An m-prism is the Cartesian product of an m-cycle and a path with 2 vertices. We prove that the crossing number of the join of an m-prism ($m \geq 4$) and a graph with k isolated vertices is km for each $k \in\{1,2\}$. We then use this result to prove that the crossing number of the Cartesian product of a 5 -prism and a path with n vertices is $10(n-1)$. This answers partially the conjecture raised by Peng and Yiew (in 2006) in the affirmative.

KEYWORDS

Crossing number; Cartesian product; prism; path

2010 MATHEMATICS
 SUBJECT
 CLASSIFICATION

68R10; 05C10; 05C62

1. Introduction

By a good drawing of a graph G we mean an embedding of G on the plane such that (i) no edge intersect itself, (ii) adjacent edges do not intersect each other, (iii) any pair of edges do not touch each other and they intersect each other at most once, and (iv) no three edges intersect at the same point. If D is a good drawing of G, we let $c r_{D}(G)$ denote the number of pair-wise intersections of the edges of G in D. If $c r_{D}(G)$ achieves the minimum number, then D is called an optimal drawing of G and the minimum number of crossings is called the crossing number of G, denoted $\operatorname{cr}(G)$.

The Cartesian product of two graphs G and H, denoted $G \square H$ is the graph with vertex set $V(G) \times V(H)$ and having edges of the form $\left(u, u^{\prime}\right)\left(v, v^{\prime}\right)$ where either $u=v$ and $u^{\prime} v^{\prime} \in$ $E(H)$ or $u^{\prime}=v^{\prime}$ and $u v \in E(G)$.

Let P_{n} and C_{n} denote the path and cycle on n vertices respectively. By an m-prism, denoted $P(m)$, we mean the Cartesian product $C_{m} \square P_{2}$. The crossing numbers of the Cartesian product of some special graphs with the path (or other graph) have been the subject of investigation (see [2-13]). In particular, in [7], it was proved that $\operatorname{cr}\left(P(3) \square P_{n}\right)=4(n-1)$ for all natural numbers $n \geq 1$. Further, it was conjectured that $\operatorname{cr}\left(P(m) \square P_{n}\right)=$ $2 m(n-1)$ for all natural numbers $m \geq 4$. In this paper, we prove that the conjecture is true for $m=5$ (see Theorem 3). The case $m=4$ has earlier been established in [9].

Let $G+H$ denote the join of two graphs G and H. The proof of Theorem 3 rests on the result which states that $c r\left(P(m)+\overline{K_{r}}\right)=r m, 1 \leq r \leq 2$ (see Theorems 1 and 2). Here $\overline{K_{n}}$ denotes a graph with n isolated vertices. The proof of this is given in Section 2.

2. Join of graphs

Throughout, unless otherwise stated, we let the two m-cycles in $P(m)$ be denoted by $Z_{1}=a_{0} a_{1} a_{2} \ldots a_{m-1} a_{0}$ and $Z_{2}=$
$b_{0} b_{1} b_{2} \ldots b_{m-1} b_{0}$. Also, we assume that $a_{i} b_{i}$ is an edge in $P(m)$ for each $i \in\{0,1, \ldots, m-1\}$. Each edge $a_{i} b_{i}$ is called a spoke of $P(m)$.

Let D be a good drawing of a graph G and let H be a subgraph of G. The responsibility of H in D, denoted $r_{D}(H)$, is the total number of times edges in H are crossed. Note that if two edges of H cross each other, then a contribution of two is added to its responsibility.

Lemma 1. Let D be a good drawing of $P(m)+\{w\}$ such that no triangle of the form $w a_{i} b_{i} w$ has an edge crossed, $0 \leq i \leq m-1$. Then D has at least $2\left\lceil\frac{m}{2}\right\rceil$ crossings, $m \geq 3$.

Proof. By the condition of the lemma, in D, no triangle of the form $w a_{i} b_{i} w$ is enclosed by another triangle of the form $w a_{j} b_{j} w$. As such, we may assume that edges of the form $a_{i} b_{i}$ are drawn on the x-axis in an arbitrary manner with the vertex w lying on the upper region of the x-axis and all edges of $Z_{1} \cup Z_{2}$ are on the x-axis or are lying on the lower region of the x-axis.

Alternatively, we may assume that edges of the form $a_{i} b_{i}$ are on the boundary of convex polygon P on $2 m$ vertices with w lying on the "exterior" and the edges of $Z_{1} \cup Z_{2}$ are on the boundary of P or lying in the "interior" of P. Figure 1 depicts an example of such drawing with $m=5$.

We shall show that the number of crossings on the edges of Z_{1} made by the edges of Z_{2} is at least $2\left\lceil\frac{m}{2}\right\rceil$.

We have the following observations.
(i) It is easy to see that an edge of Z_{1} which is on the boundary of P has no crossing.
(ii) Clearly, any vertex of Z_{1} is incident to at most one edge of Z_{1} which is a boundary edge of P.
(iii) We assert that every edge of Z_{1} not lying on the boundary of P is crossed by at least 2 edges of Z_{2}.

