On the structure of spikes

Vahid Ghorbani, Ghodratollah Azadi \& Habib Azanchiler

To cite this article: Vahid Ghorbani, Ghodratollah Azadi \& Habib Azanchiler (2020): On the structure of spikes, AKCE International Journal of Graphs and Combinatorics, DOI: 10.1016/ j.akcej.2019.08.002

To link to this article: https://doi.org/10.1016/j.akcej.2019.08.002

© 2020 The Author(s). Published with
license by Taylor \& Francis Group, LLC

Published online: 01 Jul 2020.

Submit your article to this journal

Article views: 175

View related articles

View Crossmark data \triangle

On the structure of spikes

Vahid Ghorbani (D), Ghodratollah Azadi (D), and Habib Azanchiler (1)
Department of Mathematics, Urmia University, Urmia, Iran

Abstract

Spikes are an important class of 3-connected matroids. For an integer $r \geq 3$, there is a unique binary r-spike denoted by Z_{r}. When a circuit-hyperplane of Z_{r} is relaxed, we obtain another spike and repeating this procedure will produce other non-binary spikes. The es-splitting operation on a binary spike of rank r, may not yield a spike. In this paper, we give a necessary and sufficient condition for the es-splitting operation to construct Z_{r+1} directly from Z_{r}. Indeed, all binary spikes and many of non-binary spikes of each rank can be derived from the spike Z_{3} by a sequence of the es-splitting operations and circuit-hyperplane relaxations.

KEYWORDS

Binary matroid; es-splitting operation; relaxation; spike

1. Introduction

Azanchiler [1,2] extended the notion of n-line splitting operation from graphs to binary matroids. He characterized the n-line splitting operation of graphs in terms of cycles of the respective graph and then extended this operation to binary matroids as follows. Let M be a binary matroid on a set E and let X be a subset of E with $e \in X$. Suppose A is a matrix that represents M over $G F(2)$. Let A_{X}^{e} be a matrix obtained from A by adjoining an extra row to A with this row being zero everywhere except in the columns corresponding to the elements of X where it takes the value 1 , and then adjoining two columns labeled α and γ to the resulting matrix such that the column labeled α is zero everywhere except in the last row where it takes the value 1 , and γ is the sum of the two column vectors corresponding to the elements α and e. The vector matroid of the matrix A_{X}^{e} is denoted by M_{X}^{e}. The transition from M to M_{X}^{e} is called an es-splitting operation. We call the matroid M_{X}^{e} as essplitting matroid.

Let M be a matroid and $X \subseteq E(M)$, a circuit C of M is called an OX-circuit if Contains an odd number of elements of X, and C is an $E X$-circuit if C contains an even number of elements of X. The following proposition characterizes the circuits of the matroid M_{X}^{e} in terms of the circuits of the matroid M.

Proposition 1. [1] Let $M=(E, \mathcal{C})$ be a binary matroid together with the collection of circuits \mathcal{C}. Suppose $X \subseteq E, e \in$ X and $\alpha, \gamma \notin E$. Then $M_{X}^{e}=\left(E \cup\{\alpha, \gamma\}, \mathcal{C}^{\prime}\right)$ where $\mathcal{C}^{\prime}=$ $\left(\cup_{i=0}^{5} \mathcal{C}_{i}\right) \cup \Lambda$ with $\Lambda=\{e, \alpha, \gamma\}$ and
$\mathcal{C}_{0}=\{C \in \mathcal{C}: C$ is an EX-circuit $\} ;$
$\mathcal{C}_{1}=\{C \cup\{\alpha\}: C \in \mathcal{C}$ and C is an OX-circuit $\} ;$
$\mathcal{C}_{2}=\{C \cup\{e, \gamma\}: C \in \mathcal{C}, e \notin C$ and C is an OX-circuit $\} ;$
$\mathcal{C}_{3}=\{(C \backslash e) \cup\{\gamma\}: C \in \mathcal{C}, e \in C$ and C is an OX-circuit $\} ;$
$\mathcal{C}_{4}=\{(C \backslash e) \cup\{\alpha, \gamma\}: C \in \mathcal{C}, e \in C$ and C is an EX-circuit $\} ;$
$\mathcal{C}_{5}=$ The set of minimal members of $\left\{C_{1} \cup C_{2}: C_{1}, C_{2} \in\right.$ $\mathcal{C}, C_{1} \cap C_{2}=\emptyset$ and each of C_{1} and C_{2} is an OX-circuit $\}$.

It is observed that the es-splitting operation on a 3 -connected binary matroid may not yield a 3-connected binary matroid. The following result, provide a sufficient condition under which the es-splitting operation on a 3-connected binary matroid yields a 3-connected binary matroid.

