

AKCE International Journal of Graphs and Combinatorics

ISSN: 0972-8600 (Print) 2543-3474 (Online) Journal homepage: https://www.tandfonline.com/loi/uakc20

Decomposition of product graphs into paths and stars on five vertices

M. Ilayaraja, K. Sowndhariya & A. Muthusamy

To cite this article: M. Ilayaraja, K. Sowndhariya & A. Muthusamy (2020): Decomposition of product graphs into paths and stars on five vertices, AKCE International Journal of Graphs and Combinatorics, DOI: <u>10.1016/j.akcej.2019.09.007</u>

To link to this article: https://doi.org/10.1016/j.akcej.2019.09.007

9	© 2020 The Author(s). Published with license by Taylor & Francis Group, LLC
	Published online: 04 May 2020.
	Submit your article to this journal $oldsymbol{oldsymbol{\mathcal{G}}}$
ılıl	Article views: 81
a a	View related articles 🗗
CrossMark	View Crossmark data ☑

3 OPEN ACCESS

Decomposition of product graphs into paths and stars on five vertices

M. Ilayaraja, K. Sowndhariya, and A. Muthusamy

Department of Mathematics, Periyar University, Salem, India

ABSTRACT

Let P_k , S_k and K_k respectively denote a path, a star and a complete graph on k vertices. By a (k;r,s)-decomposition of a graph G, we mean a decomposition of G into r copies of P_{k+1} and S copies of S_{k+1} . In this paper, it shown that the graph $S_m \times S_m$ admits a $S_m \times S_m$ -decomposition if and only if $S_m \times S_m \times S_m$ denotes a tensor product of complete graphs. Also we extend the existence of such a decomposition in complete $S_m \times S_m \times S_m$ -decomposition in complete $S_m \times S_m \times S_m \times S_m \times S_m$ -decomposition in complete $S_m \times S_m \times$

KEYWORDS

Path; star; tensor product; graph decomposition

2010 MSC 05B30; 05C38

1. Introduction

All graphs considered here are finite. By a *decomposition* of G, we mean a list of edge-disjoint subgraphs of G whose union is G. For the graph G, if E(G) can be partitioned into $E_1, ..., E_k$ such that the subgraph induced by E_i is H_i , for all $i, 1 \le i \le k$, then we say that $H_1, ..., H_k$ decompose G and we write $G = H_1 \oplus ... \oplus H_k$. For $1 \le i \le k$, if $H_i \cong H$, we say that G has a H-decomposition. If G can be decomposed into G copies of G and G has a G and G copies of G and G has a G and G are decomposition. If such a decomposition exits for all possible G and G has a G

Let K_n be a complete graph on n vertices and $K_{k,k}$ be the complete bipartite graph with bipartition (X,Y), where $X = \{1_i\}$ and $Y = \{2_i\}$, $1 \le i \le k$. For two graphs G and H, their tensor product $G \times H$ and wreath product $G \otimes H$ have the same vertex set $V(G) \times V(H)$ and their edge sets are defined as follows: $E(G \times H) = \{(g,h)(g',h') \mid gg' \in E(G) \text{ and } hh' \in E(H)\}$, $E(G \otimes H) = \{(g,h)(g',h') \mid gg' \in E(G) \text{ or } g = g',hh' \in E(H)\}$.

The above products are associative and distributive over edge-disjoint union of graphs and the tensor product is commutative. A graph G having partite sets $X_1, ..., X_m$ with $|X_i| = n$, $1 \le i \le m$ and $E(G) = \{xy \mid x \in X_i \text{ and } y \in X_j, \forall i \ne j\}$ is called *complete m-partite* graph and is denoted by $K_m \otimes \overline{K_n}$. Let P_{k+1}, C_k and S_{k+1} respectively denote a path, cycle and star each with having k edges. Also $[x_1...x_kx_{k+1}]$ and $(y_1; x_1, ..., x_k)$ respectively denotes a path P_{k+1} and a star $S_{k+1} (\cong K_{1,k})$. If there are t stars with same end vertices $x_1, x_2, ..., x_k$ and different centers $y_1, y_2, ..., y_t$, we denote it by $(y_1, y_2, ..., y_t; x_1, x_2, ..., x_k)$.

The study of (*G*, *H*)-multidecomposition has been introduced by Atif Abueida and M. Daven [1]. Moreover, Atif Abueida and Theresa O'Neil [2] have settled the existence of

(G, H)-multidecomposition of $K_m(\lambda)$, when (G, H) = $(K_{1,n-1},C_n)$ for n=3,4,5. Priyadharsini and Muthusamy [11] gave necessary and sufficient condition for the existence of (G_n, H_n) -multidecomposition of $\lambda K_{n,n}$, where G_n , $H_n \in$ $\{C_n, P_n, S_n\}$. H.C. Lee [8] established necessary and sufficient condition for the multidecomposition of $K_{m,n}$ into at least one copy of C_k and S_{k+1} . H.C. Lee and J.J. Lin [10] have obtained necessary and sufficient condition for the decomposition of $K_{m,m}$ graph minus a one factor into cycles and stars. Shyu [12, 13] respectively, considered the existence of a decomposition of $K_{m,n}$, K_n into paths and stars, cycles and stars with k edges. Jeevadoss and Muthusamy [5-7] have proved that the necessary and sufficient condition for the existence of a decomposition of $K_{m,n}$, $\lambda K_{m,n}$ into paths and cycles each having k edges, also product graphs into paths and cycles of length four. H.C. Lee [9] established necessary and sufficient conditions for the existence of a decomposition of complete bipartite multigraph into cycles and stars with at least one copy of each. Recently, Shyu [13] has been proved that the necessary and sufficient conditions for the existence of decomposition of $K_{m,n}$ and K_n into paths, satrs and cycles with four edges each. M. Ilayaraja and A. Muthusamy [4] have obtained necessary and sufficient conditions for the existence of decomposition of $K_{m,n}$ into cycles and stars with four edges. By a (k; r, s)-decomposition of a graph G, we mean a decomposition of G into r copies of P_{k+1} and s copies of S_{k+1} . In this paper, we prove that the there exists a (4; r, s)-decomposition of $K_m \times K_n$ if and only if mn(m - $1)(n-1) \equiv 0 \pmod{8}$, where $K_m \times K_n$ denotes a tensor product of complete graphs. Also we extend the existence of such a decomposition in complete regular *m*-partite graphs.

Remarks.

(1) Let $A + B = \{(x_1 + y_1, x_2 + y_2) \mid (x_1, x_2) \in A, (y_1, y_2) \in B\}$ and rA is the sum of r copies of A.

(2) If G_1 and G_2 have a (4; r, s)-decomposition, then $G_1 \oplus G_2$ has a such decomposition.

To prove our main results we require the following:

Theorem 1.1. [12] Let r and s be nonnegative integers, and let n be a positive integer with $n \ge 16$. There exists a (4; r, s)-decomposition of K_n if and only if $4(r + s) = e(K_n)$.

Theorem 1.2. [14] Let r and s be nonnegative integers, and let n be a positive integer with $n \ge 2$. There exists a (4; r, s)-decomposition of $K_{2, 2n}$ if and only if $4(r + s) = e(K_{2, 2n})$ and s is even.