[^0]

Figure 1. An illustration on the proof of Lemma 1 with $m=5$.

Evidently, the above observations imply the conclusion of the lemma.

To prove (iii), let $a_{i} a_{i+1}$ be an edge of Z_{1} not on the boundary of P and consider the subgraph H induced by the vertices of Z_{2} which are enclosed in the "interior" of the triangle $\triangle_{i}=w a_{i} a_{i+1} w$. Here we just need to consider the case $|V(H)| \leq m / 2$. Clearly H is a union of paths.

If H has an isolated vertex v, then v is adjacent to two vertices in the "exterior" region of \triangle_{i} giving two crossings on the edge $a_{i} a_{i+1}$ (see for example, $v=b_{3}$ for the case $i=$ 1 in Figure 1). If H has no isolated vertices, then H has two vertices u_{1}, u_{2} each of degree 1 in H (see for example, $u_{1}=$ $b_{0}, u_{2}=b_{1}$ for the case $i=0$ in Figure 1). Each of u_{1}, u_{2} is adjacent to some vertex in the "exterior" region of \triangle_{i} again giving two crossings on the edge $a_{i} a_{i+1}$. This completes the proof.

Theorem 1. $\operatorname{cr}(P(m)+\{w\})=m$ if $m \geq 4$.
Proof. By induction on m. We first show that the result holds for $m=4$.

The drawing of $P(4)+\{w\}$ in Figure 2 shows that its crossing number is at most 4 . It remains to show the reverse inequality. We prove this by contradiction. Assume that there is an optimal drawing D of $P(4)+\{w\}$ with fewer than 4 crossings.

We claim that no two vertex-disjoint 4 -cycles of $P(4)$ cross each other.

Suppose the contrary and let C_{4}^{\prime} and $C_{4}^{\prime \prime}$ be two vertexdisjoint 4 -cycles which cross each other.

Case (i) No edges in $C_{4}^{\prime} \cup C_{4}^{\prime \prime}$ cross more than once.
Then C_{4}^{\prime} encloses at least one vertex of $C_{4}^{\prime \prime}$ and vice versa. Since every vertex of $P(4)$ is adjacent to w, the number of crossings in D is at least 4 , a contradiction.

Case (ii) Some edges in $C_{4}^{\prime} \cup C_{4}^{\prime \prime}$ cross at least two times.
Without loss of generality, assume that an edge, say $x y$ of C_{4}^{\prime} crosses two edges of $C_{4}^{\prime \prime}$. Delete the edges $x y, w x, w y$ resulting in a graph H with $d_{H}(x)=2=d_{H}(y)$. Note that H is a subdivision of $P(3)+\{w\}$ which has crossing number 2 (see [7, Lemma 1]). But this implies that the number of crossings in D is at least 4 , a contradiction.

Figure 2. $P(4)+\{w\}$.

We now show that any 4 -cycle in D has no self-crossing. Suppose C is a 4 -cycle with edges e_{1} and e_{2} which intersect each other. Clearly e_{1} and e_{2} are non-adjacent. Hence there is a 4 -cycle C^{\prime} containing e_{1} but not e_{2} and there is a 4 -cycle $C^{\prime \prime}$ containing e_{2} but not e_{1}. It is not difficult to show that $V\left(C^{\prime}\right) \cap V\left(C^{\prime \prime}\right)=\emptyset$. But this is a contradiction by the preceding claim (since C^{\prime} and $C^{\prime \prime}$ are two vertex-disjoint 4cycles crossing each other).

It follows from the above observation that the sub-drawing of $P(4)$ induced by D yields a plane drawing of $P(4)$ which divides the plane into six 4 -faces. Hence w is in one of the 4 faces F. Since w is adjacent to every vertex of $P(4)$, the edges joining w and the vertices in $V(P(4))-V(F)$ must cross the boundaries of F which means that D has at least 4 crossings. This contradiction proves that $\operatorname{cr}(P(4)+\{w\})=4$.

Note that the drawing of $P(4)+\{w\}$ in Figure 2 can easily be generalized to obtain a drawing of $P(m)+\{w\}$ with at most m crossings.

Assume that $\operatorname{cr}(P(m)+\{w\})=m$ where $m \geq 4$.
Let D be a good drawing of $P(m+1)+\{w\}$. Assume that D has at most m crossings. By Lemma 1 , there is a triangle of the form $w a_{i} b_{i} w$ in $P(m+1)+\{w\}$ with an edge crossed in D. Now delete the edges $w a_{j}, w b_{j}$ and $a_{j} b_{j}$ from $P(m+1)+\{w\}$. The resulting graph is a subdivision of $P(m)+\{w\}$ drawn with fewer than m crossings, a contradiction. This proves the theorem.
\square

Lemma 2. $\operatorname{cr}(P(m)+\{x, y\}) \leq 2 m$ for any natural number $m \geq 4$.