Proposition 2. [3] Let M be a 3-connected binary matroid, $X \subseteq E(M)$ and $e \in X$. Suppose that M has an OX-circuit not containing e. Then M_{X}^{e} is a 3-connected binary matroid.

To define rank-r spikes, let $E=\left\{x_{1}, x_{2}, \ldots, x_{r}, y_{1}, y_{2} \ldots, y_{r}\right.$, $t\}$ for some $r \geq 3$. Let $\mathcal{C}_{1}=\left\{\left\{t, x_{i}, y_{i}\right\}: 1 \leq i \leq r\right\}$ and $\mathcal{C}_{2}=$ $\left\{\left\{x_{i}, y_{i}, x_{j}, y_{j}: 1 \leq i<j \leq r\right\}\right.$. The set of circuits of every spike on E includes $\mathcal{C}_{1} \cup \mathcal{C}_{2}$. Let \mathcal{C}_{3} be a, possibly empty, subsets of $\left\{\left\{z_{1}, z_{2}, \ldots z_{r}\right\}: z_{i}\right.$ is in $\left\{x_{i}, y_{i}\right\}$ for all $\left.i\right\}$ such that no two members of \mathcal{C}_{3} have more than $r-2$ common elements. Finally, let \mathcal{C}_{4} be the collection of all $(r+1)$-element subsets of E that contain no member of $\mathcal{C}_{1} \cup \mathcal{C}_{2} \cup \mathcal{C}_{3}$.

Proposition 3. [4] There is a rank-r matroid M on E whose collection \mathcal{C} of circuits is $\mathcal{C}_{1} \cup \mathcal{C}_{2} \cup \mathcal{C}_{3} \cup \mathcal{C}_{4}$.

The matroid M on E with collection \mathcal{C} of circuits in the last proposition is called a rank-r spike with tip t and legs $L_{1}, L_{2}, \ldots L_{r}$ where $L_{i}=\left\{t, x_{i}, y_{i}\right\}$ for all i. In the construction of a spike, if \mathcal{C}_{3} is empty, the corresponding spike is called the rank-r free spike with tip t. In an arbitrary spike M, each circuit in \mathcal{C}_{3} is also a hyperplane of M. Evidently, when such a circuit-hyperplane is relaxed, we obtain another spike. Repeating this procedure until all of the circuit-hyperplanes in \mathcal{C}_{3} have been relaxed will produce the free spike. Now let J_{r} and 1 be the $r \times r$ and $r \times 1$ matrices of all ones. For $r \geq$

3, let A_{r} be the $r \times(2 r+1)$ matrix $\left[I_{r}\left|J_{r}-I_{r}\right| \mathbf{1}\right]$ over $G F(2)$ whose columns are labeled, in order, $x_{1}, x_{2}, \ldots, x_{r}, y_{1}, y_{2} \ldots, y_{r}$, t. The vector matroid $M\left[A_{r}\right]$ of this matrix is called the rank-r binary spike with tip t and denoted by Z_{r}. Oxley [4] showed that all rank- r, 3-connected binary matroids without a 4 -wheel minor can be obtained from a binary r-spike by deleting at most two elements.

2. Circuits of Z_{r}

In this section, we characterize the collection of circuits of Z_{r}. To do this, we use the next well-known theorem.

Theorem 4. [4] A matroid M is binary if and only if for every two distinct circuits C_{1} and C_{2} of M, their symmetric difference, $C_{1} \Delta C_{2}$, contains a circuit of M.

Now let $M=(E, \mathcal{C})$ be a binary matroid on the set E together with the set \mathcal{C} of circuits where $E=\left\{x_{1}, x_{2}, \ldots\right.$, $\left.x_{r}, y_{1}, y_{2} \ldots, y_{r}, t\right\}$ for some $r \geq 3$. Suppose $Y=\left\{y_{1}, y_{2} \ldots, y_{r}\right\}$. For k in $\{1,2,3,4\}$, we define φ_{k} as follows.
$\varphi_{1}=\left\{L_{i}=\left\{t, x_{i}, y_{i}\right\}: 1 \leq i \leq r\right\} ;$
$\varphi_{2}=\left\{\left\{x_{i}, y_{i}, x_{j}, y_{j}\right\}: 1 \leq i<j \leq r\right\} ;$
$\varphi_{3}=\left\{Z \subseteq E:|Z|=r,|Z \cap Y|\right.$ is odd and $\left|Z \cap\left\{y_{i}, x_{i}\right\}\right|=1$ where $1 \leq i \leq r\}$; and

$$
\varphi_{4}= \begin{cases}\left\{E-C: C \in \varphi_{3}\right\}, & \text { if } r \text { is odd } \\ \left\{(E-C) \Delta\left\{x_{r-1}, y_{r-1}\right\}: C \in \varphi_{3}\right\}, & \text { if } r \text { is even }\end{cases}
$$

Theorem 5. A matroid whose collection \mathcal{C} of circuits is $\varphi_{1} \cup \varphi_{2} \cup \varphi_{3} \cup \varphi_{4}$, is the rank-r binary spike.

