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Crossing number of Cartesian product of prism and path

Yip C. Yiew, Gek L. Chia, and Poh-Hwa Ong

Department of Mathematical and Actuarial Sciences, Universiti Tunku Abdul Rahman, Kajang, Selangor, Malaysia

ABSTRACT

An m-prism is the Cartesian product of an m-cycle and a path with 2 vertices. We prove that the
crossing number of the join of an m-prism (m > 4) and a graph with k isolated vertices is km for
each k € {1,2}. We then use this result to prove that the crossing number of the Cartesian prod-
uct of a 5-prism and a path with n vertices is 10(n — 1). This answers partially the conjecture

raised by Peng and Yiew (in 2006) in the affirmative.

1. Introduction

By a good drawing of a graph G we mean an embedding of
G on the plane such that (i) no edge intersect itself, (ii)
adjacent edges do not intersect each other, (iii) any pair of
edges do not touch each other and they intersect each other
at most once, and (iv) no three edges intersect at the same
point. If D is a good drawing of G, we let ¢rp(G) denote the
number of pair-wise intersections of the edges of G in D. If
crp(G) achieves the minimum number, then D is called an
optimal drawing of G and the minimum number of cross-
ings is called the crossing number of G, denoted cr(G).

The Cartesian product of two graphs G and H, denoted
GOH is the graph with vertex set V(G) x V(H) and having
edges of the form (u,u')(v,v') where either u = v and /v €
E(H) or ' =+ and uv € E(G).

Let P, and C,, denote the path and cycle on n vertices respect-
ively. By an m-prism, denoted P(m), we mean the Cartesian
product C,,(0P,. The crossing numbers of the Cartesian product
of some special graphs with the path (or other graph) have been
the subject of investigation (see [2-13]). In particular, in [7], it
was proved that cr(P(3)0P,) = 4(n — 1) for all natural num-
bers n > 1. Further, it was conjectured that cr(P(m)0P,) =
2m(n — 1) for all natural numbers m > 4. In this paper, we
prove that the conjecture is true for m = 5 (see Theorem 3). The
case m = 4 has earlier been established in [9].

Let G+ H denote the join of two graphs G and H. The
proof of Theorem 3 rests on the result which states that
cr(P(m) + K,) =rm,1 <r <2 (see Theorems 1 and 2).
Here K, denotes a graph with n isolated vertices. The proof
of this is given in Section 2.

2. Join of graphs

Throughout, unless otherwise stated, we let the two m-cycles
in P(m) be denoted by Z; =apaja,...am_1a0 and Z, =
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bob1b;...by_1by. Also, we assume that a;b; is an edge in
P(m) for each i € {0,1,...,m — 1}. Each edge a;b; is called a
spoke of P(m).

Let D be a good drawing of a graph G and let H be a
subgraph of G. The responsibility of H in D, denoted rp(H),
is the total number of times edges in H are crossed. Note
that if two edges of H cross each other, then a contribution
of two is added to its responsibility.

Lemma 1. Let D be a good drawing of P(m)+ {w} such
that no triangle of the form wa;bw has an edge crossed,
0 <i<m— 1. Then D has at least 2[%] crossings, m > 3.

Proof. By the condition of the lemma, in D, no triangle of
the form wa;b;w is enclosed by another triangle of the form
wa;bjw. As such, we may assume that edges of the form a;b;
are drawn on the x-axis in an arbitrary manner with the
vertex w lying on the upper region of the x-axis and all
edges of Z, U Z, are on the x -axis or are lying on the lower
region of the x-axis.

Alternatively, we may assume that edges of the form a;b;
are on the boundary of convex polygon P on 2m vertices with
w lying on the “exterior” and the edges of Z; U Z, are on the
boundary of P or lying in the “interior” of P. Figure 1 depicts
an example of such drawing with m = 5.

We shall show that the number of crossings on the edges
of Z; made by the edges of Z; is at least 2[%].

We have the following observations.

(i) It is easy to see that an edge of Z; which is on the
boundary of P has no crossing.

