

ISSN: 0972-8600 (Print) 2543-3474 (Online) Journal homepage: https://www.tandfonline.com/loi/uakc20

On the structure of spikes

Vahid Ghorbani, Ghodratollah Azadi & Habib Azanchiler

To cite this article: Vahid Ghorbani, Ghodratollah Azadi & Habib Azanchiler (2020): On the structure of spikes, AKCE International Journal of Graphs and Combinatorics, DOI: <u>10.1016/j.akcej.2019.08.002</u>

To link to this article: https://doi.org/10.1016/j.akcej.2019.08.002

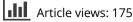
9

۲

 $\ensuremath{\mathbb{C}}$ 2020 The Author(s). Published with license by Taylor & Francis Group, LLC

Published online: 01 Jul 2020.

Submit your article to this journal 🗹



View related articles 🗹

View Crossmark data 🗹

a open access 🛽

Check for updates

On the structure of spikes

Vahid Ghorbani 💿, Ghodratollah Azadi 💿, and Habib Azanchiler 💿

Department of Mathematics, Urmia University, Urmia, Iran

ABSTRACT

Spikes are an important class of 3-connected matroids. For an integer $r \ge 3$, there is a unique binary r-spike denoted by Z_r . When a circuit-hyperplane of Z_r is relaxed, we obtain another spike and repeating this procedure will produce other non-binary spikes. The *es*-splitting operation on a binary spike of rank r, may not yield a spike. In this paper, we give a necessary and sufficient condition for the *es*-splitting operation to construct Z_{r+1} directly from Z_r . Indeed, all binary spikes and many of non-binary spikes of each rank can be derived from the spike Z_3 by a sequence of the *es*-splitting operations and circuit-hyperplane relaxations.

KEYWORDS

Binary matroid; es-splitting operation; relaxation; spike

1. Introduction

Azanchiler [1, 2] extended the notion of *n*-line splitting operation from graphs to binary matroids. He characterized the *n*-line splitting operation of graphs in terms of cycles of the respective graph and then extended this operation to binary matroids as follows. Let M be a binary matroid on a set *E* and let *X* be a subset of *E* with $e \in X$. Suppose *A* is a matrix that represents M over GF(2). Let A_X^e be a matrix obtained from A by adjoining an extra row to A with this row being zero everywhere except in the columns corresponding to the elements of X where it takes the value 1, and then adjoining two columns labeled α and γ to the resulting matrix such that the column labeled α is zero everywhere except in the last row where it takes the value 1, and γ is the sum of the two column vectors corresponding to the elements α and e. The vector matroid of the matrix A_x^e is denoted by M_x^e . The transition from M to M_x^e is called an es-splitting operation. We call the matroid M_x^e as essplitting matroid.

Let *M* be a matroid and $X \subseteq E(M)$, a circuit *C* of *M* is called an *OX-circuit* if *C* contains an odd number of elements of *X*, and *C* is an *EX-circuit* if *C* contains an even number of elements of *X*. The following proposition characterizes the circuits of the matroid M_X^e in terms of the circuits of the matroid *M*.

Proposition 1. [1] Let M = (E, C) be a binary matroid together with the collection of circuits C. Suppose $X \subseteq E, e \in$ X and $\alpha, \gamma \notin E$. Then $M_X^e = (E \cup \{\alpha, \gamma\}, C')$ where C' = $(\cup_{i=0}^5 C_i) \cup \Lambda$ with $\Lambda = \{e, \alpha, \gamma\}$ and $C_0 = \{C \in C : C \text{ is an EX-circuit}\};$ $C_1 = \{C \cup \{\alpha\} : C \in C \text{ and } C \text{ is an OX-circuit}\};$ $C_2 = \{C \cup \{e, \gamma\} : C \in C, e \notin C \text{ and } C \text{ is an OX-circuit}\};$ $C_3 = \{(C \setminus e) \cup \{\gamma\} : C \in C, e \in C \text{ and } C \text{ is an OX-circuit}\};$ $C_4 = \{(C \setminus e) \cup \{\alpha, \gamma\} : C \in C, e \in C \text{ and } C \text{ is an EX-circuit}\}; C_5 = The set of minimal members of <math>\{C_1 \cup C_2 : C_1, C_2 \in C, C_1 \cap C_2 = \emptyset \text{ and each of } C_1 \text{ and } C_2 \text{ is an OX-circuit}\}.$

