Total resolving number of edge cycle graphs

J. Paulraj Joseph \& N. Shunmugapriya

To cite this article: J. Paulraj Joseph \& N. Shunmugapriya (2020): Total resolving number of edge cycle graphs, AKCE International Journal of Graphs and Combinatorics, DOI: 10.1016/ j.akcej.2019.08.003

To link to this article: https://doi.org/10.1016/j.akcej.2019.08.003

© 2020 The Author(s). Published with
license by Taylor \& Francis Group, LLC

Published online: 06 May 2020.

Submit your article to this journal

Article views: 294

View related articles

View Crossmark data \triangle

Total resolving number of edge cycle graphs

J. Paulraj Joseph and N. Shunmugapriya
Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India

Abstract

Let $G=(V, E)$ be a simple connected graph. An ordered subset W of V is said to be a resolving set of G if every vertex is uniquely determined by its vector of distances to the vertices in W. The minimum cardinality of a resolving set is called the resolving number of G and is denoted by $r(G)$. Total resolving number is the minimum cardinality taken over all resolving sets in which $\langle W\rangle$ has no isolates and it is denoted by $\operatorname{tr}(G)$. In this paper, we determine the exact values of total resolving number of $K_{1, n-1}\left(C_{k}\right), B_{s, t}\left(C_{k}\right), C_{n}\left(C_{k}\right), P_{n}\left(C_{k}\right)$ and $K_{n}\left(C_{k}\right)$. Also, we obtain bounds for the total resolving number of $G\left(C_{k}\right)$ when G is an arbitrary graph and characterize the extremal graphs.

KEYWORDS

Resolving number; total resolving number; edge cycle graph

SUBJECT

CLASSIFICATION
Primary 05C12;
Secondary 05C35

1. Introduction

Let $G=(V, E)$ be a finite, simple, connected and undirected graph. The degree of a vertex v in a graph G is the number of edges incident with v and it is denoted by $d(v)$. The maximum degree in a graph G is denoted by $\Delta(G)$ and the minimum degree is denoted by $\delta(G)$. The distance $d(u, v)$ between two vertices u and v in G is the length of a shortest $u-v$ path in G. The maximum value of distance between vertices of G is called its diameter. Let P_{n} denote any path on n vertices, C_{n} denote any cycle on n vertices and K_{n} denote any complete graph on n vertices. A complete bipartite graph is denoted by $K_{s, t} . K_{1, n-1}$ is called a star. A tree containing exactly two vertices that are not end vertices is called a bistar and it is denoted by $B_{s, t}$. The join $G+H$ consists of $G \cup H$ and all edges joining a vertex of G and a vertex of H. Let P denote the set of all pendent edges of G and $|P|=p$. Vertices which are adjacent to pendent vertices are called support vertices.

A graph H is called a subgraph of a graph G if $V(H) \subseteq$ $V(G)$ and $E(H) \subseteq E(G)$. A subgraph F of a graph G is called an induced subgraph $\langle F\rangle$ of G if whenever u and v are vertices of F and $u v$ is an edge of G, then $u v$ is an edge of F as well. For a non empty set X of edges, the subgraph $\langle X\rangle$ induced by X has edge set X and consists of all vertices that are incident with at least one edge in X. This subgraph is called an edge induced subgraph of G. A set of edges in a graph is independent if no two edges in the set are adjacent. The edge independence number $\beta_{1}(G)$ of a graph G is the maximum cardinality taken over all maximal independent set of edges.

If $W=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\} \subseteq V(G)$ is an ordered set, then the ordered k-tuple $\left(d\left(v, w_{1}\right), d\left(v, w_{2}\right), \ldots, d\left(v, w_{k}\right)\right)$ is called the representation of v with respect to W and it is denoted
by $r(v \mid W)$. Since the representation for each $w_{i} \in W$ contains exactly one 0 in the $i^{\text {th }}$ position, all the vertices of W have distinct representations. W is called a resolving set for G if all the vertices of $V \backslash W$ also have distinct representations. The minimum cardinality of a resolving set is called the resolving number of G and it is denoted by $r(G)$.

In 1975, Slater [5] introduced these ideas and used locating set for what we have called resolving set. He referred to the cardinality of a minimum resolving set in G as its location number. In 1976, Harary and Melter [1] discovered these concepts independently as well but used the term metric dimension rather than location number. In 2003, Ping Zhang and Varaporn Saenpholphat [6, 7] studied connected resolving number and in 2015, we introduced and studied total resolving number in [3]. In this paper, we use the term resolving number to maintain uniformity in the current literature.

If W is a resolving set and the induced subgraph $\langle W\rangle$ has no isolates, then W is called a total resolving set of G. The minimum cardinality taken over all total resolving sets of G is called the total resolving number of G and is denoted by $\operatorname{tr}(G)$. We introduced edge cycle graph in [2] and studied the resolving number of edge cycle graph $G\left(C_{k}\right)$ and we studied the total resolving number of edge cycle graph $G\left(C_{3}\right)$ in [4].

In this paper, we investigate the total resolving number of the edge cycle graph $G\left(C_{k}\right), k \geq 4$.

Theorem 1.1. [3] Let $\left\{w_{1}, w_{2}\right\} \subset V(G)$ be a total resolving set in G. Then the degrees of w_{1} and w_{2} are at most 3 .

Lemma 1.2. [3] For $n \geq 3, \operatorname{tr}\left(P_{n}\right)=2$ and $\operatorname{tr}\left(C_{n}\right)=2$.

[^0]

G

Figure 1. A graph G and its edge cycle graph.

Observation 1.3. [3] For any graph $G, 2 \leq \operatorname{tr}(G) \leq n-1$.
Theorem 1.4. [3] For $n \geq 3, \operatorname{tr}(G)=n-1$ if and only if $G=K_{n}$ or $K_{1, n-1}$.

Definition 1.5. A block of G containing exactly one cut vertex of G is called an end block of G.

Lemma 1.6. [2] Let G be a 1-connected graph with $\delta(G) \geq$ 2. Then every resolving set contains at least one non cut vertex of each end block.

Definition 1.7. A cycle C_{r} is called an end cycle if C_{r} contains exactly one vertex of degree at least 3 .

Notation 1.8. Let e_{c} denote the number of end cycles of the graph G.

