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On the crossing number for Kronecker product of a tripartite graph with path

N. Shanthini and J. Baskar Babujee

Department of Mathematics, Anna University, Chennai, Tamil Nadu, India

ABSTRACT
The crossing number of a graph G, Cr(G) is the minimum number of edge crossings overall good
drawings of G. Among the well-known four standard graph products namely Cartesian product,
Kronecker product, strong product and lexicographic product, the one that is most difficult to
deal with is the Kronecker product. P.K. Jha and S. Devishetty have analyzed the upper bounds for
crossing number of Kronecker product of two cycles in, “Orthogonal Drawings and the Crossing
Numbers of the Kronecker product of two cycles”, J. Parallel Distrib. Comput. 72 (2012), 195–204.
For any graph G except K1, 1, 2 and K4 of order at most four, the graph G�Pn is planar. In this paper,
we establish the crossing number of Kronecker product of a complete tripartite graph K1, 1, 3 with
path and as a corollary, we show that its rectilinear crossing number is same as its crossing num-
ber. Also, we give the open problems on the crossing number of above mentioned graphs.

KEYWORDS
Drawing; crossing number;
Kronecker product; path;
rectilinear crossing number

1. Introduction

A drawing / of a (undirected simple) graph G ¼ ðV, EÞ is a
mapping f that assigns to each vertex in V a distinct point
in the plane and to each edge uv in E a continuous arc (i.e.,
a homeomorphic image of a closed interval) connecting f(u)
and f(v), not passing through the image of any other vertex.
In addition, a drawing, / is said to be good if: (1) no edge
crosses itself, (2) adjacent edges do not cross, (3) no three
edges have an interior point in common, (4) if two edges
share an interior point p, then they cross at p, and (5) any
two edges of a drawing cross atmost once (common interior
point). The total number of crossings in / is denoted by
Cr/ðEÞ or Cr/ðGÞ: A good drawing / of G is said to be
optimal if it exhibits the least possible number of crossings,
that is Cr/ðEÞ ¼ CrðGÞ: The crossing number Cr(G) of a
graph G is the number of crossings in any optimal drawing
of G in the plane. The drawings considered in this paper are
all good.

The crossing number of the complete bipartite graph
Km, n was given by Zarankiewicz [23] and it has been long
conjectured that CrðKm, nÞ ¼ bm2cbm�1

2 cbn2cbn�1
2 c: Kleitman

[13] established Zarankiewicz’s conjecture for every n and
1 � m � 6: Woodall [22] verified that for 7 � m � 8 and
7 � n � 10, the crossing number of Km, n equals
Zarankiewicz number Zm, n ¼ bm2cbm�1

2 cbn2cbn�1
2 c:

Let Cn be the cycle of length n, Pn be the path on n verti-
ces, nK1 denote the graph on n isolated vertices and Sn be
the star isomorphic to K1, n: Of all graph products, the
Cartesian product has received maximum attention and
there are several exact results on the crossing number of
Cartesian product of graphs with paths, cycles, and stars.

The Crossing number of G� Pn is known for all graphs G
of order at most five, see [11, 14, 15, 17] and for several
graphs G of order six is given in [4, 19]. The crossing num-
ber of G� Cn is established for all graphs G with at most
four vertices in [1, 10] and for some graphs on five or six
vertices [6, 14, 18]. The crossing number of G� Sn for all
graphs G of orders three or four is determined in [11, 14,
15] and for some graphs of order five is given in [10, 16, 17,
20]. Jha and Devishetty have analyzed the upper bounds for
crossing number of Kronecker product of two cycles in [12].

Definition 1.1. The Kronecker product G1�G2 of two
graphs G1 ¼ ðV1,E1Þ and G2 ¼ ðV2,E2Þ is said to be G ¼
ðV, EÞ where V ¼ V1 � V2 and for any two typical vertices
w1 ¼ ðu1, v1Þ and w2 ¼ ðu2, v2Þ with ui 2 V1 and vi 2 V2,
we have w1w2 2 E iff u1u2 2 E1 and v1v2 2 E2:

This product is variously known as direct product,
Tensor product, cardinal product, cross product and graph
conjunction. In this paper, we initiate the study of determin-
ing the crossing number for Kronecker product of graphs
and establish the crossing number of Kronecker product of
a complete tripartite graph K1, 1, 3 and Pn in theoretical
approach. We use a term “region” in nonplanar drawings, in
such case, crossings are considered to be vertices of
the “map”.

