
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uakc20

AKCE International Journal of Graphs and Combinatorics

ISSN: 0972-8600 (Print) 2543-3474 (Online) Journal homepage: https://www.tandfonline.com/loi/uakc20

An algorithm for an -homological test for the
planarity of a graph

Elizabeth Donovan & Timothy Schroeder

To cite this article: Elizabeth Donovan & Timothy Schroeder (2020): An algorithm for an
-homological test for the planarity of a graph, AKCE International Journal of Graphs and
Combinatorics, DOI: 10.1016/j.akcej.2019.08.013

To link to this article:  https://doi.org/10.1016/j.akcej.2019.08.013

© 2020 The Author(s). Published with
license by Taylor & Francis Group, LLC

Published online: 24 Apr 2020.

Submit your article to this journal 

Article views: 70

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=uakc20
https://www.tandfonline.com/loi/uakc20
https://www.tandfonline.com/action/showCitFormats?doi=10.1016/j.akcej.2019.08.013
https://doi.org/10.1016/j.akcej.2019.08.013
https://www.tandfonline.com/action/authorSubmission?journalCode=uakc20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uakc20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1016/j.akcej.2019.08.013
https://www.tandfonline.com/doi/mlt/10.1016/j.akcej.2019.08.013
http://crossmark.crossref.org/dialog/?doi=10.1016/j.akcej.2019.08.013&domain=pdf&date_stamp=2020-04-24
http://crossmark.crossref.org/dialog/?doi=10.1016/j.akcej.2019.08.013&domain=pdf&date_stamp=2020-04-24


An algorithm for an ‘2-homological test for the planarity of a graph

Elizabeth Donovan and Timothy Schroeder

Department of Mathematics and Statistics, Murray State University, Murray, KY, USA

ABSTRACT
Given a finite simple graph C, one is able to define the presentation of an associate Coxeter group
WðCÞ and construct a CW-complex on which the associated Coxeter group acts. The space is the
so-called Davis Complex, denoted RðCÞ, and the given graph carries much of the local topological
information of the space. This paper summarizes these connections including those between the
‘2-homology of RðCÞ and the planarity (or genus) of C. The main purpose of this paper is to fur-
ther investigate this interesting connection between a main topic in geometric group theory (dis-
crete group actions on cellular complexes) and the detection of planar graphs by creating an
algorithm we call the ‘2-test.

KEYWORDS
Graph theory; planarity;
Coxeter group; Davis
Complex; ‘2-Betti numbers

1. Introduction

Given any finite simple graph C, one can, with proper integer
edge weights, use the graph to define the presentation of an
associated Coxeter system. Indeed, let S denote the vertex set
of C, and let mst � 2 denote the label (or weight) on the edge
{s, t}. We define a group WC by the following presentation:

WC ¼ hS j s2 ¼ 1, 8s 2 S, and ðstÞmst ¼ 1

whenever fs, tg 2 EdgeðCÞi:
The pair ðWC, SÞ is called a Coxeter system.

In several papers ([2–4]), M. Davis describes a construc-
tion which associates to any Coxeter system (W, S) a CW-
complex RðW, SÞ, or simply R when the Coxeter system is
clear, on which W acts properly and cocompactly.
Furthermore, if the graph C defines the Coxeter system
ðWC, SÞ as above, then the 1-skeleton of the link of each
0-cell of R is C. This implies two things: (1) The graph C
carries the local topological data of R, and (2) If C is the
1-skeleton of a triangulation of an ðn� 1Þ-sphere, then R is
an n-manifold. There is a variation of Singer’s Conjecture
regarding the ‘2-homology of such R:

Singer’s Conjecture for Coxeter groups 1.1. Let (W, S) be
a Coxeter system for which the corresponding Davis complex
R is an n-manifold. Then HiðRÞ ¼ 0 for all i not equal to n

2,
where HiðRÞ denotes the ith ‘2-(co)homology group of R.

For details on ‘2-homology theory, see [4], and [7]. For
further details on Coxeter systems and their corresponding
Davis manifolds, see [5, 10–13], and [14].