Proof. We shall describe a drawing of $P(m)+\{x, y\}$ with $2 m$ crossings. Draw the cycle $Z_{1}=a_{0} a_{1} a_{2} \ldots a_{m-1} a_{0}$ in the form of a cycle on the plane. Draw $Z_{2}=b_{0} b_{1} b_{2} \ldots b_{m-1} b_{0}$ also in the form of a cycle with Z_{2} enclosing Z_{1} and join all the edges $a_{i} b_{i}, i=$ $0,1,2, \ldots, m-1$ to obtain a plane drawing of $P(m)$.

Now put x in the region enclosed by Z_{1} and join x to all the vertices in Z_{1} (with no crossing). Now join x and b_{i} with an edge so that $x b_{i}$ crosses only the edge $a_{i} a_{i+1}, i=0,1,2, \ldots, m-$ 1. Here $a_{m}=a_{0}$. See Figure 2 for the case $m=4$ with $x=w$. Put y on the unbounded region of $P(m)$ and join y to all vertices in Z_{2}. Then join y and a_{i} with an edge so that $y a_{i}$ crosses

Figure 3. Some drawings of D^{\prime}.
only the edge $b_{i} b_{i-1}, i=0,1,2, \ldots, m-1$. Here $b_{-1}=b_{m-1}$. The resulting drawing has only $2 m$ crossings.

The following lemma has been proved in [9]. Hence we omit the proof.

Lemma 3. ([9], Lemma 4) $\operatorname{cr}(P(4)+\{x, y\})=8$.
Lemma 4. In any good drawing of $P(m)+\{x, y\}$ where $m \geq 4$, there is a 4-cycle of the form $x a_{i} y b_{i} x$ having at least two crossings.

Proof. Assume on the contrary that every 4-cycle of the type $x a_{i} y b_{i} x$ has at most one crossing.

Consider the triangles $\triangle_{x}=x a_{i} b_{i} x$ and $\triangle_{y}=y a_{i} b_{i} y$.
We assert that x is not enclosed in \triangle_{y}. To see this, suppose the contrary. Let S_{1}, S_{2} be the regions bounded by $\triangle_{x}, y a_{i} x b_{i} y$ respectively, and let S_{3} denote the exterior region of \triangle_{y}.

Note that if there is a pair of vertices $a_{j}, b_{j}(j \neq i)$ that lie in S_{1} or in S_{3}, then $x a_{j} y b_{j} x$ is a 4 -cycle with at least 2 crossings (which is impossible). Also, if a_{j} is in S_{3} and b_{j} is in S_{1}, then $x a_{j} y b_{j} x$ is a 4 -cycle with at least 2 crossings.

Now, suppose a_{j} is in S_{3} and b_{j} is in S_{2}. Let a_{j+1} be a neighbor of a_{j} and $a_{j+1} \neq a_{i}$. Note that this is possible because the degree of a_{j} is 5 . Apply the same argument to the pair of vertices $\left\{a_{j+1}, b_{j+1}\right\}$ (which plays the role of $\left.\left\{a_{j}, b_{j}\right\}\right)$, it follows that a_{j+1} is in S_{3} and b_{j+1} is in S_{2}. Since a_{j} is adjacent to b_{j}, and a_{j+1} is adjacent to b_{j+1}, there are at least 2 crossings on $x a_{i} y b_{i} x$.

Hence we assume no vertex (other than a_{i}, b_{i}, y) is in S_{3} (so that T^{x} crosses no boundary of \triangle_{y}). If a_{j} is in S_{1} and b_{j} is in S_{2}, we proceed as in the proceeding case to obtain a similar contradiction. Hence assume that all the vertices are in S_{2}. If the path $a_{i} a_{i-1} b_{i-1} b_{i}$ lies completely in S_{2}, then it separates x from y. As such, $x a_{i+1} y b_{i+1} x$ is a 4 -cycle that intersects with the edges of this path at least two times. If the path $a_{i} a_{i-1} b_{i-1} b_{i}$ does not lie completely in S_{2}, then $a_{i} a_{i-1}$ crosses the edge $x b_{i}$; in this case the path $a_{i} a_{i+1} b_{i+1} b_{i}$ must lie completely in S_{2} (otherwise $a_{i} a_{i+1}$ crosses the edge $x b_{i}$ giving 2 crossings on $x a_{i} y b_{i} x$) and this path separates x from y yielding a 4 -cycle of the form $x a_{j} y b_{j} x$ with 2 crossings for some $j \in\{i-1, i+1\}$. This proves the assertion.

Likewise y is not enclosed by \triangle_{x}.
(i) First, we consider the case where no edge of Q is crossed by an edge of Q. Let $v w$ be an edge of $P(m)-Q$ which crosses $x a_{i}$, and let C^{*} be a cycle containing $v w$.

Then one end of $v w$, say w is enclosed either by \triangle_{x} or by Δ_{y}. If w is adjacent to neither a_{i} nor b_{i}, then C^{*} crosses Q at least twice, a contradiction. Hence we assume that w is adjacent to a_{i}. As such, $w \in\left\{a_{i-1}, a_{i+1}\right\}$, say $w=a_{i-1}$.

Since w is enclosed by either \triangle_{x} or $\triangle_{y}, a_{i} b_{i}$ is crossed by either $y w$ or by $x w$.

