Decomposition of complete bipartite graphs into cycles and stars with four edges

M. Ilayaraja \& A. Muthusamy

To cite this article: M. Ilayaraja \& A. Muthusamy (2020): Decomposition of complete bipartite graphs into cycles and stars with four edges, AKCE International Journal of Graphs and Combinatorics, DOI: 10.1016/j.akcej.2019.12.006

To link to this article: https://doi.org/10.1016/j.akcej.2019.12.006

© 2020 The Author(s). Published with
license by Taylor \& Francis Group, LLC

Published online: 22 Apr 2020.

Submit your article to this journal

Article views: 222

View related articles

View Crossmark data [$\sqrt{\top}$

Decomposition of complete bipartite graphs into cycles and stars with four edges

M. Ilayaraja and A. Muthusamy
Department of Mathematics, Periyar University, Salem, Tamil Nadu, India

ABSTRACT
Let C_{k}, S_{k} denote a cycle, star with k edges and let $K_{m, n}$ denotes a complete bipartite graph with m and n vertices in the parts. In this paper, we obtain necessary and sufficient conditions for the existence of a decomposition of complete bipartite graphs into cycles and stars with four edges.

KEYWORDS

Cycles; star; graph
decomposition
2010 MSC
05B30; 05C38;

1. Introduction

All graphs considered here are finite. For the standard graph-theoretic terminology the reader is referred to [4]. Let C_{k}, S_{k} denote a cycle, star with k edges and let $K_{m, n}$ denotes a complete bipartite graph with m and n vertices in the parts. Also we denote the cycle C_{k} with vertices $x_{0}, x_{1}, \cdots, x_{k-1}$ and edges $x_{0} x_{1}, x_{1} x_{2}, \cdots, x_{k-2} x_{k-1}, x_{k-1} x_{0}$ as $\left(x_{0}, x_{1}, \cdots, x_{k-1}, x_{0}\right)$ and a star S_{k} consists of a centre vertex x_{0} of degree k (i.e., $d\left(x_{0}\right)=k$) and k end vertices $x_{1}, x_{2}, \cdots, x_{k}$ as $\left(x_{0} ; x_{1}, \cdots, x_{k}\right)$. If there are t stars with same end vertices $x_{1}, x_{2}, \cdots, x_{k}$ and different centres $y_{1}, y_{2}, \cdots, y_{t}$, we denote it by $\left(y_{1}, y_{2}, \cdots, y_{t} ; x_{1}, x_{2}, \cdots, x_{k}\right)$. Note that S_{k} is isomorphic to $K_{1, k}$. By a decomposition of G, we mean a list of edge-disjoint subgraphs of G whose union is G (ignoring isolated vertices). For the graph G, if $E(G)$ can be partitioned into E_{1}, \cdots, E_{k} such that the subgraph induced by E_{i} is H_{i}, for all $i, 1 \leq i \leq k$, then we say that H_{1}, \cdots, H_{k} decompose G and we write $G=H_{1} \oplus \cdots \oplus H_{k}$. For $1 \leq i \leq k$, if $H_{i} \cong H$, we say that G has a H-decomposition and it is denoted by $H \mid G$. If G can be decomposed into p copies of H_{1} and q copies of H_{2}, then we say that G has a $\left\{p H_{1}, q H_{2}\right\}$-decomposition or $\left(H_{1}, H_{2}\right)$-multidecomposition. If such a decomposition exits for all p and q satisfying trivial necessary conditions, then we say that G has a $\left\{H_{1}, H_{2}\right\}_{\{p, q\}}$-decomposition or complete $\left\{H_{1}, H_{2}\right\}$-decomposition. We denote the number of edges of G by $e(G)$.

Cycle decomposition of graphs and star decomposition of graphs are popular topic of research in graph theory; see [3, 12-14]. The study of (K, H)-multidecomposition has been introduced by Atif Abueida and M. Daven [1]. Moreover, Atif Abueida and Theresa O'Neil [2] have settled the existence of $\quad(K, H)$-multidecomposition of $\quad K_{m}(\lambda)$ when $(K, H)=$ ($K_{1, n-1}, C_{n}$) for $n=3,4,5$. Priyadharsini and Muthusamy [9] established necessary and sufficient condition for the existence
of $\left(G_{n}, H_{n}\right)$-multidecomposition of λK_{n} where $G_{n}, H_{n} \in\left\{C_{n}\right.$, $\left.P_{n-1}, S_{n-1}\right\}$. Lee [7], gave necessary and sufficient condition for the multidecomposition of $K_{m, n}$ into at least one copy of C_{k} and S_{k}. Lee and J.J. Lin [8], have obtained necessary and sufficient condition for the decomposition of complete bipartite graph minus a one factor into cycles and stars. Shyu [10] considered the existence of a decomposition of $K_{m, n}$ into paths and stars with k edges, giving a necessary and sufficient condition for $k=3$. Jeevadoss and Muthusamy [5] have obtained some necessary and sufficient condition for the existence of a decomposition of complete bipartite graphs into paths and cycles. Recently, Lee [6] established necessary and sufficient conditions for the existence of a decomposition of complete bipartite multigraph into cycles and stars with at least one copy of each. In this paper, we study about the existence of a decomposition of complete bipartite graphs into p copies of C_{4} and q copies of S_{4} for all possible values of p and q. We abbreviate the notation for such a decomposition as $\left\{p C_{4}, q S_{4}\right\}$-decomposition. In fact, we establish necessary and sufficient conditions for the existence of $\left\{p C_{4}, q S_{4}\right\}$-decomposition of $K_{m, n}$.

To prove our main results, we state the following:
Theorem 1.1. [11] Let m, n and $l \in \mathbb{Z}_{+}$. There exists an $C_{2 l}$-decomposition of $K_{m, n}$ if and only if m and n are even, $m, n \geq l \geq 2$ and $m n \equiv 0(\bmod 2 l)$.