Proof. Let M be a matroid on the set $E=\left\{x_{1}, x_{2}, \ldots, x_{r}\right.$, $\left.y_{1}, y_{2} \ldots, y_{r}, t\right\}$ such that $\mathcal{C}(M)=\varphi_{1} \cup \varphi_{2} \cup \varphi_{3} \cup \varphi_{4}$. Suppose $Y=\left\{y_{1}, y_{2}, \ldots y_{r}\right\}$. Then, for every two distinct circuits C_{1} and C_{2} of φ_{3}, we have $C_{1} \cap Y \neq C_{2} \cap Y$ and $\mid C_{j} \cap$ $\left\{x_{i}, y_{i}\right\} \mid=1$ for all i and j with $1 \leq i \leq r$ and $j \in\{1,2\}$. We conclude that there is at least one y_{i} in C_{1} such that $y_{i} \notin C_{2}$ and so x_{i} is in C_{2} but it is not in C_{1}. Thus, no two members of φ_{3} have more than $r-2$ common elements. It is clear that every member of φ_{4} has $(r+1)$-elements and contains no member of $\varphi_{1} \cup \varphi_{2} \cup \varphi_{3}$. By Proposition 3, we conclude that M is a rank-r spike. It is straightforward to show that for every two distinct members of \mathcal{C}, their symmetric difference contains a circuit of M. Thus, by Theorem $4, M$ is a binary spike.

It is not difficult to check that if r is odd, then the intersection of every two members of φ_{3} has odd cardinality and the intersection of every two members of φ_{4} has even cardinality and if r is even, then the intersection of every two members of φ_{3} has even cardinality and the intersection of every two members of φ_{4} has odd cardinality. Clearly, $\left|\varphi_{1}\right|=r,\left|\varphi_{2}\right|=\frac{r(r-1)}{2}$ and $\left|\varphi_{3}\right|=\left|\varphi_{4}\right|=2^{r-1}$. Therefore, every rank-r binary spike has $2^{r}+\frac{r(r+1)}{2}$ circuits. Moreover, $\cap_{i=1}^{r} L_{i} \neq \emptyset$ and $\left|C \cap\left\{x_{i}, y_{i}\right\}\right|=1$ where $1 \leq i \leq r$ and C is a member of $\varphi_{3} \cup \varphi_{4}$.

3. The es-splitting operation on Z_{r}

By applying the es-splitting operation on a given binary matroid with k elements, we obtain a matroid with $k+2$ elements. In this section, our main goal is to give a necessary and sufficient condition for $X \subseteq E\left(Z_{r}\right)$ with $e \in X$, to obtain Z_{r+1} by applying the es-splitting operation on X. Now suppose that $M=Z_{r}$ be a binary rank-r spike with the matrix representation $\left[I_{r}\left|J_{r}-I_{r}\right| \mathbf{1}\right]$ over $G F(2)$ whose columns are labeled, in order $x_{1}, x_{2}, \ldots, x_{r}, y_{1}, y_{2}, \ldots, y_{r}, t$. Suppose $\varphi=\varphi_{1} \cup \varphi_{2} \cup \varphi_{3} \cup \varphi_{4}$ be the collection of circuits of Z_{r} defined in section 2. Let $X_{1}=\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}$ and $Y_{1}=$ $\left\{y_{1}, y_{2}, \ldots, y_{r}\right\}$ and let X be a subset of $E\left(Z_{r}\right)$. By the following lemmas, we give six conditions for membership of X such that, for every element e of this set, $\left(Z_{r}\right)_{X}^{e}$ is not the spike Z_{r+1}.

Lemma 6. If $r \geq 4$ and $t \notin X$, then, for every element e of X, the matroid $\left(Z_{r}\right)_{X}^{e}$ is not the spike Z_{r+1}.