If b_{i-1} is enclosed by Q, then $x a_{i-1} y b_{i-1} x$ is a 4 -cycle of the same type having 2 crossings, a contradiction. Hence we assume that b_{i-1} is not enclosed by Q. But this forces the 4cycle $x a_{i} y b_{i} x$ to have at least 2 crossings.
(ii) Next, suppose there is a crossing on the edges of the 4 -cycle $Q=x a_{i} y b_{i} x$.

First we consider the case where there is an edge, say $x a_{i}$ of Q which crosses an edge $y b_{i}$ of Q.

Since y is not enclosed by $\triangle_{x}, y b_{i}$ partitions \triangle_{x} into two regions R_{1}, R_{2} with R_{1} bounded by $b_{i} x, a_{i} x, b_{i} y$ and R_{2} bounded by $b_{i} a_{i}, a_{i} x, b_{i} y$. Note that no vertex in $Z_{1}=$ $a_{0} a_{1} \cdots a_{m-1} a_{0}$ is enclosed by R_{k} for any $k=1,2$ otherwise there is a 4 -cycle of the type $x a_{j} y b_{j} x$ with 2 or more crossings. Likewise no vertex in $Z_{2}=b_{0} b_{1} \cdots b_{m-1} b_{0}$ is enclosed by R_{k} for any $k=1,2$.

With this restriction, we consider the sub-drawing D^{\prime} on the subgraph induced by the edges of the 4 -cycles $Q, Q_{1}=$ $x a_{i+1} y b_{i+1} x$ and $Q_{-1}=x a_{i-1} y b_{i-1} x$. In view of the observation in case (i), we may assume that any 4 -cycle of the form $x a_{j} y b_{j} x$ has a self-crossing. Note that among the various sub-drawings of D^{\prime} on $Q \cup Q_{1}$, there is a vertex $z \in$ $\left\{a_{i-1}, b_{i-1}\right\}$ such that z is separated from x (or from y) (see Figure 3 for some examples of drawings of D^{\prime}). As such, the edge $z x$ (or $z y$) must be crossed (in addition to the self-crossing in Q_{-1}), yielding 2 crossings on the 4-cycle $x a_{i-1} y b_{i-1} x$.

We now assume that the edges of any 4-cycle of the type $x a_{i} y b_{i} x$ have no crossing. Since $P(m)+\{x, y\}$ is non-planar, for some i, the edge $a_{i} b_{i}$ must be crossed by some edge, say $v w$.

We can assume without loss of generality that \triangle_{x} contains one end, say w of $v w$. Then the edge $w y$ (which belongs to the 4 -cycle $x w y v x$) crosses $a_{i} b_{i}$. By the assumption in the preceding paragraph, $\{v, w\} \neq\left\{a_{j}, b_{j}\right\}$ for any j. If $\{v, w\}=\left\{a_{j}, a_{j+1}\right\}$ or $\{v, w\}=\left\{b_{j}, b_{j+1}\right\}$, then it is easy to see that there is a 4 -cycle $x a_{j} y b_{j} x$ with at least two crossings, a contradiction.

Theorem 2. $\operatorname{cr}(P(m)+\{x, y\})=2 m$ for any natural number $m \geq 4$.

Figure 4. Some drawings of $Z_{1} \cup Z_{2}$.

Proof. By Lemma 2, we have $\operatorname{cr}(P(m)+\{x, y\}) \leq 2 m$.
We prove the reverse inequality by induction on m. By Lemma 3, the result is true for $m=4$. Assume that the result is true for $m=k$ where $k \geq 4$. Suppose there is a good drawing of $P(k+1)+\{x, y\}$ with fewer than $2(k+$ 1) crossings.

By Lemma 4, there exists a 4 -cycle $x a_{i} y b_{i} x$ with at least two crossings. Now delete all the edges of these 4 -cycles together with the edge $a_{i} b_{i}$, the resulting graph is a subdivision of the graph $P(k)+\{x, y\}$ drawn with fewer than $2 k$ crossings. This contradiction proves the result.

3. Cartesian product of graphs

In [1], Beineke and Ringeisen proved that $\operatorname{cr}\left(C_{4} \square C_{n}\right)=2 n$. Since $P(m) \square P_{2}$ is isomorphic to $C_{m} \square C_{4}$, we have $\operatorname{cr}\left(P(m) \square P_{2}\right)=2 m$ where $m \geq 4$.

For each $i=1,2, \ldots, n$, let $P_{i}(m)$ denote the i-th copy of $P(m)$ in $P(m) \square P_{n}$ and $E_{i}=E\left(P_{i}(m)\right)$. Also, let L_{j} denote the set of all edges joining $P_{j}(m)$ and $P_{j+1}(m), j=1,2, \ldots, n-1$.

Suppose D is a good drawing of $P(m) \square P_{n}$ and suppose $H, J \subseteq E\left(P(m) \square P_{n}\right)$. Let $c r_{D}(H, J)$ denote the number of crossings in D which are made on H by J. In particular, $c r_{D}\left(E_{i}, E_{i}\right)$ stands for the number of self-crossings among the edges in E_{i}. On the other hand, let $c r_{D}\left(E_{i}\right)$ denote the total number of crossings in D on the edges in E_{i}.