Theorem 1.2. [14] Let k, m and $n \in \mathbb{Z}_{+}$with $m \leq n$. There exists an S_{k}-decomposition of $K_{m, n}$ if and only if one of the following holds:
(i) $k \leq m$ and $m n \equiv 0(\bmod k)$;
(ii) $m<k \leq n$ and $n \equiv 0(\bmod k)$.

Remarks.

1. If G_{1} and G_{2} have a $\left\{p C_{4}, q S_{4}\right\}$-decomposition, then $G_{1} \oplus G_{2}$ has a such decomposition.
2. Let $X+Y=\left\{\left(x_{1}+y_{1}, x_{2}+y_{2}\right) \mid\left(x_{1}, x_{2}\right) \in X,\left(y_{1}, y_{2}\right) \in\right.$ $Y\}$ and $r X$ is the sum of r copies of X.

2. Necessary conditions

The following Lemmas gives necessary conditions for the existence of a $\left\{p C_{4}, q S_{4}\right\}$-decomposition of $K_{m, n}$.
Lemma 2.1. Let $p, q \geq 0$ and even $n \geq 2$. If $K_{2, n}$ has a $\left\{p C_{4}, q S_{4}\right\}$-decomposition, then q must be even.
Proof. Let D be an arbitrary $\left\{p C_{4}, q S_{4}\right\}$-decomposition of $K_{2, n}$. Then $4(p+q)=e\left(K_{2, n}\right)$. Let $V\left(K_{2, n}\right)=\left(X_{1}, X_{2}\right)$, where $\quad X_{1}=\left\{x_{11}, x_{12}\right\}$ and $X_{2}=\left\{x_{21}, \cdots, x_{2 n}\right\}$. Since x_{11} and x_{12} must be a centre vertex of each S_{4} 's in D and each C_{4} 's in D must contains both x_{11} and x_{12}. Therefore the number of copies of S_{4} centered in both x_{11} and x_{12} are the same.

Lemma 2.2. Let $p, q \geq 0$ and even $n \geq 4$. If $K_{4, n}$ has a $\left\{p C_{4}, q S_{4}\right\}$-decomposition, then $p, q \neq 1$.

Proof. Let D be an arbitrary $\left\{p C_{4}, q S_{4}\right\}$-decomposition of $K_{m, n}$. Then $4(p+q)=e\left(K_{m, n}\right)$. On the contrary, suppose that $q=1$. Let S_{4}^{1} denote the only star in D. It follows that each end vertex of S_{4}^{1} has odd degree in $K_{4, n} \backslash E\left(S_{4}^{1}\right)$, which cannot have a cycle decomposition and hence a contradiction. On the other hand, let $V\left(K_{4, n}\right)=\left(X_{1}, X_{2}\right)$, where $X_{1}=$ $\left\{x_{11}, \cdots, x_{14}\right\}$ and $X_{2}=\left\{x_{21}, \cdots, x_{2 n}\right\}$. Assume that there exist a $(4 ; 1, n-1)$-decomposition of $K_{4, n}$. Without loss of generality, let $C_{4}^{1}=\left(x_{11}, x_{21}, x_{12}, x_{22}, x_{11}\right)$ be the only C_{4} in D. Then by assumption $K_{4, n} \backslash E\left(C_{4}^{1}\right)=G$ has an S_{4}-decomposition. In G, the vertices x_{21} and x_{22} have exactly degree 2 . So it could not be a centre vertex of any stars in D. Therefore we have two stars S_{4}^{1} and S_{4}^{2} whose centre vertex is x_{13} and x_{14} respectively, which consist of x_{21} and x_{22} as end vertices. That is, $S_{4}^{1}=$ $\left(x_{13} ; x_{21}, x_{22}, x_{2 i}, x_{2 j}\right)$ and $S_{4}^{2}=\left(x_{14} ; x_{21}, x_{22}, x_{2 i^{\prime}}, x_{2 j^{\prime}}\right)$ for some $i \neq j$ and $i^{\prime} \neq j^{\prime} \in \mathbb{Z}_{+}$. We define $\quad D^{\prime}=\left\{S_{4} \in\right.$ $D \mid$ Centre vertex of S_{4} is $\left.x_{14}\right\} ;\left|D^{\prime}\right|=r$, where $r \in$ \mathbb{Z}_{+}and let $X_{2}^{\prime}=\left\{y \in X_{2} \mid y\right.$ is an end vertex of $S_{4} \in$ $\left.D^{\prime}\right\}$. Then clearly $S_{4}^{2} \in D^{\prime}$ and $\left|X_{2}^{\prime}\right|=4 r$. Every vertex in $X_{2} \backslash X_{2}^{\prime}$ must be centre vertex of some stars in $D \backslash D^{\prime}$. Otherwise we cannot use the edges between $x_{14} \in$ X_{1} and $X_{2} \backslash X_{2}^{\prime}$ in any star in D, whose centre vertex is not x_{14}.

Now we collect all the stars whose centre in $X_{2} \backslash X_{2}^{\prime}$ and denote it $D^{\prime \prime}$. That is, $D^{\prime \prime}=\left\{S_{4} \in D \mid\right.$ Centre vertex of S_{4} in $\left.X_{2} \backslash X_{2}^{\prime}\right\}$. Then the new graph $G^{\prime}=$ $K_{4, n} \backslash\left\{E\left(C_{4}^{1}\right) \cup E\left(D^{\prime}\right) \cup E\left(D^{\prime \prime}\right) \cup E\left(S_{4}^{1}\right)\right\} \cong K_{3,4 r-2} \backslash\left\{x_{13} x_{2 i}\right\} \cup$ $\left\{x_{13} x_{2 j}\right\}$. Let $V\left(K_{3,4 r-2}\right)=\left(Y_{1}, Y_{2}\right)$, where $Y_{1}=X_{1} \backslash$ $\left\{x_{14}\right\}$ and $Y_{2}=X_{2} \backslash\left(X_{2} \backslash X_{2}^{\prime} \cup\left\{x_{21}, x_{22}\right\}\right)$. By our assumption G^{\prime} has an S_{4}-decomposition. In $G^{\prime}, d\left(x_{11}\right)=d\left(x_{12}\right)=$ $4 r-2$ and $d\left(x_{13}\right)=4 r-4$ also $d\left(x_{2 i}\right)=d\left(x_{2 j}\right)=2$ and $d\left(x_{2 k}\right)=3$, where $x_{2 k} \neq x_{2 i}, x_{2 j}$ and $x_{2 k} \in X_{2}$. It follows that no vertex of Y_{2} can be a centre vertex of any stars, so the centre vertices of stars must be in Y_{1}. Since $d\left(x_{11}\right)=$ $d\left(x_{12}\right)=4 r-2 \not \equiv 0(\bmod 4)$, by Theorem 1.2 , the
graph G^{\prime} cannot have S_{4}-decomposition, which is contradiction to our assumption.

