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On the structure of spikes

Vahid Ghorbani , Ghodratollah Azadi , and Habib Azanchiler

Department of Mathematics, Urmia University, Urmia, Iran

ABSTRACT
Spikes are an important class of 3-connected matroids. For an integer r � 3, there is a unique bin-
ary r-spike denoted by Zr. When a circuit-hyperplane of Zr is relaxed, we obtain another spike and
repeating this procedure will produce other non-binary spikes. The es-splitting operation on a bin-
ary spike of rank r, may not yield a spike. In this paper, we give a necessary and sufficient condi-
tion for the es-splitting operation to construct Zrþ1 directly from Zr. Indeed, all binary spikes and
many of non-binary spikes of each rank can be derived from the spike Z3 by a sequence of the
es-splitting operations and circuit-hyperplane relaxations.

KEYWORDS
Binary matroid; es-splitting
operation; relaxation; spike

1. Introduction

Azanchiler [1, 2] extended the notion of n-line splitting
operation from graphs to binary matroids. He characterized
the n-line splitting operation of graphs in terms of cycles of
the respective graph and then extended this operation to
binary matroids as follows. Let M be a binary matroid on a
set E and let X be a subset of E with e 2 X: Suppose A is a
matrix that represents M over GF(2). Let Ae

X be a matrix
obtained from A by adjoining an extra row to A with this
row being zero everywhere except in the columns corre-
sponding to the elements of X where it takes the value 1,
and then adjoining two columns labeled a and c to the
resulting matrix such that the column labeled a is zero
everywhere except in the last row where it takes the value 1,
and c is the sum of the two column vectors corresponding
to the elements a and e. The vector matroid of the matrix
Ae
X is denoted by Me

X: The transition from M to Me
X is called

an es-splitting operation. We call the matroid Me
X as es-

splitting matroid.
Let M be a matroid and X � EðMÞ, a circuit C of M is

called an OX-circuit if C contains an odd number of ele-
ments of X, and C is an EX-circuit if C contains an even
number of elements of X. The following proposition charac-
terizes the circuits of the matroid Me

X in terms of the
circuits of the matroid M.

Proposition 1. [1] Let M ¼ ðE, CÞ be a binary matroid
together with the collection of circuits C. Suppose X � E, e 2
X and a, c 62 E. Then Me

X ¼ ðE [ fa, cg, C0Þ where C0 ¼
ð[5

i¼0CiÞ [ K with K ¼ fe, a, cg and
C0 ¼ fC 2 C : C is an EX-circuit};
C1 ¼ fC [ fag : C 2 C and C is an OX-circuit};
C2 ¼ fC [ fe, cg : C 2 C, e 62 C and C is an OX-circuit};
C3 ¼ fðC n eÞ [ fcg : C 2 C, e 2 C and C is an OX-circuit};

C4 ¼ fðC n eÞ [ fa, cg : C 2 C, e 2 C and C is an EX-circuit};
C5 ¼ The set of minimal members of fC1 [ C2 : C1,C2 2
C,C1 \ C2 ¼ ; and each of C1 and C2 is an OX-circuit}.

It is observed that the es-splitting operation on a 3-con-
nected binary matroid may not yield a 3-connected binary
matroid. The following result, provide a sufficient condition
under which the es-splitting operation on a 3-connected bin-
ary matroid yields a 3-connected binary matroid.

Proposition 2. [3] Let M be a 3-connected binary matroid,
X � EðMÞ and e 2 X. Suppose that M has an OX-circuit not
containing e. Then Me

X is a 3-connected binary matroid.

To define rank-r spikes, let E ¼ fx1, x2, :::, xr, y1, y2:::, yr,
tg for some r � 3: Let C1 ¼ fft, xi, yig : 1 � i � rg and C2 ¼
ffxi, yi, xj, yj : 1 � i < j � rg: The set of circuits of every
spike on E includes C1 [ C2: Let C3 be a, possibly empty,
subsets of ffz1, z2, :::zrg : zi is in fxi, yig for all i} such that
no two members of C3 have more than r – 2 common ele-
ments. Finally, let C4 be the collection of all ðr þ 1Þ-element
subsets of E that contain no member of C1 [ C2 [ C3:
Proposition 3. [4] There is a rank-r matroid M on E whose
collection C of circuits is C1 [ C2 [ C3 [ C4:

The matroid M on E with collection C of circuits in the
last proposition is called a rank-r spike with tip t and legs
L1, L2, :::Lr where Li ¼ ft, xi, yig for all i. In the construction
of a spike, if C3 is empty, the corresponding spike is called
the rank-r free spike with tip t. In an arbitrary spike M, each
circuit in C3 is also a hyperplane of M. Evidently, when such
a circuit-hyperplane is relaxed, we obtain another spike.
Repeating this procedure until all of the circuit-hyperplanes
in C3 have been relaxed will produce the free spike. Now let
Jr and 1 be the r� r and r � 1 matrices of all ones. For r �
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3, let Ar be the r � ð2r þ 1Þ matrix ½IrjJr � Irj1� over GF(2)
whose columns are labeled, in order, x1, x2, :::, xr, y1, y2:::, yr,
t: The vector matroid M½Ar� of this matrix is called the
rank-r binary spike with tip t and denoted by Zr. Oxley [4]
showed that all rank-r, 3-connected binary matroids without
a 4-wheel minor can be obtained from a binary r-spike by
deleting at most two elements.

2. Circuits of Zr

In this section, we characterize the collection of circuits of
Zr. To do this, we use the next well-known theorem.

Theorem 4. [4] A matroid M is binary if and only if for
every two distinct circuits C1 and C2 of M, their symmetric
difference, C1DC2, contains a circuit of M.

Now let M ¼ ðE, CÞ be a binary matroid on the set E
together with the set C of circuits where E ¼ fx1, x2, :::,
xr, y1, y2:::, yr, tg for some r � 3: Suppose Y ¼ fy1, y2:::, yrg:
For k in f1, 2, 3, 4g, we define uk as follows.

u1 ¼ fLi ¼ ft, xi, yig : 1 � i � rg;
u2 ¼ ffxi, yi, xj, yjg : 1 � i < j � rg;
u3 ¼ fZ � E : jZj ¼ r, jZ \ Yj is odd and jZ \ fyi, xigj ¼ 1
where 1 � i � r}; and

u4 ¼
fE� C : C 2 u3g, if r is odd;

fðE� CÞDfxr�1, yr�1g : C 2 u3g, if r is even:

(

Theorem 5. A matroid whose collection C of circuits is
u1 [ u2 [ u3 [ u4, is the rank-r binary spike.

Proof. Let M be a matroid on the set E ¼ fx1, x2, :::, xr,
y1, y2:::, yr, tg such that CðMÞ ¼ u1 [ u2 [ u3 [ u4: Suppose
Y ¼ fy1, y2, :::yrg: Then, for every two distinct circuits C1

and C2 of u3, we have C1 \ Y 6¼ C2 \ Y and jCj \
fxi, yigj ¼ 1 for all i and j with 1 � i � r and j 2 f1, 2g: We
conclude that there is at least one yi in C1 such that yi 62 C2

and so xi is in C2 but it is not in C1. Thus, no two members
of u3 have more than r – 2 common elements. It is clear
that every member of u4 has ðr þ 1Þ-elements and contains
no member of u1 [ u2 [ u3: By Proposition 3, we conclude
that M is a rank-r spike. It is straightforward to show that
for every two distinct members of C, their symmetric differ-
ence contains a circuit of M. Thus, by Theorem 4, M is a
binary spike. w

It is not difficult to check that if r is odd, then the inter-
section of every two members of u3 has odd cardinality and
the intersection of every two members of u4 has even car-
dinality and if r is even, then the intersection of every two
members of u3 has even cardinality and the intersection of
every two members of u4 has odd cardinality. Clearly,

ju1j ¼ r, ju2j ¼ rðr�1Þ
2 and ju3j ¼ ju4j ¼ 2r�1: Therefore,

every rank-r binary spike has 2r þ rðrþ1Þ
2 circuits. Moreover,

\r
i¼1Li 6¼ ; and jC \ fxi, yigj ¼ 1 where 1 � i � r and C is a

member of u3 [ u4:

3. The es-splitting operation on Zr

By applying the es-splitting operation on a given binary
matroid with k elements, we obtain a matroid with kþ 2
elements. In this section, our main goal is to give a neces-
sary and sufficient condition for X � EðZrÞ with e 2 X, to
obtain Zrþ1 by applying the es-splitting operation on X.
Now suppose that M ¼ Zr be a binary rank-r spike with the
matrix representation ½IrjJr � Irj1� over GF(2) whose col-
umns are labeled, in order x1, x2, :::, xr, y1, y2, :::, yr, t:
Suppose u ¼ u1 [ u2 [ u3 [ u4 be the collection of circuits
of Zr defined in section 2. Let X1 ¼ fx1, x2, :::, xrg and Y1 ¼
fy1, y2, :::, yrg and let X be a subset of EðZrÞ: By the follow-
ing lemmas, we give six conditions for membership of X
such that, for every element e of this set, ðZrÞeX is not the
spike Zrþ1.

Lemma 6. If r� 4 and t 62 X, then, for every element e of X,
the matroid ðZrÞeX is not the spike Zrþ1.

Proof. Suppose that t 62 X: Without loss of generality, we
may assume that there exist i in f1, 2, :::, rg such that xi 2 X
and e ¼ xi: By Proposition 1, the set K ¼ fxi, a, cg is a cir-
cuit of ðZrÞeX: Now consider the leg Li ¼ ft, xi, yig, we have
the following two cases.

(i) If yi 2 X, then jLi \ Xj is even. By Proposition 1, the
leg Li is a circuit of ðZrÞeX: Now if all other legs of Zr
have an odd number of elements of X, by Proposition
1, we observe that these legs transform to circuits of
cardinality 4 and 5. So there are exactly two 3-circuits
in ðZrÞeX: If not, there is a j 6¼ i such that Lj is a 3-circuit
of ðZrÞeX and ðK \ Li \ LjÞ ¼ ;: Since Zrþ1 has rþ 1
legs and the intersection of the legs of Zrþ1 is non-
empty, we conclude that in each case, for every element
e of X, the matroid ðZrÞeX is not the spike Zrþ1.

(ii) If yi 62 X, then jLi \ Xj is odd. By Proposition 1,
ðLi n xiÞ [ c is a circuit of ðZrÞeX: Now if there is the
other leg Lj such that jLj \ Xj is even, then Lj is a
circuit of ðZrÞeX: But ðLj \ K \ ððLi n xiÞ [ cÞÞ ¼ ;, so
ðZrÞeX is not the spike Zrþ1. We conclude that every
leg Lj with j 6¼ i has an odd number of elements of
X. Since xi 62 Lj, by Proposition 1 again, Lj is not a
3-circuit in ðZrÞeX: Therefore, ðZrÞeX has only two
3-circuits and so, for every element e of X, the
matroid ðZrÞeX is not the spike Zrþ1. w

Lemma 7. If r� 4 and e 6¼ t, then, for every element e of X – t,
the matroid ðZrÞeX is not the spike Zrþ1.

Proof. Suppose that e 6¼ t: Without loss of generality, we
may assume that there exist i in f1, 2, :::, rg such that xi 2 X
and e ¼ xi: By Proposition 1, the set K ¼ fxi, a, cg is a cir-
cuit of ðZrÞeX and by Lemma 6, to obtain Zrþ1, the element t
is contained in X. Now consider the leg Li ¼ ft, xi, yig: We
have the following two cases.

(i) If yi 2 X, then jLi \ Xj is odd. By Proposition 1, Li [
a and ðLi n xiÞ [ c are circuits of ðZrÞeX: Now if there
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is the other leg Lj such that jLj \ Xj is even, then Lj is
a circuit of ðZrÞeX: But ðLj \ K \ ððLi n xiÞ [ cÞÞ ¼ ;,
so ðZrÞeX is not the spike Zrþ1. We conclude that every
leg Lj with j 6¼ i has an odd number of elements of X.
Since xi 62 Lj, by Proposition 1 again, Lj is not a 3-cir-
cuit in ðZrÞeX: Therefore ðZrÞeX has only two 3-circuits
and so ðZrÞeX is not the spike Zrþ1.