Proof. Suppose that $t \notin X$. Without loss of generality, we may assume that there exist i in $\{1,2, \ldots, r\}$ such that $x_{i} \in X$ and $e=x_{i}$. By Proposition 1, the set $\Lambda=\left\{x_{i}, \alpha, \gamma\right\}$ is a circuit of $\left(Z_{r}\right)_{X}^{e}$. Now consider the leg $L_{i}=\left\{t, x_{i}, y_{i}\right\}$, we have the following two cases.
(i) If $y_{i} \in X$, then $\left|L_{i} \cap X\right|$ is even. By Proposition 1, the $\operatorname{leg} L_{i}$ is a circuit of $\left(Z_{r}\right)_{X}^{e}$. Now if all other legs of Z_{r} have an odd number of elements of X, by Proposition 1, we observe that these legs transform to circuits of cardinality 4 and 5 . So there are exactly two 3 -circuits in $\left(Z_{r}\right)_{X}^{e}$. If not, there is a $j \neq i$ such that L_{j} is a 3-circuit of $\left(Z_{r}\right)_{X}^{e}$ and $\left(\Lambda \cap L_{i} \cap L_{j}\right)=\emptyset$. Since Z_{r+1} has $r+1$ legs and the intersection of the legs of Z_{r+1} is nonempty, we conclude that in each case, for every element e of X, the matroid $\left(Z_{r}\right)_{X}^{e}$ is not the spike Z_{r+1}.
(ii) If $y_{i} \notin X$, then $\left|L_{i} \cap X\right|$ is odd. By Proposition 1, $\left(L_{i} \backslash x_{i}\right) \cup \gamma$ is a circuit of $\left(Z_{r}\right)_{X}^{e}$. Now if there is the other leg L_{j} such that $\left|L_{j} \cap X\right|$ is even, then L_{j} is a circuit of $\left(Z_{r}\right)_{X}^{e}$. But $\left(L_{j} \cap \Lambda \cap\left(\left(L_{i} \backslash x_{i}\right) \cup \gamma\right)\right)=\emptyset$, so $\left(Z_{r}\right)_{X}^{e}$ is not the spike Z_{r+1}. We conclude that every leg L_{j} with $j \neq i$ has an odd number of elements of X. Since $x_{i} \notin L_{j}$, by Proposition 1 again, L_{j} is not a 3-circuit in $\left(Z_{r}\right)_{X}^{e}$. Therefore, $\left(Z_{r}\right)_{X}^{e}$ has only two 3-circuits and so, for every element e of X, the matroid $\left(Z_{r}\right)_{X}^{e}$ is not the spike Z_{r+1}.

Lemma 7. If $r \geq 4$ and $e \neq t$, then, for every element e of $X-t$, the matroid $\left(Z_{r}\right)_{X}^{e}$ is not the spike Z_{r+1}.

Proof. Suppose that $e \neq t$. Without loss of generality, we may assume that there exist i in $\{1,2, \ldots, r\}$ such that $x_{i} \in X$ and $e=x_{i}$. By Proposition 1, the set $\Lambda=\left\{x_{i}, \alpha, \gamma\right\}$ is a circuit of $\left(Z_{r}\right)_{X}^{e}$ and by Lemma 6 , to obtain Z_{r+1}, the element t is contained in X. Now consider the leg $L_{i}=\left\{t, x_{i}, y_{i}\right\}$. We have the following two cases.
(i) If $y_{i} \in X$, then $\left|L_{i} \cap X\right|$ is odd. By Proposition 1, $L_{i} \cup$ α and $\left(L_{i} \backslash x_{i}\right) \cup \gamma$ are circuits of $\left(Z_{r}\right)_{X}^{e}$. Now if there
is the other leg L_{j} such that $\left|L_{j} \cap X\right|$ is even, then L_{j} is a circuit of $\left(Z_{r}\right)_{X}^{e}$. But $\left(L_{j} \cap \Lambda \cap\left(\left(L_{i} \backslash x_{i}\right) \cup \gamma\right)\right)=\emptyset$, so $\left(Z_{r}\right)_{X}^{e}$ is not the spike Z_{r+1}. We conclude that every leg L_{j} with $j \neq i$ has an odd number of elements of X. Since $x_{i} \notin L_{j}$, by Proposition 1 again, L_{j} is not a 3-circuit in $\left(Z_{r}\right)_{X}^{e}$. Therefore $\left(Z_{r}\right)_{X}^{e}$ has only two 3-circuits and so $\left(Z_{r}\right)_{X}^{e}$ is not the spike Z_{r+1}.
(ii) If $y_{i} \notin X$, then $\left|L_{i} \cap X\right|$ is even. So L_{i} is a circuit of $\left(Z_{r}\right)_{X}^{e}$. By similar arguments as in Lemma 6 (i), one can show that for every element e of $X-t$, the mat$\operatorname{roid}\left(Z_{r}\right)_{X}^{e}$ is not the spike Z_{r+1}.