Lemma 2.3. Let $p, q \geq 0$ and even $m, n \geq 6$ with $m \leq n$. If $K_{m, n}$ has a $\left\{p C_{4}, q S_{4}\right\}$-decomposition, then $q \neq 1$.

Proof. Let D be an arbitrary $\left\{p C_{4}, q S_{4}\right\}$-decomposition of $K_{m, n}$. On the contrary, suppose $q=1$, we obtain a contradiction as in Lemma 2.2.

Lemma 2.4. Let p, q be nonnegative integers, m is odd (resp., n is odd $)$ and $n \equiv 0(\bmod 4)($ resp., $m \equiv 0(\bmod 4))$ such that $m<n$. If $K_{m, n}$ has a $\left\{p C_{4}, q S_{4}\right\}$-decomposition, then $q \geq \frac{n}{4} \quad\left(\right.$ resp., $\left.q \geq \frac{m}{4}\right)$.

Proof. Let D be an arbitrary $\left\{p C_{4}, q S_{4}\right\}$-decomposition of $K_{m, n}$. Let the q copies of stars be $S_{4}^{i} \in D, 1 \leq i \leq$ q and $G=K_{m, n} \backslash E\left(\sum_{i=1}^{q} S_{4}^{i}\right)$. By hypothesis, G has a C_{4}-decomposition. It follows that every vertex of G must be of even degree. Note that when n is even (resp., m), each vertex of X_{2} (resp., X_{1}) must be either an end vertex or the centre of some $S_{4}^{i}, 1 \leq i \leq q$. It implies that $4 q \geq n$ (resp., $4 q \geq m)$.

3. Sufficient conditions

The following sequence of lemmas we show that the above necessary conditions are also sufficient.
Lemma 3.1. If $m, n \in 2 \mathbb{Z}_{+}$with $2 \leq m \leq n \leq 8$, then there exists a $\left\{p C_{4}, q S_{4}\right\}$-decomposition of $K_{m, n}$.
Proof. Case 1. For $m=2$ and $n=2$, trivially one C_{4}. For $n=4$, let $V\left(K_{2,4}\right)=\left(X_{1}, X_{2}\right)$, where $X_{1}=\left\{x_{11}, x_{12}\right\}$ and $X_{2}=\left\{x_{21}, \cdots, x_{24}\right\}$. Then the required $\left\{p C_{4}, q S_{4}\right\}$-decompositions are as given below:

1. $p=2$ and $q=0$.

By Theorem 1.1, we get the required $2 C_{4}$'s.
2. $\quad p=0$ and $q=2$.

By Theorem 1.2, we get the required $2 S_{4}$'s.
For $n=6$, let $V\left(K_{2,6}\right)=\left(X_{1}, X_{2}\right)$, where $X_{1}=\left\{x_{11}, x_{12}\right\}$ and $X_{2}=\left\{x_{21}, \cdots, x_{26}\right\}$. Then the required $\left\{p C_{4}, q S_{4}\right\}$ decompositions are as given below:

1. $p=3$ and $q=0$.

By Theorem 1.1, we get the required $3 C_{4}$'s.
2. $\quad p=1$ and $q=2$.
$\left(x_{11}, x_{21}, x_{12}, x_{22}, x_{11}\right)$ and $\left(x_{11}, x_{12} ; x_{23}, x_{24}, x_{25}, x_{26}\right)$.
For $n=8$, we can write, $K_{2,8}=K_{2,4} \oplus K_{2,4}$. Then the graph $K_{2,4}$ has a $\left\{p C_{4}, q S_{4}\right\}$-decomposition, by the starting of the proof. Hence, by the remark, the graph $K_{2,8}$ has a desired decomposition.
Case 2. For $m=4$ and $n=4$, let $V\left(K_{4,4}\right)=\left(X_{1}, X_{2}\right)$, where $X_{1}=\left\{x_{11}, \cdots, x_{14}\right\}$ and $X_{2}=\left\{x_{21}, \cdots, x_{24}\right\}$. Then the required $\left\{p C_{4}, q S_{4}\right\}$-decompositions are as given below:

1. $\quad p=4$ and $q=0$.
$\left(x_{11}, x_{21}, x_{12}, x_{22}, x_{11}\right),\left(x_{11}, x_{23}, x_{12}, x_{24}, x_{11}\right),\left(x_{13}, x_{21}, x_{14}\right.$, $\left.x_{22}, x_{13}\right)$ and $\left(x_{13}, x_{23}, x_{14}, x_{24}, x_{13}\right)$.
2. $\quad p=2$ and $q=2$.

The first two C_{4} 's in (1) and the $2 S_{4}$'s $\left(x_{13}, x_{14} ; x_{21}\right.$, x_{22}, x_{23}, x_{24}) gives the required decomposition.
3. $p=0$ and $q=4$.