(ii)  Clearly, any vertex of Z, is incident to at most one

edge of Z; which is a boundary edge of P.

We assert that every edge of Z; not lying on the

boundary of P is crossed by at least 2 edges of Z,.

(iii)
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Figure 1. An illustration on the proof of Lemma 1 with m = 5.

Evidently, the above observations imply the conclusion of
the lemma.

To prove (iii), let a;a;; be an edge of Z; not on the
boundary of P and consider the subgraph H induced by the
vertices of Z, which are enclosed in the “interior” of the tri-
angle A; = wa,a;11w. Here we just need to consider the case
|V(H)| < m/2. Clearly H is a union of paths.

If H has an isolated vertex v, then v is adjacent to two
vertices in the “exterior” region of A; giving two crossings
on the edge a;a;+; (see for example, v = b; for the case i =
1 in Figure 1). If H has no isolated vertices, then H has two
vertices uy, u each of degree 1 in H (see for example, u; =
bo, uy = by for the case i = 0 in Figure 1). Each of u;,u, is
adjacent to some vertex in the “exterior” region of A; again
giving two crossings on the edge a;a;;;. This completes
the proof. o

Theorem 1. cr(P(m) + {w}) =m if m > 4.

Proof. By induction on m. We first show that the result
holds for m = 4.

The drawing of P(4) + {w} in Figure 2 shows that its
crossing number is at most 4. It remains to show the reverse
inequality. We prove this by contradiction. Assume that
there is an optimal drawing D of P(4) + {w} with fewer
than 4 crossings.

We claim that no two vertex-disjoint 4-cycles of P(4)
cross each other.

Suppose the contrary and let C, and C] be two vertex-
disjoint 4-cycles which cross each other.

Case (i) No edges in C, U C] cross more than once.

Then C} encloses at least one vertex of Cj and vice versa.
Since every vertex of P(4) is adjacent to w, the number of
crossings in D is at least 4, a contradiction.

Case (ii) Some edges in C, U CJ cross at least two times.

Without loss of generality, assume that an edge, say xy of
C, crosses two edges of CJ. Delete the edges xy,wx,wy
resulting in a graph H with dy(x) = 2 = dy(y). Note that H
is a subdivision of P(3) + {w} which has crossing number 2
(see [7, Lemma 1]). But this implies that the number of
crossings in D is at least 4, a contradiction.

bo O b1

as

bs O O by

Figure 2. P(4) + {w}.

We now show that any 4-cycle in D has no self-crossing.
Suppose C is a 4-cycle with edges e; and e, which intersect
each other. Clearly e; and e, are non-adjacent. Hence there
is a 4-cycle C' containing e; but not e, and there is a 4-cycle
C" containing e, but not e;. It is not difficult to show that
V(C)NV(C") = (. But this is a contradiction by the pre-
ceding claim (since C' and C” are two vertex-disjoint 4-
cycles crossing each other).

It follows from the above observation that the sub-drawing
of P(4) induced by D yields a plane drawing of P(4) which
divides the plane into six 4-faces. Hence w is in one of the 4-
faces F. Since w is adjacent to every vertex of P(4), the edges
joining w and the vertices in V(P(4)) — V(F) must cross the
boundaries of F which means that D has at least 4 crossings.
This contradiction proves that cr(P(4) + {w}) = 4.

Note that the drawing of P(4) + {w} in Figure 2 can eas-
ily be generalized to obtain a drawing of P(m) + {w} with
at most m crossings.

Assume that cr(P(m) + {w}) = m where m > 4.

Let D be a good drawing of P(m+ 1)+ {w}. Assume
that D has at most m crossings. By Lemma 1, there is a tri-
angle of the form wa;bw in P(m+ 1) 4+ {w} with an edge
crossed in D. Now delete the edges waj, wb; and a;b; from
P(m+ 1)+ {w}. The resulting graph is a subdivision of
P(m) + {w} drawn with fewer than m crossings, a contra-
diction. This proves the theorem. o

Lemma 2. cr(P(m)+ {x,y}) <2m for any natural num-
ber m > 4.

