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ABSTRACT

The length of a shortest path between two vertices u and v in a simple and connected graph G,
denoted by d(u, v), is called the distance of u and v. An inclusive vertex irregular d-distance label-
ing is a labeling defined as 1:V(G) — {1,....k} such that the vertex weight, that is wt(v) =

A(V) + 2 (ur<di,v)<dy A(u), are all distinct. The minimal value of the largest label used over all
such labeling of graph G, denoted by disg(G), is defined as inclusive d-distance irregularity
strength of G. Others studies have concluded the lower bound value of dis?(G) and the value of
disd(L,). In this paper, we generalize the lower bound value of dis3(G) for d > 2. We used the
lower bound value of dis(G) and the previous result of disJ(L,) to investigate the value of
disy(IL,). As a result, we found the exact values of dis9(L,) for the cases n =0,3,4,5,8 (mod9),
n=7, and the value of the upper bound of disJ(IL,) for other n. We also found the relation of the
value of dis)(L,) and the value of dis3;(P2,). Further investigation on path brought us to con-
clude the exact value of dis3(P,), dis3(P,) and dis3(P,) for some n.

MATHEMATICS SUBJECT
CLASSIFICATION
05C78

1. Introduction

Consider a simple and connected graph G with V(G) as a
vertex set of G and E(G) as an edge set of G. A distance
between vertex u and vertex v, with u,v € V(G), is defined
as the length of the shortest path between them and denoted
by d(u, v). The set of all vertices u with d(u,v) =1 is called
the neighbor of vertex v and denoted by N(v) [4]. We use
the notation N;(v) to represent the set of all vertices u with
d(u,v) < d and Ny[v] to represent Ny(v) U {v}. A degree of
v € G is the number of adjacent vertices of v, or simply
denoted by |N(v)|. The smallest degree of G is denoted by
0(G), while the largest degree is denoted by A(G).

Motivated by distance labeling that is introduced by
Miller et al. [5] and irregular assignment by Chartrand et al.
[3], Slamin [6] introduced a new variation of vertex labeling,
that is called distance irregular labeling. It is a vertex label-
ing f : V(G) — {1, ...,k}, such that the sum of adjacent ver-
tex labels at each vertex are distinct. In this labeling, f does
not need to be injective. The weight of vertex v, wt(v), in
this labeling is generalized to the sum of all labels of
vertices u which d(u,v) < d. Moreover, the labeling is gen-
eralized to non-inclusive and inclusive vertex irregular d-
distance labeling by Bong et al. [2]. In the inclusive vertex
labeling, the label of vertex v is included when computing
wt(v), while in the non-inclusive, it is excluded. The def-
inition of the inclusive vertex irregular d-distance labeling
is given below.

Definition 1.1 [2]. An inclusive vertex irregular d-distance
labeling 4 is an irregular labeling of vertices in a graph G
where the weight of a vertex v € V(G) is the sum of the
label of v and all labels up to the distance d from v, that is
wt(v) = 2(v) + 3" (u1<d(u vy<ay A(#). The largest label used
in this labeling is called the inclusive d-distance irregularity
strength of G and denoted by dis}(G).

If such a labeling exists for any graph G, then the value
of dis)(G) can be determined. Meanwhile, if it does not
exist, the value of dis}(G) is defined as co. Theorem 1.1
gives a sufficient and necessary condition for disj(G) < oo,
while Lemma 1.1 gives a lower bound value of dis}(G) for
any graph G.

Theorem 1.1 [1]. For any graph G, dis)(G) = oo if and
only if there exist two distinct vertices u,v € V(G) such
that N[u] = Nv].

Lemma 1.1 [2]. Let G be a graph with the number of vertices
|[V(G)|, the smallest degree 6(G), and the largest degree

A(G). Then dis’(G) > [%]

We derived our results in this paper based on Theorem 1.1,
Lemma 1.1 and the previous study on triangular ladder graph
L, by Utami et al. [7]. Illustration of the graph L, is shown in
Figure 1. Triangular ladder graph is obtained from ladder
graph with some edges addition, those are v;v;;; for i even
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Figure 1. lllustration of triangular ladder graph L,.

and 2 <i<2n—2. The exact value of dis(l)(}Ln) is already
found for some cases, which is stated in Theorem 1.2.

Theorem 1.2 [7]. Let L, be triangular ladder graph with
order 2n, for n > 3, then

2n+2
dis?(L,) = [ 5 ] n#4 (mod 5);
3, n=4.

Ifn=4 (mod 5),n > 4, then

2n+2 2n+2

< dis)(LL,,) < + 1.
We proved Theorem 1.2 by using the following idea of
labeling with d=1 for the graph L,.

o Let the largest label used is k. Label vertex v, and all the
vertices in N(v,), those are v,_,v,_1,Vy+1 and v,,1,, with
k. Thus, vertex v,, has the largest weight, which is 5k.

e Label five vertices before v,_,, those are v; for n — 7 <
i<n-—3, with kK - 2, and the next five vertices before
them, those are v; for n — 12 <i<n—8, with k - 4,
and so on, so that the weights of vertices before v, form
a decreasing sequence of even numbers, those
are 5k — 2,5k — 4,5k — 6, ..., 6.

e Label one vertex after v, with k — 1 and four vertices after
it, those are v; for n +4 < i <n+ 7, with k - 2, and the
next one and four vertices after it, those are v, g and v; for
n+9<i<n+ 12, with k - 3 and k - 4, and so on, so that
the weights of vertices after v, form a decreasing sequence of
odd numbers, those are 5k — 1,5k — 3,5k — 5, ..., 5.

We modified this labeling idea to form the labeling with
d=2 for graph IL,, with n = 5 (mod 9). The illustration of the
modified labeling is shown in Figure 2. As a result, we determine
the exact value of disJ(LL,) with n =5 (mod 9). And then, we
modified the obtained labeling to determine dis)(IL,) for others
values of n (mod 9). Moreover, we investigate the value of
dis%(P,) with d > 1 using the result on graph L,.

2. Results

First, we generalized the lower bound value of dis)(G) which
is stated in Lemma 1.1 for d > 1. Let Ny(v) denotes a set of
vertices where their distance from vertex v are less than or
equal to d. Based on Definition 1.1, it is obvious that the min-
imum possible value of wt(v) is 1+ min|Ny(v)|. Thus, the
largest possible value of wt(v) is at least |V(G)| + min|Ny(v)|.