It is observed that the *es*-splitting operation on a 3-connected binary matroid may not yield a 3-connected binary matroid. The following result, provide a sufficient condition under which the *es*-splitting operation on a 3-connected binary matroid yields a 3-connected binary matroid.

Proposition 2. [3] Let M be a 3-connected binary matroid, $X \subseteq E(M)$ and $e \in X$. Suppose that M has an OX-circuit not containing e. Then M_X^e is a 3-connected binary matroid.

To define rank-r spikes, let $E = \{x_1, x_2, ..., x_r, y_1, y_2..., y_r, t\}$ for some $r \ge 3$. Let $C_1 = \{\{t, x_i, y_i\} : 1 \le i \le r\}$ and $C_2 = \{\{x_i, y_i, x_j, y_j : 1 \le i < j \le r\}$. The set of circuits of every spike on E includes $C_1 \cup C_2$. Let C_3 be a, possibly empty, subsets of $\{\{z_1, z_2, ..., z_r\} : z_i$ is in $\{x_i, y_i\}$ for all $i\}$ such that no two members of C_3 have more than r - 2 common elements. Finally, let C_4 be the collection of all (r + 1)-element subsets of E that contain no member of $C_1 \cup C_2 \cup C_3$.

Proposition 3. [4] There is a rank-r matroid M on E whose collection C of circuits is $C_1 \cup C_2 \cup C_3 \cup C_4$.

The matroid M on E with collection C of circuits in the last proposition is called a *rank-r spike with tip t* and legs $L_1, L_2, ...L_r$ where $L_i = \{t, x_i, y_i\}$ for all *i*. In the construction of a spike, if C_3 is empty, the corresponding spike is called the *rank-r free spike with tip t*. In an arbitrary spike M, each circuit in C_3 is also a hyperplane of M. Evidently, when such a circuit-hyperplane is relaxed, we obtain another spike. Repeating this procedure until all of the circuit-hyperplanes in C_3 have been relaxed will produce the free spike. Now let J_r and **1** be the $r \times r$ and $r \times 1$ matrices of all ones. For $r \ge$

CONTACT Vahid Ghorbani 🖾 v.ghorbani@urmia.ac.ir 💼 Department of Mathematics, Urmia University, Urmia, Iran.

© 2020 The Author(s). Published with license by Taylor & Francis Group, LLC

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

3, let A_r be the $r \times (2r + 1)$ matrix $[I_r|J_r - I_r|\mathbf{1}]$ over GF(2) whose columns are labeled, in order, $x_1, x_2, ..., x_r, y_1, y_2..., y_r$, t. The vector matroid $M[A_r]$ of this matrix is called the *rank-r binary spike with tip t* and denoted by Z_r . Oxley [4] showed that all rank-r, 3-connected binary matroids without a 4-wheel minor can be obtained from a binary r-spike by deleting at most two elements.

2. Circuits of Z_r

In this section, we characterize the collection of circuits of Z_r . To do this, we use the next well-known theorem.

Theorem 4. [4] A matroid M is binary if and only if for every two distinct circuits C_1 and C_2 of M, their symmetric difference, $C_1\Delta C_2$, contains a circuit of M.