By Theorem 1.2, we get the required $4 S_{4}$'s.
For $m=4$ and $n=6$, let $V\left(K_{4,6}\right)=\left(X_{1}, X_{2}\right)$, where $X_{1}=$ $\left\{x_{11}, \cdots, x_{14}\right\}$ and $X_{2}=\left\{x_{21}, \cdots, x_{26}\right\}$. Then the required $\left\{p C_{4}, q S_{4}\right\}$-decompositions are as given below:

1. $p=6$ and $q=0$.
$\left(x_{11}, x_{21}, x_{12}, x_{22}, x_{11}\right),\left(x_{11}, x_{23}, x_{12}, x_{24}, x_{11}\right), \quad\left(x_{11}, x_{25}, x_{12}\right.$, $\left.x_{26}, x_{11}\right),\left(x_{13}, x_{21}, x_{14}, x_{22}, x_{13}\right)$,
$\left(x_{13}, x_{23}, x_{14}, x_{24}, x_{13}\right)$ and $\left(x_{13}, x_{25}, x_{14}, x_{26}, x_{13}\right)$.
2. $p=4$ and $q=2$.

The first four C_{4} 's in (1) and the $2 S_{4}$'s $\left(x_{13}, x_{14}\right.$; $x_{23}, x_{24}, x_{25}, x_{26}$) gives the required decomposition.
3. $p=3$ and $q=3$.

The first three C_{4} 's in (1) and the $3 S_{4}^{\prime}$'s $\left(x_{11} ; x_{21}\right.$, $\left.x_{22}, x_{23}, x_{24}\right),\left(x_{12} ; x_{21}, x_{22}, x_{25}, x_{26}\right),\left(x_{13} ; x_{23}, x_{24}, x_{25}, x_{26}\right)$ gives the required decomposition.
4. $p=2$ and $q=4$.

The $2 C_{4}^{\prime}$'s $\left(x_{11}, x_{21}, x_{12}, x_{22}, x_{11}\right),\left(x_{13}, x_{21}, x_{14}, x_{22}, x_{13}\right)$ and the $4 S_{4}$'s $\left(x_{11}, x_{12}, x_{13}, x_{14} ; x_{23}, x_{24}, x_{25}, x_{26}\right)$ gives the required decomposition.
5. $p=0$ and $q=6$.

By Theorem 1.2, we get the required $6 S_{4}$'s.
For $n=8$, we can write, $K_{4,8}=K_{4,6} \oplus K_{4,2}$. Both the graphs $K_{4,6}$ and $K_{4,2}$ have a $\left\{p C_{4}, q S_{4}\right\}$-decomposition. Hence, by the remark, the graph $K_{4,8}$ has a desired decomposition.
Case 3. For $m=6$ and $n=6$, let $V\left(K_{6,6}\right)=\left(X_{1}, X_{2}\right)$, where $X_{1}=\left\{x_{11}, \cdots, x_{16}\right\}$ and $X_{2}=\left\{x_{21}, \cdots, x_{26}\right\}$. Then the required $\left\{p C_{4}, q S_{4}\right\}$-decompositions are as given below:

1. $\quad p=9$ and $q=0$.
$\left(x_{11}, x_{21}, x_{12}, x_{22}, x_{11}\right),\left(x_{11}, x_{23}, x_{12}, x_{24}, x_{11}\right), \quad\left(x_{11}, x_{25}, x_{12}\right.$, $\left.x_{26}, x_{11}\right), \quad\left(x_{13}, x_{21}, x_{14}, x_{22}, x_{13}\right), \quad\left(x_{13}, x_{23}, x_{14}, x_{24}, x_{13}\right)$, $\left(x_{13}, x_{25}, x_{14}, x_{26}, x_{13}\right),\left(x_{15}, x_{21}, x_{16}, x_{22}, x_{15}\right),\left(x_{15}, x_{23}, x_{16}\right.$, $\left.x_{24}, x_{15}\right),\left(x_{15}, x_{25}, x_{16}, x_{26}, x_{15}\right)$.
2. $\quad p=7$ and $q=2$.

The first four and last three $C_{4}^{\prime} s$ in (1) and the $2 S_{4}$'s $\left(x_{13}, x_{14} ; x_{23}, x_{24}, x_{25}, x_{26}\right)$ gives the required decomposition.
3. $p=6$ and $q=3$.

The first three and last three C_{4} 's in (1) and the $3 S_{4}$'s $\left(x_{11} ; x_{21}, x_{22}, x_{23}, x_{24}\right),\left(x_{12} ; x_{21}, x_{22}, x_{25}, x_{26}\right),\left(x_{13} ; x_{23}, x_{24}\right.$, $\left.x_{25}, x_{26}\right)$ gives the required decomposition.
4. $p=5$ and $q=4$.

The last three C_{4} 's in (1) along with $\left(x_{11}, x_{21}\right.$, $\left.x_{12}, x_{22}, x_{11}\right), \quad\left(x_{13}, x_{21}, x_{14}, x_{22}, x_{13}\right)$ and the $4 S_{4}$'s $\left(x_{11}, x_{12}, x_{13}, x_{14} ; x_{23}, x_{24}, x_{25}, x_{26}\right)$ gives the required decomposition.
5. $p=4$ and $q=5$.

The $4 C_{4}$'s $\left(x_{11}, x_{25}, x_{13}, x_{26}, x_{11}\right),\left(x_{12}, x_{23}, x_{14}, x_{24}, x_{12}\right)$, $\left(x_{13}, x_{21}, x_{14}, x_{22}, x_{13}\right),\left(x_{15}, x_{21}, x_{16}, x_{22}, x_{15}\right)$ and the $5 S_{4}$'s $\left(x_{11}, x_{12} ; x_{21}, x_{22}, x_{25}, x_{26}\right), \quad\left(x_{13}, x_{15}, x_{16} ; x_{23}, x_{24}, x_{25}, x_{26}\right)$ gives the required decomposition.
6. $p=3$ and $q=6$.

The $3 C_{4}$'s $\left(x_{11}, x_{21}, x_{12}, x_{22}, x_{11}\right),\left(x_{13}, x_{21}, x_{14}, x_{22}, x_{13}\right)$, $\left(x_{15}, x_{21}, x_{16}, x_{22}, x_{15}\right)$ and the $6 S_{4}$'s (x_{11}, x_{12}, x_{13}, $\left.x_{14}, x_{15}, x_{16} ; x_{23}, x_{24}, x_{25}, x_{26}\right)$ gives the required decomposition.
7. $p=2$ and $q=7$.