Therefore, the largest label is at least [W—‘ . If the

[V(G)|+min|Na(v)|
max|Ng(v)[+1

vertex v with max|Ny(v)| will be less than |V(G)|+
min|Ny(v)|. In other words, min|Ny(v)|+1 < wt(v) <
|V(G)| + min|N4(v)|. However, there are |V(G)| vertices in
graph G, so it is impossible to have all the vertex weights dis-

|V(G) -min|Ny (v)|
max] N ()] + 1

label used is less than [

—‘, then the weight of

tinct. Thus, the label cannot be less than [

This result is stated in Lemma 2.1.

Lemma 2.1. Let G be a graph with |V(G)| vertices, 4(G) =
min|Ny(v)| and Ai(G) = max|Ny(v)|, then dis)(G) >

[ [V(G)|+84(G) W
Ad(G)+1 :

Lemma 2.2 states the sufficient condition for dis)(G) <
00. We conclude this result based on Theorem 1.1 and
Definition 1.1.

Lemma 2.2. For a graph G, if there exist two distinct vertices
u,v € V(G) such that Na[u] = Na[v], then dis)(G) = o0.

We used these results to find the value of dis)(G) for tri-
angular ladder graph and path as follows.

2.1. Triangular ladder graph

Let L, with n > 2 be a triangular ladder graph with 2n verti-
ces. We denote the vertices and edges of this graph as follows.

V(L,) ={vi:i=1,2,..,2n},
E(L,) = {vivisr, vivigz 1 i =1,2,..,2n — 2} U {v2_1van }.

Based on Lemma 2.2, it is easy to see that dis)(IL,) = oo for
n < 5. Meanwhile, for another value of #n, we proved the follow-
ing. Labeling illustration for the following results is shown in
Figure 2. Note that w; in the Figure is the notation for wt(v;).

Lemma 2.1.1. Let L, be a triangular ladder graph with n >
5and n=5 (mod 9). Then

disd(L,) = [2” + 4].

9
Proof. Using Lemma 2.1, we can obtain dis)(IL) >

[%-‘ = [2"9—“—‘ . Next, we show that the largest label

used in the labeling is equal to this lower bound.
First, let 4 be the labeling that is defined as follows.

2/9(i+ 8), i=1(mod9),1<i<n—4

M) = 2/92n—i)+1, i=1(mod 9),n+5<i<2n
Avio) — 1, i=2 (mod 9),n+6<i<2n—8
Aviz1)s otherwise.

Based on this definition of A, the largest label used is
2/9(i+8) with i=n—4, since n =5 (mod 9), then the
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Figure 2. lllustration of inclusive vertex irregular 2-distance labeling for the case n =5 (mod 9).

largest label used is equal to [ 24 ]. The weights of vertices
obtained for this graph can be formulated as follows.

wi(v) = {2i+8,

4n —2i +9,

1<i<n
n+1<i<2n.

Note for each i, wt(v;) are even for the first n vertices,
while for the last n vertices, wt(v;) are odd. For all i # j, it
is obvious that wt(v;) # wt(v;). We can conclude that the

weights are all distinct. Thus, disj(L,) = [ 221, O

From the labeling of graph L, with n =5 (mod 9), we
constructed the labeling for other value of n (mod 9). If we
delete v; and v, from the graph L,, we obtain a triangular
ladder graph G’ with

V(G') = V(L) — {visvan}
={V:vi=vi e V(L,)}.

It is easy to see that the graph G’ is isomorphic with graph
L,—1, simply by defined an injective function V(G') —
V(L,—1) with v, +— v; where v/ € V(G') and v; € V(L,_,).
We can conclude that after the deletion of v, and v,, from
the graph L,, we obtain the graph L,_;.

Based on this observation, we construct labeling for graph L,,
with m £ 5 (mod 9). To construct those labeling, we did the
deletion and reduction processes as follows. Let LL,, be a triangu-
lar ladder graph with labeling defined as 4 : V(L) — {1,...,k}.

Deletion Process: Delete v, and v,, from the graph L, and
all the incident edges of these vertices. In consequence of
this deletion, the weight of vertices in Ny(v;), those are v;
with 2 <i<2d+4 1, will reduce by A(v;) and in Ny(v2,),
those are v; with 2n —2d <i<2n—1, will reduce by
A(van). As a result of this process, we obtain graph L, ;
where the label of vertex v; € V(IL,_1) equals to the label of
vertex vy € V(L,). It means the weight of vertex v; €
V(L,—1), with 2d+1<i<2(n—1)—2d, equals to the
weight of vertex v, € V(LL,).

Reduction Process A: Assume that A(v,,) > 1. Reduce
A(van) by 1, then wt(v;) for all v; € Ny[v,,] will reduce by 1.

Reduction Process B: Assume that A(v;) >1 for all i
Reduce each of A(v;) by 1, then every wt(v;) will reduce
by |Na(vi)| + 1.

We apply deletion process and reduction process (A or
B) to construct labeling for graph L, with n # 5 (mod 9).
As a result, we found the exact value of dis)(L,) for some
cases and upper bound for the rest.

Lemma 2.1.2. Let L,, be a triangular ladder graph with m >
5 and m =4 (mod 9). Then

dis) (L) = |

2m+4“
5 .

Proof. Lemma 2.1 gives dis)(L,,) > [2%]. Now, we will
construct the labeling for this graph and prove that the larg-
est label used is [2%]. Consider the labeling defined for
the graph L, with n =5 (mod 9).

Step 1. Apply deletion process to the graph L,. The graph
obtained is IL,,_; with the same labels and the same vertex
weights as in L,, except for wt(v;) where v; € Ny(v;) U
Ny(va). The new weights for those vertices are
wt(vy) = wt(vap—1) = 10, wt(vs) = wt(va,—2) = 12, wt(vy) =
wt(van—3) = 14 and wt(vs) = wt(vz,—4) = 16.

Step 2. Apply reduction process A to the graph obtained
from Step 1. The new weights for v; € Ny[vy, »] are
Wt(Vznfl) = 9, Wt(Vznfz) =11, Wt(V2n73) =13, Wt(V2n74) =
15 and wt(v,,-5) = 18.