Now let M = (E, C) be a binary matroid on the set E together with the set C of circuits where $E = \{x_1, x_2, ..., x_r, y_1, y_2..., y_r, t\}$ for some $r \ge 3$. Suppose $Y = \{y_1, y_2..., y_r\}$. For k in $\{1, 2, 3, 4\}$, we define φ_k as follows.

$$\varphi_1 = \{L_i = \{t, x_i, y_i\} : 1 \le i \le r\};$$

 $\varphi_2 = \{\{x_i, y_i, x_j, y_j\} : 1 \le i < j \le r\};\$

 $\varphi_3 = \{Z \subseteq E : |Z| = r, |Z \cap Y| \text{ is odd and } |Z \cap \{y_i, x_i\}| = 1$ where $1 \le i \le r\}$; and

$$\varphi_4 = \begin{cases} \{E - C : C \in \varphi_3\}, & \text{if } r \text{ is odd}; \\ \{(E - C)\Delta\{x_{r-1}, y_{r-1}\} : C \in \varphi_3\}, & \text{if } r \text{ is even}. \end{cases}$$

Theorem 5. A matroid whose collection C of circuits is $\varphi_1 \cup \varphi_2 \cup \varphi_3 \cup \varphi_4$, is the rank-r binary spike.

Proof. Let *M* be a matroid on the set $E = \{x_1, x_2, ..., x_r, y_1, y_2..., y_r, t\}$ such that $C(M) = \varphi_1 \cup \varphi_2 \cup \varphi_3 \cup \varphi_4$. Suppose $Y = \{y_1, y_2, ..., y_r\}$. Then, for every two distinct circuits C_1 and C_2 of φ_3 , we have $C_1 \cap Y \neq C_2 \cap Y$ and $|C_j \cap \{x_i, y_i\}| = 1$ for all *i* and *j* with $1 \le i \le r$ and $j \in \{1, 2\}$. We conclude that there is at least one y_i in C_1 such that $y_i \notin C_2$ and so x_i is in C_2 but it is not in C_1 . Thus, no two members of φ_3 have more than r - 2 common elements. It is clear that every member of φ_4 has (r + 1)-elements and contains no member of $\varphi_1 \cup \varphi_2 \cup \varphi_3$. By Proposition 3, we conclude that for every two distinct members of C, their symmetric difference contains a circuit of *M*. Thus, by Theorem 4, *M* is a binary spike.

It is not difficult to check that if r is odd, then the intersection of every two members of φ_3 has odd cardinality and the intersection of every two members of φ_4 has even cardinality and if r is even, then the intersection of every two members of φ_3 has even cardinality and the intersection of every two members of φ_4 has odd cardinality. Clearly, $|\varphi_1| = r$, $|\varphi_2| = \frac{r(r-1)}{2}$ and $|\varphi_3| = |\varphi_4| = 2^{r-1}$. Therefore, every rank-r binary spike has $2^r + \frac{r(r+1)}{2}$ circuits. Moreover, $\bigcap_{i=1}^r L_i \neq \emptyset$ and $|C \cap \{x_i, y_i\}| = 1$ where $1 \le i \le r$ and C is a member of $\varphi_3 \cup \varphi_4$.

3. The es-splitting operation on Z_r

By applying the *es*-splitting operation on a given binary matroid with *k* elements, we obtain a matroid with k+2elements. In this section, our main goal is to give a necessary and sufficient condition for $X \subseteq E(Z_r)$ with $e \in X$, to obtain Z_{r+1} by applying the *es*-splitting operation on *X*. Now suppose that $M = Z_r$ be a binary rank-r spike with the matrix representation $[I_r|J_r - I_r|\mathbf{1}]$ over GF(2) whose columns are labeled, in order $x_1, x_2, ..., x_r, y_1, y_2, ..., y_r, t$. Suppose $\varphi = \varphi_1 \cup \varphi_2 \cup \varphi_3 \cup \varphi_4$ be the collection of circuits of Z_r defined in section 2. Let $X_1 = \{x_1, x_2, ..., x_r\}$ and $Y_1 =$ $\{y_1, y_2, ..., y_r\}$ and let *X* be a subset of $E(Z_r)$. By the following lemmas, we give six conditions for membership of *X* such that, for every element *e* of this set, $(Z_r)_X^e$ is not the spike Z_{r+1} .