Proof. We shall describe a drawing of P(m) + {x, y} with 2m
crossings. Draw the cycle Z; = apa;4;...a,,—14p in the form of a
cycle on the plane. Draw Z, = byb;b,...b,—1 by also in the form
of a cycle with Z, enclosing Z; and join all the edges a;b;,i =
0,1,2,...,m — 1 to obtain a plane drawing of P(m).

Now put x in the region enclosed by Z; and join x to all the
vertices in Z; (with no crossing). Now join x and b; with an
edge so that xb; crosses only the edge a;a;41,i = 0,1,2,...,m —
1. Here a,, = agp. See Figure 2 for the case m = 4 with x = w.
Put y on the unbounded region of P(m) and join y to all verti-
ces in Z,. Then join y and a; with an edge so that ya; crosses



Figure 3. Some drawings of D'.

only the edge bib;,_;,i=0,1,2,...,m — 1. Here b_y = b,,_;.
The resulting drawing has only 2m crossings. o

The following lemma has been proved in [9]. Hence we
omit the proof.

Lemma 3. ([9], Lemma 4) cr(P(4) 4+ {x,y}) = 8.

Lemma 4. In any good drawing of P(m)+ {x,y} where
m > 4, there is a 4-cycle of the form xa;ybix having at least
two crossings.

Proof. Assume on the contrary that every 4-cycle of the type
xa;ybix has at most one crossing.

Consider the triangles A, = xa;bix and A, = ya;b;y.

We assert that x is not enclosed in A,. To see this, suppose
the contrary. Let S, S; be the regions bounded by A, ya;xb;y
respectively, and let S3 denote the exterior region of A,.

Note that if there is a pair of vertices aj, bj (j # i) that lie
in §; or in S3, then xa;yb;x is a 4-cycle with at least 2 cross-
ings (which is impossible). Also, if g; is in S3 and b; is in
Sy, then xajyb;x is a 4-cycle with at least 2 crossings.

Now, suppose a; is in S3 and b; is in S,. Let aj;, be a
neighbor of a; and a;;; # a;. Note that this is possible
because the degree of a; is 5. Apply the same argument to
the pair of vertices {aj.1,b11} (which plays the role of
{aj, b;}), it follows that a;,; is in S3 and b, is in S,. Since
a; is adjacent to bj, and aj;, is adjacent to b;,1, there are at
least 2 crossings on xa;yb;x.

Hence we assume no vertex (other than a;, b;,y) is in S;
(so that T* crosses no boundary of A,). If g; is in S; and b;
is in S;, we proceed as in the proceeding case to obtain a
similar contradiction. Hence assume that all the vertices are
in S,. If the path ag;a;_1b;_1b; lies completely in S, then it
separates x from y. As such, xa;;1yb;i1x is a 4-cycle that
intersects with the edges of this path at least two times. If
the path a;a,_1b;_1b; does not lie completely in S;, then
a;a;_1 crosses the edge xb;; in this case the path a;a;:1bi11b;
must lie completely in S, (otherwise a;a;;; crosses the edge
xb; giving 2 crossings on xa;yb;x) and this path separates x
from y yielding a 4-cycle of the form xa;ybix with 2 cross-
ings for some j € {i — 1,i+ 1}. This proves the assertion.

Likewise y is not enclosed by A,.

(i) First, we consider the case where no edge of Q is
crossed by an edge of Q. Let vw be an edge of P(m) — Q
which crosses xa;, and let C* be a cycle containing vw.
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Then one end of vw, say w is enclosed either by A, or by
A,. If w is adjacent to neither a; nor b;, then C* crosses Q
at least twice, a contradiction. Hence we assume that w is
adjacent to a;. As such, w € {a;_1,4a;11}, say w = a;_1.

Since w is enclosed by either A, or A, a;b; is crossed by
either yw or by xw.