From both steps, there are nine vertices that have
new weight. Those are wt(vy) = 10, wt(vs) = 12, wt(vs) =
14,Wt(‘l/5) = 16,Wt(1/2n,5) = 18,Wt(1/2n,4) = 15,Wt<V2n,3) =
13, wt(v24—2) = 11 and wt(vz,—1) = 9. Meanwhile, the rest of
vertices still have the same weight,

_fai+s,
w(vi) = {411 ~2i+9,

It is easy to see that all of the vertex weights are distinct.
Based on these processes, we can define an injective func-

tion V(L,—;) — V(L,) with v} — v;y;, where v\ € V(L,_,),

so that the labeling for the graph L, _; can be defined as a

function A" : V(LL,_) — {1, . (%]} with

i’(v;) _ {)v(VHl))

A(Van—1) — 1,

6 <i<m
n+1<i<2n—6.

1<i<2n—3;
i=2n-—2.

From this definition of the labeling A’, we obtain distinct
weights for all vertices in L,_;. The result for the first four
vertices are wt(v}) = 10, wt(v}y) = 12, wt(v}) = 14, wt(v,) =
16 and for the last five vertices are wt(v}, () =18,
wt(vy,_s) = 15, wt(vy,_4) = 13, wt(vy,_3) = 1L,
wt(vy,_,) = 9, while for the other vertices are

1 <i<n-—1:
wt(v’.){21+10’ 5<i<n-—1;

! dn—-2i+7, n<i<2n-—7.

The largest label used is the same as the largest label
used in the proof of Lemma 2.1.1, that is [ 25 ]. Since, for
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n=5 (mod 9), P”—;rﬂ = [W], we can conclude that
dis)(L,, ;) = (W]. Set n—1=m, then dis)(L,)=
[2254] for m =4 (mod 9). O

Proofs of our result in Lemmas 2.1.3 throughout 2.1.9 are
obtained in similar process as the proof in Lemma 2.1.2.
But, in order to obtain graph L,, with other m (mod 9),
we applied deletion process i times with 2 <i <8 to the
graph L, with n =5 (mod 9).

Lemma 2.1.3. Let L, be a triangular ladder graph with m >
5and m =3 (mod 9). Then

disd(L,) = [

2m+4“
5 .

Proof. To obtain labeling for the graph L,_,, we applied
deletion process twice and reduction process A. Let v, €

V(LL,_»), then labeling for the graph L, , is defined as A’
V(L) — {1, - {%]} with

A(Viza),

)L/ I — i+2

(V ) { )V(Vznfz) — 1,
The vertex weights obtained are wt(v)) = 10,wt(v}) =
12, wt(vy) = 14, wt(v}) = 18, wt(v},_¢) = 20, wt(v},_,) = 16,
wt(vh,_¢) = 13, wt(vy, ) = 11, wt(v,, ,) =9 and for the
rest vertices are

WWW%={m+1L

1<i<2n-25;
i=2n—4.

5<i<n—2

! 4n—2i+5 n—-1<i<2n-9.

Thus, dis)(L,_2) = (2“’7#] Set m = n — 2, then we have

dis) (L) = [22] for m =3 (mod 9). O

Lemma 2.1.4. Let L, be a triangular ladder graph with m >
5and m =0 (mod 9). Then

disd(LLyy) = [

2m+4“
5 .

Proof. We performed deletion process five times and reduc-
tion process B to obtain labeling for graph L, 5. Let v} €
V(L,_s), then labeling for the graph L,_s is defined as

Z V(L) — {1,..., {%W} with
2V = Avigs) — 1.

The weights of the vertices are wt(v}) =7, wt(v}) = 10,
Wi(v) = 13, wi(¥}) = 16, Wi(34, ;) = 15, we(v),_,,) = 12,

wt(vh,_1;) = 9 wt(vh,_1,) = 6, and for the other vertices are
, 2i 49, 5<i<n—S5;
wt(v;) = . )
dn —2i—10, n—4<i<2n-—14.
Therefore, dis) (L

:( 4]. If we set m=mn—>5,
then we obtain d1s2( m) = [—W form=0 (mod 9). 0O

Lemma 2.1.5. Let L, be a triangular ladder graph with m >
5 and m =8 (mod 9). Then

dis)(LL,,) =

[zmék4]

Proof. The labeling for graph L, ¢ is obtained by using
deletion process six times and reduction process B. Let v, €
V(L,—¢), then labeling for the graph L, ¢ is defined as

2 V(Lys) — {1,..., {%]} with
i/(V;) = i(vi+6) — 1.
The weights of the vertices are wt(v)) = 9,wt(+}) = 12,

wt(vs) = 15, wt(vy) = 18, wt(v, 5) = 17, Wt(v;, 1y) = 14,
wt(vh, 13) = 11, wt(v}, ;,) = 8, and for the other vertices

are
2i + 11,
wt(v)) = )

4an — 21 — 12,

5<i<n-—6;
n—5<i<2n— 16.

Hence, disg(IL,,,é) = We obtain disg (L) =
[ 22541 for m =0 (mod 9) by setting m = n — 6. -

I' 2(n—96)+4 " ]

Lemma 2.1.6. Let L,, be a triangular ladder graph with m >
5and m =2 (mod 9). Then

{Zm—kﬂ Sdisg(]Lm) < {2m+4

9

—‘—Fl.

Proof. With applying deletion process three times and
reduction process A, we obtain labeling for the graph L,_;.
Let v\ € V(L,_3), then labeling for the graph L, ; is

defined as /' : V(L,_3) — {1,..., {%W} with

A(Vigs)

YA, i+3)>

W) =

( l) {;L(Vzn_3) — 1,
The weights of the vertices are wt(v)) = 10,wt(v}) = 12,
wt(vy) = 16, wt(v)) = 20, wt(vh, o) = 22, wt(v}, o) = 18,
wt(vh, g) = 14, wt(v}, ) =11, wt(vay—¢) =9, and for the
rest vertices are

wt(v’.) _ 2i 4 14,
1 .
4n — 2i+ 3,

1<i<2n-7,
i=2n—6.

5<i<n—3;
n—2<i<2n—1l.