Wagner [21] and Fary [7] proved independently that
every graph that can be drawn in the plane without cross-
ings can be so drawn in such a way that all the edges are
straight lines. Following from this, Harary and Hill [9]
defined the straight-line crossing number CrðKnÞ (later
called the linear or rectilinear crossing number) to be the
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smallest possible number of crossings needed when the
complete graph is drawn with straight lines in the plane.

Definition 1.2. The rectilinear crossing number of a graph G
is the minimum number of crossings in a drawing of G in the
plane with straight edges and nodes in general position.

Always CrðGÞ � CrðGÞ: Extending the result of Wagner
and Fary mentioned above, Bienstock and Dean [2, 3]
showed that if CrðGÞ � 3, then CrðGÞ ¼ CrðGÞ: With com-
plete graphs Kn, these values are indeed equal for n � 7 and
for n ¼ 9, but for n¼ 8, we have CrðK8Þ ¼ 18 (Guy [8])
and CrðK8Þ ¼ 19: For n¼ 10, CrðK10Þ ¼ 60: Brodsky et al.
[5] proved that CrðK10Þ ¼ 62: It is interesting to observe
that the rectilinear crossing number of K1, 1, 3�Pn is same as
its crossing number.

2. Main results

Consider a graph K1, 1, 3�Pn obtained as the Kronecker prod-
uct of K1, 1, 3 and Pn. Let ti, j represent a vertex (ui, vj) of
K1, 1, 3�Pn with ui 2 VðK1, 1, 3Þ and vj 2 VðPnÞ: From defin-
ition 1.1, the Kronecker product of K1, 1, 3 and Pn is a simple
connected graph K1, 1, 3�Pn with a vertex set V ¼ [n

j¼1Vj and
an edge set E ¼ [n�1

j¼1 Ej where, Vj ¼ ft1, j, t2, j, t3, j, t4, j, t5, jg and
Ej ¼ fti, jt2, jþ1, ti, jt4, jþ1 : i ¼ 1, 3, 5g [ ft2, jti, jþ1 : i ¼ 1, 3, 4, 5g
[ft4, jti, jþ1 : i ¼ 1, 2, 3, 5g: Then we have, jVðK1, 1, 3�PnÞj ¼
5n; jEðK1, 1, 3�PnÞj ¼ 14ðn� 1Þ; dðK1, 1, 3�PnÞ ¼ 2 and
DðK1, 1, 3�PnÞ ¼ 8 such that, the vertices t2, j, t4, jðj ¼
2, 3, :::, n� 1Þ holds a maximum degree eight; the vertices
ti, 1, ti, nði ¼ 1, 3, 5Þ has a minimum degree two and all other
vertices receives a degree four. One can find that the vertices
t1, j, t3, j and t5, j are adjacent to only t2, j61 and t4, j61 in

K1, 1, 3�Pn, for all j ¼ 2, 3, :::, n� 1: We write Eðti, jÞ for the set
of all edges incident to ti, j: Let Hj ¼ Eðt1, jÞ [ Eðt3, jÞ [ Eðt5, jÞ
be such a subgraph of K1, 1, 3�Pn, for 2 � j � n� 1:

Let G be a graph homeomorphic to 3K1 þ 2K2, where
3K1 and 2K2 are induced on the vertices fz1, z2, z3g and
fx1, x2, x3, x4g respectively, such that the edges x1x4 and x2x3
are subdivided through y4 and y2 respectively, as shown in
Figure 1(a). For yi 62 VðGÞ, let G� be a graph obtained by
adding a vertex yi and the edges joining yi to a pair of
non-adjacent vertices xi and xiþ1 in G, followed by adding
two edges yiy2 and yiy4, where i 2 f1, 3g: That is, VðG�Þ
¼ VðGÞ [ fyig and EðG�Þ ¼ EðGÞ [ fxiyi, xiþ1yi, y2yi, y4yig
where i 2 f1, 3g:

Thus by performing (�) operation for i¼ 1, we obtain a
graph G� from G, and similarly for another value i¼ 3, the
graph G�� is obtained from G�: The Figure 1(a–c) represents
a good drawing of the graphs G, G�, and G�� respectively.
At first, we find the crossing number of the graphs G� and
G�� in terms of the crossing number of G and G�

respectively.