If b;_, is enclosed by Q, then xa;_;yb;_1x is a 4-cycle of
the same type having 2 crossings, a contradiction. Hence we
assume that b;_; is not enclosed by Q. But this forces the 4-
cycle xa;ybix to have at least 2 crossings.

(ii) Next, suppose there is a crossing on the edges of the
4-cycle Q = xa;yb;x.

First we consider the case where there is an edge, say xa;
of Q which crosses an edge yb; of Q.

Since y is not enclosed by A,, yb; partitions A, into two
regions R;,R, with R; bounded by bix,a;x,b;y and R,
bounded by bja;,aix,biy. Note that no vertex in Z; =
apa; - - - am—14p is enclosed by Ry for any k = 1,2 otherwise
there is a 4-cycle of the type xa;ybjx with 2 or more cross-
ings. Likewise no vertex in Z, = bob; - - - byy—1bo is enclosed
by Ry for any k = 1,2.

With this restriction, we consider the sub-drawing D' on
the subgraph induced by the edges of the 4-cycles Q,Q; =
xai+1ybi1x and Q_y = xa;_1yb;_1x. In view of the observa-
tion in case (i), we may assume that any 4-cycle of the
form xa;jybjx has a self-crossing. Note that among the vari-
ous sub-drawings of D' on QU Q, there is a vertex z €
{ai_1,bi_1} such that z is separated from x (or from y) (see
Figure 3 for some examples of drawings of D’). As such,
the edge zx (or zy) must be crossed (in addition to the
self-crossing in Q_;), vyielding 2 crossings on the
4-cycle xa;_1yb;_1x.

We now assume that the edges of any 4-cycle of the type
xa;yb;x have no crossing. Since P(m) + {x, y} is non-planar,
for some i, the edge a;b; must be crossed by some edge,
say vw.

We can assume without loss of generality that A, con-
tains one end, say w of vw. Then the edge wy (which
belongs to the 4-cycle xwyvx) crosses a;b;. By the assump-
tion in the preceding paragraph, {v,w} # {aj,b;} for any j.
If {v,w}={ajai1} or {v,w} ={bj;,bj11}, then it is easy
to see that there is a 4-cycle xa;ybjx with at least two cross-
ings, a contradiction. o

Theorem 2. cr(P(m) + {x,y}) = 2m for any natural num-
ber m > 4.
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Figure 4. Some drawings of Z; U Z,.

Proof. By Lemma 2, we have cr(P(m) + {x,y}) < 2m.

We prove the reverse inequality by induction on m. By
Lemma 3, the result is true for m = 4. Assume that the
result is true for m = k where k > 4. Suppose there is a
good drawing of P(k+ 1)+ {x,y} with fewer than 2(k +
1) crossings.

By Lemma 4, there exists a 4-cycle xa;yb;x with at least
two crossings. Now delete all the edges of these 4-cycles
together with the edge a;b;, the resulting graph is a subdiv-
ision of the graph P(k) 4+ {x,y} drawn with fewer than 2k
crossings. This contradiction proves the result. o

3. Cartesian product of graphs

In [1], Beineke and Ringeisen proved that cr(C,0C,) = 2n.
Since P(m)OP, is isomorphic to C,0Cs;, we have
cr(P(m)0P,) = 2m where m > 4.

For each i = 1,2,...,n, let P;(m) denote the i-th copy of
P(m) in P(m)OP, and E; = E(P;(m)). Also, let L; denote the
set of all edges joining Pj(m) and Pj;,(m),j = 1,2,..,n — 1.

Suppose D is a good drawing of P(m)OP, and suppose
H,] C E(P(m)OP,). Let crp(H,J) denote the number of
crossings in D which are made on H by J. In particular,
crp(E;, E;) stands for the number of self-crossings among the
edges in E;. On the other hand, let crp(E;) denote the total
number of crossings in D on the edges in E;.

Lemma 5. Let D be a good drawing of P(5)0P,. If
crp(E;, Li—1) = 0 or crp(E;, L;) = 0, then crp(E;, E;) > 6.

Proof. It suffices to prove the following statement.