Since [#H] = {MW +1 for n=5 (mod 9), then
(A1 < QigY(IL, ) < [222H] 41, Set m=n—3,
so that we have [22:] <dis)(L,,) < [224] 41 for
m =2 (mod 9). O

Lemma 2.1.7. Let L, be a triangular ladder graph with m >
5and m =1 (mod 9). Then

{2m;+4w < (L) < {2m;+4} ey

Proof. We obtain labeling for the graph L,_, by applying
deletion process four times and reduction process A. Let

v, € V(LL,—4), then defined the labeling as ' : V(LL,_4

{1 [254] } with

) —



W2 Wy We
=14 =20 =25

Wg Wio Wi2

=16

W14
=10
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Figure 3. lllustration of inclusive vertex irregular 2-distance labeling for L.

/1(1/' 4)

)v/ Vl- — i+4)>

) {/1(1/2,14) -1
The weights of the vertices are wt(v]) = 10, wt(v}) = 14,
wt(vy) = 18, wt(vy) = 22, wt(v),_1,) = 24, wi(v),_y;) = 20,
wt(vy,_10) = 16, Wt(v}, o) = 12, wt(v2,—g) = 9, and for the
rest vertices are

2i + 16,
4n — 2i + 1,

1<i<2n—09;
i=2n-—S8.

5<i<n-— 4

N
wt(vj) = n—3<i<2n—13.

1

Similar as in the proof of Lemma 2.1.6, we can have
[2:4] < dis)(L,y) < [224] +1 for m=1 (mod 9) by
setting m = n — 4. O

Lemma 2.1.8. Let L, be a triangular ladder graph with m >
5and m =7 (mod 9). Then

2m + 4 2m 4
[ m9+ w < disd(Ly,) < [ m9+ ]+1.

Proof. The labeling for the graph L,_; is obtained by per-
forming deletion process seven times and reduction process

B. Let v;€ V(L,_7), then define the labeling as A':

V(ILy ) = {1 [254]} with

l/(V;) = i(V,’Jﬂ) — 1.
The weights of the vertices are wt(v)) = 11, wt(v}) =
14, wt(vy) = 17, wt(v}) = 20, wt(v}, ;) = 19, wt(v},_14) =
16, wt(v,_15) = 13, wt(v},_,,) = 10, and for the other ver-
tices are

N [ 20413,
wi(v) = {411 —2i — 14,

5<i<n-—-17
n—6<i<2n-—18.

Similar as in the proof of Lemma 2.1.6, we can conclude
[254] < dis)(Lyy) < [224] +1 for m=7 (mod 9) by
setting m=n —7. 0

Note that for graph L, with m=7, it is impossible to
have [2%:] =2 as the largest label. Labeling illustration
for this graph is shown in Figure 3.

If we used 2 as the largest label for L;, then there will be
at least two vertices with the same weight. Therefore, for the
case m =7, we concluded dis)(IL;) = [2mid] 41 =3,

Lemma 2.1.9. Let L, be a triangular ladder graph with m >
5and m =6 (mod 9). Then
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[Zm; 4} < disg(ﬂ_,m) < Pm;ﬂ .y

Proof. We applied deletion process eight times and followed
by reduction process B to obtain labeling for the graph L, _g
which can be defined as follows. Let v} € V(L,_7), then

defined 7/ V(ILys) = {1,... [25:4] } with

;L/(V;) = ;L(Vi+g) — 1.
The weights of the vertices are wt(v)) = 13, wt(v}) =
16, wt(vy) = 19, wt(v}) = 22, wt(v}, 1) = 21, wt(v}, _13) =
18, wt(v},,_1,) = 15, wt(v},_,c) = 12, and for the rest verti-
ces are

N [ 2i4 15,
wt(v) = {411 —2i — 16,

5<i<n—8§;
n—7<i<2n-—20.

Similar as in the proof of Lemma 2.1.6, if we set m =n — 8,
[2m:4] < dis)(L,,) < [225] +1  for
m=6 (mod 9). |

then we obtain

Consider Lemmas 2.1.1 throughout 2.1.9. From these
results, we conclude the value of dis)(L,,) for m > 5 and
state it in Theorem 2.1.1 as follows.

Theorem 2.1.1. Let L, be a triangular ladder graph with
n > 5. Then

3, n=717;

. 0 .
disy (L) = { [2244] 5 =0,3,4,538 (mod 9);

while for n =1,2,6,7 (mod 9) and n # 7,

2+ 4 2+ 4
["Jr —‘gdisg(]Ln)g[’H— W+1.

9 9

2.2, Path

Let P, with n > 2 be a path with n vertices. We denote the
vertices and edges of this graph as follows

V(P,) ={u;:i=1,2,..,n},
E(P,) = {uittipr 1 i=1,2,..,n — 1}

Consider our observation result on triangular ladder graph
and path which is stated in Observation 2.2.1.

Observation 2.2.1. Given graph L, and P, with
|[V(L,)| = |V(P2n)| =2n. Let v; € V(L,) and u; € V(Pyy),
then we can define a bijective function V(L,) — V(P,,) with
v; = u; such that Ng(v;) = Nog(u;).

Based on this observation, we obtain our first result on
path as follows.

Theorem 2.2.1. Let L, has an inclusive vertex irregular d-dis-
tance labeling with dis)(IL) = k. Then Py, has an inclusive ver-
tex irregular 2d-distance labeling with dis);(Ps,) = disy(L,,).

Proof. Let A:V(L,) — {1,...k} be an inclusive vertex
irregular d-distance labeling for the graph L,. Then, we can
define a labeling with distance equals to 2d for P,, as  with
P(u;) = A(v;), where u; € V(Py,) and v; € V(LL,). Weight
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for every vertex u; can be obtained as follows.

wi(u;) = B(ui) + Z Buj) = A(vi) + Z Mvy)

;€N (u;) V;EN4(vi)
= wt(v;).

It is obvious that all wt(u;) are distinct. Thus, f is an inclu-
sive vertex irregular 2d-distance labeling for path P,, with
the largest used label k. So that, disgd(PZn) < k.

Suppose B : V(P,,) — {1,...,K} be an inclusive vertex
irregular 2d-distance labeling for graph P,, with K<k.
Then, we can obtain an inclusive vertex irregular d-distance
labeling for L,, that is A' with A'(v;) = B'(u;). The largest
label used is K< k. It is contradiction with the fact that
dis}(IL,,) = k. So, we have dis),(P,,) > k.

Since disgd(PZn) < k and disgd(Pz,l) > k, we can conclude
that dis),(P,,) = k. Therefore, dis),(P,,) = disj(L,). |

Combining Theorems 1.2, 2.1.1, and 2.2.1, we obtain
disJ(P,) and dis}(P,) for some 7 as follows.