The 2C4's $\left(x_{11}, x_{21}, x_{12}, x_{22}, x_{11}\right),\left(x_{11}, x_{23}, x_{12}, x_{24}, x_{11}\right)$ and the $7 S_{4}$'s $\left(x_{13} ; x_{21}, x_{22}, x_{23}, x_{26}\right), \quad\left(x_{14} ; x_{21}, x_{22}, x_{23}, x_{26}\right)$, $\left(x_{15} ; x_{21}, x_{22}, x_{23}, x_{24}\right), \quad\left(x_{16} ; x_{21}, x_{22}, x_{23}, x_{24}\right), \quad\left(x_{24} ; x_{11}\right.$, $\left.x_{12}, x_{13}, x_{14}\right),\left(x_{25} ; x_{13}, x_{14}, x_{15}, x_{16}\right),\left(x_{26} ; x_{11}, x_{12}, x_{15}, x_{16}\right)$ gives the required decomposition.
8. $\quad p=1$ and $q=8$.
$\left(x_{11}, x_{21}, x_{12}, x_{22}, x_{11}\right)$ and the $8 S_{4}$'s $\left(x_{15}, x_{16} ; x_{23}, x_{24}\right.$, $\left.x_{25}, x_{26}\right),\left(x_{21}, x_{22}, x_{23}, x_{24}, x_{25}, x_{26} ; x_{11}, x_{12}, x_{13}, x_{14}\right)$ gives the required decomposition.
9. $p=0$ and $q=9$.

By Theorem 1.2, we get the required $9 S_{4}$'s.
For $n=8$, we can write, $K_{6,8}=K_{6,4} \oplus K_{6,4}$. Then we obtained $(p, q) \in\{(12,0),(10,2), \cdots,(2,10),(0,12)\}$. The case $(1,11)$ can be obtain by taking, $K_{6,8}=K_{6,2} \oplus K_{6,6}$, we have $(1,11)=(1,2)+(0,9)$, by the Cases 1 and 3 above procedure. Hence, the graph $K_{6,8}$ has a desired decomposition.
Case 4. For $m=8$ and $n=8$, we can write, $K_{8,8}=$ $2 K_{4,6} \oplus 2 K_{2,4}$. By Case 1 above, we obtained $(p, q) \in$ $\{(16,0),(14,2), \cdots,(2,14),(0,16)\}$. The case $(1,15)$ can be obtain by taking, $K_{8,8}=K_{6,8} \oplus 2 K_{2,4}$, we have $(1,15)=$ $(1,11)+(0,4)$, by the Case 1 and 3 above procedure. Hence, the graph $K_{8,8}$ has a desired decomposition.

Lemma 3.2. If $m, n \in 2 \mathbb{Z}_{+}$with $2 \leq m \leq 8$ and $n \geq 10$, then there exists a $\left\{p C_{4}, q S_{4}\right\}$-decomposition of $K_{m, n}$.

Proof. Case 1. For $m=2$, we distinguish two subcases.
Subcase 1. $n \equiv 2(\bmod 4)$, we have $n=4 x+2$, where $x \geq 2$.
For $x=2$ we have, $K_{2,10}=K_{2,8} \oplus K_{2,2}$. Then the graph $K_{2,10}$ has a $(4 ; p, q)$-decomposition, by Lemma 3.1. For $x \geq$ 3 , we can write, $K_{2,4 x+2}=K_{2,10} \oplus(x-2) K_{2,4}$. By the above procedure and Lemma 3.1, both the graphs $K_{2,10}$ and $K_{2,4}$ have a $\left\{p C_{4}, q S_{4}\right\}$-decomposition. Hence, by the remark, the graph $K_{2,4 x+2}$ has a desired decomposition.
Subcase 2. $n \equiv 0(\bmod 4)$, we have $n=4 x$, where $x \geq 3$. We can write, $K_{2,4 x}=x K_{2,4}$. Hence, the graph $K_{2,4 x}$ has a $\left\{p C_{4}, q S_{4}\right\}$-decomposition, by Lemma 3.1.
For $m=4,6$ and $n=10$, we can write, $K_{m, 10}=K_{m, 6} \oplus$ $K_{m, 4}$. Hence, the graph $K_{m, 10}$ has a $\left\{p C_{4}, q S_{4}\right\}$-decomposition, by Lemma 3.1.
Let $n>10$, we have $n=4 x+y$, where $3 \leq x \in$ \mathbb{Z}_{+}and $y=0,2$. We can write, $K_{m, n}=K_{m, 4 x+y}$.
Case 2. For $m=4$, we can write, $K_{4,4 x+y}=K_{4,10} \oplus$ $\left(\frac{4 x+y}{2}-5\right) K_{4,2}$. By the above procedure and Lemma 3.1,
both the graphs $K_{4,10}$ and $K_{4,2}$ have a $\left\{p C_{4}, q S_{4}\right\}$-decomposition. Hence, by the remark, the graph $K_{4,4 x+y}$ has the desired decomposition.
Case 3. For $m=6$. We distinguish two subcases.
Subcase 1. $n \equiv 2(\bmod 4)$, we have $n=4 x+2$, where $3 \leq$ $x \in \mathbb{Z}_{+}$, we can write, $K_{6,4 x+2}=(x-1) K_{6,4} \oplus K_{6,6}$. Hence, the graph $K_{6,4 x+2}$ has a $\left\{p C_{4}, q S_{4}\right\}$-decomposition, by Lemma 3.1.
Subcase 2. $n \equiv 0(\bmod 4)$, we have $n=4 x$, where $3 \leq x \in$ \mathbb{Z}_{+}, we can write, $K_{6,4 x}=(x-1) K_{6,4} \oplus K_{6,4}$. Hence, the graph $K_{6,4 x}$ has a $\left\{p C_{4}, q S_{4}\right\}$-decomposition, by Lemma 3.1.
Case 4. For $m=8$ and $n=2 x$, where $x \geq 5$, we can write, $K_{8,2 x}=K_{8,8} \oplus(x-4) K_{8,2}$. Note that $K_{8,2} \cong K_{2,8}$. Hence, the graph $K_{8,2 x}$ has a $\left\{p C_{4}, q S_{4}\right\}$-decomposition, by Lemma 3.1.