Now, Singer’s Conjecture for Coxeter groups holds for
elementary reasons in dimensions 1 and 2. The key result

for our purposes is found in [14], where the author proves
that Conjecture 1.1 holds in dimension 3; that is, it holds
for Coxeter systems whose corresponding graphs are the 1-
skeleton of a triangulation of S2: It is this result that con-
nects the study of these Davis manifolds with the planarity
of graphs. Indeed, the goal of this paper is to implement a
test for the planarity of a given, finite, simple graph by uti-
lizing the connection between this graph and the corre-
sponding the Coxeter systems and Davis complexes. So,
initially, we outline the proof of the following result:

Main Theorem. Let C be a simple, connected graph, with
V> 2 vertices. If C admits a metric flag labeling where ne (an
integer > 2) is the label on the edge e with

1� V
2
þ 1
2

X
edges e

1
ne

 !
> 0,

then C is not planar.

Here we note two things: (1) The result in Theorem 1
implies what we’ll call the ‘classical test’ for planarity, specif-
ically that the number of edges E and vertices V of a planar
graph satisfy E � 3V � 6 in general, and E � 2V � 4 for tri-
angle free graphs; and (2) ‘2-homology theory gives insight
into the genus of a graph. In particular, assuming a conjec-
ture about the ‘2-homology of Davis complexes associated
to nerves that are triangulations of a genus g surface, if

1� V
2
þ 1
2

X
edges e

1
ne

 !
> g, (1.1)

then C does not embed in a surface of genus g. The
assumed conjecture is not too far a stretch, since there is
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evidence for it that coincides nicely with classical theory on
the genus of a graph. See [16] for a full discussion of the
inequality in 1.1, in this paper we will focus on the test
for planarity.

Of course, planar graphs are well studied and algorithms
to detect the planarity of a given graph abound in the litera-
ture, see [1, 17] for example, and especially Kuratowski’s
1930 paper [9]. The purpose of this paper isn’t to challenge
those algorithms, per se. Rather, by exploiting the inherent
connection between Coxeter group actions on the Davis
complex and finite simple graphs, we demonstrate an
enhanced version of the classical test, and present a test for
planarity that is, in our opinion, very accessible.

2. Background: graphs, Coxeter groups,
and ‘2-homology

Let S be a finite set of generators. A Coxeter matrix on S is
a symmetric S� S matrix M ¼ ðmstÞ with entries in N [1
such that each diagonal entry is 1 and each off diagonal
entry is � 2: The matrix M gives a presentation of an asso-
ciated Coxeter group W:

W ¼ hS j ðstÞmst ¼ 1, for each pair ðs, tÞ with mst 6¼ 1i:
(2.1)

The pair (W, S) is called a Coxeter system. Given a subset U
of S, define WU to be the subgroup of W generated by the
elements of U. A subset T of S is spherical if WT is a finite
subgroup of W. In this case, we will also say that the sub-
group WT is spherical. The nerve of (W, S) is a simplicial
complex L with vertex set S and with the property that a
non-empty subset of vertices T spans a simplex of L if and
only if T is spherical.

Define a labeling on the edges of L by the map m :
EdgeðLÞ ! f2, 3, :::g, where fs, tg 7! mst: This labeling
accomplishes two things: (1) the Coxeter system can be recov-
ered (up to isomorphism) from the labeled L and (2) the under-
lying graph of L inherits a natural piecewise spherical structure
in which the edge {s, t} has length p� p

mst
: L is then a metric

flag simplicial complex (see [3, Definition I.7.1,2]). This means
that any finite set of vertices, which are pairwise connected by
edges, spans a simplex of L if an only if it is possible to find
some spherical simplex with the given edge lengths. In other
words, L is metrically determined by its underlying graph. In
summary, if one is given a Coxeter system (W, S), then there
corresponds a labeled, metric flag simplicial complex L.

