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ABSTRACT
Let G ¼ ðV, EÞ be a simple, undirected, and connected graph. A connected (total) dominating set
S � V is a secure connected (total) dominating set of G, if for each u 2 V n S, there exists v 2 S
such that uv 2 E and ðS n fvgÞ [ fug is a connected (total) dominating set of G. The minimum car-
dinality of a secure connected (total) dominating set of G denoted by cscðGÞðcstðGÞÞ, is called the
secure connected (total) domination number of G. In this paper, we show that the decision prob-
lems corresponding to secure connected domination number and secure total domination number
are NP-complete even when restricted to split graphs or bipartite graphs. The NP-complete reduc-
tions also show that these problems are w[2]-hard. We also prove that the secure connected dom-
ination problem is linear time solvable in block graphs and threshold graphs.
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1. Introduction

Let G(V, E) be a simple, undirected, and connected graph.
For graph theoretic terminology we refer to [8]. For a vertex
v 2 V, the open neighborhood of v in G is NGðvÞ¼
fu 2 V : uv 2 Eg, the closed neighborhood of v is defined as
NG½v� ¼ NGðvÞ [ fvg: If S � V, then the open neighborhood
of S is the set NGðSÞ ¼ [v2SNGðvÞ: The closed neighborhood
of S is NG½S� ¼ S [ NGðSÞ: Let S � V: Then a vertex w 2 V
is called a private neighbor of v with respect to S if N½w� \
S ¼ fvg: If further w 2 V n S, then w is called an external
private neighbor (epn) of v.

A subset S of V is a dominating set (DS) in G if for every
u 2 V n S, there exists v 2 S such that uv 2 E: The domin-
ation number of G is the minimum cardinality of a DS in G
and is denoted by cðGÞ: A set S � V is said to be a secure
dominating set (SDS) in G if for every u 2 V n S there exists
v 2 S such that uv 2 E and ðS n fvgÞ [ fug is a dominating
set of G. We say that v S-defends u or u is defended by v
[4]. The minimum cardinality of a SDS in G is called the
secure domination number of G and is denoted by csðGÞ: A
dominating set S is said to be a connected dominating set
(CDS), if the induced subgraph G½S� is connected. A CDS S
is said to be a secure connected dominating set (SCDS) in G
if for each u 2 V n S, there exists v 2 S such that uv 2 E
and ðS n fvgÞ [ fug is a CDS in G. The minimum cardinal-
ity of a SCDS in G is called the secure connected domination
number of G and is denoted by cscðGÞ: A dominating set S
is said to be a total dominating set (TDS), if the induced
subgraph G½S� has no isolated vertices. A TDS S is said to be
a secure total dominating set (STDS) of G, if for each u 2
V n S, there exists v 2 S such that uv 2 E and ðS n fvgÞ [

fug is a TDS in G. The minimum cardinality of a STDS in
G is called the secure total domination number of G and is
denoted by cstðGÞ: We need the following theorems.

Theorem 1. ([2]) Let G be a connected graph of order n.
Then cscðGÞ ¼ 1 if and only if G ¼ Kn:

Theorem 2. ([2]) Let G be a connected graph of order n � 3.
Let L(G) and S(G) be the set of pendant and support vertices
of G respectively. Let X be a secure connected dominating set
of G. Then (i) LðGÞ � X and SðGÞ � X

(ii) No vertex in LðGÞ [ SðGÞ is an X-defender.

Proposition 1. ([3]) Let S be a CDS in G. Then S is a SCDS
in G if and only if the following conditions are satisfied.

(i) epnðv, SÞ ¼ ; for all v 2 S:
(ii) For every u 2 V n S, there exists v 2 S \ NGðuÞ such that

VðCÞ \ NGðuÞ 6¼ ; for every component C of G½S n fvg�:

Proposition 2. ([2]) Let G be a non-complete connected
graph and let S be a secure connected dominating set in G.
Then the set S n fvg is a dominating set for every v 2 S. In
particular, 1þ cðGÞ � cscðGÞ:

2. Main results

We first determine the value of cscðGÞ for two families of
graphs.