Lemma 5. Let D be a good drawing of $P(5) \square P_{n}$. If $c r_{D}\left(E_{i}, L_{i-1}\right)=0$ or $c r_{D}\left(E_{i}, L_{i}\right)=0$, then $\operatorname{cr}_{D}\left(E_{i}, E_{i}\right) \geq 6$.

Proof. It suffices to prove the following statement.
Let D be a good drawing of $P(5)$ with all its vertices lying in the same region. Then D has at least 6 crossings.

Since all the vertices are in the same region, we may assume without loss of generality, as in the proof of Lemma 1 that the vertices of $P(5)$ are all on the boundary of a convex 10 -gon P and that any edge of $P(5)$ is either on the boundary or in the "interior" region of P. Suppose the vertices of P are $x_{0}, x_{1}, \ldots, x_{9}$ (in cyclic order).

Let e be an edge of Z_{i} not on the boundary of $P, i \in$ $\{1,2\}$. Call e a separating diagonal edge (s.d.edge) on Z_{3-i} if the vertices of Z_{3-i} are being separated by e into two different segments of P.

If Z_{i} has at least three s.d. edges, then, as in the proof of Lemma $1, D$ has at least 6 crossings since each s.d. edge is crossed by at least two edges of Z_{3-i}. Hence we assume that Z_{i} has at most two s.d. edges. It is easy to see that neither Z_{1} nor Z_{2} can have precisely one s.d. edge.

Case (1): Z_{i} has no s.d. edge.
In this case, we may assume that the vertices of Z_{1} lay on the segment $x_{0}, x_{1}, \ldots, x_{4}$ (which also denote the vertices of Z_{1}) while those of Z_{2} lay on the segment $x_{5}, x_{6}, \ldots, x_{9}$. We shall show that the number of crossings on the edges of Z_{i} is at least 3 for each $i=1,2$.

Suppose $x_{0} x_{j}$ is an edge of Z_{1}.
If $j=4$, then each spoke of $P(5)$ incident to a vertex in $\left\{x_{1}, x_{2}, x_{3}\right\}$ must cross the edge $x_{0} x_{4}$.

If $j=3$, then each spoke of $P(5)$ incident to a vertex in $\left\{x_{1}, x_{2}\right\}$ must cross the edge $x_{0} x_{3}$. Moreover the edge joining x_{4} to a vertex in $\left\{x_{1}, x_{2}\right\}$ must cross the edge $x_{0} x_{3}$.

So assume that $j=2$. If x_{4} is adjacent to x_{1}, the situation is similar to the case $j=3$. Hence x_{4} is adjacent to x_{2} and x_{3}. But this also implies that $x_{1} x_{3}$ is an edge of Z_{1} which is crossed by $x_{0} x_{2}, x_{4} x_{2}$. Also, the spoke incident to x_{2} must cross the edge $x_{1} x_{3}$.

By applying the same arguments to Z_{2} we obtain the required conclusion.

Case (2): Z_{i} has only two s.d. edges.
Since the two s.d. edges e_{1}, e_{2} of Z_{1} give raise to at least 4 crossings on $\left\{e_{1}, e_{2}\right\}$, it remains to show that some edge of Z_{i} is crossed by some spoke of $P(5)$ for each $i=1,2$.

For this purpose, we observe that in any drawing of Z_{i} with only two s.d. edges (there are in fact only 12 such drawings as is depicted in Figure 5), there is a vertex v_{i} of Z_{i} whose spoke incident to it crosses some edge of $Z_{i}, i=1,2$. Figure 4 illustrates some of these drawings. We conclude that D has at least 6 crossings in this case.

This completes the proof.
Lemma 6. Suppose D is an optimal drawing of $P(5) \square P_{n}$ where $n \geq 3$. If $P_{i}(5)$ and $P_{j}(5)$ cross each other, $i \neq j$, then $\operatorname{cr}_{D}\left(E_{i}, E_{j}\right) \geq 4$.

Proof. Clearly every edge in $P(5)$ is an edge of some cycle in $P(5)$. Let Z be a cycle in $P_{i}(5)$ that crosses some edge of $P_{j}(5)$.

If Z encloses two or more vertices of $P_{j}(5)$, then clearly there are at least 4 crossings on the boundary of Z.

Suppose Z encloses only one vertex, say v of $P_{j}(5)$. Let Z^{\prime} be a cycle in $P_{j}(5)$ containing an edge incidents to v. If Z^{\prime} encloses a vertex of Z, then clearly $c r_{D}\left(E_{i}, E_{j}\right) \geq 4$. Hence we assume that Z^{\prime} encloses no vertex of Z. We can further assume that any cycle in $P_{j}(5)$ which contains an edge incident to the vertex v encloses no vertex of Z. But this means that the three edges e_{1}, e_{2}, e_{3} of $P_{j}(5)$ incident to v are all crossed by an edge e of Z (see Figure 6). Since the degree of

Figure 5. A list of all 5 -cycles Z_{i} with only 2 s.d. edges.
v in $P(5) \square P_{n}$ is either 4 or 5 , by detouring the edge e as shown in Figure 6, we obtain a drawing of $P(5) \square P_{n}$ with fewer crossings. This contradicts the optimality of D.