The idea then, is to turn this correspondence around.
That is, we wish to begin with a simplicial complex L, and
from it define a corresponding Coxeter system for which L
is itself the nerve. In particular, we’re taking the initial com-
plex to be a finite, connected, simple graph, and the desire
is to define a Coxeter system for which the graph itself is
the nerve, not just the underlying graph, or 1-skeleton, of a
higher dimensional simplicial complex. To that end, suppose
C is a finite, simple, connected graph with vertex set S.
From the presentation in Equation (2.1), the procedure may
seem quite obvious: simply label the edges of the given
graph with integers � 2 and define the presentation so that

each vertex corresponds to a generator with order 2, and
include relations ðstÞmst ¼ 1 when mst is the label on edge {s,
t}. The problem here is that if vertices r,s,t are pairwise con-
nected, and if the labels mrs,mst, and mrt are such that

1
mrs

þ 1
mst

þ 1
mrt

> 1

(all 2’s, for instance), then {r, s, t} is a spherical subset and
therefore the nerve of the corresponding Coxeter system
must have a 2-simplex with vertex set {r, s, t}. This would
result in the defining graph C not being the nerve of the
corresponding Coxeter system, only the 1-skeleton of the
nerve. We must avoid this type of issue.

To develop the presentation of ðWC, SÞ, take S as the set
of generators, each of order two. (This means that we will
be treating the vertices of the graph as elements of the
group WC:) Next, for each edge {s, t} choose an integer
mst ¼ mts � 2 and in the presentation, include a relator of
the form ðstÞmst ¼ 1: (This implies also that ðtsÞmst ¼ 1:) But,
as mentioned above, we must choose such labels carefully.
The graph C is (viewed as) a 1-dimensional simplicial com-
plex, it has no 2-simplices. So if we desire C to be the nerve
of ðWC, SÞ, we must have no spherical subsets with three
(or more) vertices. So, a proper labeling scheme requires us
to understand the types of subsets of generators/vertices that
are spherical, specifically those subsets of size three. But
note that finite Coxeter systems are fully classified by their
“Dynkin diagrams,” see [8], for instance, and so it is pos-
sible to label C is such a way as to avoid unwanted spher-
ical subsets.

First note that since we only included relators for adja-
cent vertices, any pair of non-adjacent vertices generates an
infinite dihedral group, so spherical subsets must be com-
prised of pairwise connected vertices. So our concern is with
3-cycles contained in C. By conferring with the so-called
“Dynkin diagrams” mentioned above, we see that a set {r, s,
t} of pairwise connected vertices generates a finite Coxeter
group if and only if their edge labels satisfy

1
mrs

þ 1
mst

þ 1
mrt

> 1:

So we have the following definition and resulting edge label-
ing strategy.

Definition 2.1. Let C be a finite simple graph with vertex
set S. We say the edge labeling m : EdgeðCÞ ! f2, 3, :::g is
metric flag if

1
mrs

þ 1
mst

þ 1
mrt

� 1

whenever {r, s, t} are pairwise connected (form a 3-cycle).
Here, we also say that the graph C is metric flag to mean
that C has a metric flag labeling.

Note that Definition 2.1 can be extended to an arbitrary
simplicial complex L by requiring a subset of vertices T to
define a simplex if and only if the Coxeter system generated
by the vertices T with relators induced from the labeling is
finite. We also call such simplicial complexes metric flag.
Ultimately, we are looking at ways to take the labeled graph
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or simplicial complex as the initial data, instead of a specific
Coxeter system. See [14].

Now, for a given graph, there are many labelings that
result in the graph being a metric flag complex. We observe
that a labeling of all 3’s will always work in defining a met-
ric flag labeling of a graph (13 þ 1

3 þ 1
3 ¼ 1), and that if a

graph C contains a 3-cycle, then C cannot correspond to the
labeled nerve of a so-called “right-angled” Coxeter system,
where all edge labels are 2. So, our emphasis is not only be
on a given graph, but also on a specific labeling of edges.