Corollary 2.2.1. Let P, be a path with n>6n=
0,2,4,6 (mod 10) and n=38. Then,

3 n==_8;
: .0 _ > )
disy (Pn) = { otherwise.

Corollary 2.2.2. Let P, be a path with n>10,n=
0,6,8,10,16 (mod 18) and n=14. Then,

3 n = 14;
.0 . > ’
dis, (P) = { otherwise.

Our next result is about the value of dis)(P,) for some
odd numbers n. We derived this result by constructing
labeling with d=2 for P, in similar process as the construc-
tion of labeling with d=2 for L, with n#5 (mod 9).
However, we only apply deletion process which is stated as
follows in order to obtain the labeling for P,. Let f:
V(P,) — {1,...,k} be an inclusive vertex irregular d-distance
labeling for P,,.

Deletion Process A: Delete vertex u; and its incident edge
from P,. This process will reduce weight of vertices in
Ny(u;), those are u; with 2 <i<1+4d, by f(u;). As a
result, we obtain the graph P,_; where the label of vertex
u; € V(P,—1) equals to the label of vertex u;1; € V(P,). It
means the weight of vertex u; € P,_;, with 1+d<i<
n — 1, equals to the weight of vertex u; 1, € V(P,).

Deletion Process B: Delete vertex u, and its incident edge
from P,. In consequence of this deletion, the weight of verti-
ces in Ny(u,), those are u; with n —d <i<n—1, will be
reduced by f(u,). From this process, we obtain the graph
P,_; where the label of u; € V(P,_;) equals to the label of
vertex u; € V(P,). So that the weight of vertex u; € P,_,
with 1 <i<(n—1)—d, equals to the weight of ver-
tex u; € V(P,).

With applying the deletion process A or B to the graph
P,, we obtained labeling for the graph P,_;. Since labeling

with distance 2d of the graph P, can be obtained from the
labeling with distance d of graph L, with n = 2m, labeling
for the graph L, ; also can be obtained from L,. We
derived our result on dis)(P,) for some odd numbers
based on Theorems 1.2 and 2.2.1. In the proof of Lemmas
2.2.1-2.2.3, the proof of Theorem 1.2 is used for defining
vertex label of graph L,, and the weight of these vertices.
The labels of vertices of P,,, are constructed using the proof
of Theorem 2.2.1.

Lemma 2.2.1. Let P, be
n=1 (mod 10). Then

a path with n>5 and

n—+2
= |
Proof. The graph L, with m =1 (mod 5) has inclusive ver-
tex irregular 1-distance labeling as follows. Let v; € V(L,,),

the labeling for L, can be defined as 1:V(L,)—

{1, . @1} 2Vam) = A(Vam_1) = A(Vam_2) =
2(Vam—a) = 1, A(vam—3) = A(vam—s) = 2, while for the rest
vertices are

dis)(P,)

with

(2i +13)/5, 1<i<m-—1,i=1 (mod 5);
") 22m—i—1)/5, m<i<2m—6,i=1 (mod 5);
Avi) =
l Avir) — 1, m<i<2m—6,i=2 (mod 5);
Avicy), otherwise;
and the weights of vertices are wt(v;)=9,wt(v,)=

12,Wt(‘l/2m_7) = 13,Wt(1/2m_6) = 11,Wt(‘l/2m_5) = 10,Wt(‘l/2m_4) =
8,Wt(V2m73) = 7,Wt(‘l/2m,2) = 6,Wt(‘l/2m,1) = S,Wt('VZm) =3, and
for the rest vertices are

wi(vi) = 2i+9, 3<i<m-—3;
YU l4m—2i—2, m—2<i<2m—8.

So, the inclusive vertex irregular 2-distance labeling for
the graph P, is defined as f: V(Pyn) — {1,..., (%W}
with f(u;) = A(v;) such that wt(u;) = wt(v;), where u; €
V(Pam).

With applying deletion process B to the graph P,,, we
obtained labeling with d=2 for the graph P,,_; as follows.
Let u; € V(Pypu—1), the labeling for P,,_; can be defined as

B V(Pym1) — {1, (%1} with  f(u) = p(u) =
A(vi). Thus, the obtained weights are wt(u}) = wt(u;) =
wt(v;)) for 1<i<2m—3 and wt(u)=wt(u;)—1=
wt(v;) — 1 for i =2m — 1 and 2m — 2. It is easy to see that
all the weights are distinct.

The largest label used in this labeling is |22 ], while

5
the lower bound value which is obtained from Lemma 2.1

{ww Since m =1 (mod 5), then

[% W . Therefore, disg (Pom_1) = ( w W .

for Py, is
((ZMEIHZW _

By setting n=2m—1, we have dis)(P,) = [22] with
n=1 (mod 10). |
Lemma 2.2.2. Let P, be a path with n>5 and

n =5 (mod 10). Then



dis)(P,) = [”:2]

Proof. The inclusive vertex irregular 1-distance labeling for the
graph LL,, with m =3 (mod 5) is defined as follows. Let v; €

V(L,,), then the labelingis A : V(L,,,) — {1, o {@" } with

(2i +8)/5, 1<i<m+2,i=1 (mod 5);

Mg = 22m—1i)/54+1, m+3<i<2m,i=1 (mod 5);
Avii) — 1, m+3<i<2m,i=2 (mod 5);
Avie1), otherwise;

and the weights of vertices are

2i + 4,
wi(vi) = {4m —2i+5

1<i<m
m+1<i<2m.