Let D be a good drawing of P(5) with all its vertices lying
in the same region. Then D has at least 6 crossings.

Since all the vertices are in the same region, we may
assume without loss of generality, as in the proof of Lemma
1 that the vertices of P(5) are all on the boundary of a con-
vex 10-gon P and that any edge of P(5) is either on the
boundary or in the “interior” region of P. Suppose the verti-
ces of P are xg, X1, ..., X9 (in cyclic order).

Let e be an edge of Z; not on the boundary of P,i €
{1,2}. Call e a separating diagonal edge (s.d.edge) on Z;_; if
the vertices of Z;_; are being separated by e into two differ-
ent segments of P.

If Z; has at least three s.d. edges, then, as in the proof of
Lemma 1, D has at least 6 crossings since each s.d. edge is
crossed by at least two edges of Z;_;. Hence we assume that
Z; has at most two s.d. edges. It is easy to see that neither
Z, nor Z, can have precisely one s.d. edge.

Case (1): Z; has no s.d. edge.

In this case, we may assume that the vertices of Z; lay on
the segment xo, X, ..., x4 (which also denote the vertices of
Z;) while those of Z, lay on the segment xs,xg,...,Xs. We
shall show that the number of crossings on the edges of Z;
is at least 3 for each i = 1,2.

Suppose xpx; is an edge of Z;.

If j = 4, then each spoke of P(5) incident to a vertex in
{x1,%2,x3} must cross the edge xox4.

If j = 3, then each spoke of P(5) incident to a vertex in
{x1, %2} must cross the edge xox3. Moreover the edge joining
X4 to a vertex in {x,x,} must cross the edge xox;3.

So assume that j = 2. If x4 is adjacent to x;, the situation
is similar to the case j = 3. Hence x4 is adjacent to x, and
x3. But this also implies that x,x; is an edge of Z; which is
crossed by xpxz,x4x;. Also, the spoke incident to x, must
cross the edge x;x;.

By applying the same arguments to Z, we obtain the
required conclusion.

Case (2): Z; has only two s.d. edges.

Since the two s.d. edges e;, e, of Z; give raise to at least 4
crossings on {ej,e;}, it remains to show that some edge of
Z; is crossed by some spoke of P(5) for each i = 1,2.

For this purpose, we observe that in any drawing of Z;
with only two s.d. edges (there are in fact only 12 such
drawings as is depicted in Figure 5), there is a vertex v; of
Z; whose spoke incident to it crosses some edge of
Z;,i =1,2. Figure 4 illustrates some of these drawings. We
conclude that D has at least 6 crossings in this case.

This completes the proof. o

Lemma 6. Suppose D is an optimal drawing of P(5)CP,
where n > 3. If Pi(5) and Pj(5) cross each other, i# j,
then crp(E;, Ej) > 4.

Proof. Clearly every edge in P(5) is an edge of some cycle in
P(5). Let Z be a cycle in P;(5) that crosses some edge

If Z encloses two or more vertices of P;(5), then clearly
there are at least 4 crossings on the boundary of Z.

Suppose Z encloses only one vertex, say v of Pj(5). Let Z’
be a cycle in P;(5) containing an edge incidents to v. If Z’
encloses a vertex of Z, then clearly crp(E;, Ej) > 4. Hence we
assume that Z' encloses no vertex of Z. We can further
assume that any cycle in Pj(5) which contains an edge inci-
dent to the vertex v encloses no vertex of Z. But this means
that the three edges e, ey, e3 of P;j(5) incident to v are all
crossed by an edge e of Z (see Figure 6). Since the degree of
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Figure 5. A list of all 5 -cycles Z; with only 2s.d. edges.

v in P(5)0P, is either 4 or 5, by detouring the edge e as
shown in Figure 6, we obtain a drawing of P(5)0P, with
fewer crossings. This contradicts the optimality of D. o

Lemma 7. Let D be an optimal drawing of P(5)0P, where
n>3. Then either crp(E;) > 10 for some 1<i<n or
else crp(P(5)0P,) > 10(n — 1).