(ii) If yi 62 X, then jLi \ Xj is even. So Li is a circuit of
ðZrÞeX: By similar arguments as in Lemma 6 (i), one
can show that for every element e of X – t, the mat-
roid ðZrÞeX is not the spike Zrþ1. w

Next by Lemmas 6 and 7, to obtain the spike Zrþ1, we
take t in X and e¼ t.

Lemma 8. If r� 4 and there is a circuit C of u3 such that
jC \ Xj is even, then the matroid ðZrÞtX is not the spike Zrþ1.

Proof. Suppose that C is a circuit of Zr such that C is a
member of u3 and jC \ Xj is even. Then, by Proposition 1,
the circuit C is preserved under the es-splitting operation.
So C is a circuit of ðZrÞtX: But jCj ¼ r: Now if r> 4, then C
cannot be a circuit of Zrþ1, since it has no r-circuit, and if
r¼ 4, then, to preserve the members of u2 in Z4 under the
es-splitting operation and to have at least one member of u3

which has even number of elements of X, the set X must be
EðZrÞ � t or t. But in each case ðZ4ÞtX has exactly fourteen
4-circuits, so it is not the spike Z5, since this spike has
exactly ten 4-circuit. We conclude that the matroid ðZrÞtX is
not the spike Zrþ1. w

Lemma 9. If r� 4 and jX \ fxi, yigj ¼ 2, for i in f1, 2, :::, rg,
then the matroid ðZrÞtX is not the spike Zrþ1 unless r is odd
and for all i, fxi, yig � X, in which case Zrþ1 has c as a tip.

Proof. Suppose that fxi, yig � X for i 2 f1, 2, :::, rg: Since
t 2 X and e¼ t, after applying the es-splitting operation, the
leg ft, xi, yig turns into two circuits ft, xi, yi, ag and
fxi, yi, cg: Now consider the leg Lj ¼ ft, xj, yjg where j 6¼ i:
If jLj \ Xj is even (this means fxj, yjg6�X), then Lj is a cir-
cuit of ðZrÞeX: But fxi, yi, cg \ ft, xj, yjg ¼ ; and this contra-
dicts the fact that the intersection of the legs of a spike is
not the empty set. So fxj, yjg must be a subset of X. We
conclude that fxk, ykg � X for all k 6¼ i: Thus X ¼ EðZrÞ:
But in this case, r cannot be even since every circuit in u3

has even cardinality and by Lemma 8, the matroid ðZrÞtX is
not the spike Zrþ1.

Now we show that if X ¼ EðZrÞ, and r is odd, then ðZrÞtX
is the spike Zrþ1 with tip c. Clearly, every leg of Zr has an
odd number of elements of X. Using Proposition 1, after
applying the es-splitting operation, we have the follow-
ing changes.

For i in f1, 2, :::, rg, Li transforms to two circuits ðLi n tÞ [
c and Li [ a, every member of u2 is preserved, and if C 2
u3, then C [ a and C [ ft, cg are circuits of ðZrÞtX: Finally, if
C 2 u4, then C and ðC n tÞ [ fa, cg are circuits of ðZrÞtX:
Note that, since X ¼ EðZrÞ with e¼ t, there are no two dis-
joint OX-circuits in Zr such that their union be minimal.

Therefore the collection C5 in Proposition 1 is empty. Now
suppose that a and t play the roles of xrþ1 and yrþ1, respect-
ively, and c plays the role of tip. Then we have the spike Zrþ1

with tip c whose collection w of circuits is w1 [ w2 [ w3 [ w4
where

w1 ¼ fðLi n tÞ [ c : 1 � i � rg [ K;

w2 ¼ ffxi, yi, xj, yjg : 1 � i < j � rg [ fðLi [ a : 1 � i � rg;

w3 ¼ fC [ a : C 2 u3g [ fC : C 2 u4g;
w4 ¼ fC [ ft, cg : C 2 u3g [ fðC n tÞ [ fa, cg : C 2 u4g:

w

In the following lemma, we shall use the well-known facts
that if a matroid M is n-connected with EðMÞ � 2ðn� 1Þ,
then all circuits and all cocircuits of M have at least n ele-
ments, and if A is a matrix that represents M over GF(2),
then the cocircuit space of M equals the row space of A.