Theorem 1.3. [12] Let r and s be nonnegative integers, and let k and m be positive integers such that $m \ge k$. There exists a (k; r, s)-decomposition of $K_{k,m}$ if and only if the following conditions are fulfilled:

- (1) $k(r+s) = e(K_{k,m});$
- (2) $r \leq \lceil \frac{k}{2} \rceil 1 \Rightarrow (r \equiv 0 \pmod{2}) \land m \geq k + r);$
- (3) $\left(\left[\frac{k}{2}\right] \le r \le k-1 \land k \equiv 1 \pmod{2} \land r \equiv 1 \pmod{2}\right) \Rightarrow m \ge k+1.$

Theorem 1.4. [3] A nontrivial connected graph G has a P_3 -decomposition if and only if G has even size.

Theorem 1.5. [15] Let k, m and n be positive integers with $m \le n$. There exists an S_{k+1} -decomposition of $K_{m,n}$ if and only if one of the following holds:

(i) $k \le m$ and $mn \equiv 0 \pmod{k}$; (ii) $m < k \le n$ and $n \equiv 0 \pmod{k}$.

2. Constructions

In this section we present some basic constructions which are required to prove our main result.

Lemma 2.1. There exists a (4; r,s)-decomposition of K_n , when

Proof. Case 1 Let $V(K_9) = \{\{i\} \mid 1 \le i \le 8\}$. The required (4; r, s)-decompositions are given below:

- (1). r = 7 and s = 0. The required paths are [71862], [27843], [42165], [32851], [25763], [13546], [14738].
- (2). r = 6 and s = 1. The required paths and stars are [71862], [27843], [56124], [76328], [13546], [14738], (5;1,2,7,8).
- (3). r = 5 and s = 2. The required paths and stars are [71862], [27843], [42165], [32851], [25763], (3;1,5,7,8), (4;1,5,6,7).
- (4). r=4 and s=3. The required paths and stars are [71862], [27843], [56124], [76328], (3;1,5,7,8), (4;1,5,6,7).
- (5). r=3 and s=4. The required paths and stars are [71862], [56124], [76328], (3;1,4,5,8), (4;1,5,6,8), (5;1,2,7,8), (7;2,3,4,8).
- (6). r=2 and s=5. The required paths and stars are [71862], [27843], (2;1,3,4,8), (3;1,5,7,8), (4;1,5,6,7), (5;1,2,7,8).
- (7). r=1 and s=6. The required paths and stars are

- [71862], (2;1,3,4,8), (3;1,4,5,8), (4;1,5,6,8), (5;1,2,7,8), (6;1,3,5,7), (7;2,3,4,8).
- (8). r = 0 and s = 7. The required stars are (1;5,6,7,8), (2;1,3,4,8), (3;1,4,5,8), (4; 1,5,6,8), (5;2,6,7,8), (6;2,3,7,8), (7;2,3,4,8).

Case 2. Let $V(K_9) = \{\{i\} \mid 1 \le i \le 9\}$. The required (4; r,s)-decompositions are given below:

- (1). r = 9 and s = 0. The required paths are [51326], [52436], [35846], [37456], [67689], [16879], [21496], [19275], [28395].
- (2). r = 8 and s = 1. The required paths and stars are [51326], [52436], [35846], [37456], [19283], [41275], [67189], [16879], (9;3456).
- (3). r=7 and s=2. The required paths and stars are [63715], [57216], [43569], [46259], [39485], [38679], [54789], (1;3489), (2;3489).
- (4). r = 6 and s = 3. The required paths and stars are [51326], [52436], [35846], [37456], [17695], [18275], (1;2469), (8;3679), (9;2347).
- (5). r = 5 and s = 4. The required paths and stars are [51326], [52436], [35967], [37546], [65847], (1;4678), (2;1789), (8;3679), (9;1347).
- (6). r = 4 and s = 5. The required paths and stars are [51326], [52436], [35846], [37456], (1;4689), (2;1789), (7;1569), (8;3679), (9;3456).
- (7). r = 3 and s = 6. The required paths and stars are [41239], [58349], [48765], (1;3579), (2;4679), (5;2349), (6;1349), (7;3459), (8;1269).
- (8). r=2 and s=7. The required paths and stars are [12349], [14839], (1;3789), (2;5679), (4;2567), (5;1389), (6;1359), (7;3569), (8;2679).
- (9). r = 1 and s = 8. The required paths and stars are [41237], (3;1456), (4;2567), (5;1279), (6;1259), (7;1269), (8;1234), (8;5679), (9;1279).
- (10). r = 0 and s = 9. The required stars are (1;2345), (2;3456), (3;4567), (4;5678), (5;6789), (6;1789), (7;1289), (8;1239), (9;1234).

Lemma 2.2. There exists a (4; r, s)-decomposition of $K_{5,5} - I$, where I is a 1-factor of distance zero in $K_{5,5}$, and $r \neq 1$.

Proof. Let $V(K_{5,5} - I) = \{(\{1_i\}, \{2_i\}) \mid 1 \le i \le 5\}$. The required (4; r, s)-decompositions are given below:

- (1) r=5 and s=0. The required paths are $[2_41_52_21_12_5]$, $[2_21_42_51_32_4]$, $[2_41_12_31_22_5]$, $[2_21_32_11_42_3]$, $[2_41_22_11_52_3]$.
- (2) r=4 and s=1. The required paths and stars are $[2_11_22_31_12_4]$, $[2_21_12_51_22_4]$, $[2_11_32_21_42_3]$, $[2_11_42_51_32_4]$, $(1_5; 2_1, 2_2, 2_3, 2_4)$.
- (3) r=3 and s=2. The required paths and stars are $[2_11_2 2_31_12_4]$, $[2_21_32_41_22_5]$, $[2_11_32_51_12_2]$, $(1_4; 2_1, 2_2, 2_3, 2_5)$, $(1_5; 2_1, 2_2, 2_3, 2_4)$.
- (4) r=2 and s=3. The required paths and stars are $[2_11_22_31_12_4]$, $[2_21_12_51_22_4]$, $(1_3;2_1, 2_2, 2_4, 2_5)$, $(1_4;2_1, 2_2, 2_3, 2_5)$, $(1_5;2_1, 2_2, 2_3, 2_4)$.
- (5) r=1 and s=4. It is easy to see that $K_{5,5}-I$, can not be decomposed into $1P_5$ and $4S_5$.

r=0 and s=5. The required stars are $(1_1; 2_2, 2_3, 2_4,$ 2_5), $(1_2; 2_1, 2_3, 2_4, 2_5)$, $(1_3; 2_1, 2_2, 2_4, 2_5)$, $(1_4; 2_1, 2_2, 2_4, 2_5)$ 2_3 , 2_5), $(1_5; 2_1, 2_2, 2_3, 2_4)$.

Lemma 2.3. There exists a (4; r, s)-decomposition of $K_{9,9} - I$, where I is a 1-factor of distance zero in $K_{9,9}$.