Lemma 1.9. Let G be a graph with $e_{c} \geq 1$ and each end cycle of size at least 4. Then $\operatorname{tr}(G) \geq 2 e_{c}$.

Proof. Let W be a total resolving set of G. Let $C_{1}, C_{2}, \ldots, C_{e_{c}}$ be the end cycles of G. By Lemma 1.6, $W \cap\left(V\left(C_{i}\right) \backslash\{v\}\right) \neq \emptyset$ for all $1 \leq i \leq e_{c}$. Let v be the common vertex of some end cycles $C_{1}, C_{2}, \ldots, C_{r}$. If $v \notin W$, then clearly, $W \cap\left(V\left(C_{i}\right) \backslash\{v\}\right) \geq 2$, for each $1 \leq i \leq r$. If $v \in W$, then we claim that $|W \cap X| \geq$ $2 r$, where $\quad X=\cup_{i=1}^{r} V\left(C_{i}\right)$. Suppose $\quad|W \cap X| \leq 2 r-1$. Clearly, exactly two neighbors of v in $V\left(C_{1}\right) \cup V\left(C_{2}\right)$ belongs to W. Without loss of generality, let $v_{1}, v_{2} \in W$. Then $r\left(v_{3} \mid W\right)=r\left(v_{4} \mid W\right)$, which is a contradiction. Thus $\mid W \cap$ $X \mid \geq 2 r$. Consequently, $\operatorname{tr}(G) \geq 2 e_{c}$.

2. Resolving number of edge cycle graphs $\boldsymbol{G}\left(\boldsymbol{C}_{\boldsymbol{k}}\right), \boldsymbol{k} \geq \mathbf{4}$

The following results are proved in [2].
Definition 2.1. An edge cycle graph of a graph G is the graph $G\left(C_{k}\right)$ formed from one copy of G and $|E(G)|$ copies of P_{k}, where the ends of the $\mathrm{i}^{\text {th }}$ edge are identified with the ends of $\mathrm{i}^{\text {th }}$ copy of P_{k}. A graph G and its edge cycle graph $G\left(C_{k}\right)$ are shown in Figure 1.

Lemma 2.2. Let v be a vertex of degree r in G and $e_{1}, e_{2}, \ldots, e_{r}$ be edges incident with v and C_{i} be the edge cycle
of $e_{i}, 1 \leq i \leq r$. Then every resolving set of $G\left(C_{k}\right)$ contains at least one vertex of degree 2 from C_{i} for all $1 \leq i \leq r$ with at most one exception.

Lemma 2.3. Let e be an edge of degree s and $e_{1}, e_{2}, \ldots, e_{s-2}$ be the edges adjacent to e in G. If any resolving set W of $G\left(C_{k}\right)$ does not contain any internal vertex of the edge cycle of e, then W contains at least one internal vertex from each edge cycle of $e_{i}, 1 \leq i \leq s-2$.

Theorem 2.4. Let $E_{1}=\left\{e_{1}, e_{2}, \ldots, e_{t}\right\}$ be a subset of edges of G and W be a resolving set of $G\left(C_{k}\right)$. If W does not contain any internal vertex of edge cycle of e_{i}, then E_{1} is independent.

Lemma 2.5. Let G be a graph of order $n \geq 3$ and $\delta(G) \geq 2$. Then $r\left(G\left(C_{k}\right)\right) \geq m-\beta_{1}(G)$.

Lemma 2.6. Let G be a graph of order $n \geq 3$ and $\delta(G)=1$. Then $r\left(G\left(C_{k}\right)\right) \geq m-\beta_{1}(G \backslash P)$.

Theorem 2.7. Let G be a graph of order $n \geq 5$ and size m. If k is odd and $\delta(G) \geq 2$, then $r\left(G\left(C_{k}\right)\right)=m-\beta_{1}(G)$.

Theorem 2.8. Let G be a graph of order $n \geq 5$, size m and $\delta(G)=1$. If k is odd, then $r\left(G\left(C_{k}\right)\right)=m-\beta_{1}(G \backslash P)$.

3. Total resolving number of $\boldsymbol{G}\left(\boldsymbol{C}_{\boldsymbol{k}}\right), \boldsymbol{k} \geq \mathbf{4}$.

In this section, we determine the exact values of total resolving number of $K_{1, n-1}\left(C_{k}\right), B_{s, t}\left(C_{k}\right), C_{n}\left(C_{k}\right), P_{n}\left(C_{k}\right)$ and $K_{n}\left(C_{k}\right)$.

Definition 3.1. A vertex cover in a graph G is a set of vertices that covers all edges of G. The minimum cardinality taken over all minimal vertex covers of G is the vertex covering number $\alpha(G)$ of G.
Theorem 3.2. Let G be a graph of order $n \geq 4$ and size m. Let $M_{1}, M_{2}, \ldots, M_{r}$ be the collection of all maximum edge independent sets of G and $G_{i}=\left\langle G \backslash M_{i}\right\rangle, 1 \leq i \leq r$. If $\delta(G) \geq$ 2, then $\operatorname{tr}\left(G\left(C_{k}\right)\right) \geq m-\beta_{1}(G)+t$, where $t=\min \left\{\alpha\left(G_{1}\right)\right.$, $\left.\alpha\left(G_{2}\right), \ldots, \alpha\left(G_{r}\right)\right\}$.

Proof. Let $Y=\left\{v_{1}, v_{2}, \ldots, v_{t}\right\}$ be the minimum vertex covering of G_{i} for some i and W_{1} be any total resolving set of $G\left(C_{k}\right)$. By Theorem 2.5, $r\left(G\left(C_{k}\right)\right) \geq m-\beta_{1}(G)$. Let W^{\prime} be a minimum resolving set of $G\left(C_{k}\right)$. Using Lemmas 2.2, 2.3 and 2.5, $\left\langle W^{\prime}\right\rangle$ is $\bar{K}_{m-\beta_{1}(G)}$. Thus $\left|W_{1}\right| \geq m-\beta_{1}(G)+$ $|Y|=m-\beta_{1}(G)+t$.