In summary, given a metric flag graph C, we define an
associated Coxeter system ðWC, SÞ where

� The set of generators S is the set of vertices of C (or L).
� Each generator has order 2.
� For every edge weight mst on the edge {s, t}, we have a

relator ðstÞmst :
� C is the nerve of ðWC, SÞ:

That is, WC is defined by the group presentation

WC ¼ hS j s2 ¼ 1, 8s 2 S, and ðstÞmst ¼ 1

whenever fs, tg 2 EdgeðCÞi:

Example 2.2. Let C be a triangle with vertices r, s, and t,
with each edge labeled 3. Then W is infinite, and the
(empty) triangle C is the nerve of the corresponding
Coxeter system. Indeed, W ffi ~A3:

2.1. The Davis complex

Now, to a given a metric flag graph C or, more generally,
such a simplicial complex L with vertex set S, there is an
associated CW-complex RL, or simply R when the nerve is
clear on which WL acts geometrically. In lieu of a complete
description of the construction of R, we refer the reader to
[3, 5], or [14], and reference its key properties through the
following from [3, Proposition 7.3.4].

Proposition 2.3. There is a natural cell structure on RL

so that

� Its vertex set is WL and its underlying graph is the Cayley
graph of ðWL, SÞ:

� The link of every 0-cell is isomorphic to L, the nerve
of ðWL, SÞ:
The second bullet point of Proposition 2.3 means that if

the nerve L is a triangulation of an ðn� 1Þ-sphere, that R is
an n-dimensional manifold. For our purposes, note that if
we begin with a metric flag graph C, R is a 2-dimensional
complex with the property that at a given vertex v, the edges
containing v are in 1-1 correspondence with the vertices of
C, and 2-cells containing v are in 1-1 correspondence with
the edges of C.

Example 2.4. Let C be a triangle with vertices r, s, and t, and
each edge labeled 3. (As in Example 2.2.) Each of {r, s}, {s, t},
and {r, t} generate a dihedral group of order six acting on a

hexagon. There are 3 such spherical subsets, so in R, three
hexagons meet at every vertex, and R can be geometrically
realized as the Euclidean plane tiled by hexagons. See Figure 1.

Example 2.5. If C is the complete graph on 5 vertices, K5,
with each edge labeled 3, then R is more complicated. It is
not Euclidean space, and not even a manifold. However, it
can be understood in terms of Example 2.4. Indeed, in this
case, we can understand R as having 10 types of planes,
each tiled by hexagons as in Figure 1, corresponding to the
ð 5
3
Þ different versions of the triangle in Example 2.4. The

space has significant branching: each hexagon is contained
in 4 different planes. Note that in R, the link of every vertex
is isomorphic to K5.

‘2-Homology and planar graphs. Let RL be the Davis com-
plex constructed from the Coxeter system with nerve L (in
general a simplicial complex). To each cellular dimension i
of RL, we can assign a non-negative rational number biðLÞ,
called the ith ‘2-Betti number of RL. This is the so-called
von Neumann dimension of the ith ‘2-homology group of
RL. The key property of the ‘2-Betti numbers is that biðLÞ �
0 and biðLÞ ¼ 0 if and only if the ith ‘2-homology group of
RL is 0. We restate Singer’s conjecture.

Singer’s Conjecture for Coxeter groups 2.5.1. Let (W, S) be
a Coxeter system such that its nerve L is a triangulation of
an ðn� 1Þ-sphere. Then biðLÞ ¼ 0 for all i not equal to n

2 :

It is shown in [14] that Conjecture 2.5.1 is true in dimen-
sion 3. Specifically, if L is a triangulation of a 2-sphere, then
biðLÞ ¼ 0 for all i.

For a graph C viewed as a full subcomplex of L, the sub-
group WC generated by the vertex set of C is a subgroup of
WL, and RC is naturally a subcomplex of RL. We use biðCÞ
to represent the ith ‘2-Betti number of this space. We then
have the following from [15].

Theorem 2.6. Let L be a metric flag triangulation of a 2-
sphere, C � L a full subcomplex with every edge in L� C
labeled with 2. Then

Figure 1. RC ffi R
2, tiled by hexagons.
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biðCÞ ¼ 0 for i > 1:

2.2. Orbihedral Euler characteristic

Let C be metric flag. The orbihedral Euler characteristic of
the quotient space of RC under the action of WC, denoted
vorbðCÞ, is the rational number defined by

vorbðCÞ ¼
X
r

ð�1ÞdimðrÞ
jStabWðrÞj (2.2)

where the summation is over the simplices of the quotient
space RC=WC, and jStabWCðrÞj denotes the order of the sta-
bilizer of the cell r in WC: Then, a standard argument (see
[7]) Atiyah’s formula. That Equation 2.2 can be re-written
in terms of the ‘2-Betti numbers:

vorbðCÞ ¼
Xn
i¼0

ð�1ÞnbiðCÞ: (2.3)

The orbihedral Euler characteristic is the last piece of the
puzzle that allows us to state the ‘2-test for planarity.