Proof. We can write, $K_{9,9} - I = 2(K_{5,5} - I) \oplus 2K_{4,4}$. By Lemma 2.2 and Theorem 1.3, the graphs $K_{5,5} - I$ and $K_{4,4}$ have a (4; r, s)-decomposition. Hence, by the remark, the graph $K_{9,9} - I$ has the desired decomposition except $\{1P_5, 17S_5\}.$

Finally, (4; r, s)-decomposition for the case $\{1P_5, 17S_5\}$ is given as follows: $[1_32_51_42_61_5]$, $(1_1; 2_2, 2_3, 2_6, 2_8)$, $(1_3; 2_2, 2_3, 2_6, 2_8)$ $2_4,\ 2_6,\ 2_7),\ (1_5;2_3,\ 2_4,\ 2_7,\ 2_8),\ (1_6;2_2,\ 2_4,\ 2_5,\ 2_9),\ (1_7;2_4,$ 2_5 , 2_8 , 2_9), $(1_8; 2_2, 2_3, 2_4, 2_5)$, $(1_9; 2_3, 2_4, 2_5, 2_8)$, $(2_1; 1_2, 2_3, 2_4, 2_5, 2_8)$ 1_3 , 1_6 , 1_8), $(2_1; 1_4, 1_5, 1_7, 1_9)$, $(2_2; 1_4, 1_5, 1_7, 1_9)$, $(2_3; 1_2, 1_9)$ 1_4 , 1_6 , 1_7), $(2_6; 1_2, 1_7, 1_8, 1_9)$, $(2_7; 1_4, 1_6, 1_8, 1_9)$, $(2_8; 1_2, 1_9, 1_9)$ 1_3 , 1_4 , 1_6), $(2_9; 1_3, 1_4, 1_5, 1_8)$, $(1_1, 1_2; 2_4, 2_5, 2_7, 2_9)$.

Lemma 2.4. There exists a (4; r, s)-decomposition $K_{4x+1,4x+1} - I$, where I is a 1-factor of distance zero in $K_{4x+1, 4x+1}, x \ge 1$, and $r \ne 1$ for x = 1.

Proof. When x = 1 and 2, the graphs $K_{5,5} - I$ and $K_{9,9} - I$ have a (4; r, s)-decomposition, by Lemmas 2.2 and 2.3. For $x \ge 3$, we can write, $K_{4x+1, 4x+1} - I = K_{9,9} - I \oplus (x-2)$ $(K_{5,5}-I)\oplus 2(x-2)K_{4,8}\oplus (x-2)(x-3)K_{4,4}.$ By Lemmas 2.2 and 2.3 and Theorem 1.3, the graphs $K_{5,5} - I$, $K_{9,9} - I$, $K_{4,4}$ and $K_{4,8}$ have a (4; r, s)-decomposition. Hence, by the remark, the graph $K_{4x+1, 4x+1} - I$ has the desired decomposition.

Lemma 2.5. There exists a (4; r, s)-decomposition of $P_3 \times K_3$, where $r \neq 1$.

Proof. Let $V(P_3 \times K_3) = \bigcup_{i=1}^3 X_i$, where $X_i = \{i_j \mid 1 \le j \le 1\}$ 3}. The required (4; r, s)-decompositions are given below:

- (1) r=3 and s=0. The required paths are $\begin{bmatrix} 1_1 2_2 1_3 2_1 1_2 \end{bmatrix}$, $[1_12_33_12_23_3], [1_22_33_22_13_3].$
- r=2 and s=1. The required paths and stars are $[1_12_31_22_11_3]$, $[3_12_33_22_13_3]$, $(2_2;1_1, 1_3, 3_1, 3_3)$.
- r=1 and s=2. It is easy to see that $P_3 \times K_3$, can not be decomposed into $1P_5$ and $2S_5$.
- r=0 and s=3. The required stars are $(2_1;1_2, 1_3, 3_2,$ 3_3), $(2_2;1_1, 1_3, 3_1, 3_3)$, $(2_3;1_1, 1_2, 3_1, 3_3)$.

Lemma 2.6. There exists a (4; r, s)-decomposition of $P_3 \times K_6$.

Proof. Let $V(P_3 \times K_6) = \bigcup_{i=1}^3 X_i$, where $X_i = \{i_i \mid 1 \le j \le 6\}$. The required (4; r, s)-decompositions are given below: Now, we decompose the graph $P_3 \times K_6$ into $15S_5$'s as follows:

 $\{(1_2, 3_2; 2_3, 2_4, 2_5, 2_6), (1_4, 3_4; 2_1, 2_2, 2_3, 2_6), (1_5, 3_5; 2_1, 2_2, 2_4, 2_6), \}$ $(1_6, 3_6; 2_1, 2_2, 2_3, 2_4), (2_5, 2_6; 1_1, 1_3, 3_1, 3_3), (2_2, 2_4; 1_1, 1_3, 3_1, 3_3),$ $(2_1; 1_2, 1_3, 3_2, 3_3), (2_3; 1_1, 1_5, 3_1, 3_5), (2_5; 1_4, 1_6, 3_4, 3_6)$.

First, we decompose the given $2S_5$'s into $\{2P_5\}$ as follows:

- $(1_2,3_2;2_3,2_4,2_5,2_6) \Rightarrow \{[2_3,1_2,2_4,3_2,2_5],[2_5,1_2,2_6,3_2,2_3]\}.$
- (2) $(1_4,3_4;2_1,2_2,2_3,2_6) \Rightarrow \{[2_1,1_4,2_2,3_4,2_3],[2_3,1_4,2_6,3_4,2_1]\}.$
- $(1_5,3_5;2_1,2_2,2_4,2_6) \Rightarrow \{[2_2,1_5,2_1,3_5,2_6],[2_2,3_5,2_4,1_5,2_6]\}.$ (3)
- $(1_6,3_6;2_1,2_2,2_3,2_4) \Rightarrow \{[2_1,1_6,2_2,3_6,2_3],[2_3,1_6,2_4,3_6,2_1]\}.$ (4)
- $(2_5,2_6;1_1,1_3,3_1,3_3) \Rightarrow \{[1_3,2_6,1_1,2_5,3_3],[1_3,2_5,3_1,2_6,3_3]\}.$ (5)

 $1_5, 3_1, 3_5$, $(2_5; 1_4, 1_6, 3_4, 3_6), (2_2, 2_4; 1_1, 1_3, 3_1, 3_3)$ which can be decomposed into either $\{4P_5, 1S_5\}$ or $\{3P_5, 2S_5\}$ or $\{2P_5,$ $3S_5$ as follows: {[1₂2₁1₃2₂3₁], [1₁2₂3₃2₁3₂], [1₃2₄3₁2₃1₅], $[3_32_41_12_33_5]$, $(2_5; 1_4, 1_6, 3_4, 3_6)$ or $\{[1_12_21_32_43_3]$, $[1_52_31_1]$ $[2_43_1]$, $[3_32_23_12_31_5]$, $[3_1; 1_2, 1_3, 3_2, 3_3]$, $[3_5; 1_4, 1_6, 3_4, 3_6]$ or $3_1, 3_3$, $(2_5; 1_4, 1_6, 3_4, 3_6)$. Further, we consider the $7S_5$'s $\{(2_5, 2_6; 1_1, 1_3, 3_1, 3_3),$