Theorem 3.3. Let G be a graph of order $n \geq 4$, size m and $\delta(G)=1$. Let $M_{1}, M_{2}, \ldots, M_{r}$ be the collection of all maximum edge independent sets of G and $G_{i}=\left\langle G \backslash\left(M_{i} \cup P\right)\right\rangle$, $1 \leq i \leq r$. Then $\operatorname{tr}\left(G\left(C_{k}\right)\right) \geq m-\beta_{1}(G \backslash P)+t+p$, where $t=\min \left\{\alpha\left(G_{1}\right), \alpha\left(G_{2}\right), \ldots, \alpha\left(G_{r}\right)\right\}$.

Proof. Let $Y=\left\{v_{1}, v_{2}, \ldots, v_{t}\right\}$ be the minimum vertex covering of G_{i} for some i and W_{1} be any total resolving set of $G\left(C_{k}\right)$. By Lemma 2.6, $r\left(G\left(C_{k}\right)\right) \geq m-\beta_{1}(G \backslash P)$. Let W^{\prime} be a minimum resolving set of $G\left(C_{k}\right)$. Using Lemmas 1.6, 2.2, 2.3 and 2.6, $\left\langle W^{\prime}\right\rangle$
is $\bar{K}_{m-\beta_{1}(G \backslash P) \text {. Thus }\left|W_{1}\right| \geq m-\beta_{1}(G \backslash P)+|Y|+|P|=m-~+~}^{\text {. }}$ $\beta_{1}(G \backslash P)+t+p$.

Theorem 3.4. Let G be a graph of order $n \geq 3$, size m and $k \geq 4$. If $\delta(G) \geq 2$, then $\operatorname{tr}\left(G\left(C_{k}\right)\right) \leq 2\left[m-\beta_{1}(G)\right]$.

Proof. Let $E(G)=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$. Let $\beta_{1}(G)=s$ and $M=$ $\left\{e_{1}, e_{2}, \ldots, e_{s}\right\}$ be the maximum edge independent set of G. Let C_{i} be the edge cycle of e_{i}. Let $V\left(C_{i}\right)=\left\{v_{i 1}, v_{i 2}, \ldots, v_{i k}\right\}$ and $e_{i}=v_{i 1} v_{i k}$. If $n=3$, then we can easily verify that $\operatorname{tr}\left(G\left(C_{k}\right)\right) \leq 4$. So we may assume that $n \geq 4$. By Theorem 2.7, if k is odd, then $r\left(G\left(C_{k}\right)\right) \leq m-\beta_{1}(G)$. Therefore, if k is odd, then $\operatorname{tr}\left(G\left(C_{k}\right)\right) \leq 2 r\left(G\left(C_{k}\right)\right) \leq 2\left[m-\beta_{1}(G)\right]$. Now we claim that if k is even, then $\operatorname{tr}\left(G\left(C_{k}\right)\right) \leq 2\left[m-\beta_{1}(G)\right]$. Let $W=\left\{v_{i^{\frac{k}{2}}}, v_{i\left(\frac{k}{2}+1\right)} / s+1 \leq i \leq m\right\}$. We claim that W is a resolving set of $G\left(C_{k}\right)$. Let x, y be two distinct vertices of $V\left(G\left(C_{k}\right)\right) \backslash W$. We consider the following two cases.
Case 1: $x \in V\left(C_{i}\right)$ for some $1 \leq i \leq s$.
Without loss of generality, let $x \in V\left(C_{1}\right)$. Then x lies on either $v_{11}-v_{1 \frac{k}{2}}$ path or $v_{1\left(\frac{k}{2}+1\right)}-v_{1 k}$ path. Without loss of generality, let x lie on $v_{11}-v_{1 \frac{k}{2}}$ path. Since $\delta(G) \geq 2$, there exist two distinct edges $e_{r}, e_{r^{\prime}} \in E(G) \backslash\left\{e_{1}\right\}$ such that e_{r} is incident with v_{1} and $e_{r^{\prime}}$ is incident with v_{2}. Since $e_{1} \in M$, by Lemma 2.3, $e_{r}, e_{r^{\prime}} \notin M$. Without loss of generality, let $e_{r}=$ e_{m} and $e_{r^{\prime}}=e_{m-1}$. Let $\left.S=\left\{v_{m \frac{k}{2}}, v_{m\left(\frac{k}{2}+1\right)}, v_{(m-1) \frac{k}{2}}, v_{(m-1)\left(\frac{k}{2}+1\right.}\right)\right\}$. If $y \in V\left(C_{1} \cup C_{m-1} \cup C_{m}\right)$, then $r(x \mid S) \neq r(y \mid S)$. It follows that $r(x \mid W) \neq r(y \mid W)$. So we assume that $y \in V\left(C_{i}\right)$ for some $2 \leq i \leq m-2$. If $d(x, s) \neq d(y, s)$ for some $s \in S$, then $r(x \mid W) \neq r(y \mid W)$. So we may assume that $d(x, s)=d(y, s)$ for all $s \in S$. Therefore $y-v_{m \frac{k}{2}}$ path and $y-v_{m\left(\frac{k}{2}+1\right)}$ path passes through v_{11} and $y-v_{(m-1) \frac{k}{2}}$ path and $y-v_{(m-1)\left(\frac{k}{2}+1\right)}$ path passes through v_{11} and $v_{1 k}$.