2.3. The ‘2-test for planarity

Now suppose C is a simple, connected graph, with metric
flag labeling. The key observation is that if C is a planar
graph, then it can be embedded as a full subcomplex of a
triangulation L of a 2-sphere. Furthermore, if C also has a
metric flag labeling, then this labeling can be extended to all
of L so that L is metric flag, the labeling of C is preserved,
and each edge in L� C is labeled with 2. So Theorem 2.6
holds, and combining this with Atiyah’s formula in
Equation (2.3), we get that

vorbðCÞ ¼ b0ðCÞ � b1ðCÞ:
But, as long as the vertices of C generate an infinite group
(which occurs whenever C has metric flag labeling and isn’t

a single edge nor a single vertex), we have from [5] that
b0ðCÞ ¼ 0 and so for planar graphs C, we have that

vorbðCÞ ¼ �b1ðCÞ � 0: (2.4)

So we see that the test for planarity comes down to a cal-
culation of a modified Euler characteristic. Well, we have
the following specific calculations of vorbðCÞ for a metric
flag finite simple graph C, with V¼ number of vertices, and
with ne the edge label on edge e (see [15]):

vorbðCÞ ¼ 1þ V
2
þ

X
e2EdgeðCÞ

1
2ne

: (2.5)

Thus, using this formula along with that for planar graphs
in Equation 2.4, we have the following test for detecting
non-planar graphs, which is the main result of [15].

Theorem 2.7. (‘2-test for planarity) Let C be a finite, simple,
connected graph, with V> 2 vertices. If C admits a metric
flag labeling where ne (an integer � 2) is the label on edge e
with

1� V
2
þ 1
2

X
e2EdgeðCÞ

1
ne

 !
> 0,

then C is not planar.

2.4. Kuratowski’s graphs: K3, 3 and K5

Theorem 2.7 does detect that both of Kuratowski’s graphs
are non planar. Indeed, if C is the complete bipartite graph
on 3þ 3 vertices, then we can label each edge with a 2
(there are no 3-cycles) and we get that

vorbðKCÞ ¼ 1� 6=2þ 9=4 ¼ 1=4 > 0:

If C is the complete graph on 5 vertices, then we can use
a uniform labeling with 3’s and we have

vorbðKCÞ ¼ 1� 5=2þ 10=6 ¼ 1=6 > 0:

We acknowledge that there is a large similarity between
the ‘2-methods put forth above and what we’ll call the
“classical” argument using the usual Euler characteristic to
detect nonplanar graphs. But we note that the classical
inequalities actually follow from our scheme.

Corollary 2.8. Let C be a finite, simple, connected, planar
graph, with V> 2 vertices and E edges. Then E � 3V � 6. If,
moreover, C contains no 3-cycles, then E � 2V � 4:

Proof. Take a uniform labeling of 3 on the edges of C. Then

vorbðKCÞ ¼ 1� V
2
þ E

6
� 0,

which implies that E � 3V � 6: If C contains no 3-cycles,
then a uniform labeling of 2 on each edge is metric flag,
and we have that

vorbðKCÞ ¼ 1� V
2
þ E

4
� 0,

which implies that E � 2V � 4: w

Figure 2. vorbðCÞ ¼ 1
4 :
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While this may seem like a quite complicated procedure
to obtain the classically known results, it is valuable since
the ‘2-test for planarity is actually stronger than these clas-
sical inequalities, meaning that the ‘2-methods allow enable
us to detect non-planar graphs that the first inequality in
Corollary 2.8 cannot. For example, consider the graph C in
Figure 2, a member of the Petersen family of graphs. C does
contain 3-cycles and we have V¼ 8 and E¼ 15, so E <
3V � 6; but with the indicated labeling, we have vorbðCÞ ¼
1
4 , and thus we know C is not planar.