 $(2_2, 2_4; 1_1, 1_3, 3_1, 3_3),$ $(2_1; 1_2, 1_3, 3_2, 3_3),$ $(2_3; 1_1, 1_5, 3_1, 3_5),$ $(2_5; 1_4, 1_6, 3_4, 3_6)$ } which can be decomposed into either $\{7P_5\}$ or $\{5P_5, 2S_5\}$ or $\{4P_5, 3S_5\}$ or $\{3P_5, 4S_5\}$ as follows: $\{[1_12_21_32_43_3], [1_52_31_12_43_1], [3_32_23_12_33_5], [1_22_11_32_51_4], [3_22_11_52_51_4], [3_22_11_52_51_4], [3_22_11_52_51_4], [3_22_11_52_51_4], [3_22_11_52_51_5], [3_22_11_5], [3_22_11_52_5], [3_22_11_5], [3_22_11_5], [3_22_11_5], [3_22_11_5], [3_2_$ $[3_32_53_4]$, $[1_32_61_12_51_6]$, $[3_32_63_12_53_6]$ or $\{[1_12_21_32_43_3]$, $[1_52_3]$ $1_12_43_1$, $[3_32_23_12_33_5]$, $[1_22_11_32_51_4]$, $[3_22_13_32_53_4]$, $(2_5; 1_1, 1_6, 1_1, 1_6)$ $\{3_1, 3_6\}, \{2_6; 1_1, 1_3, 3_1, 3_3\}\}$ or $\{[1_2 2_1 1_3 2_5 1_4], [3_2 2_1 3_3 2_5 3_4],$ $[1_32_61_12_51_6]$, $[3_32_63_12_53_6]$, $(2_2; 1_1, 1_3, 3_1, 3_3)$, $(2_3; 1_1, 1_5, 3_1, 3_2, 3_3)$ 3_5), $(2_4; 1_1, 1_3, 3_1, 3_3)$ or $\{[1_12_21_32_43_3],$ $[1_52_31_12_43_1],$ $[3_32_23_12_33_5]$, $(2_1; 1_2, 1_3, 3_2, 3_3)$, $(2_5; 1_3, 1_4, 3_3, 3_4)$, $(2_5; 1_1, 1_3, 3_4)$ $3_1, 3_3), (2_6; 1_1, 1_3, 3_1, 3_3)$.

Finally, (4; r, s)-decomposition for the case $\{1P_5, 14S_5\}$ is given as follows:

 $[1_22_53_22_31_4], (2_1; 1_2, 1_3, 3_2, 3_3), (2_1; 1_4, 1_6, 3_4, 3_6),$ $(2_2; 1_1, 1_3, 1_4, 3_4), (2_2; 1_6, 3_1, 3_3, 3_6), (2_3; 1_1, 1_5, 3_1, 3_5),$ $(2_3; 1_2, 1_6, 3_4, 3_6), (2_4; 1_1, 1_2, 1_3, 3_2), (2_4; 1_6, 3_1, 3_3, 3_6),$ $(2_5; 1_4, 1_6, 3_4, 3_6), (2_6; 1_2, 1_4, 3_2, 3_4), (2_5, 2_6; 1_1, 1_3, 3_1, 3_3),$ $(1_5, 3_5; 2_1, 2_2, 2_4, 2_6).$

Lemma 2.7. There exists a (4; r, s)-decomposition of $P_3 \times K_7$.

Proof. Let $V(P_3 \times K_7) = \bigcup_{i=1}^3 X_i$, where $X_i = \{i_j \mid 1 \le j \le 1\}$ 7}. The required (4; r, s)-decompositions are given below: Now, we decompose the graph $P_3 \times K_7$ into 21 S_5 's as follows:

 $\{(2_3,2_4;1_1,1_7,3_1,3_7),(2_4,2_7;1_2,1_3,3_2,3_3),(2_5,2_6;1_1,1_2,3_1,3_2),$ $(2_1; 1_3, 1_5, 3_3, 3_5), (2_2; 1_3, 1_5, 3_3, 3_5), (2_6; 1_3, 1_4, 3_3, 3_4),$ $(2_1; 1_4, 1_6, 3_4, 3_6), (2_4; 1_5, 1_6, 3_5, 3_6), (2_7; 1_4, 1_5, 3_4, 3_5),$ $(2_2; 1_6, 1_7, 3_6, 3_7), (2_3; 1_4, 1_6, 3_4, 3_6), (2_5; 1_4, 1_7, 3_4, 3_7),$ $(2_2; 1_1, 1_3, 3_1, 3_3), (2_5; 1_3, 1_6, 3_3, 3_6), (2_7; 1_1, 1_6, 3_1, 3_6),$ $(2_1; 1_2, 1_7, 3_2, 3_7), (2_3; 1_2, 1_5, 3_2, 3_5), (2_6; 1_5, 1_7, 3_5, 3_7)$.

First, we decompose the given $2S_5$'s into $\{2P_5\}$ as follows:

- (1) $(2_3,2_4;1_1,1_7,3_1,3_7) \Rightarrow \{[1_12_33_12_41_7], [1_12_43_72_31_7]\}.$
- (2) $(2_4,2_7;1_2,1_3,3_2,3_3) \Rightarrow \{[1_22_43_32_71_3], [1_22_73_22_41_3]\}.$

given as follows:

- (3) $(2_5, 2_6; 1_1, 1_2, 3_1, 3_2) \Rightarrow \{[1_1 2_5 3_2 2_6 1_2], [1_1 2_6 3_1 2_5 1_2]\}$. Now the remaining $3S_5$'s can be decomposed into $\{3P_5\}$ as follows:
- $(4) \quad \left\{ (2_1; 1_3, 1_5, 3_3, 3_5), (2_2; 1_3, 1_5, 3_3, 3_5), (2_6; 1_3, 1_4, 3_3, 3_4) \right\} \Rightarrow \left\{ [1_3 2_1 3_3 2_6 1_4], [1_4 2_2 3_5 2_1 1_5], [1_3 2_6 3_4 2_2 1_5] \right\}.$
- (5) $\{(2_1; 1_4, 1_6, 3_4, 3_6), (2_4; 1_5, 1_6, 3_5, 3_6), (2_7; 1_4, 1_5, 3_4, 3_5)\} \Rightarrow \{[1_42_13_42_71_5], [1_52_43_62_11_6], [1_42_73_52_41_6]\}.$
- (6) $\{(2_2; 1_6, 1_7, 3_6, 3_7), (2_3; 1_4, 1_6, 3_4, 3_6), (2_5; 1_4, 1_7, 3_4, 3_7)\} \Rightarrow \{[1_4 2_3 3_6 2_2 1_6], [1_4 2_5 3_7 2_2 1_7], [1_6 2_3 3_4 2_5 1_7]\}.$
- (7) $\{(2_2; 1_1, 1_3, 3_1, 3_3), (2_5; 1_3, 1_6, 3_3, 3_6), (2_7; 1_1, 1_6, 3_1, 3_6)\} \Rightarrow \{[1_12_23_32_51_6], [1_12_73_62_51_3], [1_32_23_12_71_6]\}.$
- (8) $\{(2_1; 1_2, 1_7, 3_2, 3_7), (2_3; 1_2, 1_5, 3_2, 3_5), (2_6; 1_5, 1_7, 3_5, 3_7)\} \Rightarrow \{[1_22_13_72_61_5], [1_22_33_52_61_7], [1_52_33_22_11_7]\}.$

Further, the decomposition of the case $\{20P_5, 1S_5\}$ is given as follows: From (1) and (3), we obtain $\{3P_5, 1S_5\}$ as $\{[1_12_4 1_22_53_1], [1_72_31_12_63_2], [3_22_53_12_33_7], (2_4; 1_1, 1_7, 3_1, 3_7)\}$ and together $\{17P_5\}$ given in (2) and (4) to (8) gives the required paths and stars except the case $\{1P_5, 20S_5\}$. Finally, $\{4; r, s\}$ -decomposition for the case $\{1P_5, 20S_5\}$ is

$$\begin{split} &[1_32_23_72_11_7],(2_1;1_3,1_4,3_3,3_4),(2_2;1_4,1_7,3_3,3_4),\\ &(1_1,3_1;2_2,2_3,2_4,2_5),(1_2,3_2;2_1,2_3,2_4,2_5),(1_3,3_3;2_4,2_5,2_6,2_7),\\ &(1_4,3_4;2_3,2_5,2_6,2_7),(1_5,3_5;2_3,2_4,2_6,2_7),(1_6,3_6;2_3,2_4,2_5,2_7),\\ &(1_7,3_7;2_3,2_4,2_5,2_6),(2_1,2_2;1_5,1_6,3_5,3_6),(2_6,2_7;1_1,1_2,3_1,3_2). \end{split}$$

Lemma 2.8. There exists a (4; r, s)-decomposition of $K_{m,6}$ for m = 2, 4, 6.