If $y \in V\left(C_{i}\right)$ for some $s+1 \leq i \leq m-2$, then without loss of generality, let $y \in V\left(C_{m-2}\right)$. Thus either $d\left(x, v_{(m-2) \frac{k}{2}}\right)>$ $d\left(y, v_{(m-2) \frac{k}{2}}\right)$ or $d\left(x, v_{(m-2)\left(\frac{k}{2}+1\right)}\right)>d\left(y, v_{(m-2)\left(\frac{k}{2}+1\right)}\right)$. If $y \in$ $V\left(C_{i}\right)$ for some $2 \leq i \leq s$, then without loss of generality, let $y \in V\left(C_{2}\right)$. Since $\delta(G) \geq 2$, there exist two distinct edges $e_{t}, e_{t^{\prime}} \in E(G) \backslash\left\{e_{1}, e_{2}\right\}$ such that e_{t} is incident with v_{21} and $e_{t^{\prime}}$ is incident with $v_{2 k}$. Since $e_{1} \in M$, by Lemma 2.3, $e_{t}, e_{t^{\prime}} \notin M$. If either $e_{t} \neq e_{m}$ or $e_{t^{\prime}} \neq e_{m-1}$, then without loss of generality, let $\quad e_{t} \neq e_{m}$. Let $e_{t}=e_{m-2}$ and $v_{(m-2) 1}=v_{11}$. Then $d\left(x, v_{(m-2) \frac{k}{2}}\right)>d\left(y, v_{(m-2) \frac{k}{2}}\right)$. If $e_{t}=e_{m}, e_{t^{\prime}}=e_{m-1}$, then $r(x \mid S)$ $=r(y \mid S)$. It follows that $r(x \mid W) \neq r(y \mid W)$.
Case 2: $x \notin V\left(C_{i}\right)$ for all $1 \leq i \leq s$.
Then without loss of generality, let $x \in V\left(C_{m}\right)$. Let $X=$ $\left\{v_{m_{2}^{\frac{k}{2}}}, v_{m\left(\frac{k}{2}+1\right)}\right\}$. If $y \in V\left(C_{m}\right)$, then $r(x \mid X) \neq r(y \mid X)$. It follows that $r(x \mid W) \neq r(y \mid W)$. So we may assume that $x \notin V\left(C_{m}\right)$.
 assume that $d\left(x, v_{\left.m \frac{k}{2}\right)}=d_{(} y, v_{m_{2}^{2}}\right.$. Therefore $x=v_{m k}$ and y is the neighbor of $v_{m 1}$. Thus $d\left(x, v_{\left.m\left(\frac{k}{2}+1\right)\right)}=d\left(y, v_{m\left(\frac{k}{2}+1\right)}\right)-2\right.$. It follows that $r(x \mid W) \neq r(y \mid W)$.

Hence $\operatorname{tr}\left(G\left(C_{k}\right)\right) \leq 2\left[m-\beta_{1}(G)\right]$.

Open problem 3.5. Let G be a graph of order $n \geq 3$, size $m, \quad k \geq 4$. If $\delta(G) \geq 2$, then characterize G for which $\operatorname{tr}\left(G\left(C_{k}\right)\right)=2\left[m-\beta_{1}(G)\right]$.

Theorem 3.6. Let G be a graph of order $n \geq 3$, size m. If $\delta(G)=1$, then $\operatorname{tr}\left(G\left(C_{k}\right)\right) \leq 2\left[m-\beta_{1}(G \backslash P)\right]$.

Proof. Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}, E(G)=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$. Let $\beta_{1}(G \backslash P)=s$. Let $M=\left\{e_{1}, e_{2}, \ldots, e_{s}\right\}$ be the maximum edge independent set of $G \backslash P$ and $P=\left\{e_{s+1}, e_{s+2}, \ldots, e_{s+p}\right\}$. Let C_{i} be the edge cycle of e_{i} and $V\left(C_{i}\right)=\left\{v_{i 1}, v_{i 2}, \ldots, v_{i k}\right\}, 1 \leq i \leq$ m. Let $e_{i}=v_{i 1} v_{i k}, 1 \leq i \leq m$. If $n=3$, then we can easily verify that $\operatorname{tr}\left(G\left(C_{k}\right)\right) \leq 4$. So we may assume that $n \geq 4$. By Theorem 2.8, if k is odd, then $r\left(G\left(C_{k}\right)\right) \leq m-\beta_{1}(G \backslash P)$. Therfore $\operatorname{tr}\left(G\left(C_{k}\right)\right) \leq 2 r\left(G\left(C_{k}\right)\right) \leq 2\left[m-\beta_{1}(G \backslash P)\right]$. Now we claim that if k is even, then $\operatorname{tr}\left(G\left(C_{k}\right)\right) \leq$ $2\left[m-\beta_{1}(G \backslash P)\right]$.

Let $W_{i}=\left\{v_{i \frac{k}{2}}, v_{i \frac{k}{2}+1}\right\}, s+1 \leq i \leq m$ and $W=\cup_{i=s+1}^{m} W_{i}$. We claim that W is a resolving set of $G\left(C_{k}\right)$. Let x, y be two distinct vertices of $V\left(G\left(C_{k}\right)\right) \backslash W$.

If $x, y \in V\left(C_{i}\right)$ for some $s+1 \leq i \leq s+p$, then without loss of generality, let $x, y \in V\left(C_{s+1}\right)$. Let $d\left(v_{(s+1) 1}\right)=2$ in

 lies on $v_{(s+1) \frac{k^{-}}{-} v_{(s+1) 1}}$ path and y lies on $v_{(s+1) \frac{k^{-}}{-} v_{(s+1) k} \text { path. }}$ Therefore $d(x, w)=d(y, w)+1$ for all $w \in W \backslash\left\{v_{(s+1) \frac{k}{2}}\right\}$. It follows that $r(x \mid W) \neq r(y \mid W)$. If $x \in V\left(C_{s+1}\right), y \notin V\left(C_{s+1}\right)$,
 $r(y \mid W)$. If $x, y \notin V\left(C_{i}\right)$ for all $s+1 \leq i \leq s+p$, then the proof is similar to Case 1 and Case 2 of Theorem 3.4. Thus $\operatorname{tr}\left(G\left(C_{k}\right)\right) \leq 2\left[m-\beta_{1}(G \backslash P)\right]$.
Open problem 3.7. Let G be a graph order of $n \geq 3$, size m and $\delta(G)=1$. Then characterize G for which $\operatorname{tr}\left(G\left(C_{k}\right)\right)=2\left[m-\beta_{1}(G \backslash P)\right]$.

Theorem 3.8. For $n \geq 2, \operatorname{tr}\left(K_{1, n-1}\left(C_{k}\right)\right)=2(n-1)$.
Proof. By Theorem 3.6, $\operatorname{tr}\left(K_{1, n-1}\left(C_{k}\right)\right) \leq 2(n-1)$ and by Lemma 1.9,
$\operatorname{tr}\left(K_{1, n-1}\left(C_{k}\right)\right) \geq 2(n-1)$. Hence $\operatorname{tr}\left(K_{1, n-1}\left(C_{k}\right)\right)=2(n-1)$.