Lemma 6. If $r \ge 4$ and $t \notin X$, then, for every element e of X, the matroid $(Z_r)_X^e$ is not the spike Z_{r+1} .

Proof. Suppose that $t \notin X$. Without loss of generality, we may assume that there exist *i* in $\{1, 2, ..., r\}$ such that $x_i \in X$ and $e = x_i$. By Proposition 1, the set $\Lambda = \{x_i, \alpha, \gamma\}$ is a circuit of $(Z_r)_X^e$. Now consider the leg $L_i = \{t, x_i, y_i\}$, we have the following two cases.

- (i) If y_i ∈ X, then |L_i ∩ X| is even. By Proposition 1, the leg L_i is a circuit of (Z_r)^e_X. Now if all other legs of Z_r have an odd number of elements of X, by Proposition 1, we observe that these legs transform to circuits of cardinality 4 and 5. So there are exactly two 3-circuits in (Z_r)^e_X. If not, there is a j ≠ i such that L_j is a 3-circuit of (Z_r)^e_X and (Λ ∩ L_i ∩ L_j) = Ø. Since Z_{r+1} has r+1 legs and the intersection of the legs of Z_{r+1} is non-empty, we conclude that in each case, for every element e of X, the matroid (Z_r)^e_X is not the spike Z_{r+1}.
- (ii) If $y_i \notin X$, then $|L_i \cap X|$ is odd. By Proposition 1, $(L_i \setminus x_i) \cup \gamma$ is a circuit of $(Z_r)_X^e$. Now if there is the other leg L_j such that $|L_j \cap X|$ is even, then L_j is a circuit of $(Z_r)_X^e$. But $(L_j \cap \Lambda \cap ((L_i \setminus x_i) \cup \gamma)) = \emptyset$, so $(Z_r)_X^e$ is not the spike Z_{r+1} . We conclude that every leg L_j with $j \neq i$ has an odd number of elements of X. Since $x_i \notin L_j$, by Proposition 1 again, L_j is not a 3-circuit in $(Z_r)_X^e$. Therefore, $(Z_r)_X^e$ has only two 3-circuits and so, for every element e of X, the matroid $(Z_r)_X^e$ is not the spike Z_{r+1} .

Lemma 7. If $r \ge 4$ and $e \ne t$, then, for every element e of X - t, the matroid $(Z_r)_X^e$ is not the spike Z_{r+1} .

Proof. Suppose that $e \neq t$. Without loss of generality, we may assume that there exist *i* in $\{1, 2, ..., r\}$ such that $x_i \in X$ and $e = x_i$. By Proposition 1, the set $\Lambda = \{x_i, \alpha, \gamma\}$ is a circuit of $(Z_r)_X^e$ and by Lemma 6, to obtain Z_{r+1} , the element *t* is contained in *X*. Now consider the leg $L_i = \{t, x_i, y_i\}$. We have the following two cases.

(i) If $y_i \in X$, then $|L_i \cap X|$ is odd. By Proposition 1, $L_i \cup \alpha$ and $(L_i \setminus x_i) \cup \gamma$ are circuits of $(Z_r)_X^e$. Now if there

is the other leg L_j such that $|L_j \cap X|$ is even, then L_j is a circuit of $(Z_r)_X^e$. But $(L_j \cap \Lambda \cap ((L_i \setminus x_i) \cup \gamma)) = \emptyset$, so $(Z_r)_X^e$ is not the spike Z_{r+1} . We conclude that every leg L_j with $j \neq i$ has an odd number of elements of X. Since $x_i \notin L_j$, by Proposition 1 again, L_j is not a 3-circuit in $(Z_r)_X^e$. Therefore $(Z_r)_X^e$ has only two 3-circuits and so $(Z_r)_X^e$ is not the spike Z_{r+1} .

(ii) If $y_i \notin X$, then $|L_i \cap X|$ is even. So L_i is a circuit of $(Z_r)_X^e$. By similar arguments as in Lemma 6 (i), one can show that for every element e of X - t, the matroid $(Z_r)_X^e$ is not the spike Z_{r+1} .