Proof. Suppose each copy of P(5) in P(5)0P, has at most
9 crossings.

To establish crp(P(5)0P,) > 10(n — 1),
show that

(1) any two distinct copies of P(5) in P(5)00P, do not
cross each other.

Suppose on the contrary that P;(5) crosses P;j(5),

Case (1): Suppose 2 <i<n—1land 1 <j<n.

By Lemma 6, crp(E;, Ej) > 4

(i) Suppose j € {i —1,i+ 1}.

Without loss of generality assume that j=i—1. If
P;,1(5) does not cross P;(5), then we contract P;(5) to a
single vertex w (to get a subgraph isomorphic to

P;(5) + {w}). Since cr( :(5) + {w}) =5 by Theorem 1, we
have crp(E, E;UL;) >

If crp(EiLiy) > 1, we have crp(E;) > crp(E;, Eiop)
+crp(E, E; U L) +erp(Ei, Li1) > 4+ 5+ 1 a contradiction.

If crp(E;, L) =0, we have crp(E;) > crp(E,E;) +
crp(E;, Ei—1) > 6 4+ 4 (by Lemma 5), a contradiction.

we shall first

i#j.
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On the other hand, if P (5) crosses P;(5), then
crp(Ei, Eiy1) > 4 by Lemma 6. Further, if crp(E;, Li—y U L;) > 2
then

crp(E;) > crp(Ei, Li—y U L) + crp(Ei, Eioy) + crp(Es, Eif)

>2+4+4+4
a contradiction. If c¢rp(E;, Ly UL;) <1, then either
crp(E;, Liz1) =0 or crp(E, L) =0. In either case,

crp(Ei, E;) > 6 by Lemma 5 and this leads to
crp(E;) > crp(Ei, E;) + crp(Ej, Eio1) + crp(Ej, Eit1)
>6+4+4

again a contradiction.

(ii) Suppose j & {i — 1,i+ 1}.

Note that P;(5) is crossed by at most one of its neighbor-
ing copies. This is true otherwise crp(E;, Ex) > 4 for each
ke {i—1,i+ 1,j} and we have crp(E;) > 12.

Contract a neighboring copy of P;(5) which does not
cross with P;(5) to a single vertex.

If the other neighboring copy of P;(5) crosses P;(5), then
we have crp(E;) > 4+ 4+ 5 (by Lemma 6 and Theorem 1).

If the other neighboring copy of P;(5) does not cross
P;(5), we contract P;_;(5) (and P;;1(5)) into a single vertex
x (respectively y) to get a subgraph isomorphic to P(5) +
{x,y} which has crossing number 10 by Theorem 2. As
such, we have a contradiction because
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Figure 6. Detouring an edge.

CI’D(E,‘) Z CT’D(EZ‘,E,') + CT’D(Ei,Ll;l) + CTD(Ei,L,')
> cr(P(5) + {x,y}) = 10.

Case (2): Suppose i =1 and j = n.

By Lemma 6, crp(E;, E,) > 4.

Let Z' be a cycle in P;(5) that intersects with a cycle Z”
of P,(5). Since D is a good drawing, we may assume with-
out loss of generality that Z’ encloses a vertex v of P,(5). As
such, the edge in L,_; incident to v must cross the bound-
ary of Z'.

By the result in Case (1), P,(5) does not cross with
P,(5). Contract P,(5) to a single vertex w. Since cr(P;(5) +
{w}) > 5, we have crp(E;) > 4+ 5+ 1, a contradiction.

This shows that P;(5) does not cross P;(5) for i # j.

Next we show that

(2) erp(En L) = 0if j & {i — 1,i}.

Suppose the contrary and let xy be an edge in L; that crosses
P;(5). Suppose x € V(P;(5)) and y € V(P;;1(5)). Consider a
sub-drawing D’ of D induced by the vertices of P;(5).

(a) Suppose x and y are in different regions of D'.