2.5. Summary

We close this by section pointing out two things about
Theorem 2.7. (1) In order to use the ‘2-test to detect a non-
planar graph, one wants to choose a metric flag labeling that
produces as large an orbihedral Euler characteristic as pos-
sible. For example, labeling K5 with 4’s results in a metric
flag labeling, but not a positive orbihedral Euler characteris-
tic, and therefore that labeling does not detect K5 as a non-
planar graph. So, our goal is to produce an algorithm that
will attempt to maximize vorb: (2) It is clear from Equation
(2.5) that increasing any one edge label of C decreases the
corresponding orbihedral Euler characteristic. So, a labeling
of 2’s on each edge will produce the largest possible orbihe-
dral Euler characteristic though this labeling is only metric
flag for triangle-free graphs. In other words, for triangle-free
graphs, the ‘2-test is not stronger than the classical inequal-
ity E � 2V � 4, meaning it will not detect non-planar
graphs the classical inequality misses. However, as shown in
Figure 2, the presence of triangles means that the slight
flexibility we have in labeling can be beneficial. We therefore
summarize the useful “jurisdiction” of our algorithm in
Figure 3.

� The region for which E > 3V � 6 are classically detected
non planar graphs. These are not missed by the ‘2-test,
since this inequality follows from a labeling of 3’s. See
Corollary 2.8.

� The region for which E � 2V � 4 may have non-planar
graphs, but these are not detectable by the classical nor
the ‘2-methods.

� The ‘2-test finds its advantage in the shaded region
dubbed the “‘2-zone,” on graphs C containing a triangle.

3. An implementation of the ‘2-test for planarity

As shown in Figure 2, and in other examples in [15], the
‘2-homological test for planarity is more flexible than the
classical test. Moreover, it is computational, which makes it
more practical, in some cases, than the non-constructive cri-
teria Kuratowski lays out for planar vs. non-planar graphs.

To implement the ‘2-homological test, it is clear that the
idea is to maximize the orbihedral Euler characteristic for-
mula in Equation (2.5). Hence, it is also clear that a general
labeling strategy should be to use as many 2’s as possible.
But, in order for the labeling to be metric flag, one must
ensure that the sum of the reciprocals of the labels around

any triangle is bounded above by 1. In particular, one can-
not have two labels of 2 in any triangle. As a result, if an
edge of any triangle is labeled 2, then the the naive choice
for the labels on the other edges should be either a 3 and a
6, or two 4’s.

A few notes before spelling out the algorithm in
Algorithm 3.1. First, note that the algorithm returns the
largest orbihedral Euler characteristic (simply denoted vorb,
the graph C is understood) resulting from three metric flag
labelings: X ¼ vorb resulting from a labeling with 2-3-6
labeled triangles, Y ¼ vorb resulting from a labeling with 2-
4-4 triangles, and Z ¼ vorb resulting from a constant labeling
of all 3’s. Second, while not advantageous in detecting non
planar graphs, the algorithm will label triangle-free graphs
with all 2’s, and will return X¼Y (these values will be
greater than Z). Third, one can see that the algorithm actu-
ally produces labelings, and can be adjusted to return the
actual labeling scheme (instead of the largest vorb). Finally, a
full analysis of the speed of our algorithm is the focus of
ongoing study, here we look at the relative strength of the
algorithm, but it seems apparent to us that, in the worst
case, it runs in polynomial time.

3.1. Algorithm

Labeling Algorithm: Given a finite, simple, connected graph C
with V vertices and E edges, proceed in the following way.

1. Recursively remove any pendant vertices until none
remain. If no vertices remain, return “�1:” Note that in
this case, C is a tree and, thus, planar.

2. For each remaining edge e, determine the number of trian-
gles in which it is contained. Then give e label ne
as follows:
(a) If e is in no triangles, set ne :¼ 2:
(b) If e is in at least three triangles, set ne :¼ 3:

Figure 3. The useful jurisdiction of the ‘2-test.
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(c) If e is in one triangle, if no other edge of this tri-
angle is labeled with a 2, set ne :¼ 2, else
set ne :¼ 3:

(d) Edges not fulfilling these requirements
remain unlabeled.