Lemma 2.1. CrðG�Þ ¼ CrðGÞ þ 2 and CrðG��Þ ¼ CrðG�Þ þ 2:

Proof. The graph G contains K4, 3 as its subgraph and has a
good drawing with two crossings as in Figure 1(a), shows
CrðGÞ ¼ 2: The graph G� is obtained from G by adding a
vertex y1 62 VðGÞ and the edges x1y1, x2y1, y1y2 and y1y4: In
Figure 1(b), there is a decomposition into two edge-disjoint
subgraphs K4, 3 and Eðy1Þ [ Eðy2Þ [ Eðy4Þ in the drawing of
a graph G�, which has two crossings among the edges of
[3
1EðziÞ ffi K4, 3, (a subgraph of G), and two crossings

between the edges of Eðy1Þ [ Eðy2Þ [ Eðy4Þ and the edges of
K4, 3, implies CrðG�Þ � 4 ¼ CrðGÞ þ 2: Let W be a subgraph
of G� induced by the edges of Eðy1Þ [ Eðy2Þ [ Eðy4Þ: Since
[3
1EðziÞ ffi K4, 3, we have Cr/ð[3

1EðziÞÞ � 2: If the edges of
W are crossed at least twice either within or with the edges
of [3

1EðziÞ, the result is trivial. Assume that the edges of W
cross at most once. Let S ¼ fx1, x2, x3, x4g be a subset
of VðG�Þ:

Case (i). If the edges of W cross EðziÞ, say, Eðz1Þ, then
clearly, Cr/ðW,Eðz1ÞÞ ¼ 1 and there must be no crossing
in W. Since W is an outerplanar graph, it follows that
either every vertices in S are placed in a same region, or
any edge incident to a pendent vertex can be moved into a
triangular region bounded by its adjacent edges as shown
in Figure 2.

Now in W [ Eðz1Þ, there exist no region with all the verti-
ces in S on its boundary, and with the fact that W [ Eðz1Þ [
EðziÞ contains a subgraph homeomorphic to K4, 3, implies, for
one of zi (except z1), say z2, either Cr/ðW, Eðz2ÞÞ � 1 or
Cr/ðEðz1Þ, Eðz2ÞÞ � 1: If Cr/ðW,Eðz2ÞÞ � 1, then clearly we
have Cr/ðW,Eðz1Þ [ Eðz2ÞÞ � 2, a contradiction. If
Cr/ðEðz1Þ, Eðz2ÞÞ � 1 with Cr/ðW, Eðz2ÞÞ ¼ 0 then in W [
Eðz1Þ [ Eðz2Þ, there is no region having more than two verti-
ces in S on its boundary, confirms at least two crossings
between the edges of Eðz3Þ andW [ Eðz1Þ [ Eðz2Þ:

Case (ii). If the edges of W do not cross the edges of
EðziÞ, then all the vertices in S are placed in the unique
region of the subdrawing W. Without loss of generality,

Figure 1. A good drawing of G, G� , and G�
�
:
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assume that Cr/ðW, Eðz1ÞÞ ¼ 0: From Figure 3, Eðz1Þ
divides the plane such that exactly two vertices in S lies on
the boundary of every region, yields at least four crossings
between the edges of W [ Eðz1Þ and Eðz2Þ [ Eðz3Þ: Thus
CrðG�Þ � 4 ¼ CrðGÞ þ 2, implies CrðG�Þ ¼ CrðGÞ þ 2:

Similarly, for a graph G�� obtained from G� by applying
(�) operation for i¼ 3, we have CrðG��Þ ¼ CrðG�Þ þ 2: It
follows that, CrðG�Þ ¼ 4 and CrðG��Þ ¼ 6: w

Lemma 2.2. In any drawing of K1, 1, 3�Pnðn � 3Þ, there is at
least four crossings on the edges of every Hj for 2 � j � n� 1:

Proof. Let / be a drawing of K1, 1, 3�Pn: Since the crossing
number of K4, 3 is known to be two and Hj ffi K4, 3,

implicates Cr/ðHjÞ � 2: Suppose there exist a pair of sub-
graphs Hj and Hk, such that Cr/ðHj,HkÞ > 0, for all j, k ¼
2, 3, :::, n� 1, j 6¼ k: Since K4, 3 is 3-connected and for each
j ¼ 2, 3, :::, n� 1, we have Hj ¼ Eðt1, jÞ [ Eðt3, jÞ [ Eðt5, jÞ ffi
K4, 3, implies Cr/ðHj,HkÞ � 3: Then there appear at least
five crossings on the edges of Hj. Suppose there is no cross-
ing between any pair of subgraphs Hj and Hk, for j, k ¼
2, 3, :::, n� 1, j 6¼ k: In a drawing of K1, 1, 3�Pn, along with
the edges of Hj, we have the vertices t2, j61ðt4, j61Þ are con-
nected to t4, jðt2, jÞ and there is a vertex t5, j�1 adjacent to
both t2, j and t4, j, as shown in Figure 4. Moreover
Cr/ðHj,Hj�1Þ ¼ 0 implies, by contracting a path t2, jt5, j�1t4, j
to a vertex, we obtain a resulting graph isomorphic to K4, 4:
Since CrðK4, 4Þ ¼ 4, we have Cr/ðHjÞ � 4: w

Figure 2. The possible drawings of W with zero crossing.
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Lemma 2.3. CrðK1, 1, 3�PnÞ ¼ 4ðn� 2Þ, for n¼ 2, 3, 4.

Proof. The graph K1, 1, 3�P2 is planar implies
CrðK1, 1, 3�P2Þ ¼ 0: Since the graph K1, 1, 3�P3 has a good
drawing with four crossings as shown in Figure 5(a), we
have CrðK1, 1, 3�P3Þ � 4: Then by Lemma 2.2, CrðK1, 1, 3�P3Þ
� 4 yields CrðK1, 1, 3�P3Þ ¼ 4: Also, there exist a good draw-
ing for the graph K1, 1, 3�P4 with eight crossings as in Figure
5(b) and by Lemma 2.2, it follows that CrðK1, 1, 3�P4Þ ¼ 8: w

Lemma 2.4. If / is a drawing of K1, 1, 3�Pn and every Hj

ð2 � j � n� 1Þ has at most five crossings, then every vertices
in a set Sj ¼ ft2, j61, t4, j61g are placed in the unique region of
a subdrawing ðK1, 1, 3�PnÞ Hj:

Proof. Suppose not all the vertices in a set Sj are placed in a
same region. Consider a region with at most three vertices
in Sj on its boundary. Since all the three vertices t1, j, t3, j and

t5, j are connected to each vertex in Sj, we have at least
three crossings appear between the edges of Hj and the
edges on a boundary of the considered region. Also Eðt1, jÞ [
Eðt3, jÞ [ Eðt5, jÞ ffi K4, 3, implies Cr/ðEðt1, jÞ [ Eðt3, jÞ [
Eðt5, jÞÞ � 2: Suppose that for 2 � k, j � n� 1, k 6¼ j, there
exist Hk ðk 6¼ jÞ, such that, Cr/ðHj,HkÞ > 0: Then
Cr/ðHj,HkÞ � 3, implies there is at least eight crossings on
the edges of Hj, which contradicts the assumption of a
Lemma. Thus, no edge of Hj is crossed with an edge of Hk,
for 2 � k, j � n� 1, k 6¼ j: Since the vertices t1, j, t3, j and t5, j
are connected to each vertex in Sj and the vertices
t2, j61ðt4, j61Þ are adjacent to t4, jðt2, jÞ with t5, j�1 joined to
both t2, j and t4, j implies, by contracting a path t2, jt5, j�1t4, j to
a vertex, we obtain a resulting graph isomorphic to K4, 4:
Thus Cr/ðHjÞ � 4: Then there are at least seven crossings
on the edges of Hj. Again, a contradiction confirms that, in
a subgraph ðK1, 1, 3�PnÞ Hj, all the vertices in Sj are placed
in a same region. w

Figure 3. The possible drawings of W with every v 2 S placed in a same region.

4 N. SHANTHINI AND J. BASKAR BABUJEE



Lemma 2.5. If / is a drawing of K1, 1, 3�Pnðn � 4Þ, where
every subgraph Hj ð2 � j � n� 1Þ has at most five crossings,
then Cr/ðHj,HkÞ ¼ 0, for 1 � k, j � n, k 6¼ j:

Proof. Suppose that Cr/ðHj,HkÞ 6¼ 0: Let us consider two
following cases:

Case (i). Suppose Hj crosses at least two different sub-
graphs Hk and Hl ðj 6¼ k 6¼ lÞ: Since Cr/ðHj,HkÞ � 3 and

Cr/ðHj,HlÞ � 3, then there are at least six crossings on the
edges of Hj, which is a contradiction.