This means that all the vertices of Pj(5) are in the same
region as x while all the vertices of P;;;(5) are in the same
region as y (because P;(5) does not cross other copies of
P(5)). But this means that the edges in L; cross the bound-
ary of the region at least 10 times (yielding crp(E;) > 10), a
contradiction.

(b) Suppose x and y are in the same region of D'.

Let Z be a cycle containing xy which crosses E;. Since D
is a good drawing, Z must enclose some vertex of P;(5)
(otherwise xy crosses the same edge of P;(5) at least twice).

Suppose Z encloses only one vertex v of P;(5). This means
that the edge xy crosses three edges of P;(5) incident to v. By
detouring the edge xy as shown in Figure 6, we obtain a draw-
ing of P(5)0P, with fewer crossings, contradicting the opti-
mality of D. Hence assume that Z encloses at least two vertices

detouring e
S

detouring e
i —_

€1 €3 €9

of P;(5). As such, we have crp(Z, E;) > 4. Since no neighbor-
ing copies of P(5) cross each other (by the result in case (1)),
we contract a neighboring copy of P;(5) to a single vertex w
(to get cr(Py(5)+{w}) >5) so that crp(E;,Li—;) >5 or
crp(E;, L;) > 5. By using an argument similar to Case (1)(i),
we obtain crp(E;) > 10, a contradiction.

We shall now show that c¢rp(P(5)0P,) > 10(n — 1).

For this purpose, let Q; denote the subgraph of P(5)0P,
induced by the set of vertices in P;_1(5) UP;(5) UP;1(5)
for each i = 2,...,n — 1. Define

f(Qz) = CT’D(E,',LFl U L,) + CTD(Ll;l,Li) + CTD(Ei,Ei>.

It is easy to see that a crossing in D contributes at most one to
the sum F = 7} f(Q;). Let D; denote the subdrawing of D
that corresponds to Q;. By observation (1), we have
crp,(Er, Es) =0 for any distinct r,s € {i — 1,i,i+ 1}. Also,
by observation (2), we have crp,(Li-1,Eiy1) =0 and
crp,(Li, Ei—1) = 0. As such, by contracting P;_;(5) and P;;;(5)
into two vertices x; and y; respectively, the resulting graph is
isomorphic to P;(5) + {x;,y;} which has crossing number 10
by Theorem 2. This means that f(Q;) > crp(Pi(5) +
{xi,yi}) > 10 and that F = 327} £(Q;) > 10(n — 2).

Finally consider the subgraph H of P(5)0P, induced by
the set of vertices in P;(5) U P,(5). By observation (1), we
can contract P;(5) (of H) into a single vertex w to obtain a
graph isomorphic to P(5) 4+ {w} which has crossing number
5 by Theorem 1. This means that, in D, there are at least 5
crossings on E;. By symmetry (since we can just relabel the
subscripts on P;(5) in reverse order), there are at least 5
crossings on E,. None of these crossings are counted in F.
Consequently, the number of crossings in D is at least F +
10 = 10(n — 1) and the proof is complete. o

Theorem 3. cr(P(5)0P,) = 10(n — 1) for all natural num-
ber n > 1.
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Figure 7. P(5)0P, with 10(n — 1) crossings.

Proof. Figure 7 depicts a drawing of P(5)0P, with 10(n — 1)
crossings where »n > 3. This proves the upper bound. It
remains to show that ¢r(P(5)0P,) > 10(n — 1).

Since P(5) is a planar graph and that P(5)0P, is iso-
morphic to CsOC, as remarked earlier, the result is true
for n < 2.

Assume that cr(P(5)0Px) > 10(k — 1) where k>3 and
that there is a drawing D of P(5)0Py; with fewer than 10k
crossings. By Lemma 7, P(5)0Pj;; contains a copy P;(5)
with at least 10 crossings. By deleting all edges of P;(5) in
P(5)0Py.1, the resulting graph is either a subdivision of
P(5)0P) or else contains the subgraph P(5)0Pj each with
fewer than 10(k — 1) crossings, a contradiction. o
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