Theorem 3. Let Wn ¼ v1 þ Cn be the wheel of order nþ 1
where n � 3. Let G be the graph obtained from Wnþ1 by sub-
dividing all the edges of Cn. Then cscðGÞ ¼ nþ 1:
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Proof. Let VðGÞ ¼ fv1, v2, :::, v2nþ1g, dðv2nþ1Þ ¼ n, dðviÞ ¼
2 if i is even
3 otherwise

�
and

NðviÞ ¼ fvi�1, viþ1g if i is even. Then S ¼ fvi : i is oddg
is a SCDS of G. Hence cscðGÞ � nþ 1:

Now let D be any csc-set of G. If v2nþ1 62 D or if v2nþ1 2
D and defends a vertex vi, then we get a connected domi-
nating set D1ofG such that jD1j ¼ jDj and v2nþ1 62 D1:
Hence jDj ¼ jD1j � 2n� 2, which is a contradiction. Thus
v2nþ1 2 D and v2nþ1 does not defend any other vertex. Now
let vi 2 D for some iwherei is even. Since G½D� is connected,
one of vi�1 or viþ1 is in D: Also if vi 62 D for all even
i, then vi 2 D for all odd i: Hence cscðGÞ ¼ jDj � nþ 1: w

Theorem 4. For the book graph Bn ¼ K1, n wK2, we have
cscðBnÞ ¼ nþ 2:

Proof. Let S1 and S2 be the two copies of K1,n in Bn: LetVðS1Þ¼
fv1,v2, :::,vnþ1g andVðS2Þ¼fw1,w2, :::,wnþ1g: Let v1 andw1 be
the central vertices of S1,S2, respectively. Let viwi2EðBnÞ: Clearly
VðS1Þ[fw1g is an SCDS of Bn:Hence csc ðBnÞ �nþ2:

Now let D be any csc-set of Bn: Since D is connected,
either v1 or w1 is in D: If w1 2 D and v1 62 D, then fw2,w3,
:::,wnþ1, v2, v3, :::, vnþ1g � D: Thus, jDj � 2nþ 1 which is a
contradiction. Hence v1,w1 2 D: Now if both wi and vi are
not in D for some i � 2, then G½ðD n fw1gÞ [
fwig� and GðD n fv1gÞ [ fvig� are disconnected. Hence jD \
fwi, vigj � 1 for any i � 2 and cscðBnÞ ¼ jDj � nþ 2: Thus,
cscðBnÞ ¼ nþ 2: w

Theorem 5. Let G ¼ PnwP2 where n � 3:Then cscðGÞ ¼
nþdn3e:

Proof. Let P ¼ ðv1, v2, :::, vnÞ and Q ¼ ðw1,w2, :::,wnÞ be two
copies of Pn in G such that viwi 2 EðGÞ: Let V1 ¼ fv1, v2,
:::, vng and V2 ¼ fw1,w2, :::,wng: Then S ¼ V1 [ fwi : i � 2
ðmod3Þg is a SCDS ofG:Hence cscðGÞ � nþ dn3e:

Let D be any csc-set of G: If vi,wi 62 D for some
i, where 2 � i � n� 1, then G½D� is disconnected, which is a
contradiction. Hence at least one of vi,wi is in D, where 2 �
i � n� 1: If both v1 and w1 are not in D, then G½ðD n fv2gÞ [
fv1g� and G½ðD n fw2gÞ [ fw1g� are disconnected, which is a
contradiction. Hence v1 or w1 is in D: Similarly, wn or vn is in
D: We now claim that D \ V1 is a dominating set of P:
Suppose there exists a vertex vi such that vi is not dominated
by D \ V1: Then wi 2 D and G½ðD n fwigÞ [ fvig� is discon-
nected, which is a contradiction. Hence D \ V1 is a dominat-
ing set of P: Similarly D \ V2 is a dominating set of Q: Now
suppose D \ V1ˆV1 and D \ V2ˆV2: If three consecutive
vertices of P say, vi, viþ1, viþ2 are not in D, then
wi,wiþ1,wiþ2 2 D: However, G½ðD n fwiþ1gÞ [ fviþ1g� is dis-
connected, which is a contradiction. Now suppose vi, viþ1 62
D: Then vi�1, viþ2,wi,wiþ1 2 D: Now since G½D� is connected,
it follows that wi�1,wiþ2 2 D: HenceðD n fwi,wiþ1gÞ [
fvi, viþ1g is also a SCDS of G: Thus by repeating the above
process we get a SCDS of G, D1 such that jD1j ¼ jDj,D1 \
V1 ¼ V1 and D1 \ V2 is a dominating set of Q: Thus, jDj ¼
jD1j � nþ dn3e: Therefore, cscðGÞ ¼ nþ dn3e: w