Proof. The cases m=2, 4 follows by Theorems 1.2 and 1.3. For m=6, let $V(K_{6,6})=\{(\{1_i\},\{2_i\})\mid 1\leq i\leq 6\}$. We can write, $K_{6,6}=K_{2,6}\oplus K_{4,6}$. By Theorems 1.2 and 1.3, we obtain the required decomposition for the cases $(r,s)\in\{(3,0),\ (1,2)\}+\{(6,0),\ (5,1),...,(2,4),\ (0,6)\}=\{(9,0),\ (8,1),...,(3,6),(1,8)\}$. Further, the required decomposition for the case $\{2P_5,7S_5\}$ is given as follows: $[2_11_12_21_22_3]$, $[2_11_22_51_12_3]$, $(1_3,1_4;2_1,2_2,2_3,2_6)$, $(1_5,1_6;2_1,2_2,2_3,2_4)$, $(2_4;1_1,1_2,1_3,1_4),(2_5;1_3,1_4,1_5,1_6),(2_6;1_1,1_2,1_5,1_6)$. Finally, by Theorem 1.5, we get (r,s)=(0,9). □

Theorem 2.1. Let r and s be nonnegative integers, and let m be a positive even integer with $m \ge 4$. Then there exists a (4; r, s)-decomposition of $K_{m,m}$ if and only if $4(r + s) = e(K_{m,m})$, and $r \ne 1$ for m = 4.

Proof. Necessity. The condition $4(r+s) = e(K_{m,m})$ is trivial by using counting arguments. Sufficiency. The cases m=4, 6 follows by Theorem 1.3 and Lemma 2.8. For m=8, we can write, $K_{8,8} = K_{6,6} \oplus K_{2,6} \oplus 2K_{2,4}$. By Lemma 2.8 and Theorem 1.2, we obtain the required decomposition for the cases $(r,s) \in \{(9,0),(8,1),...,(1,8),(0,9)\} + \{(3,0),(1,2)\} + \{(4,0),(2,2),(0,4)\} = \{(16,0), (15,1),...,(2,14), (1,15)\}$. Further, by Theorem 1.5, we get (r,s) = (0,16). For $m \ge 10$, we deal the proof is two cases as follows:

Case 1. $m \equiv 2 \pmod{4} \ge 10$. We can write, $K_{m,m} = K_{6,6} \oplus \left(\frac{m-6}{4}\right)K_{4,4} \oplus \left\{\bigoplus_{i}K_{4,i}\right\} \oplus \left\{\bigoplus_{j}K_{j,4}\right\}$, where $6 \le i$, $j \equiv 2 \pmod{4} \le m-4$. Note that $K_{j,4} \cong K_{4,j}$. By Theorem 1.3 and Lemma 2.8, the graphs $K_{4,4}$, $K_{4,i}$, $K_{j,4}$ and $K_{6,6}$ have a (4;r,s)-decomposition. Hence, by the remark, the graph $K_{m,m}$ has the desired decomposition.

Case 2. $m \equiv 0 \pmod{4} \ge 12$. We can write, $K_{m,m} = K_{8,8} \oplus \left(\frac{m-12}{4}\right)K_{4,4} \oplus \left\{\bigoplus_i K_{i,4}\right\} \oplus \left\{\bigoplus_j K_{4,j}\right\}$, where $4 \le i \equiv 0 \pmod{4} \le m-4$ and $8 \le j \equiv 0 \pmod{4} \le m-4$. Note that $K_{i,4} \cong K_{4,i}$. By Theorem 1.3 and the first paragraph of the proof, the graphs $K_{4,4}$, $K_{i,4}$, $K_{4,j}$ and $K_{8,8}$ have a (4;r,s)-decomposition. Hence, by the remark, the graph $K_{m,m}$ has the desired decomposition.

3. (4;r,s)-decomposition of $K_m \times K_n$

Lemma 3.1. There exists a (4; r, s)-decomposition of $K_4 \times K_4$. Proof. Let $V(K_4 \times K_4) = \bigcup_{i=1}^4 X_i$ and $X_i = \{i_j \mid 1 \le j \le 4\}$. Then the required (4; r, s)-decompositions are as given below: First, we decompose the given $2S_5$'s into $\{2P_5\}$ as follows:

- (1) $\{(1_1; 2_2, 2_3, 2_4, 3_2), (1_2; 2_1, 2_3, 2_4, 3_3)\} \Rightarrow \{[3_2 1_1 2_3 1_2 3_3], [2_1 1_2 2_4 1_1 2_2]\}.$
- (2) $\{(1_3; 2_1, 2_2, 2_4, 3_4), (1_4; 2_1, 2_2, 2_3, 3_1)\} \Rightarrow \{[3_1 1_4 2_2 1_3 3_4], [2_4 1_3 2_1 1_4 2_3]\}.$
- (3) $\{(2_1; 3_2, 3_3, 3_4, 4_4), (2_2; 3_1, 3_3, 3_4, 4_1)\} \Rightarrow \{[3_1 2_2 3_4 2_1 3_2], [4_1 2_2 3_3 2_1 4_4]\}.$
- (4) $\{(3_1; 4_2, 4_3, 4_4, 1_3), (3_2; 4_1, 4_3, 4_4, 1_3)\} \Rightarrow \{[4_13_21_33_14_3], [4_23_14_43_24_3]\}.$
- (5) $\{(3_3;4_1,4_2,4_4,1_1),(3_4;4_1,4_2,4_3,1_1)\} \Rightarrow \{[4_23_31_13_44_3], [4_23_44_13_34_4]\}.$
- (6) $\{(4_1; 1_2, 1_3, 1_4, 2_3), (4_4; 1_1, 1_3, 2_2, 2_3)\} \Rightarrow \{[1_14_41_34_11_2], [1_44_12_34_42_2]\}.$
- (7) $\{(4_2; 1_1, 1_3, 2_1, 2_4), (4_3; 1_1, 2_1, 2_2, 2_4)\} \Rightarrow \{[1_14_22_44_32_2], [1_14_32_14_21_3]\}.$
- (8) $\{(1_2; 3_1, 3_4, 4_3, 4_4), (2_3; 3_1, 3_2, 3_4, 4_2)\} \Rightarrow \{[3_2 2_3 3_1 1_2 4_3], [4_2 2_3 3_4 1_2 4_4]\}.$
- (9) $\{(1_4; 3_2, 3_3, 4_2, 4_3), (2_4; 3_1, 3_2, 3_3, 4_1)\} \Rightarrow \{[3_12_43_31_44_3], [4_12_43_21_44_2]\}.$

Now, from (1) and (2), we have $4S_5$'s which can be decomposed into either $\{4P_5\}$ or $\{3P_5, S_5\}$ or $\{2P_5, 2S_5\}$ as follows:

 $\begin{cases} [3_21_12_31_23_3], & [2_11_22_41_12_2], & [3_11_42_21_33_4], & [2_41_32_11_42_3] \} \text{ or } \\ \{[2_21_32_41_23_3], & [2_11_22_31_43_1], & [2_21_42_11_33_4], & (1_1;2_2,2_3,2_4,3_2) \} \\ \text{ or } \{[3_21_12_31_23_3], & [2_11_22_41_12_2], & (1_3;2_1,2_2,2_4,3_4), (1_4;2_1,2_2,2_3,3_1) \}. \end{cases}$

Finally, (4; r, s)-decomposition for the case $\{1P_5, 17S_5\}$ is given as follows:

Lemma 3.2. There exists a (4; r, s)-decomposition of $K_4 \times K_5$.