Next by Lemmas 6 and 7, to obtain the spike Z_{r+1}, we take t in X and $e=t$.
Lemma 8. If $r \geq 4$ and there is a circuit C of φ_{3} such that $|C \cap X|$ is even, then the matroid $\left(Z_{r}\right)_{X}^{t}$ is not the spike Z_{r+1}.

Proof. Suppose that C is a circuit of Z_{r} such that C is a member of φ_{3} and $|C \cap X|$ is even. Then, by Proposition 1, the circuit C is preserved under the es-splitting operation. So C is a circuit of $\left(Z_{r}\right)_{X}^{t}$. But $|C|=r$. Now if $r>4$, then C cannot be a circuit of Z_{r+1}, since it has no r-circuit, and if $r=4$, then, to preserve the members of φ_{2} in Z_{4} under the $e s$-splitting operation and to have at least one member of φ_{3} which has even number of elements of X, the set X must be $E\left(Z_{r}\right)-t$ or t. But in each case $\left(Z_{4}\right)_{X}^{t}$ has exactly fourteen 4-circuits, so it is not the spike Z_{5}, since this spike has exactly ten 4-circuit. We conclude that the matroid $\left(Z_{r}\right)_{X}^{t}$ is not the spike Z_{r+1}.

Lemma 9. If $r \geq 4$ and $\left|X \cap\left\{x_{i}, y_{i}\right\}\right|=2$, for i in $\{1,2, \ldots, r\}$, then the matroid $\left(Z_{r}\right)_{X}^{t}$ is not the spike Z_{r+1} unless r is odd and for all $i,\left\{x_{i}, y_{i}\right\} \subset X$, in which case Z_{r+1} has γ as a tip.

Proof. Suppose that $\left\{x_{i}, y_{i}\right\} \subset X$ for $i \in\{1,2, \ldots, r\}$. Since $t \in X$ and $e=t$, after applying the es-splitting operation, the leg $\left\{t, x_{i}, y_{i}\right\}$ turns into two circuits $\left\{t, x_{i}, y_{i}, \alpha\right\}$ and $\left\{x_{i}, y_{i}, \gamma\right\}$. Now consider the leg $L_{j}=\left\{t, x_{j}, y_{j}\right\}$ where $j \neq i$. If $\left|L_{j} \cap X\right|$ is even (this means $\left\{x_{j}, y_{j}\right\} \nsubseteq X$), then L_{j} is a circuit of $\left(Z_{r}\right)_{X}^{e}$. But $\left\{x_{i}, y_{i}, \gamma\right\} \cap\left\{t, x_{j}, y_{j}\right\}=\emptyset$ and this contradicts the fact that the intersection of the legs of a spike is not the empty set. So $\left\{x_{j}, y_{j}\right\}$ must be a subset of X. We conclude that $\left\{x_{k}, y_{k}\right\} \subset X$ for all $k \neq i$. Thus $X=E\left(Z_{r}\right)$. But in this case, r cannot be even since every circuit in φ_{3} has even cardinality and by Lemma 8 , the matroid $\left(Z_{r}\right)_{X}^{t}$ is not the spike Z_{r+1}.

Now we show that if $X=E\left(Z_{r}\right)$, and r is odd, then $\left(Z_{r}\right)_{X}^{t}$ is the spike Z_{r+1} with tip γ. Clearly, every leg of Z_{r} has an odd number of elements of X. Using Proposition 1, after applying the es-splitting operation, we have the following changes.

For i in $\{1,2, \ldots, r\}, L_{i}$ transforms to two circuits $\left(L_{i} \backslash t\right) \cup$ γ and $L_{i} \cup \alpha$, every member of φ_{2} is preserved, and if $C \in$ φ_{3}, then $C \cup \alpha$ and $C \cup\{t, \gamma\}$ are circuits of $\left(Z_{r}\right)_{X}^{t}$. Finally, if $C \in \varphi_{4}$, then C and $(C \backslash t) \cup\{\alpha, \gamma\}$ are circuits of $\left(Z_{r}\right)_{X}^{t}$. Note that, since $X=E\left(Z_{r}\right)$ with $e=t$, there are no two disjoint $O X$-circuits in Z_{r} such that their union be minimal.