We now proceed to present results on algorithmic aspects
such as NP-comppleteness and linear time algorithm for
some classes of graphs.

Secure Connected Domination Problem (SCDM)
Instance: A connected graph G and a positive integer l:
Question: Does there exist a SCDS of size at

most l in G?
The proof is by reduction from the Domination problem

(DM), which is NP-complete [5].
Domination Problem (DM)
Instance: A graph G and a positive integer k.
Question: Does there exist a DS of size at most k in G?

Theorem 6. SCDM is NP-complete.

Proof. It can be easily verified that SCDM is in NP. Now let
G ¼ ðV ,EÞ be a graph and let k be a positive integer. Let G�

be the graph with VðG�Þ ¼ V [ fxg and EðG�Þ ¼ E [ fðu, xÞ
: u 2 Vg and let l ¼ kþ 1: Clearly, G� can be constructed
from G in polynomial time.

Now if D is a dominating set of G with jDj � k, then
S ¼ D [ fxg is an SCDS of G�: Conversely, let S� be an
SCDS of G� with jS�j � kþ 1: If x 2 S, then it follows from
Proposition 1 that epnðx, SÞ ¼ ;: Therefore, every vertex u 2
VðG�Þ n S is adjacent to a vertex in S n fxg: Hence S n fxg is
a DS of size at most k in G: If x 62 S, Proposition 2, the set
S n fvg, for any v 2 S, is a DS of size at most k in G: w

Next, we define the decision version of total domination
and secure total domination problems as follows.

Total Domination Problem (TDM)
Instance: A simple, undirected graph G without isolated

vertices and a positive integer r.
Question: Does there exist a TDS of size at most r in G?
Secure Total Domination Problem (STDM)
Instance: A simple, undirected and connected graph G

and a positive integer m:
Question: Does there exist a STDS of size at most minG?

Theorem 7. STDM is NP-complete.

Proof. It is clear that STDM is in NP. The reduction given
in the proof of Theorem 6 shows that STDM is NP-com-
plete. w

We now give NP-completeness results even when
restricted to bipartite graphs or split graphs. We formulate
the SCDM for bipartite graphs as follows.

Secure Connected Domination Problem for Bipartite
Graphs (SCDB)

Instance: A connected bipartite graph G ¼ ðV1,V2,EÞ
and a positive integer r.

Question: Does there exist a SCDS of size at most r in G?

Theorem 8. SCDB is NP-complete.

Proof. It can be seen that SCDB is in NP. We transform an
instance of SCDM problem to an instance of SCDB as fol-
lows. Given a graph G, we construct a graph
G�ðV1,V2,EÞ where V1ðG�Þ ¼ V [ fp, qg,V2ðG�Þ ¼ V 0ðGÞ [
fx, yg, here V 0ðGÞ is another copy of V such that if u and v
are two vertices in V then the corresponding vertices in
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V 0ðGÞ are labeled as u0 and v0, and EðG�Þ consists of (i)
edges uv0 and u0v for each edge uv 2 E; (ii) edges of the
form uu0 for each vertex u 2 V; and (iii) edges of the form
ux and uy for every vertex u 2 V1ðG�Þ: Clearly G� is a
bipartite graph and can be constructed from G in polyno-
mial time (Figure 1).