Theorem 3.9. For $s, t \geq 1, \operatorname{tr}\left(B_{s, t}\left(C_{k}\right)\right)=2(s+t)$.
Proof. By Lemma 1.9, $\quad \operatorname{tr}\left(B_{s, t}\left(C_{k}\right)\right) \geq 2(s+t)$ and by Theorem 3.6,

$$
\operatorname{tr}\left(B_{s, t}\left(C_{k}\right)\right) \leq 2(s+t)
$$

Theorem 3.10. Let G be a graph of order $n \geq 3$ and $\delta(G)=1$. Then $\operatorname{tr}\left(G\left(C_{k}\right)\right)=2 p$ if and only if G is either a star or bistar.

Proof. Let $\operatorname{tr}\left(G\left(C_{k}\right)\right)=2 p$ and W be a total resolving set of $G\left(C_{k}\right)$. Let $E(G)=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}, \quad P=\left\{e_{1}, e_{2}, \ldots, e_{p}\right\}$ be the
set of pendent edges of G and C_{i} be the edge cycle of e_{i}. Let $V\left(C_{i}\right)=\left\{v_{i 1}, v_{i 2}, \ldots, v_{i k}\right\}$ and $V\left(A_{i}\right)=\left\{v_{i 2}, v_{i 3}, \ldots, v_{i(k-1)}\right\}$. By proof of Lemma 1.9, $\left|W \cap\left(\cup_{i=1}^{p} V\left(C_{i}\right)\right)\right| \geq 2 p$. Therefore $W \cap V\left(A_{i}\right)=\emptyset \quad$ for \quad all $\quad p+1 \leq i \leq m$. Let $\quad E_{1}=$ $\left\{e_{p+1}, e_{p+2}, \ldots, e_{m}\right\}$. By Theorem 2.4, E_{1} is independent, which is a contradiction to $G\left(C_{k}\right) \backslash \cup_{i=1}^{p} V\left(C_{i}\right)$ is connected and hence $\left|E_{1}\right| \leq 1$. If $\left|E_{1}\right|=0$, then $G \cong K_{1, n-1}$. If $\left|E_{1}\right|=$ 1 , then $G \cong B_{s, t}$.

The proof of the converse part follows from Theorems 3.8 and 3.9.

Theorem 3.11. For $n \geq 3$, $\operatorname{tr}\left(C_{n}\left(C_{k}\right)\right)= \begin{cases}n+1 & \text { if } n \text { is odd and } k \geq 6 \text { or } n=3 \\ n & \text { otherwise. }\end{cases}$

Proof. Let $V\left(C_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and

$$
E\left(C_{n}\right)=\left\{v_{i} v_{i+1} / 1 \leq i \leq n-1\right\} \cup\left\{v_{n} v_{1}\right\}
$$

Let $\quad M=\left\{e_{1}=v_{1} v_{2}, e_{2}=v_{3} v_{4}, e_{3}=v_{5} v_{6}, \ldots, e_{\left\lfloor\frac{n}{2}\right\rfloor}=v_{n-2} v_{n-1}\right\}$
and $\quad e_{n}=v_{n} v_{1}, e_{n-1}=v_{n-1} v_{n}, e_{\left\lfloor\frac{n}{2}\right\rfloor+1}=v_{2} v_{3}, e_{\left\lfloor\frac{n}{2}\right\rfloor+2}=v_{4} v_{5}, \ldots$, $e_{n-2}=v_{n-3} v_{n-2}$. Let W be a total resolving set of $C_{n}\left(C_{k}\right)$ and A_{i} be the edge cycle of e_{i}. Let $V\left(A_{i}\right)=\left\{v_{i 1}, v_{i 2}, \ldots, v_{i k}\right\}, v_{i 1} v_{i k}=$ e_{i}. If n is even, then the proof follows from Theorems 3.2 and 3.4. So we may assume that n is odd. If $n=3$, then we can easily verify that $\operatorname{tr}\left(C_{n}\left(C_{k}\right)\right)=4$. So we may assume that $n \geq 5$. We consider the following two cases.

Case 1: $k=4$ or 5 .
Let $v_{n}=v_{(n-1) k}=v_{n 1}, \quad v_{11}=v_{1}, \quad v_{n 1}=v_{n}, \quad v_{(n-1) 1}=v_{n-1}$ and $\quad v_{\left\lfloor\frac{n}{2}\right\rfloor 1}=v_{n-2}$. Let $W_{i}=\left\{v_{i 2}, v_{i 3} /\left\lfloor\frac{n}{2}\right\rfloor+1 \leq i \leq n-2\right\}$, $W^{\prime}=\cup_{\left\lfloor\frac{n}{2}\right\rfloor+1}^{n-2} W_{i}$ and $W^{\prime \prime}=\left\{v_{(n-1)(k-1)}, v_{n 1}, v_{n 2}\right\}$ and $W=$ $W^{\prime} \cup W^{\prime \prime}$. We claim that W is a resolving set of $C_{n}\left(C_{k}\right)$. Let x, y be two distinct vertices of $V\left(C_{n}\left(C_{k}\right)\right) \backslash W$. Let $B=$ $V\left(A_{1} \cup A_{\left\lfloor\frac{n}{2}\right\rfloor} \cup A_{n-1} \cup A_{n}\right)$. If either $x, y \in V\left(C_{n}\left(C_{k}\right)\right) \backslash B$ or $x \in V\left(C_{n}\left(C_{k}\right)\right) \backslash B$ and $y \in B$, then $r\left(x \mid W^{\prime}\right) \neq r\left(y \mid W^{\prime}\right)$. It follows that $r(x \mid W) \neq r(y \mid W)$. So we may assume that $x, y \in$ B. If $d(x, w) \neq d(y, w)$ for some $w \in W^{\prime}$, then $r(x \mid W) \neq$ $r(y \mid W)$. So we may assume that $d(x, w)=d(y, w)$ for all $w \in W^{\prime}$. Therefore either $x=v_{n(k-1)}$ and $y=v_{12}$ or $x=$ $v_{(n-1) 2}$ and $y=v_{\left\lfloor\frac{n}{2} \backslash(k-1)\right.}$. Without loss of generality, let $x=$ $v_{n(k-1)}$ and $y=v_{12}$ or $x=v_{(n-1) 2}$. Then $d\left(y, v_{n 2}\right)=3$ and $d\left(x, v_{n 2}\right)=\left\{\begin{array}{ll}1 & \text { if } k=4 \\ 2 & \text { if } k=5 .\end{array}\right.$ It follows that $r(x \mid W) \neq$ $r(y \mid W)$. Thus W is a resolving set of $C_{n}\left(C_{k}\right)$ and hence $\operatorname{tr}\left(C_{n}\left(C_{k}\right)\right) \leq n$. By Theorem 3.2, $\quad \operatorname{tr}\left(C_{n}\left(C_{k}\right)\right) \geq n \quad$ and hence $\operatorname{tr}\left(C_{n}\left(C_{k}\right)\right)=n$.