Let u; € V(Pyy). Then, the inclusive vertex irregular 2-dis-
tance labeling for the graph P,, is defined as

B:V(Py,) — {1, . (%1} with B(u;) = A(v;) such that

wt(u,-) = Wt(V,').
To obtain the labeling with d=2 for graph P,,_;, we
performed deletion process A to the graph P,,. Let u €

V(Pym-1), the labeling for P, ; can be defined as f':
V(Pam_1) — {1, {@}} B(ul) = Bluir) =

A(viy1). The weights obtained are wt(u!) = wt(uy,) =
wt(viy1) for 3<i<2m—1 and wt(u) =wt(u;) —2=
wt(v;) —2 for i=1 and 2. It is easy to see that all the
weights are distinct. Similar with the proof of Lemma 2.2.1,

with

by setting n=2m — 1, we can conclude disj(P,) = [ 2]

with n =5 (mod 10). 0
Lemma 2.2.3. Let P, be a path with n>5 and
n=9 (mod 10). Then
2
dis(P,) = V: w

Proof. Let v; € V(LL,,) with m =0 (mod 5), then the inclu-
sive vertex irregular 1-distance labeling for the graph L,, is

defined as 4 : V(L,,) — {1,..., [2”’—5*2]} with

1, i=1,2;
(2i +9)/5, 1<i<m+2,i=3 (mod 5);
Jvi) =1 2(2m—i+3)/5 m+3<i<2m,i=3 (mod 5);
Avii) — 1, m+3<i<2m,i=4 (mod 5);
Avic1), otherwise;
and the weights of vertices are wt(v;)=>5wt(v;) =

8, wt(vam—1) = 7, wt(v2r,) = 4, and for the other vertices are

f2i+s,
w(v) = {4m—2i—|—6,

Hence, the inclusive vertex irregular 2-distance labeling for
the graph P, is defined as f: V(Py,) — {1 [2m+2"|}

3<i<m;
m+1<i<2m-—2.

5
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with  B(w) = A(v) such  that
where u; € V(Py,).
The labeling with d=2 for the graph P,,_; is obtained

by applying deletion process B to the graph P,,. Let u} €
V(Pym-1), the labeling for P, ; can be defined as f':

V(Po_1) — {1 (@}} with  f/() = Blu;) = A(v;).

Thus, the weights obtained are wt(u}) = wt(u;) = wt(v;) for

1<i<2m—3 and wt(u}) =wt(y;) —1=wt(v;) —1 for

i=2m—2 and 2m — 1. It is easy to see that all the weights

are distinct. Similar with the proof of Lemma 2.2.1, with set-
n+2

ting n=2m—1, we can obtain dis)(P,) = [%2] with

n=9 (mod 10). |

wt(u;) = wt(v;),

Immediately from Corollary 2.2.1 and Lemmas

2.2.1-2.2.3, we obtained our result on dis)(P,) as follows.

Theorem 2.2.2. Let P, be a path with n>5n=
0,1,2,4,5,6,9 (mod 10) and n=38. Then

3, n=23_;

.0 N
disy (Pn) = { V?L otherwise.

Our next result is the value of dis(P,) for some odd
numbers # that we derived from Theorems 2.1.1 and 2.2.1.
To conclude this result, we constructed labeling with d=4
in similar process with the process of our previous result on
Theorem 2.2.2. Yet in the proofs of the next result, we also
perform addition process (A or B) which is stated as follows,
aside from deletion process (A or B). Let f:V(P,) —
{1,...,k} be an inclusive vertex irregular d-distance labeling
for P,,.

Addition Process A: Add vertex u, with label 1 and edge
upu to the graph P,. Then wt(uy) = 1+ Z;jzl p(u;) and the
weight of vertices in Ny(up), those are u; with 1 <i<d,
will increase by 1. From this process, we obtain graph P,
where the label of vertex u; € V(P,;,) equals to the label of
vertex u; 1 € V(P,) U {uo}. It means the weight of vertex
u; € V(Ppi1), with d+2 <i<n+1, equals to the weight
of vertex u; 1 € V(P,) U {uo}.

Addition Process B: Add vertex u,,; with label 2 and edge
Uptyry to the graph P,. In consequence of this addition, the
weight of vertices in Nj(u,41), those are u; with (n+1) —
d <i<n, will increase by 2. Meanwhile, the weight of the
new vertex is wt(u,1) =2+ Z?:(nﬂ)fd P(u;). As a result,
we obtain graph P, where the label of vertex u; € V(Py41)
equals to the label of vertex u; € V(P,) U {uy11}. So that
the weight of vertex u; € V(P,y1), with 1 <i<n-—d,
equals to the weight of vertex u; € V(P,) U {u,11}.

Lemma 2.2.4. Let P, be
n=1,17 (mod 18). Then

ai(e,) = |

a path with n>9 and

n—+4
5 |
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Proof. Consider the labeling with d=2 for graph L,, with
m=0 (mod 9) (proof of Lemma 2.1.4). Let v; € V(L,,)
and A is the labeling for graph L,,. Then, labeling with
d=4 for graph P,,, can be defined as f(u;) = A(v;), where
u; € V(sz), such that wt(ui) = Wt(V,').

e Case l: n=1 (mod 18)

With applying addition process A to the graph P, we
obtained graph P,,.; and its labeling with d=4 as fol-
lows. Let u; € V(Pyu+1), then labeling for the graph
Pyni1 can be defined as /(1)) =1 and B'(4]) = B(ui—1)
for 2<i<2m+1. The obtained vertex weights
are wt(u)) =5, wt(uy) =8, wt(uy) =11, wt(u}) = 14,
wt(ut) = 17, wt(uam—2) = 15, wt(uy,, ;) = 12, wt(us),) =
9, wt(ut},,,,) = 6 and for the rest vertices are

N f2i+7,
(i) = {4m—2i+ 12,

6<i<m+ 1,
m+2<i<2m-—3.

It is obvious that all the weights are distinct. Lemma 2.1 gives
dis§ (Pyms1) > {(Z"H#] . Meanwhile, the largest label used
in this labeling is the same as the largest label for graph P,
which is [2%H]. Since {W#] =[] for m=
0 (mod 9), then dis}(Pyni1) = [W#]. Set n=
2m + 1, then disj(P,) = [ 2] withn =1 (mod 18).
e Case 2: n=17 (mod 18)

For this case, we applied deletion process B to the graph
Py, We obtained graph P,,_; and its labeling with
d=4 as follows. Let u} € V(Pyy_1), then labeling for
graph P,,_; can be defined as f'(u)) = B(u;). Thus,
the weights are wt(u)) =7, wt(uy) = 10, wt(u}) = 13,
Wt(uﬁl) = 16’Wt(u/2m—4) = 17’Wt(u’2m—3) = 14>Wt(u/2m—2) =
11, wt(u},,_,) = 8 and for the other vertices are

n_ ) 20409, 5<i<m;
Wt(ui)_{4m—2i—|—10, m+1<2m—5.