Lemma 3.3. If $m \in 2 \mathbb{Z}_{+}$with $m \equiv 0(\bmod 4) \geq 12$, then there exists a $\left\{p C_{4}, q S_{4}\right\}$-decomposition of $K_{\frac{m}{2}, m}$, where $q \neq 1$.

Proof. We distinguish two cases.
Case 1. $m=12$ and $q \neq 1$.
We can write, $K_{6,12}=K_{6,6} \oplus K_{6,6}$. By Lemma 3.1, the graph $K_{6,6}$ has a $\left\{p C_{4}, q S_{4}\right\}$-decomposition. Hence, the graph $K_{6,12}$ has the desired decomposition
Case 2. $m>12$ and $q \neq 1$. We can write,

$$
K_{\frac{m}{2}, m}=K_{6,12} \oplus K_{6, m-12} \oplus\left(\frac{m-12}{4}\right)\left(K_{2,12} \oplus K_{2, m-12}\right)
$$

By the Case 1 above and Lemma 3.2, the graphs $K_{6,12}, K_{2,12}$ and $K_{2, m-12}$ have a $\left\{p C_{4}, q S_{4}\right\}$-decomposition. Hence, by the remark, the graph $K_{\frac{m}{2}, m}$ has the desired decomposition.
Lemma 3.4. If $m \in 2 \mathbb{Z}_{+}$with $m \equiv 0(\bmod 4) \geq 12$, then there exists a $\left\{p C_{4}, q S_{4}\right\}$-decomposition of $K_{m, m}$, where $q \neq 1$.
Proof. For $m \geq 12$ and $q \neq 1$. We can write,
$K_{m, m}=K_{8,8} \oplus\left(\frac{m-12}{4}\right) K_{4,4} \oplus\left\{\bigoplus_{i}^{m-4} K_{i, 4}\right\} \oplus\left\{\bigoplus_{j}^{m-4} K_{4, j}\right\}$,
where $i \equiv 0(\bmod 4) \geq 4$ and $j \equiv 0(\bmod 4) \geq 8$. Note that $K_{i, 4} \cong K_{4, i}$. By Lemmas 3.1 and 3.2, the graphs $K_{4,4}, K_{8,8}, K_{i, 4}$ and $K_{4, j}$ have a $\left\{p C_{4}, q S_{4}\right\}$-decomposition. Hence, by the remark, the graph $K_{m, m}$ has the desired decomposition.

Lemma 3.5. If $m \in 2 \mathbb{Z}_{+}$with $m \equiv 2(\bmod 4) \geq 10$, then there exists a $\left\{p C_{4}, q S_{4}\right\}$-decomposition of $K_{m, m}$, where $q \neq 1$.

Proof. We can write,

$$
K_{m, m}=K_{6,6} \oplus\left(\frac{m-6}{4}\right) K_{4,4} \oplus\left\{\oplus_{i}^{m-4} K_{4, i}\right\} \oplus\left\{\oplus_{j}^{m-4} K_{j, 4}\right\}
$$

where $i, j \equiv 2(\bmod 4) \geq 6$. Note that $K_{j, 4} \cong K_{4, j}$. By Lemmas 3.1 and 3.2, the graphs $K_{4,4}, K_{6,6}, K_{4, i}$ and $K_{j, 4}$ have a $\left\{p C_{4}, q S_{4}\right\}$-decomposition. Hence, by the remark, the graph $K_{m, m}$ has the desired decomposition.

Lemma 3.6. If $m, n \in 2 \mathbb{Z}_{+}$with $n \geq m \geq 12$ and m, $n \equiv 0(\bmod 4)$, then there exists a $\left\{p C_{4}, q S_{4}\right\}$-decomposition of $K_{m, n}$, where $q \neq 1$.

Proof. We can write,

$$
K_{m, n}=K_{m, m} \oplus\left(\frac{n-m}{4}\right) K_{m, 4}
$$

Note that $K_{m, 4} \cong K_{4, m}$. By Lemmas 3.2 and 3.4, the graphs $K_{m, 4}$ and $K_{m, m}$ have a $\left\{p C_{4}, q S_{4}\right\}$-decomposition. Hence, by the remark, the graph $K_{m, n}$ has the desired decomposition.

Lemma 3.7. If $m, n \in 2 \mathbb{Z}_{+}$with $n \geq m \geq 12 ; m \equiv$ $0(\bmod 4)$ and $n \equiv 2(\bmod 4)$, then there exists a $\left\{p C_{4}\right.$, $\left.q S_{4}\right\}$-decomposition of $K_{m, n}$, where $q \neq 1$.

Proof. Let $\quad m=4 x$ and $n=4 y+2$, where $\quad x, y \in$ \mathbb{Z}_{+}and $y \geq x \geq 3$. Hence $K_{m, n}=K_{4 x, 4 y+2}$. We can write, $K_{4 x, 4 y+2}=K_{4 x, 4(y-1)} \oplus K_{4 x, 4+2}$. Since the graph $K_{4 x, 4(y-1)}$ can be viewed as $(y-1)$ copies of $K_{4 x, 4}$. Note that $K_{4 x, 6} \cong K_{6,4 x}$. By Lemma 3.2, both the graphs $K_{4 x, 4}$ and $K_{4 x, 6}$ have a $\left\{p C_{4}, q S_{4}\right\}$-decomposition. Hence, by the remark, the graph $K_{m, n}$ has the desired decomposition.

Lemma 3.8. If $m, n \in 2 \mathbb{Z}_{+}$with $n \geq m \geq 10 ; \quad m \equiv 2(\bmod$ 4) and $n \equiv 0(\bmod 4)$, then there exists a $\left\{p C_{4}, q S_{4}\right\}$ decomposition of $K_{m, n}$, where $q \neq 1$.