Case 2: $k \geq 6$.
By Theorem 3.2, $\operatorname{tr}\left(C_{n}\left(C_{k}\right)\right) \geq n$. But we claim that $\operatorname{tr}\left(C_{n}\left(C_{k}\right)\right) \geq n+1$. Suppose $\operatorname{tr}\left(C_{n}\left(C_{k}\right)\right)=n$. Since W is a total resolving set, $\langle W\rangle$ contain at most $\left\lfloor\frac{n}{2}\right\rfloor$ components. Then $W \cap\left(\left\{v_{i 2}, v_{i 3}, \ldots, v_{i\left[\frac{k}{2}\right]}\right\} \cup\left\{v_{j 2}, v_{j 3}, \ldots, v_{j\left[\frac{k}{2}\right]}\right\}\right)=\emptyset$ since some A_{i} and A_{j} meet the common vertex v. Let $v_{i 1}=v_{j 1}=v$ and $\quad v_{i 1} v_{i k}=e_{i}, v_{j 1} v_{j k}=e_{j}$. Then $r\left(v_{i 2} \mid W\right)=r\left(v_{j 2} \mid W\right)$, which is a contradiction. Hence $\operatorname{tr}\left(C_{n}\left(C_{k}\right)\right) \geq n+1$. By

Theorem 3.4, $\operatorname{tr}\left(C_{n}\left(C_{k}\right)\right) \leq 2\left[n-\left\lfloor\frac{n}{2}\right\rfloor\right]=n+1$ and hence $\operatorname{tr}\left(C_{n}\left(C_{k}\right)\right)=n+1$.

Theorem 3.12. For $n \geq 3$,
$\operatorname{tr}\left(P_{n}\left(C_{k}\right)\right)= \begin{cases}n+1 & \text { if } n \text { is odd and } k \geq 6 \text { or } n=3 \\ n & \text { otherwise. }\end{cases}$

Proof. Let $V\left(P_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and

$$
E\left(P_{n}\right)=\left\{v_{i} v_{i+1} / 1 \leq i \leq n-1\right\}
$$

Let $M=\left\{e_{1}=v_{2} v_{3}, e_{2}=v_{4} v_{5}, \ldots, e_{\left\lfloor\frac{n-2}{2}\right\rfloor}=v_{n-3} v_{n-2}\right\}, \quad e_{n-2}=$ $v_{n-2} v_{n-1}, e_{n-1}=v_{n-1} v_{n}$. Let W be a total resolving set of $P_{n}\left(C_{k}\right)$ and C_{i} be the edge cycle of e_{i}. Let $V\left(C_{i}\right)=$ $\left\{v_{i 1}, v_{i 2}, \ldots, v_{i k}\right\}, v_{i 1} v_{i k}=e_{i}$. If n is even, then the proof follows from Theorems 3.3 and 3.6. So we may assume that n is odd. If $n=3$, then we can easily verify that $\operatorname{tr}\left(P_{n}\left(C_{k}\right)\right)=$ 4. So we may assume that $n \geq 5$. We consider the following two cases.

Case 1: $k=4$ or 5 .
Let $v_{(n-2) 1}=v_{n-2}, \quad v_{(n-1) 1}=v_{n-1}$ and $v_{\left\lfloor\frac{n-2}{2}\right] 1}=v_{n-3}$. Let $W_{i}=\left\{v_{i 2}, v_{i 3} /\left\lfloor\frac{n-2}{2}\right\rfloor+1 \leq i \leq n-3\right\}, \quad W^{\prime}=\cup_{\left\lfloor\frac{n-2}{2}\right\rfloor+1}^{n-3} W_{i}$ and $W^{\prime \prime}=\left\{v_{(n-2)(k-1)}, v_{(n-1) 1}, v_{(n-1) 2}\right\}$ and $W=W^{\prime} \cup W^{\prime \prime}$. We claim that W is a resolving set of $P_{n}\left(C_{k}\right)$. Let x, y be two distinct vertices of $V\left(P_{n}\left(C_{k}\right)\right) \backslash W$. Let $B=$ $V\left(C_{\left\lfloor\frac{n-2}{2}\right\rfloor} \cup C_{n-2} \cup C_{n-1}\right)$. If either $x, y \in V\left(P_{n}\left(C_{k}\right)\right) \backslash B$ or $x \in V\left(P_{n}\left(C_{k}\right)\right) \backslash B$ and $y \in B$, then $r\left(x \mid W^{\prime}\right) \neq r\left(y \mid W^{\prime}\right)$. It follows that $r(x \mid W) \neq r(y \mid W)$. So we may assume that $x, y \in$ B. If $d(x, w) \neq d(y, w)$ for some $w \in W^{\prime}$, then $r(x \mid W) \neq$ $r(y \mid W)$. So we may assume that $d(x, w)=d(y, w)$ for all $w \in W^{\prime}$. Therefore $x=v_{\left\lfloor\frac{n-2}{2}\right\rfloor(k-1)}$ and $y=v_{(n-2) 2}$. Then $d\left(x, v_{(n-2)(k-1)}\right)=3$ and $d\left(y, v_{(n-2)(k-1)}\right)=\left\{\begin{array}{ll}1 & \text { if } k=4 \\ 2 & \text { if } k=5 .\end{array}\right.$ It follows that $r(x \mid W) \neq r(y \mid W)$. Thus W is a resolving set of $P_{n}\left(C_{k}\right)$ and hence $\operatorname{tr}\left(P_{n}\left(C_{k}\right)\right) \leq n$. By Theorem 3.3, $\operatorname{tr}\left(P_{n}\left(C_{k}\right)\right) \geq n$ and hence $\operatorname{tr}\left(P_{n}\left(C_{k}\right)\right)=n$.