Case (ii). Suppose Hj cross only one subgraph Hk ðk 6¼ jÞ:
If H1 cross H2, then we consider H2. If Hn�1 cross Hn, then we
consider Hn�1: Since there exist two adjacent copies Hj�1 and
Hjþ1 of Hj, we have at least one adjacent copy, say Hj�1, which
does not cross Hj. Then with the edges fti, jt2, j61, ti, jt4, j61 : i ¼
1, 3, 5g [ ft2, jt4, j61, t4, jt2, j61, t2, jt5, j�1, t4, jt5, j�1g, by contract-
ing a path t2, jt5, j�1t4, j to a vertex, we obtain a resulting graph
isomorphic to K4, 4: Thus Cr/ðHjÞ � 4 and Cr/ðHj,HkÞ � 3,
shows there exist at least seven crossings on the edges of Hj.
This is a contradiction to the assumption of the Lemma. w

From Lemma 2.4 and Lemma 2.5, we can state the fol-
lowing proposition:

Proposition 2.1. If / is a drawing of K1, 1, 3�Pnðn � 4Þ,
where every subgraphs Hj ð2 � j � n� 1Þ has at most five
crossings, then there is no crossing on the edges incident with
two degree vertices and on the edges of the paths
t4, 2t2, 3t4, 4:::tr1, n�1 and t2, 2t4, 3t2, 4:::tr2, n�1 respectively. If n is
even, r1 ¼ 2 and r2 ¼ 4; and if n is odd, r1 ¼ 4 and r2 ¼ 2:

Theorem 2.1. If / is a drawing of K1, 1, 3�Pnðn � 4Þ, where
every Hj ð2 � j � n� 1Þ has at most five crossings, then /
has at least 6ðn� 3Þ þ 2 crossings.

Proof. Consider a subgraph H0
j : 2 � j � n� 1 induced on

the vertices ft2, j, t2, j61, t2, j62, t4, j, t4, j61, t4, j62, t5, j61g of
K1, 1, 3�Pn: From Figure 6, clearly, for each 3 � j � n� 2,
H0

j contains the cycles C1 : t2, jt5, j�1t4, jt5, jþ1t2, j and C2 :

Figure 4. A subdrawing induced by the edges of Hj [ ft4, j t2, j61, t2, j
t4, j61, t2, j t5, j�1, t4, j t5, j�1g:

Figure 5. A good drawing of K1, 1, 1�P3 and K1, 1, 1�P4:

Figure 6. The possible drawings of H0
j [ Hj with Cr/ðH0

jÞ ¼ 0 and Cr/ðH0
j ,HjÞ ¼ 0:
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t2, jt4, j�1t2, j�2t5, j�1t4, j�2t2, j�1t4, jt2, jþ1t4, jþ2t5, jþ1t2, jþ2t4, jþ1t2, j,
shows that H0

j [ Hj is homeomorphic to G�� : By Lemma 2.5,
Cr/ðHj,HkÞ ¼ 0 (for 2 � k, j � n� 1, k 6¼ jÞ, implies from
Lemma 2.4 and Proposition 2.1, all the vertices t2, j61 and
t4, j61 are to be placed in the unique region of the subdraw-
ing of ðK1, 1, 3�PnÞnHj in /, such that, there must be no
crossing among the edges of H0

j , and Cr/ðH0
j ,HjÞ ¼ 0, for

3 � j � n� 2: Then each vertex t1, j, t3, j and t5, j has to be
placed in this considered region as shown in Figure 6, either
inside or outside the cycle C2. It is clear that, by Lemma 2.1,
the edges of Hj ðj ¼ 3, 4, :::, n� 2Þ has at least six crossings.
Moreover each Hj and Hk are edge-disjoint subgraphs of
K1, 1, 3�Pn for 2 � j, k � n� 1, j 6¼ k, implies the crossings
on the edges of each Hj must be distinct. Hence at least
6ðn� 4Þ crossings appear on the edges of [n�2

3 Hj: By
Lemma 2.2, we have at least four crossings on the edges of
H2 and Hn�1, respectively. Therefore, there exist at least
6ðn� 3Þ þ 2 crossings in /: w