Next by Lemmas 6 and 7, to obtain the spike Z_{r+1} , we take *t* in *X* and e = t.

Lemma 8. If $r \ge 4$ and there is a circuit C of φ_3 such that $|C \cap X|$ is even, then the matroid $(Z_r)_X^t$ is not the spike Z_{r+1} .

Proof. Suppose that C is a circuit of Z_r such that C is a member of φ_3 and $|C \cap X|$ is even. Then, by Proposition 1, the circuit C is preserved under the *es*-splitting operation. So C is a circuit of $(Z_r)_X^t$. But |C| = r. Now if r > 4, then C cannot be a circuit of Z_{r+1} , since it has no *r*-circuit, and if r = 4, then, to preserve the members of φ_2 in Z_4 under the *es*-splitting operation and to have at least one member of φ_3 which has even number of elements of X, the set X must be $E(Z_r) - t$ or t. But in each case $(Z_4)_X^t$ has exactly fourteen 4-circuits, so it is not the spike Z_5 , since this spike has exactly ten 4-circuit. We conclude that the matroid $(Z_r)_X^t$ is not the spike Z_{r+1} .

Lemma 9. If $r \ge 4$ and $|X \cap \{x_i, y_i\}| = 2$, for *i* in $\{1, 2, ..., r\}$, then the matroid $(Z_r)_X^t$ is not the spike Z_{r+1} unless *r* is odd and for all *i*, $\{x_i, y_i\} \subset X$, in which case Z_{r+1} has γ as a tip.

Proof. Suppose that $\{x_i, y_i\} \subset X$ for $i \in \{1, 2, ..., r\}$. Since $t \in X$ and e = t, after applying the *es*-splitting operation, the leg $\{t, x_i, y_i\}$ turns into two circuits $\{t, x_i, y_i, \alpha\}$ and $\{x_i, y_i, \gamma\}$. Now consider the leg $L_j = \{t, x_j, y_j\}$ where $j \neq i$. If $|L_j \cap X|$ is even (this means $\{x_j, y_j\} \not\subseteq X$), then L_j is a circuit of $(Z_r)_X^e$. But $\{x_i, y_i, \gamma\} \cap \{t, x_j, y_j\} = \emptyset$ and this contradicts the fact that the intersection of the legs of a spike is not the empty set. So $\{x_j, y_j\}$ must be a subset of X. We conclude that $\{x_k, y_k\} \subset X$ for all $k \neq i$. Thus $X = E(Z_r)$. But in this case, r cannot be even since every circuit in φ_3 has even cardinality and by Lemma 8, the matroid $(Z_r)_X^t$ is not the spike Z_{r+1} .

Now we show that if $X = E(Z_r)$, and r is odd, then $(Z_r)_X^t$ is the spike Z_{r+1} with tip γ . Clearly, every leg of Z_r has an odd number of elements of X. Using Proposition 1, after applying the *es*-splitting operation, we have the following changes.

For *i* in $\{1, 2, ..., r\}$, L_i transforms to two circuits $(L_i \setminus t) \cup \gamma$ and $L_i \cup \alpha$, every member of φ_2 is preserved, and if $C \in \varphi_3$, then $C \cup \alpha$ and $C \cup \{t, \gamma\}$ are circuits of $(Z_r)_X^t$. Finally, if $C \in \varphi_4$, then *C* and $(C \setminus t) \cup \{\alpha, \gamma\}$ are circuits of $(Z_r)_X^t$. Note that, since $X = E(Z_r)$ with e = t, there are no two disjoint *OX*-circuits in Z_r such that their union be minimal.