Therefore the collection \mathcal{C}_{5} in Proposition 1 is empty. Now suppose that α and t play the roles of x_{r+1} and y_{r+1}, respectively, and γ plays the role of tip. Then we have the spike Z_{r+1} with tip γ whose collection ψ of circuits is $\psi_{1} \cup \psi_{2} \cup \psi_{3} \cup \psi_{4}$ where
$\psi_{1}=\left\{\left(L_{i} \backslash t\right) \cup \gamma: 1 \leq i \leq r\right\} \cup \Lambda ;$
$\psi_{2}=\left\{\left\{x_{i}, y_{i}, x_{j}, y_{j}\right\}: 1 \leq i<j \leq r\right\} \cup\left\{\left(L_{i} \cup \alpha: 1 \leq i \leq r\right\} ;\right.$
$\psi_{3}=\left\{C \cup \alpha: C \in \varphi_{3}\right\} \cup\left\{C: C \in \varphi_{4}\right\} ;$
$\psi_{4}=\left\{C \cup\{t, \gamma\}: C \in \varphi_{3}\right\} \cup\left\{(C \backslash t) \cup\{\alpha, \gamma\}: C \in \varphi_{4}\right\}$.
In the following lemma, we shall use the well-known facts that if a matroid M is n-connected with $E(M) \geq 2(n-1)$, then all circuits and all cocircuits of M have at least n elements, and if A is a matrix that represents M over $G F(2)$, then the cocircuit space of M equals the row space of A.
Lemma 10. If $|X| \leq r$, then the matroid $\left(Z_{r}\right)_{X}^{t}$ is not the spike Z_{r+1}.

Proof. Suppose $X \subset E\left(Z_{r}\right)$ such that $|X| \leq r$. Then, by Lemmas 6,7 and $8, t \in X$ with $e=t$ and $\left|X \cap\left\{x_{i}, y_{i}\right\}\right|=1$ for all i in $\{1,2, \ldots, r\}$. Therefore, there are at least two elements x_{j} and y_{j} with $i \neq j$ not contained in X and so the leg $L_{j}=\left\{t, x_{j}, y_{j}\right\}$ has an odd number of elements of X. Thus, after applying the es-splitting operation L_{j} transforms to $\left\{x_{j}, y_{j}, \gamma\right\}$. Now let $L_{k}=\left\{t, x_{k}, y_{k}\right\}$ be another leg of Z_{r}. If $\left|L_{k} \cap X\right|$ is even, then L_{k} is a circuit of $\left(Z_{r}\right)_{X}^{t}$. But $\left(L_{k} \cap \Lambda \cap\right.$ $\left.\left\{x_{j}, y_{j}, \gamma\right\}\right)=\emptyset$. Hence, in this case, the matroid $\left(Z_{r}\right)_{X}^{t}$ is not the spike Z_{r+1}. We may now assume that every other leg of Z_{r} has an odd number of elements of X. Then, for all $j \neq i$, the elements x_{j} and y_{j} are not contained in X. We conclude that $|X|=1$ and in the last row of the matrix that represents the matroid $\left(Z_{r}\right)_{X}^{t}$ there are two entries 1 in the corresponding columns of t and α. Hence, $\left(Z_{r}\right)_{X}^{t}$ has a 2 -cocircuit and it is not the matroid Z_{r+1} since spikes are 3-connected matroids.

By Lemmas 9 and 10, we must check that if $|X|=r+1$, then, by using the es-splitting operation, can we build the spike Z_{r+1} ?
Lemma 11. If $r \geq 4$ and $\left|X \cap X_{1}\right|$ be odd, then the matroid $\left(Z_{r}\right)_{X}^{t}$ is not the spike Z_{r+1}.

Proof. Suppose that r is even and $\left|X \cap X_{1}\right|$ is odd. Since $t \in$ X and $|X|=r+1$, so $\left|X \cap Y_{1}\right|$ must be odd. Therefore the set X must be $C \cup t$ where $C \in \varphi_{3}$. But $|C \cap X|$ is even and by Lemma 8, the matroid $\left(Z_{r}\right)_{X}^{t}$ is not the spike Z_{r+1}. Now Suppose that r is odd, $r \geq 4$ and $\left|X \cap X_{1}\right|$ is odd. Then $\mid X \cap$ $Y_{1} \mid$ must be even and so $X=C$ where $C \in \varphi_{4}$. By definition of binary spikes, there is a circuit C^{\prime} in φ_{4} such that $C^{\prime}=$ $C \Delta\left\{x_{i}, y_{i}, x_{j}, y_{j}\right\}$ for all i and j with $1 \leq i<j \leq r$. Clearly, $\left|\left(E-C^{\prime}\right) \cap X\right|=2$. Since $\left(E-C^{\prime}\right)$ is a circuit of Z_{r} and is a member of φ_{3}, by Lemma 8, the matroid $\left(Z_{r}\right)_{X}^{t}$ is not the spike Z_{r+1}.