Case 2: $k \geq 6$.
By Theorem 3.3, $\operatorname{tr}\left(P_{n}\left(C_{k}\right)\right) \geq n$. But we claim that $\operatorname{tr}\left(P_{n}\left(C_{k}\right)\right) \geq n+1$. Suppose $\operatorname{tr}\left(P_{n}\left(C_{k}\right)\right)=n$. Since W is a total resolving set, $\langle W\rangle$ contain at most $\left\lfloor\frac{n}{2}\right\rfloor$ components. Then $W \cap\left(\left\{v_{i 2}, v_{i 3}, \ldots, v_{i\left\lceil\frac{k}{2}\right.}\right\} \cup\left\{v_{j 2}, v_{j 3}, \ldots, v_{j\left\lceil\frac{k}{2}\right\rceil}\right\}\right)=\emptyset$ since some C_{i} and C_{j} meet the common vertex v. Let $v_{i 1}=v_{j 1}=v$ and $v_{i 1} v_{i k}=e_{i}, v_{j 1} v_{j k}=e_{j}$. Then $r\left(v_{i 2} \mid W\right)=r\left(v_{j 2} \mid W\right)$, which is a contradiction. Hence $\operatorname{tr}\left(P_{n}\left(C_{k}\right)\right) \geq n+1$. By Theorem 3.6, $\operatorname{tr}\left(P_{n}\left(C_{k}\right)\right) \leq n+1$ and hence $\operatorname{tr}\left(P_{n}\left(C_{k}\right)\right)=n+1$.

Theorem 3.13. For $n \geq 3$ and $k \geq 6$,

$$
\operatorname{tr}\left(K_{n}\left(C_{k}\right)\right)= \begin{cases}n^{2}-2 n & \text { if } n \text { is even } \\ n^{2}-2 n+1 & \text { if } n \text { is odd } .\end{cases}
$$

Proof. Let $V\left(K_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E\left(K_{n}\right)=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$. Let $C_{1}, C_{2}, C_{3}, \ldots, C_{m}$ be the edge cycles of $e_{1}, e_{2}, e_{3}, \ldots, e_{m}$ respectively. Let $V\left(C_{i}\right)=\left\{v_{i 1}, v_{i 2}, \ldots, v_{i k}\right\}, 1 \leq i \leq m$. Let W be a total resolving set of $K_{n}\left(C_{k}\right)$. First we claim that
$\operatorname{tr}\left(K_{n}\left(C_{k}\right)\right) \geq 2\left[m-\left\lfloor\frac{n}{2}\right\rfloor\right]$. Suppose that $\operatorname{tr}\left(K_{n}\left(C_{k}\right)\right) \leq 2[m-$ $\left.\left\lfloor\frac{n}{2}\right\rfloor\right\rfloor-1$. Since $K_{n}\left(C_{k}\right)$ contain $\frac{n(n-1)}{2}$ edge cycles, $\langle W\rangle$ contain union of at most $\left[\frac{n(n-1)}{2}-\left\lfloor\frac{n}{2}\right\rfloor\right]-1$ components. Then $W \cap\left(\left\{v_{i 2}, v_{i 3}, \ldots, v_{i\left[\frac{k}{2}\right.}\right\} \cup\left\{v_{j 2}, v_{j 3}, \ldots, v_{j\left[\frac{k}{2}\right.}\right\}\right)=\emptyset$ since C_{i} and C_{j} meet the common vertex and hence we have $r\left(v_{i 2} \mid W\right)=$ $r\left(v_{j 2} \mid W\right)$, which is a contradiction. Thus $\operatorname{tr}\left(K_{n}\left(C_{k}\right)\right) \geq$ $2\left[m-\left\lfloor\frac{n}{2}\right\rfloor\right]$. By Theorem 3.4, $\operatorname{tr}\left(K_{n}\left(C_{k}\right)\right) \leq 2\left[m-\left\lfloor\frac{n}{2}\right\rfloor\right]$ and hence $\operatorname{tr}\left(K_{n}\left(C_{k}\right)\right)= \begin{cases}n^{2}-2 n & \text { if } n \text { is even } \\ n^{2}-2 n+1 & \text { if } n \text { is odd } .\end{cases}$

4. General bounds and extremal graphs

In this section, we obtain bounds for the total resolving number of $G\left(C_{k}\right)$ and characterize the extremal graphs.
Theorem 4.1. Let G be a graph of order $n \geq 3$ and $k \geq 6$. Then $4 \leq \operatorname{tr}\left(G\left(C_{k}\right)\right) \leq n^{2}-2 n+1$.

Proof. Let W be a total resolving set of $G\left(C_{k}\right)$.
Claim 1: $\operatorname{tr}\left(G\left(C_{k}\right)\right) \geq 4$.
If G is a tree, then G has at least two pendent edges. Therefore by Lemma 1.9, $\operatorname{tr}\left(G\left(C_{k}\right)\right) \geq 4$. If G contains a cycle, then we claim that $\operatorname{tr}\left(G\left(C_{k}\right)\right) \geq 4$. Suppose $\operatorname{tr}\left(G\left(C_{k}\right)\right) \leq 3$. Then $\langle W\rangle \quad$ is connected. Then $W \cap$ $\left(\left\{v_{i 2}, v_{i 3}, \ldots, v_{i\left[\frac{k}{2}\right.}\right\} \cup\left\{v_{j 2}, v_{j 3}, \ldots, v_{j\left[\frac{k}{2}\right]}\right\}\right)=\emptyset$ since some C_{i} and C_{j} meet the common vertex v. Let $v_{i 1}=v_{j 1}=v$ and $v_{i 1} v_{i k}=e_{i}, v_{j 1} v_{j k}=e_{j}$. Then $r\left(v_{i 2} \mid W\right)=r\left(v_{j 2} \mid W\right)$, which is a contradiction. Hence $\operatorname{tr}\left(G\left(C_{k}\right)\right) \geq 4$.
Claim 2: $\operatorname{tr}\left(G\left(C_{k}\right)\right) \leq n^{2}-2 n+1$.
The upper bound depends on the number of edges and by Theorem 3.4, $\operatorname{tr}\left(G\left(C_{k}\right)\right) \leq 2\left[\frac{n(n-1)}{2}-\left\lfloor\frac{n}{2}\right\rfloor\right]$. Thus

$$
\operatorname{tr}\left(G\left(C_{k}\right)\right) \leq \begin{cases}n^{2}-2 n & \text { if } n \text { is even } \\ n^{2}-2 n+1 & \text { if } n \text { is odd }\end{cases}
$$

Theorem 4.2. Let G be a graph of order $n \geq 3$ and $k \geq$ 6. Then $\operatorname{tr}\left(G\left(C_{k}\right)\right)=4$ if and only if $G \cong P_{3}, C_{3}, P_{4}$ or C_{4}.