Proof. We can write, $K_4 \times K_5 = 6(K_{5,5} - I)$. By Lemma 2.2, the graph $K_{5,5} - I$ has a (4; r, s)-decomposition. Hence, by the remark, the graph $K_4 \times K_5$ has the desired decomposition except the case $\{1P_5, 29S_5\}$. We can write, $K_4 \times K_5 =$ $K_4 \times K_4 \oplus 12K_{1,4}$, then by Lemma 3.1 and Theorem 1.5, we have $(r, s) \in (1, 17) + (0, 12) = (1, 29)$.

Lemma 3.3. There exists a (4; r, s)-decomposition of $K_4 \times K_6$.

Proof. We can write, $K_4 \times K_6 = 3(P_3 \times K_6)$. By Lemma 2.6, the graph $P_3 \times K_6$ has a (4; r, s)-decomposition. Hence, by the remark, the graph $K_4 \times K_6$ has the desired decompos-

Lemma 3.4. There exists a (4; r, s)-decomposition of $K_4 \times K_7$.

Proof. We can write, $K_4 \times K_7 = 3(P_3 \times K_7)$. By Lemma 2.7, the graph $P_3 \times K_7$ has a (4; r, s)-decomposition. Hence, by the remark, the graph $K_4 \times K_7$ has the desired decompos-

Lemma 3.5. There exists a (4; r, s)-decomposition of $K_5 \times K_3$.

Proof. We can write, $K_5 \times K_3 = 3(K_{5,5} - I)$. By Lemma 2.2, the graph $K_{5,5} - I$ has a (4; r, s)-decomposition. Hence, by the remark, the graph $K_5 \times K_3$ has the desired decomposition except the case $\{1P_5, 14S_5\}$.

Further, (4; r, s)-decomposition for the case $\{1P_5, 14S_5\}$ is given as follows:

$$\begin{bmatrix} 1_3 2_2 1_1 3_2 1_4 \end{bmatrix}, (1_1; 2_3, 2_4, 2_5, 3_3), (1_2; 2_3, 2_4, 2_5, 3_4), \\ (1_3; 2_1, 2_4, 2_5, 3_2), (1_4; 2_1, 2_2, 2_3, 2_5), (1_5; 2_2, 2_3, 2_4, 3_2), \\ (2_1; 1_2, 1_5, 3_2, 3_5), (2_2; 3_1, 3_3, 3_4, 3_5), (2_3; 3_1, 3_2, 3_4, 3_5), \\ (2_4; 3_1, 3_2, 3_3, 3_5), (2_5; 3_1, 3_2, 3_3, 3_4), (3_1; 1_2, 1_3, 1_4, 1_5), \\ (3_3; 1_2, 1_4, 1_5, 2_1), (3_4; 1_1, 1_3, 1_5, 2_1), (3_5; 1_1, 1_2, 1_3, 1_4).$$

Lemma 3.6. There exists a (4; r, s)-decomposition of $K_5 \times K_5$.

Proof. We can write, $K_5 \times K_5 = 10(K_{5,5} - I)$. By Lemma 2.2, the graph $K_{5,5} - I$ has a (4; r, s)-decomposition. Hence, by the remark, the graph $K_5 \times K_5$ has the desired decomposition except the case $\{1P_5, 49S_5\}$. Let $K_5 \times K_5 = K_4 \times K_4 \oplus$ $3(4)K_{1,4} \oplus 4(5)K_{1,4}$, then by Lemma 3.1 and Theorem 1.5, we have $(r, s) \in (1, 17) + (0, 32) = (1, 49)$.

Lemma 3.7. There exists a (4; r, s)-decomposition of $K_5 \times K_6$.

Proof. We can write, $K_5 \times K_6 = 5(P_3 \times K_6)$. By Lemma 2.6, the graph $P_3 \times K_6$ has a (4; r, s)-decomposition. Hence, by the remark, the graph $K_5 \times K_6$ has the desired decomposition.

Lemma 3.8. If $m, n \equiv 0 \pmod{4}$, then there exists a (4; r, s)-decomposition of $K_m \times K_n$.

Proof. Let m = 4x and n = 4y, where x, y > 1. Then we can

$$K_{4x} \times K_{4y} = xy(K_4 \times K_4) \oplus \frac{xy(y-1)}{2} (K_4 \times K_{4,4})$$

$$\oplus \frac{xy(x-1)}{2} (K_{4,4} \times K_4)$$

$$\oplus \frac{xy(x-1)(y-1)}{4} (K_{4,4} \times K_{4,4})$$

$$= xy(K_4 \times K_4) \oplus 2xy(x+y-2)(K_{4,12})$$

$$\oplus 2xy(x-1)(y-1)(K_{4,16}).$$

By Lemma 3.1 and Theorem 1.3, the graphs $K_4 \times K_4$, $K_{4,12}$ and $K_{4,16}$ have a (4; r, s)-decomposition. Hence, by the remark, the graph $K_m \times K_n$ has the desired decompos-

Lemma 3.9. If $m \equiv 0 \pmod{4}$ and $n \equiv 2 \pmod{4}$, then there exists a (4; r, s)-decomposition of $K_m \times K_n$. *Proof.* Let m = 4x and n = 4y + 2, where $x, y \ge 1$. Then we can write,

$$K_{4x} \times K_{4y+2} = x(y-1)(K_4 \times K_4) \oplus x(K_4 \times K_6)$$

$$\oplus x(y-1)(K_4 \times K_{4,6})$$

$$\oplus \frac{x(x-1)(y-1)}{2}(K_{4,4} \times K_4)$$

$$\oplus \frac{x(x-1)}{2}(K_{4,4} \times K_6)$$

$$\oplus \frac{x(x-1)(y-1)}{2}(K_{4,4} \times K_{4,6})$$

$$= x(y-1)(K_4 \times K_4) \oplus x(K_4 \times K_6)$$

$$\oplus 4x(y-1)(K_{4,18})$$

$$\oplus 2x(x-1)(y-1)(K_{4,12}) \oplus 3x(x-1)K_{4,20}$$

$$\oplus 4x(x-1)(y-1)(K_{4,24}).$$

By Lemmas 3.1 and 3.3 and Theorem 1.3, the graphs $K_4 \times$ $K_4, K_4 \times K_6, K_{4,12}, K_{4,18}, K_{4,20}$ and $K_{4,24}$ (4; r, s)-decomposition. Hence, by the remark, the graph $K_m \times K_n$ has the desired decomposition.

Lemma 3.10. If $m \equiv 0 \pmod{2}$ and $n \equiv 1 \pmod{4}$, then there exists a (4; r, s)-decomposition of $K_m \times K_n$.

Proof. We deal the proof in two cases.