Lemma 10. If jXj � r, then the matroid ðZrÞtX is not the
spike Zrþ1.

Proof. Suppose X � EðZrÞ such that jXj � r. Then, by
Lemmas 6, 7 and 8, t 2 X with e¼ t and jX \ fxi, yigj ¼ 1
for all i in f1, 2, :::, rg: Therefore, there are at least two ele-
ments xj and yj with i 6¼ j not contained in X and so the leg
Lj ¼ ft, xj, yjg has an odd number of elements of X. Thus,
after applying the es-splitting operation Lj transforms to
fxj, yj, cg: Now let Lk ¼ ft, xk, ykg be another leg of Zr. If

jLk \ Xj is even, then Lk is a circuit of ðZrÞtX: But ðLk \ K \
fxj, yj, cgÞ ¼ ;: Hence, in this case, the matroid ðZrÞtX is not
the spike Zrþ1. We may now assume that every other leg of Zr
has an odd number of elements of X. Then, for all j 6¼ i, the
elements xj and yj are not contained in X. We conclude that
jXj ¼ 1 and in the last row of the matrix that represents the
matroid ðZrÞtX there are two entries 1 in the corresponding
columns of t and a. Hence, ðZrÞtX has a 2-cocircuit and it is
not the matroid Zrþ1 since spikes are 3-connected matroids. w

By Lemmas 9 and 10, we must check that if jXj ¼ r þ 1,
then, by using the es-splitting operation, can we build the
spike Zrþ1?

Lemma 11. If r� 4 and jX \ X1j be odd, then the matroid
ðZrÞtX is not the spike Zrþ1.

Proof. Suppose that r is even and jX \ X1j is odd. Since t 2
X and jXj ¼ r þ 1, so jX \ Y1j must be odd. Therefore the
set X must be C [ t where C 2 u3: But jC \ Xj is even and
by Lemma 8, the matroid ðZrÞtX is not the spike Zrþ1. Now
Suppose that r is odd, r� 4 and jX \ X1j is odd. Then jX \
Y1j must be even and so X¼C where C 2 u4: By definition
of binary spikes, there is a circuit C0 in u4 such that C0 ¼
CDfxi, yi, xj, yjg for all i and j with 1 � i < j � r: Clearly,
jðE� C0Þ \ Xj ¼ 2: Since ðE� C0Þ is a circuit of Zr and is a
member of u3, by Lemma 8, the matroid ðZrÞtX is not the
spike Zrþ1. w

Now suppose that M is a binary rank-r spike with tip t and
r� 4. Let X � EðMÞ and e 2 X and let EðMÞ � EðMe

XÞ ¼
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fa, cg such that fe, a, cg is a circuit of Me
X: Suppose u ¼

[4
i¼0ui be the collection of circuits of M where ui is defined

in section 2. With these preliminaries, the next two theorems
are the main results of this paper.

Theorem 12. Suppose that r is an even integer greater than
three. Let M be a rank-r binary spike with tip t. Then Me

X is
a rank-ðr þ 1Þ binary spike if and only if X¼C where C 2
u4 and e¼ t.

Proof. Suppose that M ¼ Zr and X � EðMÞ and r is even.
Then, by combining the last six lemmas, jXj ¼ r þ 1; and X
contains an even number of elements of X1 with t 2 X: The
only subsets of EðZrÞ with these properties are members of
u4: Therefore X¼C where C 2 u4 and by Lemma 7, e¼ t.
Conversely, let X¼C where C 2 u4: Then, by using
Proposition 1, every leg of Zr is preserved under the es-split-
ting operation since they have an even number of elements
of X. Moreover, for i 2 f1, 2, :::, rg, every leg Li contains e
where e¼ t. So Li n t contains an odd number of elements
of X and by Proposition 1, the set ðLi n tÞ [ fa, cg is a cir-
cuit of Mt

X: Clearly, every member of u2 is preserved. Now
let C0 2 u3: Then t 62 C0: We have the following two cases.