Proof. Let $\operatorname{tr}\left(G\left(C_{k}\right)\right)=4$ and W be a total resolving set of $G\left(C_{k}\right)$. If G is a tree, then G has at least two pendent edges. By Lemma 1.9, G has exactly two pendent edges. Therefore $G \cong P_{n}$. By Theorem 3.12, $G \cong P_{3}$ or P_{4}.

If G contains a cycle, then we claim that $n=3$ or 4. Suppose $n \geq 5$. Then $m \geq 5$ and $m \geq n$. Let $E(G)=$ $\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ and $M=\left\{e_{1}, e_{2}, \ldots, e_{s}\right\}$ be the maximum edge independent set of G. Let C_{i} be the edge cycle of $e_{i}, 1 \leq$ $i \leq m$. Since $\operatorname{tr}\left(\left(C_{k}\right)\right)=4,\langle W\rangle$ is either connected or $2 K_{2}$.

Then all the vertices of W belong to union of two edge cycles of $G\left(C_{k}\right)$. Without loss of generality, let $W \subset$ $\left(V\left(C_{m}\right) \cup V\left(C_{m-1}\right)\right)$. Then $W \cap V\left(C_{i}\right)=\emptyset$ for all $1 \leq i \leq$ $m-2$. Since $m-2>\left\lfloor\frac{n}{2}\right\rfloor$ and $s \leq\left\lfloor\frac{n}{2}\right\rfloor, m-2>s$. Then we have $W \cap\left(V\left(C_{i}\right) \cup V\left(C_{j}\right)\right)=\emptyset$ since some C_{i} and C_{j} meet the common vertex v. Let $v_{i 1}=v_{j 1}=v$ and $v_{i 1} v_{i k}=e_{i}$, $v_{j 1} v_{j k}=e_{j}$. Then $r\left(v_{i 2} \mid W\right)=r\left(v_{j 2} \mid W\right)$, which is a contradiction. Hence $n=3$ or 4 . If $n=3$, then $G \cong C_{3}$. If $n=$ 4, then $G \cong C_{4}$ or $K_{1}+\left(K_{2} \cup K_{1}\right)$ or $K_{4}-e$ or K_{4}. If G is $K_{1}+\left(K_{2} \cup K_{1}\right)$ or $K_{4}-e$ or K_{4}, then we can easily verify that $\operatorname{tr}\left(G\left(C_{k}\right)\right)>4$, which is a contradiction and hence $G \cong C_{4}$.

Conversely, let $G \cong P_{3}, C_{3}, P_{4}$ or C_{4}. Then by Theorems 3.11 and 3.12, $\operatorname{tr}\left(G\left(C_{k}\right)\right)=4$.

Theorem 4.3. Let G be a graph of order $n \geq 3$ and $k \geq$ 6. Then $\operatorname{tr}\left(G\left(C_{k}\right)\right)=n^{2}-2 n+1$ if and only if n is odd and $G \cong K_{n}$.

Proof. Let $\operatorname{tr}\left(G\left(C_{k}\right)\right)=n^{2}-2 n+1$. If n is even, by Theorem 3.6, $\operatorname{tr}\left(G\left(C_{k}\right)\right) \leq n^{2}-2 n$, which is a contradiction. Therefore n is odd. Now we claim that $G \cong K_{n}$. It is enough to prove that $m=\frac{n(n-1)}{2}$. Suppose $m<\frac{n(n-1)}{2}$. If $\delta(G) \geq 2$, then by Theorem 3.4, $\operatorname{tr}\left(G\left(C_{k}\right)\right) \leq 2\left[m-\beta_{1}(G)\right]$. Since $m<$ $\frac{n(n-1)}{2}$ and $\beta_{1}(G) \leq\left\lfloor\frac{n}{2}\right\rfloor, \quad \operatorname{tr}\left(G\left(C_{k}\right)\right)<2\left[\frac{n(n-1)}{2}-\left\lfloor\frac{n}{2}\right\rfloor\right]=n^{2}-$ $2 n-1$, which is a contradiction. If $\delta(G)=1$, then we can similarly prove that $\operatorname{tr}\left(G\left(C_{k}\right)\right)<n^{2}-2 n-1$. Hence $G \cong$ K_{n}. Conversely, let $G \cong K_{n}, n$ is odd. Then by Theorem 3.13, $\operatorname{tr}\left(G\left(C_{k}\right)\right)=n^{2}-2 n+1$.

Funding

The research work of the first author is supported by the University Grants Commission, New Delhi through Basic Science Research Fellowship (vide Sanction No.F.7-201/2007(BSR).

References

[1] Harary, F, Melter, R. A. (1976). On the metric dimension of a graph. Ars. Combin. 2: 191-195.
[2] Paulraj Joseph, J, Shunmugapriya, N. (2018). Resolving number of edge cycle graphs. Aryabhatta J. Math. Inform. 10(1): 01-16.
[3] Paulraj Joseph, J, Shunmugapriya, N. (2015). Total resolving number of a graph. Indian J. Maths 57(3): 323-343.
[4] Paulraj Joseph, J, Shunmugapriya, N. (2017). Total resolving number of edge cycle graphs $G\left(\mathrm{C}_{3}\right)$. Int. J. Math. Arch. 8(12): 214-219.
[5] Slater, P. J. (1975). Leaves of trees. In Proc. 6th Southeastern Conf. on Combinatorics, Graph Theory and Computing 14: 549-559.
[6] Zhang, P, Saenpholphat, V. (2003). Connected resolvability of graphs. Czech. Math. J. 53(4): 827-840.
[7] Zhang, P, Saenpholphat, V. (2003). On connected resolvability of graphs. Australas. J. Comb. 28: 25-37.

[^0]: CONTACT N. Shunmugapriya nshunmugapriya2013@gmail.com Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India.
 Fully documented templates are available in the elsarticle package on CTAN.
 © 2020 The Author(s). Published with license by Taylor \& Francis Group, LLC
 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