Now suppose that M is a binary rank-r spike with tip t and $r \geq 4$. Let $X \subseteq E(M)$ and $e \in X$ and let $E(M)-E\left(M_{X}^{e}\right)=$
$\{\alpha, \gamma\}$ such that $\{e, \alpha, \gamma\}$ is a circuit of M_{X}^{e}. Suppose $\varphi=$ $\cup_{i=0}^{4} \varphi_{i}$ be the collection of circuits of M where φ_{i} is defined in section 2. With these preliminaries, the next two theorems are the main results of this paper.

Theorem 12. Suppose that r is an even integer greater than three. Let M be a rank-r binary spike with tip t. Then M_{X}^{e} is a rank- $(r+1)$ binary spike if and only if $X=C$ where $C \in$ φ_{4} and $e=t$.

Proof. Suppose that $M=Z_{r}$ and $X \subseteq E(M)$ and r is even. Then, by combining the last six lemmas, $|X|=r+1$; and X contains an even number of elements of X_{1} with $t \in X$. The only subsets of $E\left(Z_{r}\right)$ with these properties are members of φ_{4}. Therefore $X=C$ where $C \in \varphi_{4}$ and by Lemma $7, e=t$. Conversely, let $X=C$ where $C \in \varphi_{4}$. Then, by using Proposition 1, every leg of Z_{r} is preserved under the es-splitting operation since they have an even number of elements of X. Moreover, for $i \in\{1,2, \ldots, r\}$, every leg L_{i} contains e where $e=t$. So $L_{i} \backslash t$ contains an odd number of elements of X and by Proposition 1, the set $\left(L_{i} \backslash t\right) \cup\{\alpha, \gamma\}$ is a circuit of M_{X}^{t}. Clearly, every member of φ_{2} is preserved. Now let $C^{\prime} \in \varphi_{3}$. Then $t \notin C^{\prime}$. We have the following two cases.
(i) Let $C^{\prime}=(E-X) \Delta\left\{x_{r-1}, y_{r-1}\right\}$. Then $\left|C^{\prime} \cap X\right|=1$ and by Proposition $1, C^{\prime} \cup \alpha$ and $C^{\prime} \cup\{t, \gamma\}$ are circuits of M_{X}^{t}.
(ii) Let $C^{\prime}=\left(E-C^{\prime \prime}\right) \Delta\left\{x_{r-1}, y_{r-1}\right\}$ where $C^{\prime \prime} \neq X$ and $C^{\prime \prime} \in \varphi_{4}$. Since $|X|=r+1$ and $\left|C^{\prime \prime} \cap X\right|$ is odd, the cardinality of the set $X \cap\left(E-C^{\prime \prime}\right)$ is even and so $\left|C^{\prime} \cap X\right|$ is odd. Therefore, by Proposition 1 again, $C^{\prime} \cup \alpha$ and $C^{\prime} \cup\{t, \gamma\}$ are circuits of M_{X}^{t}.

Evidently, if $C \in \varphi_{4}$, then $|C \cap X|$ is odd and by Proposition 1, $C \cup \alpha$ and $(C \backslash t) \cup \gamma$ are circuits of M_{X}^{t}. Moreover, there are no two disjoint $O X$-circuits in φ. So the collection \mathcal{C}_{5} in Proposition 1 is empty. To complete the proof, suppose that α and γ play the roles of x_{r+1} and y_{r+1}, respectively, then we have the spike Z_{r+1} with collection of circuits $\psi=\psi_{1} \cup \psi_{2} \cup \psi_{3} \cup \psi_{4}$ where
$\psi_{1}=\left\{L_{i}=\left\{t, x_{i}, y_{i}\right\}: 1 \leq i \leq r\right\} \cup \Lambda ;$
$\psi_{2}=\left\{\left\{x_{i}, y_{i}, x_{j}, y_{j}\right\}: 1 \leq i<j \leq r\right\} \cup\left\{\left(L_{i} \backslash t\right) \cup\{\alpha, \gamma\}: 1 \leq i \leq r\right\} ;$
$\psi_{3}=\left\{C \cup \alpha: C \in \varphi_{3}\right\} \cup\left\{(C \backslash t) \cup \gamma: C \in \varphi_{4}\right\} ;$
$\psi_{4}=\left\{C \cup\{t, \gamma\}: C \in \varphi_{3}\right\} \cup\left\{C \cup \alpha: C \in \varphi_{4}\right\}$.

Theorem 13. Suppose that r is an odd integer greater than three. Let M be a rank-r binary spike with tip t. Then M_{X}^{e} is a rank- $(r+1)$ binary spike if and only if $X=C \cup t$ where $C \in \varphi_{3}$ or $X=E(M)$, and $e=t$.