(i) Let C0 ¼ ðE� XÞDfxr�1, yr�1g: Then jC0 \ Xj ¼ 1 and
by Proposition 1, C0 [ a and C0 [ ft, cg are circuits
of Mt

X:
(ii) Let C0 ¼ ðE� C00ÞDfxr�1, yr�1g where C00 6¼ X and

C00 2 u4: Since jXj ¼ r þ 1 and jC00 \ Xj is odd, the
cardinality of the set X \ ðE� C00Þ is even and so
jC0 \ Xj is odd. Therefore, by Proposition 1 again,
C0 [ a and C0 [ ft, cg are circuits of Mt

X:

Evidently, if C 2 u4, then jC \ Xj is odd and by
Proposition 1, C [ a and ðC n tÞ [ c are circuits of Mt

X:
Moreover, there are no two disjoint OX-circuits in u: So the
collection C5 in Proposition 1 is empty. To complete the
proof, suppose that a and c play the roles of xrþ1 and yrþ1,
respectively, then we have the spike Zrþ1 with collection of
circuits w ¼ w1 [ w2 [ w3 [ w4 where

w1 ¼ fLi ¼ ft, xi, yig : 1 � i � rg [ K;

w2 ¼ ffxi, yi, xj, yjg : 1 � i < j � rg [ fðLi n tÞ [ fa, cg : 1 � i � rg;

w3 ¼ fC [ a : C 2 u3g [ fðC n tÞ [ c : C 2 u4g;
w4 ¼ fC [ ft, cg : C 2 u3g [ fC [ a : C 2 u4g:

Theorem 13. Suppose that r is an odd integer greater than
three. Let M be a rank-r binary spike with tip t. Then Me

X is
a rank-ðr þ 1Þ binary spike if and only if X ¼ C [ t where
C 2 u3 or X¼E(M), and e¼ t.

Proof. Suppose that M ¼ Zr and X � EðMÞ: Let X¼ E(M).
Then, by Lemma 9, the matroid Mt

X is the spike Zrþ1 with
tip c. Now, by combining the last six lemmas., jXj ¼ r þ 1

and X contains an even number of elements of X1 with t 2
X: The only subsets of EðZrÞ with these properties are in
fC [ t : C 2 u3g: Conversely, let X ¼ C [ t where C 2 u3:
Clearly, every member of u3 contains an odd number of ele-
ments of X. Now let C0 be a member of u4: If C0 ¼
EðZrÞ � C, then C0 contains an odd number of elements of
X. If C0 6¼ EðZrÞ � C, then there is a C00 2 u3 such that
C0 ¼ EðZrÞ � C00: Therefore jC \ C0j ¼ jC \ ðEðZrÞ � C00Þj ¼
jC � ðC \ C00Þj and so jC \ C0j is even. So C0 contains an
odd number of elements of X and, by Proposition 1 again
C0 [ a and ðC n tÞ [ c are circuits of Mt

X: Evidently, if C1

and C2 are disjoint OX-circuits of Zr, then one of C1 and C2

is in u3 and the other is in u4 where C2 ¼ EðZrÞ � C1:
Moreover, as C1 [ C2 is not minimal, it follows by
Proposition 1 that C5 is empty. Now if a and c play the roles
of xrþ1 and yrþ1, respectively, then Mt

X is the spike Zrþ1

with collection of circuits w ¼ w1 [ w2 [ w3 [ w4 where

w1 ¼ fLi ¼ ft, xi, yig : 1 � i � rg [ K;

w2 ¼ ffxi, yi, xj, yjg : 1 � i < j � rg [ fðLi n tÞ [ fa, cg : 1 � i � rg;

w3 ¼ fC [ a : C 2 u3g [ fðC n tÞ [ c : C 2 u4g;
w4 ¼ fC [ ft, cg : C 2 u3g [ fC [ a : C 2 u4g:

w

Remark 14. Note that the binary rank-3 spike is the Fano
matroid denoted by F7. It is straightforward to check that
any one of the seven elements of F7 can be taken as the tip,
and F7 satisfies the conditions of Theorem 13 for any tip.
So, there are exactly 35 subset X of EðF7Þ such that ðF7ÞeX is
the binary 4-spike where e is a tip of it. Therefore, by
Theorem 13, these subsets are X ¼ EðF7Þ for every element
e of X and C [ z for every element z in EðF7Þ not contained
in C with e¼ z where C is a 3-circuit of F7.
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