Similar as the Case 1, we can have disZ(PZm_l)
{%] . Finally set n=2m—1, then dis}(P,)
[254] for n=17 (mod 18).

|

Lemma 2.2.5. Let P, be a path with n>9 and
n=7 (mod 18). Then
4
dis)(P,) = P’; W

Proof. Let A is the labeling with d=2 for graph L, with
m =4 (mod 9) (proof of Lemma 2.1.2). Then, the labeling
with d=4 for P,, can be defined as f(u;) = A(v;), where
u; € V(Pyy) and v; € V(L,,), so that wt(u;) = wt(v;). With
performing deletion process A twice and addition process B
once to the graph P,,, we obtained graph P,,_; and its
labeling with d=4 as follows. Let u} € V(P,,,_1), then the
labeling for P,, ; can be defined as f'(uy,_1) =2 and
B'(u) = B(uir,) for 1<i<2m—2. Thus, the weights
are wt(u]) =10, wt(u)) =12, wt(u;) =16, wt(u}) = 20,

wt(uh,,_¢) =18, wt(u), <)=17, wt(u),,_,)=15, wt(u, ;)=
13, wt(u),, ,)=11,wt(u},, )=9 and for the rest vertices are

, 2i+14, 5<i<m—2;
Wt(“i): . .
Adm—2i+7, m—1<i<2m-—7.

With similar argument as in proof of Lemma 2.2.4, we con-
clude dis)(Pym_1) = (%W So that, we can obtain
dis}(P,) = [25%] for n=7 (mod 18) simply by setting
n=2m-—1. 0

Lemma 2.2.6. Let P, be
n=9 (mod 18). Then

dis)(P,) = [" ;r 4}.

a path with n>9 and

Proof. Consider the labeling with d=2 for graph L, with
m=5 (mod 9) (proof of Lemma 2.1.1). Let v; € V(L,,)
and A is the labeling for graph L,,. Then, the labeling with
d=4 for graph P,,, can be defined as f(u;) = A(v;), where
u; € V(Pyy). So that, wt(u;) = wt(v;). The graph P, and
its labeling with d=4 are obtained by performing deletion
process A to the graph P,. Let u} € V(P,,_;), then label-
ing for Py,_; can be defined as (1)) = B(u;;1). Thus, the
weights are wt(u)) = 10, wt(u)) = 12, wt(uy) = 14, wt(u})) =
16 and for the other vertices are

n o [2i+10,
(i) = {4m—2i+7,

5<i<m-—1;
m<i<2m-—1.

We can conclude that dis§(Py,_1) = [ww with similar
argument as in Lemma 2.2.4. Set n = 2m — 1, then we have

disj(P,) = [25*] with n =9 (mod 18). O
Lemma 22.7. Let P, be a path with n>9 and
n =15 (mod 18). Then
4
dis)(P,) = [";L w

Proof. Let v € V(L;) and 4 is the labeling with d=2 for
graph L, with m =8 (mod 9) (proof of Lemma 2.1.5).
Then, the labeling with d=4 for P,, can be defined as
p(u;) = A(v;), where u; € V(P,,), so that wt(u;) = wt(v;).
With applying deletion process B to the graph P,,, we
obtain graph P,,_; and its labeling with d=4 as follows.
Let u} € V(Pyu_1), then the labeling for P, ; can be
defined as B'(u}) = B(u;). Thus, the weights are wt(u)|) =
9, wt(uh) = 12, wt(u}) = 15, wt(u}) =18, wt(u),, ,) =19,
wt(u),, 5) = 16, wt(u,, ,) = 13, wt(u},, ;) = 10 and for the
other vertices are

' <i<m:
m(uf):{21+11’ 5<i<m;

! dm —2i+12, m+1<i<2m—>5.

So that, with similar argument as in the proof of Lemma 2.2.4, we

conclude dis}(Py1) = (W] By setting n =2m — 1,

then we have dis}(P,) = [%*] forn = 15 (mod 18). O



Immediately from Corollary 2.2.2 and Lemmas 2.2.4 through-
out 2.2.7, we conclude our result on dis}(P,) as follows.

Theorem 2.2.3. Let P, be a path with n>9,n=
0,1,6,7,8,9,10,15,16,17 (mod 18) and n=14. Then

3, n=14

. 0 _
dis, (Pn) = { [#54],  otherwise.

Our further investigation brought us to the result of
disj(P,). Different with our previous results on path, this
result cannot be obtained by using the relation between the
labeling from graph L,, and P,,. Yet, the labeling idea for
the graph L,, is used in order to construct the labeling with
d=3 for the graph P, with n=1 (mod 7). Based on
Lemma 2.1, it is easy to see that disj(P,) = oo for n<7. So,
the value of dis)(P,) is obtained for n > 7.

Lemma 22.8. Let P, be a path with n>7 and
n=1 (mod 7). Then

. n+3

disy(P,) = [ ; —‘

Proof. Proof of this result is divided into two cases, n =
8 and 1 (mod 14). For each case, we defined a labeling
with d=3. Then, we show that the weights obtained is dis-
tinct for all vertices and we show that the largest label used
is equal with the lower bound value which is given by
Lemma 2.1, that is disg > (%1

e Case 1: n =8 (mod 14)
Let u; € V(P,). Defined the labeling for P, as f:

V(P) = {1 [22] ] with

2/7(i+6), i=1 (mod 7),1<i<n/2+3;

J2/7(n—i)+1, i=1 (mod 7),n/2+4<i<n

i) = Bi(uis1) =1,  i=2 (mod 7),n/2+4<i<n
Blui-r), otherwise.

The largest label used is f, (us-3) = 3 (5 + 3) = "¢ which
is equals to [ 2. With this labeling, then we obtain the
weights of the vertices as follows.

2i + 6,

wt(u;) = { 2(n—i)+7,

It is easy to see that all the weights are distinct. Thus, we
can conclude that disj(P,) = [22] for n =1 (mod 7)
with n even.

e Case2: n=1 (mod 14)

For this case, defined the labeling for P, as f3, : V(P,) —

{1, o [”T“]} with

1<i<n/2
n/2+1<i<n.