Therefore the collection C_5 in Proposition 1 is empty. Now suppose that α and t play the roles of x_{r+1} and y_{r+1} , respectively, and γ plays the role of tip. Then we have the spike Z_{r+1} with tip γ whose collection ψ of circuits is $\psi_1 \cup \psi_2 \cup \psi_3 \cup \psi_4$ where

$$\begin{split} \psi_1 &= \{ (L_i \setminus t) \cup \gamma : 1 \le i \le r \} \cup \Lambda; \\ \psi_2 &= \{ \{x_i, y_i, x_j, y_j \} : 1 \le i < j \le r \} \cup \{ (L_i \cup \alpha : 1 \le i \le r \}; \\ \psi_3 &= \{ C \cup \alpha : C \in \varphi_3 \} \cup \{ C : C \in \varphi_4 \}; \\ \psi_4 &= \{ C \cup \{t, \gamma\} : C \in \varphi_3 \} \cup \{ (C \setminus t) \cup \{\alpha, \gamma\} : C \in \varphi_4 \}. \end{split}$$

In the following lemma, we shall use the well-known facts that if a matroid M is n-connected with $E(M) \ge 2(n-1)$, then all circuits and all cocircuits of M have at least n elements, and if A is a matrix that represents M over GF(2), then the cocircuit space of M equals the row space of A.

Lemma 10. If $|X| \leq r$, then the matroid $(Z_r)_X^t$ is not the spike Z_{r+1} .

Proof. Suppose $X \subset E(Z_r)$ such that $|X| \leq r$. Then, by Lemmas 6, 7 and 8, $t \in X$ with e = t and $|X \cap \{x_i, y_i\}| = 1$ for all *i* in $\{1, 2, ..., r\}$. Therefore, there are at least two elements x_i and y_i with $i \neq j$ not contained in X and so the leg $L_i = \{t, x_i, y_i\}$ has an odd number of elements of X. Thus, after applying the *es*-splitting operation L_i transforms to $\{x_i, y_i, \gamma\}$. Now let $L_k = \{t, x_k, y_k\}$ be another leg of Z_r . If $|L_k \cap X|$ is even, then L_k is a circuit of $(Z_r)_X^t$. But $(L_k \cap \Lambda \cap$ $\{x_j, y_j, \gamma\} = \emptyset$. Hence, in this case, the matroid $(Z_r)_X^t$ is not the spike Z_{r+1} . We may now assume that every other leg of Z_r has an odd number of elements of X. Then, for all $j \neq i$, the elements x_i and y_i are not contained in X. We conclude that |X| = 1 and in the last row of the matrix that represents the matroid $(Z_r)_X^t$ there are two entries 1 in the corresponding columns of t and α . Hence, $(Z_r)_X^t$ has a 2-cocircuit and it is not the matroid Z_{r+1} since spikes are 3-connected matroids. \Box

By Lemmas 9 and 10, we must check that if |X| = r + 1, then, by using the *es*-splitting operation, can we build the spike Z_{r+1} ?

Lemma 11. If $r \ge 4$ and $|X \cap X_1|$ be odd, then the matroid $(Z_r)_X^t$ is not the spike Z_{r+1} .

Proof. Suppose that *r* is even and $|X \cap X_1|$ is odd. Since $t \in X$ and |X| = r + 1, so $|X \cap Y_1|$ must be odd. Therefore the set *X* must be $C \cup t$ where $C \in \varphi_3$. But $|C \cap X|$ is even and by Lemma 8, the matroid $(Z_r)_X^t$ is not the spike Z_{r+1} . Now Suppose that *r* is odd, $r \ge 4$ and $|X \cap X_1|$ is odd. Then $|X \cap Y_1|$ must be even and so X = C where $C \in \varphi_4$. By definition of binary spikes, there is a circuit C' in φ_4 such that $C' = C\Delta\{x_i, y_i, x_j, y_j\}$ for all *i* and *j* with $1 \le i < j \le r$. Clearly, $|(E - C') \cap X| = 2$. Since (E - C') is a circuit of Z_r and is a member of φ_3 , by Lemma 8, the matroid $(Z_r)_X^t$ is not the spike Z_{r+1} .