Theorem 2.2. CrðK1, 1, 3�PnÞ ¼ 6ðn� 3Þ þ 2, for n � 4:

Proof. Consider a good drawing / of K1, 1, 3�Pn such that,

(i) /ðt1, 1Þ ¼ ð0:5, 0Þ, /ðt2, 1Þ ¼ ð�1, 0:5Þ, /ðt3,1Þ¼ð1,0Þ,
/ðt4,1Þ ¼ ð�1,�0:5Þ, /ðt5,1Þ ¼ð2,0Þ, /ðt2,nÞ¼ðð�1Þn
1 þ 3 bn�2

2 c� �
, ð�1Þn�1 0:5Þ, / ðt4,nÞ ¼ ðð�1Þn 1þ3ð

bn�2
2 cÞ, ð�1Þn0:5Þ:

(ii) for 2 � j � n,/ðti, jÞ ¼ ðð�1Þjþ1 bi�1
2 c þ 3bj�1

2 c
� �

, 0Þ,
where i¼ 1, 3, 5;

(iii) for 2� j�n�1,/ðt2,jÞ¼ðð�1Þjð2þ3bj�2
2 cÞ, ð�1Þjþ1

bjþ1
2 cÞ; and /ðt4, jÞ¼ðð�1Þjð2þ3bj�2

2 cÞ, ð�1Þjbjþ1
2 cÞ:

(iv) the image of each edge is a straight-line segment
except the edges t2, n�1t4, n and t4, n�1t2, n:

By above construction, a good drawing of K1, 1, 3�Pn
obtained with 6ðn� 3Þ þ 2 crossings, shows that,
CrðK1, 1, 3�PnÞ � 6ðn� 3Þ þ 2: For illustration, we show a
good drawing of K1, 1, 3�P6 (rotated vertically) in Figure 7. For
convenience, let us denote a vertex or an edge in the drawing /
simply by x instead of the image of x, /ðxÞ: Let us prove the
reverse inequality by induction on n � 4: From Lemma 2.3, we
have CrðK1, 1, 3�P4Þ ¼ 8: Thus, the result is true for n¼ 4.

Assume that Cr/ðK1, 1, 3�PkÞ � 6ðk� 3Þ þ 2ðk � 4Þ, and
suppose there is a drawing of K1, 1, 3�Pkþ1 with fewer than
6ðk� 2Þ þ 2 crossings. Then by Theorem 2.1, some Hj ðj ¼
2, 4, :::, n� 1Þ has crossed at least six times and
Cr/ðK1, 1, 3�Pkþ1Þ � Cr/ðK1, 1, 3�PkÞ < 6: Moreover by the
removal of Vj, j 2 f1, kþ 1g from K1, 1, 3�Pkþ1, we obtain a
graph isomorphic to K1, 1, 3�Pk implies, the graph
K1, 1, 3�Pkþ1 contains K1, 1, 3�Pk as its subgraph which has a
drawing with fewer than 6ðk� 3Þ þ 2 crossings. This contra-
diction to the induction hypothesis, shows that in any draw-
ing, Cr/ðK1, 1, 3�PnÞ � 6ðn� 3Þ þ 2: w

Since from Figure 7, one can easily find a rectilinear
drawing of K1, 1, 3�Pn, by placing the vertices t2, n�1 and
t4, n�1 appropriately so as to draw the edges t2, n�1t4, n and
t4, n�1t2, n in straight line segments, with exactly 6ðn� 3Þ þ 2
crossings. Also, for any graph G, CrðGÞ � CrðGÞ implies the
next Corollary 2.1 can be stated as follows.

Corollary 2.1. CrðK1, 1, 3�PnÞ ¼ 6ðn� 3Þ þ 2:

3. Conclusion

Among all the graphs of order at most four, we find only
the graphs K1, 1, 2 and K4, for which their Kronecker product
with the path is non-planar and we state their crossing
number as the open problems:

Open Problem 1. CrðK1, 1, 2�PnÞ ¼ 2ðn� 2Þ, for n> 2.

Open Problem 2. CrðK4�PnÞ ¼ 4, for n ¼ 3;
4ðn� 1Þ, for n � 4:

�

In future, we extend our work to determine the exact
value of crossing number for graphs obtained from different
graph operations.

Figure 7. A good drawing of K1, 1, 3�P6:
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