1, 1<i<4
1/7(2i+11), i=5 (mod 7),5<i< (n+1)/2+3;

B(ui) =1 2/7(n—i+4), i=5 (mod 7),(n+1)/2+4<i<n
Bolui)—1, i=6 (mod 7),(n+1)/24+4<i<mn;
By(uiy), otherwise.
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The weights of vertices obtained are wt(u;) = 4, wt(u,
7, wt(uz) = 10, wt(u,—p) = 11, wt(u,—;) = 8, wt(u,) =
and for other vertices are

 (2i+5,

~

gl

4<i<(n+1)/2
(n+1)2+1<i<n-3.
n

The largest label used is ﬁz(unTH,3) = [#£2] which is

equals to [%2]. Therefore, we can conclude that

dis}(P,) = [22] for n=1 (mod 7) with n odd. O

To obtain the exact value of disj(P,) for other value of
n (mod 7), we applied deletion process (A or B) to the
labeled graph P, with n =1 (mod 7). As a result from this
process, we have the labeling for P, with n=
0,6 and 5 (mod 7). Based on the labeling obtained, we
conclude the exact value of disj(P,) for
0,6 and 5 (mod 7) as we state in the following Lemma.

n=

Lemma 2.2.9. Let P, be
n=0,6,5 (mod 7). Then

ai(p,) = |

a path with n>7 and

n+3
|

Proof. For the first case of our proof, consider the labeling
with d=3 for P, with m =8 (mod 14), while m=
1 (mod 14) for the second case. In each cases, we applied
the deletion process A and/or B to obtain the labeling for P,
with other value of n (mod 14).

e Case 1: n=7,6,5 (mod 14)
With applying the deletion process A j times to the
graph P, with m =8 (mod 14), we obtain graph P,,_;
for 1 <j < 3. The labeling for P,_; with 1 <j <3 can
be defined as f'(u}) = B, (uiyj), where u} € V(P,_;). The
weights obtained for u} with 4 <i < m — j are

wi(ul) = 2(i+j) + 6, 4<i<m/2—j;

Vol 2m—=(i+j)+7 m/2—j+1<i<m—].
Meanwhile, the weights obtained for the first three verti-
ces for graph P,_; are wt(u]) = 8, wt(u}) = 10, wt(uy) =
12, while for P,,_, are wt(u}) = 8, wt(u)) = 10, wt(1;) =
14 and for P,_; are wt(u)) = 8, wt(u)) = 12, wt(1}) =
16. It is easy to see that for each graph P,_j, the vertex
weights obtained are all distinct. Note that Lemma 2.1 gives

dis3(Pp—j) = {m?%] which is equals to the largest label

used, that is P,,_; is [2F], since m =8 (mod 14) and

1 <j < 3. Thus, we have dis}(P,;) = [“L2]. Set n =
m — j, then dis}(P,) = [ %3] with n = 7,6,5 (mod 14).
e Case2: n=0,13,12 (mod 14)

Consider graph P,, with m =1 (mod 14). Graph P,
is obtained by applying deletion process A once to graph
P,,, while graph P,,_, is obtained by applying deletion
process A and B once and graph P,_; is obtained by
applying deletion process A twice and deletion process B
once. The labeling and the vertex weights obtained for
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Labeling for graph Pp,_1:

Labeling for graph Pp,_,:

Labeling for graph Pp,_3:

lgr(u,{) = By (ui)

and the weights are:

B'(u) = By (uir1)
and the weights are:

[f’(u;) = B, (uir2)

and the weights are:

wt(uy) =6 wt(u;) =6 wt(uy) =8

wt(uy) = wt(uy) =9 wt(uy) =11

wt(uj) =12 wt(uj) =12 wt(uy) =14
wt(ul,_5) =11 wt(u),_,) =13 wt(u, ) =13
wt(u),_,) =8 wt(u),_3) =10 wt(ul,_,) =10
Wt(Up_1) =5 wt(up, ) =7 wt(up,_3) =7
for4a<i<(m+1)/2-1 fora<i<(m+1)/2-1: for4a<i<(m+1)/2-2
wt(u}) =2i+7 wt(u}) =2i+7 wt(u}) =2i+9

for m+1)/2<i<m-—4 for(m+1)/2<i<m-5: for(m+1)/2-1<i<m-6
wt(u}) =2(m —i+3) wt(u}) =2(m —i+3) wt(u}) =2(m —i+2)

each graph can be stated as follows. Let u; € V(P,_;)
with 1 <j < 3.

With similar argument as the previous case, we can conclude

that dis}(P,—;) = [“2]. Simply by setting n=m —j, we

have dis(P,) = [2£2] for n =0,13,12 (mod 14).

O

Based on Lemmas 2.2.8 and 2.2.9, we conclude our result
of disJ(P,) in Theorem 2.2.4.

Theorem 2.2.4. Let P,
n=0,1,56 (mod 7). Then

be a path with n>7 and

=l

disy(P,) =

3. Conclusion

In the previous section, we generalized the lower bound
value of disy(G) and the sufficient condition for dis}(G) <
oo. For triangular ladder graph L,, we established exact
value of disy(L,) for n=0,3,4,58 (mod 9) and n=7,
while for the other values of n (mod 9) we only found the
upper bound value. We also found relation between triangu-
lar ladder graph L, and P,,. Based on this result, we derived
that dis(IL,) = dis);(P,,). For our other result on P,, we
derived it from our previous result on relation between tri-
angular ladder graph and path. Thus we obtained the exact
values of disS(P,) for n=0,1,2,4,56,9 (mod 10) and
n=8 and disj(P,) for n=0,1,6,7,8910,15,16,
17 (mod 18) and n=14. Yet, on our ongoing investigation
we cannot find the exact value of dis)(P,) and dis}(P,) for
other values of n. Another investigation that we have done
is dis)(P,) with d=3. We cannot derived this value directly
from the result on graph L,,, but we used the idea of label-
ing on L,, to construct the labeling with d=3 for graph P,
with n =1 (mod 7). As a result, we have the exact value of
disJ(P,) for n =0,1,5,6 (mod 7). Similar with the previous
results on path, we cannot find the exact value of dis)(P,)
for other values of n (mod 7) yet.

Based on our investigation results, we propose the follow-
ing open problems.

Problem 1. For graph L,,n > 5n=1,2,6,7 (mod 9),n # 7,
determine the exact value of dis)(IL,,).

Problem 2. For graph P,, n > 5,n=3,7,8 (mod 10),n # 8§,
determine the exact value of dis)(P,,).

Problem 3. For graph P, n>9,n=2,3,4,511,12,13,
14 (mod 18),n # 14, determine the exact value of dis,(P,).

Problem 4. For graph P,, n >7,n=2,3,4 (mod 7), deter-
mine the exact value of dis)(P,).
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