Case 1. $m \equiv 0 \pmod{4}$ and $n \equiv 1 \pmod{4}$. Let m = 4x and n = 4y + 1, where x, y > 1. Then we can write.

$$K_{4x} \times K_{4y+1} = x(y-1)(K_4 \times K_4) \oplus x(K_4 \times K_5)$$

$$\oplus x(y-1)(K_4 \times K_{4,5})$$

$$\oplus \frac{x(x-1)(y-1)}{2}(K_{4,4} \times K_4)$$

$$\oplus \frac{x(x-1)}{2}(K_{4,4} \times K_5)$$

$$\oplus \frac{x(x-1)(y-1)}{2}(K_{4,4} \times K_{4,5})$$

$$= x(y-1)(K_4 \times K_4) \oplus x(K_4 \times K_5)$$

$$\oplus 4x(y-1)(K_{4,15})$$

$$\oplus 2x(x-1)(y-1)(K_{4,18}) \oplus \frac{x(x-1)}{2}(5K_{4,16})$$

$$\oplus 4x(x-1)(y-1)(K_{4,20}).$$

By Lemmas 3.1 and 3.2 and Theorem 1.3, the graphs $K_4 \times K_4, K_4 \times K_5, K_{4,15}, K_{4,16}, K_{4,18}$ and $K_{4,20}$ have a (4; r, s)-decomposition. Hence, by the remark, the graph $K_m \times K_n$ has the desired decomposition.

Case 2. $m \equiv 2 \pmod{4}$ and $n \equiv 1 \pmod{4}$.

Let m = 4x + 2 and n = 4y + 1, where $x, y \ge 1$. Then we can write,

$$K_{4x+2} \times K_{4y+1} = (x-1)(y-1)(K_4 \times K_4) \oplus (x-1)(K_4 \times K_5)$$

$$\oplus (x-1)(y-1)(K_4 \times K_{4,5})$$

$$\oplus (y-1)(K_6 \times K_4) \oplus (K_6 \times K_5)$$

$$\oplus (y-1)(K_6 \times K_{4,5})$$

$$\oplus (x-1)(y-1)(K_{4,6} \times K_4)$$

$$\oplus (x-1)(K_{4,6} \times K_5)$$

$$\oplus (x-1)(y-1)(K_{4,6} \times K_{4,5})$$

$$= (x-1)(y-1)(K_4 \times K_4) \oplus (x-1)(K_4 \times K_5)$$

$$\oplus 4(x-1)(y-1)(K_{4,15}) \oplus (y-1)(K_6 \times K_4)$$

$$\oplus (K_6 \times K_5) \oplus 6(y-1)(K_{4,25})$$

$$\oplus 4(x-1)(y-1)(K_{4,18}) \oplus 5(x-1)(K_{4,24})$$

$$\oplus (x-1)(y-1)(5K_{4,24} \oplus 4K_{4,30}).$$

By Lemmas 3.1 to 3.3 and 3.7 and Theorem 1.3, the graphs $K_4 \times K_4, K_4 \times K_5, K_4 \times K_6, K_5 \times K_6, K_{4,15}, K_{4,18}, K_{4,24}, K_{4,25}$ and $K_{4,30}$ have a (4;r,s)-decomposition. Hence, by the remark, the graph $K_m \times K_n$ has the desired decomposition.

Lemma 3.11. If $m \equiv 0 \pmod{4}$ and $n \equiv 3 \pmod{4}$, then there exists a (4; r, s)-decomposition of $K_m \times K_n$.

Proof. Let m=4x and n=4y+3, where $x\geq 1$ and $y\geq 0$. When y=0, we can write, $K_{4x}\times K_3=x(4x-1)(P_3\times K_3)$, by Theorem 1.4. Then the graph $P_3\times K_3$ has a (4;r,s)-decomposition, by Lemma 2.5. Hence, the graph $K_{4x}\times K_3$ has the desired decomposition. When $y\geq 1$, we can write,

$$K_{4x} \times K_{4y+3} = x(y-1)(K_4 \times K_4) \oplus x(K_4 \times K_7)$$

$$\oplus x(y-1)(K_4 \times K_{4,7})$$

$$\oplus \frac{x(x-1)(y-1)}{2}(K_{4,4} \times K_4)$$

$$\oplus \frac{x(x-1)}{2}(K_{4,4} \times K_7)$$

$$\oplus \frac{x(x-1)(y-1)}{2}(K_{4,4} \times K_{4,7})$$

$$= x(y-1)(K_4 \times K_4) \oplus x(K_4 \times K_7)$$

$$\oplus 4x(y-1)(K_{4,21})$$

$$\oplus 2x(x-1)(y-1)(K_{4,12}) \oplus 7\frac{x(x-1)}{2}(K_{4,24})$$

$$\oplus 4x(x-1)(y-1)(K_{4,28}).$$

By Lemmas 3.1 and 3.4 and Theorem 1.3, the graphs $K_4 \times K_4, K_4 \times K_7$, $K_{4,12}, K_{4,21}, K_{4,24}$ and $K_{4,28}$ have a (4; r, s)-decomposition. Hence, by the remark, the graph $K_m \times K_n$ has the desired decomposition.

Lemma 3.12. If $m \equiv 1 \pmod{4}$ and $n \equiv 1 \pmod{2}$, then there exists a (4; r, s)-decomposition of $K_m \times K_n$.

Proof. We deal the proof in two cases.

Case 1. m = 5 and $n \equiv 1 \pmod{2}$.

Let m = 5 and n = 2x + 1, where $x \ge 1$. For x = 1, then the graph $K_5 \times K_3$ has a (4; r, s)-decomposition, by Lemma 3.5. For x > 1. Then we can write,

$$K_5 \times K_{2x+1} = (x-2)(K_5 \times K_2) \oplus K_5 \times K_5$$

$$\oplus (x-2)(K_5 \times K_{2,5})$$

$$= (x-2)(K_{5,5} - I) \oplus K_5 \times K_5 \oplus 5(x-2)(K_{2,20}).$$

By Lemmas 2.2 and 3.6 and Theorem 1.2, the graphs $K_{5,5}$ – $I, K_5 \times K_5$ and $K_{2,20}$ have a (4; r, s)-decomposition. Hence, by the remark, the graph $K_m \times K_n$ has the desired decomposition.

Case 2. $m \equiv 1 \pmod{4} > 5$ and $n \equiv 1 \pmod{2}$. Let m = 4x + 1 and n = 2y + 1, where $x \ge 2$ and $y \ge 1$. Then $K_{4x+1} \times K_{2y+1} = (2y+1)y(K_{4x+1,4x+1} - I)$, where I is a 1-factor of distance zero in $K_{4x+1,4x+1}$. By Lemma 2.4, the graph $K_{4x+1,4x+1} - I$ has a (4; r, s)-decomposition. Hence, by the remark, the graph $K_{4x+1} \times K_{2y+1}$ has the desired decomposition.

Now, we prove our main result as follows:

Theorem 3.1. Let r and s be nonnegative integers, and let m and n be positive integers. There exists a (4; r, s)-decomposition of $K_m \times K_n$ if and only if $mn(m-1)(n-1) \equiv 0 \pmod{8}$, where $K_m \times K_n$ denotes a tensor product of complete graphs.

Proof. Necessity is trivial by counting the number of edges of the graph $K_m \times K_n$. Sufficiency follows from Lemmas 3.8 to 3.12.