Lemma 7. Let D be an optimal drawing of $P(5) \square P_{n}$ where $n \geq 3$. Then either $\operatorname{cr}_{D}\left(E_{i}\right) \geq 10$ for some $1 \leq i \leq n$ or else $\operatorname{cr}_{D}\left(P(5) \square P_{n}\right) \geq 10(n-1)$.

Proof. Suppose each copy of $P(5)$ in $P(5) \square P_{n}$ has at most 9 crossings.

To establish $c r_{D}\left(P(5) \square P_{n}\right) \geq 10(n-1)$, we shall first show that
(1) any two distinct copies of $P(5)$ in $P(5) \square P_{n}$ do not cross each other.

Suppose on the contrary that $P_{i}(5)$ crosses $P_{j}(5), i \neq j$.
Case (1): Suppose $2 \leq i \leq n-1$ and $1 \leq j \leq n$.
By Lemma 6, $\operatorname{cr}_{D}\left(E_{i}, E_{j}\right) \geq 4$.
(i) Suppose $j \in\{i-1, i+1\}$.

Without loss of generality assume that $j=i-1$. If $P_{i+1}(5)$ does not cross $P_{i}(5)$, then we contract $P_{i+1}(5)$ to a single vertex w (to get a subgraph isomorphic to $\left.P_{i}(5)+\{w\}\right)$. Since $c r\left(P_{i}(5)+\{w\}\right)=5$ by Theorem 1, we have $\operatorname{cr}_{D}\left(E_{i}, E_{i} \cup L_{i}\right) \geq 5$.

If $\quad c r_{D}\left(E_{i}, L_{i-1}\right) \geq 1$, we have $c r_{D}\left(E_{i}\right) \geq c r_{D}\left(E_{i}, \quad E_{i-1}\right)$ $+c r_{D}\left(E_{i}, E_{i} \cup L_{i}\right)+c r_{D}\left(E_{i}, L_{i-1}\right) \geq 4+5+1$ a contradiction.

If $c r_{D}\left(E_{i}, L_{i-1}\right)=0$, we have $c r_{D}\left(E_{i}\right) \geq c r_{D}\left(E_{i}, E_{i}\right)+$ $c r_{D}\left(E_{i}, E_{i-1}\right) \geq 6+4$ (by Lemma 5), a contradiction.

On the other hand, if $P_{i+1}(5)$ crosses $P_{i}(5)$, then $c r_{D}\left(E_{i}, E_{i+1}\right) \geq 4$ by Lemma 6. Further, if $c r_{D}\left(E_{i}, L_{i-1} \cup L_{i}\right) \geq 2$, then

$$
\begin{aligned}
c r_{D}\left(E_{i}\right) & \geq c r_{D}\left(E_{i}, L_{i-1} \cup L_{i}\right)+c r_{D}\left(E_{i}, E_{i-1}\right)+c r_{D}\left(E_{i}, E_{i+1}\right) \\
& \geq 2+4+4
\end{aligned}
$$

a contradiction. If $c r_{D}\left(E_{i}, L_{i-1} \cup L_{i}\right) \leq 1$, then either $c r_{D}\left(E_{i}, L_{i-1}\right)=0 \quad$ or $\quad c r_{D}\left(E_{i}, L_{i}\right)=0$. In either case, $\operatorname{cr}_{D}\left(E_{i}, E_{i}\right) \geq 6$ by Lemma 5 and this leads to

$$
\begin{aligned}
c r_{D}\left(E_{i}\right) & \geq c r_{D}\left(E_{i}, E_{i}\right)+c r_{D}\left(E_{i}, E_{i-1}\right)+c r_{D}\left(E_{i}, E_{i+1}\right) \\
& \geq 6+4+4
\end{aligned}
$$

again a contradiction.
(ii) Suppose $j \notin\{i-1, i+1\}$.

Note that $P_{i}(5)$ is crossed by at most one of its neighboring copies. This is true otherwise $\operatorname{cr}_{D}\left(E_{i}, E_{k}\right) \geq 4$ for each $k \in\{i-1, i+1, j\}$ and we have $c r_{D}\left(E_{i}\right) \geq 12$.

Contract a neighboring copy of $P_{i}(5)$ which does not cross with $P_{i}(5)$ to a single vertex.

If the other neighboring copy of $P_{i}(5)$ crosses $P_{i}(5)$, then we have $c r_{D}\left(E_{i}\right) \geq 4+4+5$ (by Lemma 6 and Theorem 1).