Now suppose that *M* is a binary rank-r spike with tip *t* and $r \ge 4$. Let $X \subseteq E(M)$ and $e \in X$ and let $E(M) - E(M_X^e) =$

 $\{\alpha, \gamma\}$ such that $\{e, \alpha, \gamma\}$ is a circuit of M_X^e . Suppose $\varphi = \bigcup_{i=0}^4 \varphi_i$ be the collection of circuits of *M* where φ_i is defined in section 2. With these preliminaries, the next two theorems are the main results of this paper.

Theorem 12. Suppose that r is an even integer greater than three. Let M be a rank-r binary spike with tip t. Then M_X^e is a rank-(r + 1) binary spike if and only if X = C where $C \in \varphi_4$ and e = t.

Proof. Suppose that $M = Z_r$ and $X \subseteq E(M)$ and r is even. Then, by combining the last six lemmas, |X| = r + 1; and X contains an even number of elements of X_1 with $t \in X$. The only subsets of $E(Z_r)$ with these properties are members of φ_4 . Therefore X = C where $C \in \varphi_4$ and by Lemma 7, e = t. Conversely, let X = C where $C \in \varphi_4$. Then, by using Proposition 1, every leg of Z_r is preserved under the *es*-splitting operation since they have an even number of elements of X. Moreover, for $i \in \{1, 2, ..., r\}$, every leg L_i contains e where e = t. So $L_i \setminus t$ contains an odd number of elements of X and by Proposition 1, the set $(L_i \setminus t) \cup \{\alpha, \gamma\}$ is a circuit of M_X^t . Clearly, every member of φ_2 is preserved. Now let $C' \in \varphi_3$. Then $t \notin C'$. We have the following two cases.

- (i) Let $C' = (E X)\Delta\{x_{r-1}, y_{r-1}\}$. Then $|C' \cap X| = 1$ and by Proposition 1, $C' \cup \alpha$ and $C' \cup \{t, \gamma\}$ are circuits of M_X^t .
- (ii) Let $C' = (E C'')\Delta\{x_{r-1}, y_{r-1}\}$ where $C'' \neq X$ and $C'' \in \varphi_4$. Since |X| = r + 1 and $|C'' \cap X|$ is odd, the cardinality of the set $X \cap (E C'')$ is even and so $|C' \cap X|$ is odd. Therefore, by Proposition 1 again, $C' \cup \alpha$ and $C' \cup \{t, \gamma\}$ are circuits of M_X^t .

Evidently, if $C \in \varphi_4$, then $|C \cap X|$ is odd and by Proposition 1, $C \cup \alpha$ and $(C \setminus t) \cup \gamma$ are circuits of M_X^t . Moreover, there are no two disjoint *OX*-circuits in φ . So the collection C_5 in Proposition 1 is empty. To complete the proof, suppose that α and γ play the roles of x_{r+1} and y_{r+1} , respectively, then we have the spike Z_{r+1} with collection of circuits $\psi = \psi_1 \cup \psi_2 \cup \psi_3 \cup \psi_4$ where

$$\begin{split} \psi_1 &= \{L_i = \{t, x_i, y_i\} : 1 \le i \le r\} \cup \Lambda; \\ \psi_2 &= \{\{x_i, y_i, x_j, y_j\} : 1 \le i < j \le r\} \cup \{(L_i \setminus t) \cup \{\alpha, \gamma\} : 1 \le i \le r\}; \\ \psi_3 &= \{C \cup \alpha : C \in \varphi_3\} \cup \{(C \setminus t) \cup \gamma : C \in \varphi_4\}; \\ \psi_4 &= \{C \cup \{t, \gamma\} : C \in \varphi_3\} \cup \{C \cup \alpha : C \in \varphi_4\}. \end{split}$$

Theorem 13. Suppose that r is an odd integer greater than three. Let M be a rank-r binary spike with tip t. Then M_X^e is a rank-(r + 1) binary spike if and only if $X = C \cup t$ where $C \in \varphi_3$ or X = E(M), and e = t.