3. The remaining unlabeled edges are contained in exactly
two triangles. Loop through the vertices, from greatest
degree to least degree, from the neighbor with the largest
degree to the smallest degree, choosing as a label for these
edges the smallest from {2, 3, 6} which still satisfies the
upper bound on both triangle sums. Break any tie on
degrees arbitrarily.

4. Compute X :¼ vorb:
5. Swap all 3’s and 6’s for 4’s. Compute Y :¼ vorb:
6. Compute Z :¼ vorb with 3’s on every edge.
7. Return maxfX,Y ,Zg:

3.2. Examples

We’ve applied the above algorithm to the graphs shown in
Figure 4, with a maximum vorb edge label indicated. In
Figure 3.3, we see the 2-3-6 labeling scheme yields the larg-
est vorb from among our three options, while in Figure 3.3
using only 2’s and 4’s give the optimal algorithm output.
The graph given in Figure 4(c) is of particular interest since
a labeling by 2’s, 3’s and 6’s in our algorithm yields the
same vorb result as labeling with 2’s and 4’s. In Figure 4(d),
we illustrate what we call an almost ‘2-nonplanar graph,
meaning the algorithm almost detects it as nonplanar (see
Section 3.3). Though not detected by our algorithm, the
graph is nonplanar as it contains K3, 3 as a subgraph.

3.3. Results

To gauge the relative strength of our algorithm, we ran it on
connected graphs with 3 � V � 8, which contain a triangle
and which have minimum degree > 1. The first requirement
is discussed above and is the natural limitation of this
method in improving detection of nonplanar, triangle-free
graphs. In the table, we’ve denoted this count as � 	 C:
The latter requirement eliminates trees and graphs with pen-
dant vertices from consideration thus eliminating redun-
dancy in our counts, since the removal of any vertex of
degree one yields a graph of smaller order whose analysis
would be already be included under the given conditions.
For each V, we record four items:

1. The number of nonplanar graphs. This is known for
graphs of small order.

2. The number of nonplanar graphs detected by the clas-
sical inequality, i.e. graphs for which Z> 0. Note that
these nonplanar graphs are detected by the ‘2-test, since
the classical inequality corresponds to a labeling by 3’s
(Corollary 2.8).

3. The number ‘2-nonplanar graphs, i.e. those for which
the output is > 0. The difference of these two lines
gives the number of graphs detected by ‘2-methods that
are not detected by the classical inequality. That is, it
demonstrates the relative strength of the ‘2-test.

4. The number of almost ‘2-nonplanar graphs, i.e. nonpla-
nar graphs for which the output is 0, so they are
‘almost’ detected by our algorithm. We borrow this lan-
guage from [6], in which a characterization of almost
planar graphs are studied. Here, we’ve applied this term
only to known nonplanar graphs, but in general one
could have planar graphs for which vorb ¼ 0, and the
concept would be the same: Any additional edge would
result in vorb > 0:

One can see that the ‘2-methods nearly double the rate of
detection of nonplanar graphs over the classical inequality, and
give a good indication that several more graphs are nonplanar.
We acknowledge that the methods shown herein do not supplant
Kuratowski’s or Wagner’s full classification of planar graphs, that
they contain K5 or K3, 3 as minors, but we note that Kuratowski’s
Theorem does not yield a fast recognition algorithm, whereas the
method included here is as readily applied as Euler’s formula,
and, as shown in Table 1, more robust.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Figure 4. Examples of graphs and their associated (X, Y, Z), with an optimal
labeling illustrated.

Table 1. Results of the ‘2-tests on graphs C with 3 � V � 8:

V ¼ � 	 C nonplanar C E > 3V � 6 vorb > 0 vorb ¼ 0

3 1 0 0 0 0
4 2 0 0 0 0
5 9 1 1 1 0
6 55 11 4 6 4
7 490 172 39 69 43
8 7360 4240 812 1503 772
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