If the other neighboring copy of $P_{i}(5)$ does not cross $P_{i}(5)$, we contract $P_{i-1}(5)$ (and $\left.P_{i+1}(5)\right)$ into a single vertex x (respectively y) to get a subgraph isomorphic to $P(5)+$ $\{x, y\}$ which has crossing number 10 by Theorem 2. As such, we have a contradiction because

Figure 6. Detouring an edge.

$$
\begin{aligned}
\operatorname{cr}_{D}\left(E_{i}\right) & \geq c r_{D}\left(E_{i}, E_{i}\right)+c r_{D}\left(E_{i}, L_{i-1}\right)+\operatorname{cr}_{D}\left(E_{i}, L_{i}\right) \\
& \geq \operatorname{cr}(P(5)+\{x, y\})=10
\end{aligned}
$$

Case (2): Suppose $i=1$ and $j=n$.
By Lemma 6, $\operatorname{cr}_{D}\left(E_{1}, E_{n}\right) \geq 4$.
Let Z^{\prime} be a cycle in $P_{1}(5)$ that intersects with a cycle $Z^{\prime \prime}$ of $P_{n}(5)$. Since D is a good drawing, we may assume without loss of generality that Z^{\prime} encloses a vertex v of $P_{n}(5)$. As such, the edge in L_{n-1} incident to v must cross the boundary of Z^{\prime}.

By the result in Case (1), $P_{2}(5)$ does not cross with $P_{1}(5)$. Contract $P_{2}(5)$ to a single vertex w. Since $\operatorname{cr}\left(P_{1}(5)+\right.$ $\{w\}) \geq 5$, we have $c r_{D}\left(E_{1}\right) \geq 4+5+1$, a contradiction.

This shows that $P_{i}(5)$ does not cross $P_{j}(5)$ for $i \neq j$.
Next we show that
(2) $c r_{D}\left(E_{i}, L_{j}\right)=0$ if $j \notin\{i-1, i\}$.

Suppose the contrary and let $x y$ be an edge in L_{j} that crosses $P_{i}(5)$. Suppose $x \in V\left(P_{j}(5)\right)$ and $y \in V\left(P_{j+1}(5)\right)$. Consider a sub-drawing D^{\prime} of D induced by the vertices of $P_{i}(5)$.
(a) Suppose x and y are in different regions of D^{\prime}.

This means that all the vertices of $P_{j}(5)$ are in the same region as x while all the vertices of $P_{j+1}(5)$ are in the same region as y (because $P_{i}(5)$ does not cross other copies of $P(5))$. But this means that the edges in L_{j} cross the boundary of the region at least 10 times (yielding $\operatorname{cr}_{D}\left(E_{i}\right) \geq 10$), a contradiction.
(b) Suppose x and y are in the same region of D^{\prime}.

Let Z be a cycle containing $x y$ which crosses E_{i}. Since D is a good drawing, Z must enclose some vertex of $P_{i}(5)$ (otherwise $x y$ crosses the same edge of $P_{i}(5)$ at least twice).

Suppose Z encloses only one vertex v of $P_{i}(5)$. This means that the edge $x y$ crosses three edges of $P_{i}(5)$ incident to v. By detouring the edge $x y$ as shown in Figure 6, we obtain a drawing of $P(5) \square P_{n}$ with fewer crossings, contradicting the optimality of D. Hence assume that Z encloses at least two vertices
of $P_{i}(5)$. As such, we have $c r_{D}\left(Z, E_{i}\right) \geq 4$. Since no neighboring copies of $P(5)$ cross each other (by the result in case (1)), we contract a neighboring copy of $P_{i}(5)$ to a single vertex w (to get $\operatorname{cr}\left(P_{i}(5)+\{w\}\right) \geq 5$) so that $\operatorname{cr}_{D}\left(E_{i}, L_{i-1}\right) \geq 5$ or $c r_{D}\left(E_{i}, L_{i}\right) \geq 5$. By using an argument similar to Case (1)(i), we obtain $c r_{D}\left(E_{i}\right) \geq 10$, a contradiction.

We shall now show that $\operatorname{cr}_{D}\left(P(5) \square P_{n}\right) \geq 10(n-1)$.
For this purpose, let Q_{i} denote the subgraph of $P(5) \square P_{n}$ induced by the set of vertices in $P_{i-1}(5) \cup P_{i}(5) \cup P_{i+1}(5)$ for each $i=2, \ldots, n-1$. Define

$$
f\left(Q_{i}\right)=c r_{D}\left(E_{i}, L_{i-1} \cup L_{i}\right)+c r_{D}\left(L_{i-1}, L_{i}\right)+c r_{D}\left(E_{i}, E_{i}\right)
$$

It is easy to see that a crossing in D contributes at most one to the sum $F=\sum_{i=2}^{n-1} f\left(Q_{i}\right)$. Let D_{i} denote the subdrawing of D that corresponds to Q_{i}. By observation (1), we have $c r_{D_{i}}\left(E_{r}, E_{s}\right)=0$ for any distinct $r, s \in\{i-1, i, i+1\}$. Also, by observation (2), we have $c r_{D_{i}}\left(L_{i-1}, E_{i+1}\right)=0$ and $c r_{D_{i}}\left(L_{i}, E_{i-1}\right)=0$. As such, by contracting $P_{i-1}(5)$ and $P_{i+1}(5)$ into two vertices x_{i} and y_{i} respectively, the resulting graph is isomorphic to $P_{i}(5)+\left\{x_{i}, y_{i}\right\}$ which has crossing number 10 by Theorem 2. This means that $f\left(Q_{i}\right) \geq c r_{D}\left(P_{i}(5)+\right.$ $\left.\left\{x_{i}, y_{i}\right\}\right) \geq 10$ and that $F=\sum_{i=2}^{n-1} f\left(Q_{i}\right) \geq 10(n-2)$.