Next, we show that G has a SCDS of size at most r if and
only if G� has a SCDS of size at most r þ 2: If S is a SCDS
of G withjSj � r, then it can be easily verified that S� ¼
S [ fx, yg is a SCDS of G� with jS�j � r þ 2:

Conversely, let S� be an SCDS of G� and jS�j � r þ 2: Since
xandy are the only vertices in S� which defend pandq, it fol-
lows that at least one of them must be in S�: If x 2 S� and y 62
S�, then G�½ðS� n fxgÞ [ fpg� is disconnected, which is a
contradiction. Hence x, y 2 S�: Let S0 ¼ S� n
fx, y, p, qg and S00 ¼ ðS0 [ fv : v0 2 S0 \ V 0ðGÞgÞ n
fv0 : v0 2 S0 \ V 0ðGÞg: Clearly S00 forms a SCDS of size at most
r in G: w

Theorem 9. STDM is NP-complete for bipartite graphs.

Proof. It is clear that STDM for bipartite graphs is in NP.
The reduction given in the proof of Theorems 8 shows that
STDM is NP-complete for bipartite graphs. w

Since the Domination problem is w[2]-complete for
bipartite graphs [7] and the reductions in Theorems 8 and 9
are in the function of the parameter l, the following two
corollaries are immediate.

Corollary 1. SCDM is w[2]-hard in bipartite graphs.

Corollary 2. STDM is w[2]-hard in bipartite graphs.

It has been shown that the DM and the TDM as NP-
complete even when restricted to split graphs [1].

Theorem 10. SCDM is NP-complete for split graphs.

Proof. It is known that SCDM is a member of NP. We
reduce DM for split graphs to SCDM for split graphs. Given
a split graph G whose vertex set is partitioned into a clique

Q and an independent set I, we construct a split graph G�

with a clique Q� and an independent set I� as follows:

VðG�Þ ¼ V [ fx, yg, and
EðG�Þ ¼ E [ fxu : u 2 Vg [ fxyg:

Note that G� is a split graph, where Q� ¼ Q [ fxg and I� ¼
I [ fyg and G� can be constructed from G in polyno-
mial time.

Now let S be a DS of G with jSj � k: Then S� ¼ S [ fx, yg is
a SCDS of G� with jS�j � kþ 2: Conversely, let S� be a SCDS
of G� with jS�j � kþ 2: It follows from Proposition 2 that
x, y 2 S�: Clearly S0 ¼ S� n fx, yg is a DS of G with jS0j � k: w

Theorem 11. STDM is NP-complete for split graphs.

Proof. It is clear that STDM for split graphs is in NP. The
reduction given in the proof of Theorem 10 shows that
STDM is NP-complete for split graphs. w

Since the Domination problem is w[2]-complete for split
graphs [7] and the reductions in Theorems 10 and 11 are in
the function of the parameter c, the following two corolla-
ries are immediate.

Corollary 3. SCDM is w[2]-hard in split graphs.

Corollary 4. STDM is w[2]-hard in split graphs.

In the next two theorems we prove that cscðGÞ can be
computed in linear time for block graphs and thresh-
old graphs.

Let G ¼ ðV, EÞ be a connected graph. A vertex v is called
a cut-vertex of G if G� v is a disconnected graph. A graph
G with no cut-vertex is called a block. A block B of a graph
is a maximal connected induced subgraph of G such that B
has no cut-vertex. In block B, vertices which are not cut ver-
tices of G are called block vertices. A graph G is called a
block graph if all its blocks are cliques.

Definition 1. A graph G is called a block graph if all the
blocks of G are cliques.

a

b c

d e

(a) Graph G

a

b

c

d

e

p

q

a′

b′

c′

d′

e′

x

y

(b) Graph G∗

Figure 1. Construction of G� from G:
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Theorem 12. Let G be a block graph having r blocks and k
cut vertices. Then cscðGÞ ¼ kþ r � r0, where r0 is the number
of blocks such that all vertices of the block are cut vertices.