Proof. By the similar argument as in Lemma 3.7, we get a required decomposition.
Lemma 3.9. If $m, n \in 2 \mathbb{Z}_{+}$with $n \geq m \geq 10 ; m, n \equiv$ $2(\bmod 4)$, then there exists a $\left\{p C_{4}, q S_{4}\right\}$-decomposition of $K_{m, n}$, where $q \neq 1$.

Proof. We can write,

$$
K_{m, n}=K_{m, m} \oplus\left(\frac{n-m}{4}\right) K_{m, 4}
$$

Note that $K_{m, 4} \cong K_{4, m}$. By Lemma 3.2 and 3.5 , the graphs $K_{m, 4}$ and $K_{m, m}$ have a $\left\{p C_{4}, q S_{4}\right\}$-decomposition. Hence, by the remark, the graph $K_{m, n}$ has the desired decomposition.

Lemma 3.10. If $m \in\{3,5,7\}$ and $n=4$, then there exists a $\left\{p C_{4}, q S_{4}\right\}$-decomposition of $K_{m, n}$.

Proof. We distinguish three cases.
Case 1. For $m=3$ and $n=4$. Let $V\left(K_{3,4}\right)=\left(X_{1}, X_{2}\right)$, where $X_{1}=\left\{x_{11}, x_{12}, x_{13}\right\}$ and $X_{2}=\left\{x_{21}, \cdots, x_{24}\right\}$. Then the required $\left\{p C_{4}, q S_{4}\right\}$-decompositions are as given below:

1. $p=0$ and $q=3$.

$$
\left(x_{11}, x_{12}, x_{13} ; x_{21}, x_{22}, x_{23}, x_{24}\right)
$$

2. $p=2$ and $q=1$.
$\left(x_{11}, x_{21}, x_{12}, x_{22}, x_{11}\right),\left(x_{11}, x_{23}, x_{12}, x_{24}, x_{11}\right)$ and $\left(x_{13} ; x_{21}, x_{22}\right.$, $\left.x_{23}, x_{24}\right)$.

Case 2. For $m=5$ and $n=4$. We can write, $K_{5,4}=$ $K_{4,4} \oplus K_{1,4}$. Note that $K_{5,4} \cong K_{4,5}$. By Lemma 3.1, the graph $K_{4,4}$ has a $\left\{p C_{4}, q S_{4}\right\}$-decomposition and trivially the graph $K_{1,4}$ is S_{4}. Hence, the graph $K_{5,4}$ has the desired decomposition.
Case 3. For $m=7$ and $n=4$. We can write, $K_{7,4}=$ $K_{6,4} \oplus K_{1,4}$. By Lemma 3.1 the graph $K_{6,4}$ has a $\left\{p C_{4}, q S_{4}\right\}$-decomposition and trivially the graph $K_{1,4}$ is S_{4}. Hence, the graph $K_{7,4}$ has the desired decomposition.

Lemma 3.11. If $m=3$ and $n \in 2 \mathbb{Z}_{+}$with $n \equiv 0(\bmod$ $4) \geq 8$, then there exists a $\left\{p C_{4}, q S_{4}\right\}$-decomposition of $K_{m, n}$, where $q \geq \frac{n}{4}$.

Proof. We distinguish two cases.
Case 1. For $m=3$ and $n=8$, let $V\left(K_{3,8}\right)=V\left(X_{1}\right.$, X_{2}), where $X_{1}=\left\{x_{11}, x_{12}, x_{13}\right\}, X_{2}=\left\{x_{21}, \cdots, x_{28}\right\}$ and $E\left(K_{3,8}\right)=\left\{x_{1 i} x_{2 j} \mid i=1,2,3\right.$ and $\left.j=1, \cdots, 8\right\}$. Then the required $\left\{p C_{4}, q S_{4}\right\}$-decompositions are as given below:

1. $p=4$ and $q=2$.

The $4 C_{4}$'s $\left(x_{11}, x_{21}, x_{12}, x_{22}, x_{11}\right),\left(x_{11}, x_{23}, x_{12}, x_{24}, x_{11}\right)$, $\left(x_{11}, x_{25}, x_{12}, x_{26}, x_{11}\right),\left(x_{11}, x_{27}, x_{12}, x_{28}, x_{11}\right)$ and the $2 S_{4}$'s $\left(x_{13} ; x_{21}, x_{22}, x_{23}, x_{24}\right), \quad\left(x_{13} ; x_{25}, x_{26}, x_{27}, x_{28}\right)$ gives the required decomposition.
2. $p=3$ and $q=3$.

The $3 C_{4}$'s $\left(x_{11}, x_{21}, x_{23}, x_{22}, x_{11}\right),\left(x_{11}, x_{24}, x_{13}, x_{25}, x_{11}\right)$, $\left(x_{12}, x_{26}, x_{13}, x_{28}, x_{12}\right)$ and the $3 S_{4}$'s $\left(x_{11} ; x_{22}, x_{26}\right.$, $\left.x_{27}, x_{28}\right), \quad\left(x_{12} ; x_{22}, x_{24}, x_{25}, x_{27}\right), \quad\left(x_{13} ; x_{21}, x_{22}, x_{23}, x_{27}\right)$ gives the required decomposition.
3. $p=2$ and $q=4$.

The 2C ' 's $\left(x_{11}, x_{21}, x_{12}, x_{22}, x_{11}\right),\left(x_{11}, x_{23}, x_{12}, x_{24}, x_{11}\right)$ and the $4 S_{4}$'s $\left(x_{13} ; x_{21}, x_{22}, x_{23}, x_{24}\right),\left(x_{11}, x_{12}, x_{13} ; x_{25}, x_{26}, x_{27}, x_{28}\right)$ gives the required decomposition.
4. $p=0$ and $q=6$.