Finally consider the subgraph H of $P(5) \square P_{n}$ induced by the set of vertices in $P_{1}(5) \cup P_{2}(5)$. By observation (1), we can contract $P_{2}(5)$ (of H) into a single vertex w to obtain a graph isomorphic to $P(5)+\{w\}$ which has crossing number 5 by Theorem 1. This means that, in D, there are at least 5 crossings on E_{1}. By symmetry (since we can just relabel the subscripts on $P_{i}(5)$ in reverse order), there are at least 5 crossings on E_{n}. None of these crossings are counted in F. Consequently, the number of crossings in D is at least $F+$ $10=10(n-1)$ and the proof is complete.

Theorem 3. $\operatorname{cr}\left(P(5) \square P_{n}\right)=10(n-1)$ for all natural number $n \geq 1$.

Figure 7. $P(5) \square P_{n}$ with $10(n-1)$ crossings.

Proof. Figure 7 depicts a drawing of $P(5) \square P_{n}$ with $10(n-1)$ crossings where $n \geq 3$. This proves the upper bound. It remains to show that $\operatorname{cr}\left(P(5) \square P_{n}\right) \geq 10(n-1)$.

Since $P(5)$ is a planar graph and that $P(5) \square P_{2}$ is isomorphic to $C_{5} \square C_{4}$ as remarked earlier, the result is true for $n \leq 2$.

Assume that $\operatorname{cr}\left(P(5) \square P_{k}\right) \geq 10(k-1)$ where $k \geq 3$ and that there is a drawing D of $P(5) \square P_{k+1}$ with fewer than $10 k$ crossings. By Lemma 7, $P(5) \square P_{k+1}$ contains a copy $P_{i}(5)$ with at least 10 crossings. By deleting all edges of $P_{i}(5)$ in $P(5) \square P_{k+1}$, the resulting graph is either a subdivision of $P(5) \square P_{k}$ or else contains the subgraph $P(5) \square P_{k}$ each with fewer than $10(k-1)$ crossings, a contradiction.

Disclosure statement

No conflicts of interest have been reported by the authors.

Funding

This work was supported by the Research Grant FRGS (FRGS/1/2018/ STG06/UTAR/01/1).

References

[1] Beineke, L. W, Ringeisen, R. D. (1980). On the crossing numbers of products of cycles and graphs of order four. J. Graph Theory 4(2): 145-155.
[2] Bokal, D. (2007). On the crossing numbers of Cartesian products with paths. J. Combin. Theory Ser. B 97(3): 381-384.
[3] Dean, A. M, Richter, R. B. (1995). The crossing number of $C_{4} \times C_{4}$. J. Graph Theory 19(1): 125-129.
[4] Klešč, M. (1994). The crossing numbers of products of paths and stars with 4-vertex graphs. J. Graph Theory 18(6): 605-614.
[5] Klešč, M. (2001). The crossing numbers of Cartesian products of paths and stars with 5-vertex graphs. Discrete Math. 233(1-3): 353-359.
[6] Ouyang, Z., Wang, J, Huang, Y. (2014). The crossing number of the Cartesian product of paths with complete graphs. Discrete Math. 328: 71-78.
[7] Peng, Y. H, Yiew, Y. C. (2006). The crossing number of $P(3,1) \times P_{n}$. Discrete Math. 306: 1941-1946.
[8] Yuan, Z, Huang, Y. (2008). The crossing number of $C(7,2) \times$ P_{n}. Adv. Math. 2: 245-253.
[9] Yuan, Z, Huang, Y. (2011). The crossing number of the Cartesian product of Petersen graph $P(4,1)$ with path $P n$. Oper. Res. Trans. 15: 95-106.
[10] Yuan, Z., Ling, T., Huang, Y, Liu, J. (2008). The crossing number of $C(8,2) \square P_{n}$. Graphs Combin. 24(6): 597-604.
[11] Zheng, W., Lin, X, Yang, Y. (2008). The crossing number of $K_{2, m} \square P_{n}$. Discrete Math. 308: 6639-6644.
[12] Zheng, W., Lin, X., Yang, Y, Cui, C. (2007). On the crossing number of $K_{m} \square P_{n}$. Graphs Combin. 23: 327-336.
[13] Zheng, W., Lin, X., Yang, Y, Deng, C. (2008). On the crossing numbers of $K_{m} \square C_{n}$ and $K_{m,} \square P_{n}$. Discrete Appl. Math. 156: 1892-1907.

[^0]: CONTACT Gek L. Chia chiagl@utar.edu.my © Department of Mathematical and Actuarial Sciences, Universiti Tunku Abdul Rahman, Kajang, Selangor, Malaysia.