Proof. Suppose that $M=Z_{r}$ and $X \subseteq E(M)$. Let $X=E(M)$. Then, by Lemma 9 , the matroid M_{X}^{t} is the spike Z_{r+1} with tip γ. Now, by combining the last six lemmas., $|X|=r+1$
and X contains an even number of elements of X_{1} with $t \in$ X. The only subsets of $E\left(Z_{r}\right)$ with these properties are in $\left\{C \cup t: C \in \varphi_{3}\right\}$. Conversely, let $X=C \cup t$ where $C \in \varphi_{3}$. Clearly, every member of φ_{3} contains an odd number of elements of X. Now let C^{\prime} be a member of φ_{4}. If $C^{\prime}=$ $E\left(Z_{r}\right)-C$, then C^{\prime} contains an odd number of elements of X. If $C^{\prime} \neq E\left(Z_{r}\right)-C$, then there is a $C^{\prime \prime} \in \varphi_{3}$ such that $C^{\prime}=E\left(Z_{r}\right)-C^{\prime \prime}$. Therefore $\left|C \cap C^{\prime}\right|=\left|C \cap\left(E\left(Z_{r}\right)-C^{\prime \prime}\right)\right|=$ $\left|C-\left(C \cap C^{\prime \prime}\right)\right|$ and so $\left|C \cap C^{\prime}\right|$ is even. So C^{\prime} contains an odd number of elements of X and, by Proposition 1 again $C^{\prime} \cup \alpha$ and $(C \backslash t) \cup \gamma$ are circuits of M_{X}^{t}. Evidently, if C_{1} and C_{2} are disjoint $O X$-circuits of Z_{r}, then one of C_{1} and C_{2} is in φ_{3} and the other is in φ_{4} where $C_{2}=E\left(Z_{r}\right)-C_{1}$. Moreover, as $C_{1} \cup C_{2}$ is not minimal, it follows by Proposition 1 that \mathcal{C}_{5} is empty. Now if α and γ play the roles of x_{r+1} and y_{r+1}, respectively, then M_{X}^{t} is the spike Z_{r+1} with collection of circuits $\psi=\psi_{1} \cup \psi_{2} \cup \psi_{3} \cup \psi_{4}$ where
$\psi_{1}=\left\{L_{i}=\left\{t, x_{i}, y_{i}\right\}: 1 \leq i \leq r\right\} \cup \Lambda ;$
$\psi_{2}=\left\{\left\{x_{i}, y_{i}, x_{j}, y_{j}\right\}: 1 \leq i<j \leq r\right\} \cup\left\{\left(L_{i} \backslash t\right) \cup\{\alpha, \gamma\}: 1 \leq i \leq r\right\} ;$
$\psi_{3}=\left\{C \cup \alpha: C \in \varphi_{3}\right\} \cup\left\{(C \backslash t) \cup \gamma: C \in \varphi_{4}\right\} ;$
$\psi_{4}=\left\{C \cup\{t, \gamma\}: C \in \varphi_{3}\right\} \cup\left\{C \cup \alpha: C \in \varphi_{4}\right\}$.

Remark 14. Note that the binary rank-3 spike is the Fano matroid denoted by F_{7}. It is straightforward to check that any one of the seven elements of F_{7} can be taken as the tip, and F_{7} satisfies the conditions of Theorem 13 for any tip. So, there are exactly 35 subset X of $E\left(F_{7}\right)$ such that $\left(F_{7}\right)_{X}^{e}$ is the binary 4 -spike where e is a tip of it. Therefore, by Theorem 13, these subsets are $X=E\left(F_{7}\right)$ for every element e of X and $C \cup z$ for every element z in $E\left(F_{7}\right)$ not contained in C with $e=z$ where C is a 3-circuit of F_{7}.

Disclosure statement

No potential conflict of interest was reported by the authors.

ORCID

Vahid Ghorbani (D) http://orcid.org/0000-0002-7301-6973
Ghodratollah Azadi (iD http://orcid.org/0000-0002-1807-4732
Habib Azanchiler (D) http://orcid.org/0000-0002-2949-3836

References

[1] Azanchiler, H. (2005). Some new operations on matroids and related results. PhD dissertation. University of Pune, Pune.
[2] Azanchiler, H. (2006). Extension of line-splitting operation from graphs to binary matroids. Lobachevskii J. Math. 24:3-12.
[3] Dhotre, S. B., Malavadkar, P. P., Shikare, M. M. (2016). On 3connected es-splitting binary matroids. Asian-Eur. J. Math. 09(01):1650017-1650026.
[4] Oxley, J. G. (1992). Matroid Theory. Oxford: Oxford University Press.