4. (4; r, s)-decomposition of $K_m \otimes \overline{K_n}$

In this section we obtain necessary and sufficient conditions for the existence of a (4; r, s)-decomposition of $K_m \otimes \overline{K_n}$.

Lemma 4.1. If $m \equiv 0$ (or) $1 \pmod{2}$ and $n \equiv$ $0 \pmod{2} \ge 4$, then there exists a (4; r, s)-decomposition of $K_m \otimes \overline{K_n}$, and $r \neq 1$ when m = 2 and n = 4.

Proof. We can write $K_m \otimes \overline{K_n} = \frac{m(m-1)}{2} K_{n,n}$. By Theorem 2.1, the graph $K_{n,n}$ has a (4; r, s)-decomposition except r = 1when n=4. Hence, by the remark, the graph $K_m \otimes \overline{K_n}$ has the desired decomposition except when (n, r) = (4, 1). Further, (4;1,s)-decomposition of $K_m \otimes \overline{K_4}$ is given as follows: For m=2, then $K_2 \otimes \overline{K_4} = K_{4,4}$ can not be decomposed into $\{1P_5, 3S_5\}$, by Theorem 2.1.

Case 1. For m=3, then $K_3 \otimes \overline{K_4}$ can be decomposed into $\{1P_5,$ given as follows: $11S_5$ $[1_22_11_12_31_3],$ $(1_2; 2_2, 2_3, 2_4, 3_1),$ $(1_3; 2_1, 2_2, 2_4, 3_1),$ $(1_4; 2_1, 2_2, 2_3, 2_4),$ $(3_1; 1_1, 1_4, 2_2, 2_4), (2_1, 2_3; 3_1, 3_2, 3_3, 3_4), (2_2, 2_4; 1_1, 3_2, 3_3, 3_4),$ $(3_2, 3_3, 3_4; 1_1, 1_2, 1_3, 1_4).$

Case 2. For m = 4, then we can write $K_4 \otimes \overline{K_4} = K_3 \otimes \overline{K_4} \oplus$ $K_{4,12}$. By case 1 and Theorem 1.5, we obtain the required decomposition for the case $(r, s) \in (1, 11) + (0, 12) = (1, 23)$. Case 3. For m > 4, then we can write $K_m \otimes \overline{K_4} =$ $K_4 \otimes \overline{K_4} \oplus \frac{(m-4)(m-5)}{2} K_{4,4} \oplus (m-4) K_{4,16}$. By Case 2, and Theorem 1.5, we obtain the required decomposition for the case $(r,s) \in (1,23) + (0,2(m-4)(m-5)) + (0,16(m-4))$ $=(1,23+2(m-4)\{8+(m-5)\}).$

Lemma 4.2. If $m \equiv 1 \pmod{8}$ and $n \equiv 1 \pmod{2}$, then there exists a (4; r, s)-decomposition of $K_m \otimes \overline{K_n}$.

Proof. We can write, $K_m \otimes \overline{K_n} = nK_m \oplus (K_m \times K_n)$. By Theorem 1.1, the graph K_m (If m=9, the graph K_9 has a (4; r, s)-decomposition, by Lemma 2.1) has a (4; r, s)-decomposition and by Lemma 3.12, the graph $K_m \times K_n$ has a (4; r, s)-decomposition. Hence, by the remark, the graph $K_m \otimes \overline{K_n}$ has the desired decomposition.

Lemma 4.3. If $m \equiv 0 \pmod{8}$ and $n \equiv 1 \pmod{2}$, then there exists a (4; r, s)-decomposition of $K_m \otimes \overline{K_n}$.

Proof. We can write, $K_m \otimes \overline{K_n} = nK_m \oplus (K_m \times K_n)$. By Theorem 1.1, the graph K_m (If m=8, the graph K_8 has a (4; r, s)-decomposition, by Lemma 2.1) has a (4; r, s)-decomposition and by Lemmas 3.10 and 3.11, the graph $K_m \times K_n$ has a (4; r, s)-decomposition. Hence, by the remark, the graph $K_m \otimes \overline{K_n}$ has the desired decomposition.

Theorem 4.1. Let r and s be nonnegative integers, and let m and n be positive integers. Then there exists a (4; r, s)-decomposition of $K_m \otimes \overline{K_n}$ only if $mn^2(m-1)$ and $\equiv 0 \pmod{8}$.

Proof. Necessity is trivial by counting the number of edges of the graph $K_m \otimes \overline{K_n}$. Sufficiency follows from Lemmas 4.1

Acknowledgments

The authors are thankful for the referee's helpful comments, and they also thank the University Grant Commission, Government of India, New Delhi for its support through the Grant No.F.510/7/DRS-I/ 2016(SAP-I). The second author thanks the Department of Science and Technology, Government of India, New Delhi for its financial support through the Grant No. DST/INSPIRE Fellowship/2015/IF150211.

Disclosure statement

No potential conflict of interest was reported by the author(s).

References

- [1] Abueida, A. A., Daven, M. (2003). Multidesigns for graph-pairs of order 4 and 5. Graphs Comb. 19(4):433-447.
- [2] Abueida, A. A., O'Neil, T. (2007). Multidecomposition of λK_m into small cycles and claws. Bull. Inst. Comb. Appl. 49:32-40.
- Chartrand, G., Lesniak, L. (1986). Graphs and Digraphs, 2nd ed. [3] Belmont: Wadsworth.
- Ilayaraja, M., Muthusamy, A. Decomposition of complete bipartite graphs into cycles and stars with four edges. AKCE Int. J. Graphs and Comb. (in press).
- [5] Jeevadoss, S., Muthusamy, A. (2014). Decomposition of complete bipartite graphs into paths and cycles. Discrete Math. 331:98-108.
- [6] Jeevadoss, S., Muthusamy, A. (2015). Decomposition of complete bipartite multigraphs into paths and cycles having k edges. Discuss. Math. Graph Theory 35(4):715-731.
- [7] Jeevadoss, S., Muthusamy, A. (2016). Decomposition of product graphs into paths and cycles of length four. Graphs Comb. 32(1):199-223.
- Lee, H.-C., Chu, Y.-P. (2013). Multidecompositions of complete bipartite graphs into cycles and stars. Ars Comb. 2013:1-364.
- Lee, H. C. (2015). Decomposition of the complete bipartite mul-[9] tigraph into cycles and stars. Discrete Math. 338(8):1362-1369.
- [10] Lee, H. C., Lin, J.-J. (2013). Decomposition of the complete bipartite graph with a 1-factor removed into cycles and stars. Discrete Math. 313(20):2354-2358.
- [11] Priyadharsini, H. M., Muthusamy, A. (2012). (G_m, H_m) -multidecomposition of $K_{m,m}(\lambda)$, Bull. Inst. Comb. Appl. 66:42–48.
- [12] Shyu, T.-W. (2013). Decomposition of complete bipartite graphs into paths and stars with same number of edges. Discrete Math. 313(7):865-871.
- Shyu, T.-W. (2013). Decomposition of complete graphs into cycles and stars. Graphs Comb. 29(2):301-313.
- Shyu, T.-W. (2018). Decomposition of complete bipartite [14] graphs and complete graphs into paths, stars and cycles with four edges each. Discuss. Math. Graph Theory (in press).
- [15] Yamamoto, S., Ikeda, H., Shige-Eda, S., Ushio, K., Hamada, N. (1975). On claw decomposition of complete graphs and complete bipartite graphs. Hiroshima Math. J. 5(1):33-42.