Proof. Suppose that $M = Z_r$ and $X \subseteq E(M)$. Let X = E(M). Then, by Lemma 9, the matroid M_X^t is the spike Z_{r+1} with tip γ . Now, by combining the last six lemmas., |X| = r + 1

and X contains an even number of elements of X_1 with $t \in$ X. The only subsets of $E(Z_r)$ with these properties are in $\{C \cup t : C \in \varphi_3\}$. Conversely, let $X = C \cup t$ where $C \in \varphi_3$. Clearly, every member of φ_3 contains an odd number of elements of X. Now let C' be a member of φ_4 . If C' = $E(Z_r) - C$, then C' contains an odd number of elements of X. If $C' \neq E(Z_r) - C$, then there is a $C'' \in \varphi_3$ such that $C' = E(Z_r) - C''$. Therefore $|C \cap C'| = |C \cap (E(Z_r) - C'')| =$ $|C - (C \cap C'')|$ and so $|C \cap C'|$ is even. So C' contains an odd number of elements of X and, by Proposition 1 again $C' \cup \alpha$ and $(C \setminus t) \cup \gamma$ are circuits of M_X^t . Evidently, if C_1 and C_2 are disjoint OX-circuits of Z_r , then one of C_1 and C_2 is in φ_3 and the other is in φ_4 where $C_2 = E(Z_r) - C_1$. Moreover, as $C_1 \cup C_2$ is not minimal, it follows by Proposition 1 that C_5 is empty. Now if α and γ play the roles of x_{r+1} and y_{r+1} , respectively, then M_X^t is the spike Z_{r+1} with collection of circuits $\psi = \psi_1 \cup \psi_2 \cup \psi_3 \cup \psi_4$ where

$$\begin{split} \psi_1 &= \{L_i = \{t, x_i, y_i\} : 1 \le i \le r\} \cup \Lambda; \\ \psi_2 &= \{\{x_i, y_i, x_j, y_j\} : 1 \le i < j \le r\} \cup \{(L_i \setminus t) \cup \{\alpha, \gamma\} : 1 \le i \le r\}; \\ \psi_3 &= \{C \cup \alpha : C \in \varphi_3\} \cup \{(C \setminus t) \cup \gamma : C \in \varphi_4\}; \\ \psi_4 &= \{C \cup \{t, \gamma\} : C \in \varphi_3\} \cup \{C \cup \alpha : C \in \varphi_4\}. \end{split}$$

Remark 14. Note that the binary rank-3 spike is the Fano matroid denoted by F_7 . It is straightforward to check that any one of the seven elements of F_7 can be taken as the tip, and F_7 satisfies the conditions of Theorem 13 for any tip. So, there are exactly 35 subset X of $E(F_7)$ such that $(F_7)_X^e$ is the binary 4-spike where e is a tip of it. Therefore, by Theorem 13, these subsets are $X = E(F_7)$ for every element e of X and $C \cup z$ for every element z in $E(F_7)$ not contained in C with e = z where C is a 3-circuit of F_7 .

Disclosure statement

No potential conflict of interest was reported by the authors.

ORCID

Vahid Ghorbani D http://orcid.org/0000-0002-7301-6973 Ghodratollah Azadi D http://orcid.org/0000-0002-1807-4732 Habib Azanchiler D http://orcid.org/0000-0002-2949-3836

References

- [1] Azanchiler, H. (2005). Some new operations on matroids and related results. PhD dissertation. University of Pune, Pune.
- [2] Azanchiler, H. (2006). Extension of line-splitting operation from graphs to binary matroids. *Lobachevskii J. Math.* 24:3–12.
- [3] Dhotre, S. B., Malavadkar, P. P., Shikare, M. M. (2016). On 3connected es-splitting binary matroids. Asian-Eur. J. Math. 09(01):1650017–1650026.
- [4] Oxley, J. G. (1992). *Matroid Theory*. Oxford: Oxford University Press.