Proof. Let A denote the set of all cut vertices of G. Let
B1,B2, :::,Br0 ,Br0þ1, :::,Br be the blocks of G where every ver-
tex of Bi is a cut vertex of G if 1 � i � r0: Let T ¼
fvi : 1 � i � r � r0 and vi is a non-cut vertex of Br0þig: Let
S ¼ A [ T:SinceA contains all cut-vertices of G, it follows
that G½S� is connected. Also if v 2 V n S, then v is not a
cut-vertex. Now there exists a vertex u 2 T such that uv 2
EandðS n fvgÞ [ fug is a CDS of G: Hence, S is a SCDS of
G: Therefore, cscðGÞ � kþ r � r0:

Now let D be any csc-set of G: Since G½D� is connected, D 	
A: Further, a cut-vertex cannot defend any other vertex
and hence D contains at least one non-cut vertex from each
block Bi where r0 þ 1 � i � r: Hence cscðGÞ ¼ jDj � jSj ¼ k
þr �r0: Thus cscðGÞ ¼ kþ r � r0: w

Corollary 5. Let G be a block graph with r blocks and exactly
one cut-vertex. Then cscðGÞ ¼ r þ 1:

Corollary 6. For any tree T with n vertices, cscðTÞ ¼ n:

Proof. Here r ¼ n� 1, r0 ¼ n� 1� l and k ¼ n� l where l
is the number of leaves in T: Therefore, cscðTÞ ¼ n: w

Corollary 7. SCDM is linear time solvable for block graphs.

Proof. Since number of blocks and number of cut-vertices of
block graph can be determined in linear time, the result fol-
lows. w

Definition 2. A graph G ¼ ðV ,EÞ is called a threshold
graph if there is a real number t and a real number wðvÞ for
every v 2 V such that a set S � V is independent if and
only if

P
v2S wðSÞ � t:

Threshold graphs considered are assumed to be non-
complete and connected. We use the following characteriza-
tion of threshold graphs given in [6] to prove that secure
connected domination number can be computed in linear
time for threshold graphs.

A graph G is a threshold graph if and only if it is a split
graph and for split partition ðC, IÞ of V, there is an order-
ing ðx1, x2, :::, xpÞ of vertices of C such that N½x1� � N½x2� �
::: � N½xp�, and there is an ordering ðy1, y2, :::, yqÞ of the
vertices of I such that Nðy1Þ 	 Nðy2Þ 	 :::NðyqÞ:
Theorem 13. Let G be a connected threshold graph. Then
cscðGÞ ¼ 2þ l, where l is the number of pendant vertices.

Proof. Let S ¼ fxp, xp�1g [ fv 2 I : v 2 NðxpÞ n Nðxp�1Þg:
Clearly G½S� is a star with center xp: Also every vertex v 2
V n S is defended by xp�1 and G½ðS n fxp�1gÞ [ fvg� is con-
nected. Thus, S is a SCDS of G:HencecscðGÞ � 2þ l:

Let D be any csc-set of G. It follows from Theorem 2 that
jDj � lþ 1:If jDj ¼ l þ 1, then exactly one vertex of C say, u

is a support vertex. Hence no vertex of C n fug is D-defended,
which is a contradiction. Hence cscðGÞ ¼ jDj � 2þ l: Thus
cscðGÞ ¼ 2þ l: w

Theorem 14. SCDM is linear time solvable for thresh-
old graphs.

Proof. Since the ordering of the vertices of the clique in a
threshold graph can be determined in linear time [6], the
result follows. w

3. Conclusion

In this paper, it is shown that secure connected (total) dom-
ination problem is NP-complete even when restricted to
bipartite graphs, or split graphs. Since split graphs form a
proper subclass of chordal graphs, these problems are also
NP-complete for chordal graphs. We have proved that
secure connected domination problem is linear time solvable
for block graphs and threshold graphs. It will be interesting
to investigate the algorithmic complexity of secure con-
nected (total) domination problem for subclasses of chordal
and bipartite graphs.
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