The $6 S_{4}$'s $\left(x_{11}, x_{12}, x_{13} ; x_{21}, x_{22}, x_{23}, x_{24}\right),\left(x_{11}, x_{12}, x_{13} ; x_{25}, x_{26}\right.$, x_{27}, x_{28}).

Case 2. For $m=3, n>8$ and $q \geq \frac{n}{4}$. We can write,

$$
K_{3, n}=K_{3,8} \oplus\left(\frac{n-8}{4}\right) K_{3,4}
$$

By Lemma 3.10 and the Case 1 above, the graphs $K_{3,4}$ and $K_{3,8}$ have a $\left\{p C_{4}, q S_{4}\right\}$-decomposition. Hence, by the remark, the graph $K_{3, n}$ has the desired decomposition.

Lemma 3.12. Let m be an odd integer and $n \in 2 \mathbb{Z}_{+}$with $2<m<n$ and $n \equiv 0(\bmod 4) \geq 4$. Then there exists a $\left\{p C_{4}, q S_{4}\right\}$-decomposition of $K_{m, n}$, where $q \geq \frac{n}{4}$.

Proof. Let $m=4 x+s$ and $n=4 y$, where $x, y \in \mathbb{Z}_{+}$with $y \geq x \geq 1$ and $s=1$, 3. We can write, $K_{m, n}=K_{m-1, n} \oplus K_{1, n}$, we have $K_{4 x+s, 4 y}=K_{4 x+s-1,4 y} \oplus K_{1,4 y}$. Since $K_{4 x+s-1,4 y}$ can
be viewed as x copies of $K_{4+s-1,4 y}$. Then the graph $K_{4+s-1,4 y}$ has a $\left\{p C_{4}, q S_{4}\right\}$-decomposition, by Lemma 3.2 and trivially the graph $K_{1,4 y}$ has an S_{4}-decomposition. Hence, the graph $K_{4 x+s, 4 y}$ has the desired decomposition.

Lemma 3.13. Let n be an odd integer and $m \equiv 0$ $(\bmod 4), n>m \geq 4$. Then there exists a $\left\{p C_{4}, q S_{4}\right\}$-decomposition of $K_{m, n}$, where $q \geq \frac{m}{4}$.

Proof. By the similar argument as in Lemma 3.12, we get a required decomposition.

4. Conclusion

As a consequence of Lemmas 2.1-2.4 and 3.1-3.13, our main result immediately follows.
Theorem 4.1. Let p and q be nonnegative integers, and let m and n be positive integers such that $m \leq n$. Then there exists a $\left\{p C_{4}, q S_{4}\right\}$-decomposition of $K_{m, n}$ if and only if one of the following holds:

1. q is even, when $m=2$ and even $n \geq 2$;
2. $p, q \neq 1$, when $m=4$ and even $n \geq 4$;
3. $q \neq 1$ when even $m, n \geq 6$;
4. $q \geq \frac{n}{4}$ (resp., $q \geq \frac{m}{4}$), when m (resp., n) is an odd integer and $n \equiv 0(\bmod 4)($ resp., $m \equiv 0(\bmod 4)$.

Acknowledgments

The authors thank the University Grant Commission, Government of India, New Delhi for its support through the Grant No.F.510/7/DRS-I/ 2016(SAP-I). Also would like to thank Dr. A. Shanmuga Vadivu (NBHM-PDF) whose contribution was helpful in developing ideas for this paper.

Disclosure statement

The following authors have affiliations with organizations with direct or indirect partial financial support in the subject matter discussed in the manuscript: M. Ilayaraja, Periyar University, Salem, Tamil Nadu, India.

References

[1] Abueida, A. A, Daven, M. (2003). Multidesigns for graph-pairs of order 4 and 5. Graphs Combin 19(4):433-447.
[2] Abueida, A. A, O'Neil, T. (2007). Multidecomposition of λK_{m} into small cycles and claws. Bull. Inst. Combin. Appl. 49:32-40.
[3] Alspach, B, Gavlas, H. (2001). Cycle decompositions of Kn and $K_{n}-I$. J. Combin. Theory Ser. B 81(1):77-99.
[4] Bondy, J. A, Murty, U. R. S. (1976). Graph Theory with Applications. New York: The Macmillan Press Ltd.,
[5] Jeevadoss, S, Muthusamy, A. (2014). Decomposition of complete bipartite graphs into paths and cycles. Discrete Math. 331: 98-108.
[6] Lee, H. C. (2015). Decomposition of the complete bipartite multigraph into cycles and stars. Discrete Math. 338(8): 1362-1369.
[7] Lee, H.-C, Chu, Y.-P. (2013). Multidecompositions of complete bipartite graphs into cycles and stars. Ars Combin. 2013:1-364.
[8] Lee, H. C, Lin, J.-J. (2013). Decomposition of the complete bipartite graph with a 1 -factor removed into cycles and stars. Discret Math. 313(20):2354-2358.
[9] Priyadharsini, H. M, Muthusamy, A. (2012). ($\left.G_{m}, H_{m}\right)$-multidecomposition of $K_{m, m}(\lambda)$. Bull. Inst. Combin. Appl. 66: 42-48.
[10] Shyu, T.-W. (2013). Decomposition of complete bipartite graphs into paths and stars with same number of edges. Discret. Math. 313(7):865-871.
[11] Sotteau, D. (1981). Decomposition of $K_{m, n}\left(K_{m, n}^{*}\right)$ into cycles (circuits) of length $2 k$. J. Combin. Theory Ser. B 30(1):75-81.
[12] Sajna, M. (2002). Cycle decompositions III; complete graphs and fixed length cycles. J. Combin. Des. 10:27-78.
[13] Ushio, K., Tazawa, S, Yamamoto, S. (1978). On claw-decomposition of complete multipartite graphs. Hiroshima Math. J. 8(1):207-210.
[14] Yamamoto, S., Ikeda, H., Shige-Eda, S., Ushio, K, Hamada, N. (1975). On claw decomposition of complete graphs and complete bipartite graphs. Hiroshima Math. J. 5(1):33-42.

