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On the total and AVD-total coloring of graphs

B. S. Panda, Shaily Verma, and Yash Keerti

Department of Mathematics, Indian Institute of Technology Delhi, New Delhi, India

ABSTRACT
A total coloring of a graph G is an assignment of colors to the vertices and the edges such that (i)
no two adjacent vertices receive same color, (ii) no two adjacent edges receive same color, and
(iii) if an edge e is incident on a vertex v, then v and e receive different colors. The least number
of colors sufficient for a total coloring of graph G is called its total chromatic number and denoted
by v00ðGÞ: An adjacent vertex distinguishing (AVD)-total coloring of G is a total coloring with the
additional property that for any adjacent vertices u and v, the set of colors used on the edges inci-
dent on u including the color of u is different from the set of colors used on the edges incident
on v including the color of v. The adjacent vertex distinguishing (AVD)-total chromatic number of G,
v00aðGÞ is the minimum number of colors required for a valid AVD-total coloring of G. It is conjec-
tured that v00ðGÞ � DðGÞ þ 2, which is known as total coloring conjecture and is one of the famous
open problems. A graph for which the total coloring conjecture holds is called totally colorable
graph. The problem of deciding whether v00ðGÞ ¼ DðGÞ þ 1 or v00ðG ¼ DðGÞ þ 2 for a totally color-
able graph G is called the classification problem for total coloring. However, this classification
problem is known to be NP-hard even for bipartite graphs. In this paper, we give a sufficient con-
dition for a bipartite biconvex graph G to have v00ðGÞ ¼ DðGÞ þ 1: Also, we propose a linear time
algorithm to compute the total chromatic number of chain graphs, a proper subclass of biconvex
graphs. We prove that the total coloring conjecture holds for the central graph of any graph.
Finally, we obtain the AVD-total chromatic number of central graphs for basic graphs such as
paths, cycles, stars and complete graphs.
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1. Introduction

The graphs considered in this paper are simple and undir-
ected. For a graph G ¼ ðV ,EÞ, the sets NðvÞ ¼ fu 2
VðGÞjuv 2 Eg and N½v� ¼ NðvÞ [ fvg denote the open neigh-
borhood and closed neighborhood of a vertex v, respectively.
The degree of a vertex v is jNðvÞj and is denoted by d(v). If
d(v) ¼ 1, then v is called a pendant vertex. For S � V, let
G½S� denote the subgraph induced by G on S. A central
graph of a graph G ¼ ðV,EÞ, denoted by C(G), is obtained
by joining all the non-adjacent vertices in G and subdividing
each edge of G exactly once. The set of vertices of C(G) is
then given by VðCðGÞÞ ¼ V1 [ V2 where V1 contains the
vertices of graph G and V2 contains the new added vertices.
The edge set EðCðGÞÞ ¼ Eð�GÞ [ fuv, uv0ju subdivide the
edge e where e ¼ vv0 2 EðGÞg:

A bipartite graph is a graph whose vertex set can be par-
titioned into two sets X and Y such that every edge has its
endpoints in different sets. Given a bipartite graph G ¼
ðX,Y , EÞ, a chain ordering of X is an ordering rðXÞ ¼
ðx1, x2, :::, xnÞ such that the neighborhoods of the vertices of
X form a chain, that is, Nðx1Þ � Nðx2Þ � � � � � NðxnÞ: A
bipartite graph GðX,Y , EÞ is said to be chain graph if there
exists a chain ordering of X. If G is a chain graph, then the
neighborhoods of the vertices of Y also form a chain, that is,

there exists rðYÞ ¼ fy1, y2, :::, ytg such that Nðy1Þ �
Nðy2Þ � � � � � NðytÞ: Next, given a bipartite graph G ¼
ðX,Y , EÞ a convex ordering of set X is a linear ordering
rðXÞ ¼ ðx1, x2, :::, xnÞ such that for every vertex y in Y,
neighbors of y are consecutive vertices in rðXÞ: A bipartite
graph is said to be a biconvex graph, if there exist convex
orderings for both X and Y, simultaneously. The relationship
between these two subclasses of bipartite graphs is as follows:

Bipartite graphs � Biconvex graphs � Chain graphs

A total coloring of a graph G is an assignment of colors
to the vertices and the edges such that (i) no two adjacent
vertices receive same color, (ii) no two adjacent edges
receive same color, and (iii) if an edge e is incident on a
vertex v, then v and e receive different colors. The least
number of colors sufficient for a total coloring of graph G is
called its total chromatic number and denoted by v00ðGÞ: The
concept was first introduced by Behzad in 1965 [1]. Clearly,
v00ðGÞ � DðGÞ þ 1: The well known total coloring conjecture
which has been posed independently by Behzad [1] and
Vizing [14] states that, v00ðGÞ � DðGÞ þ 2: The graphs with
total chromatic number equals to ðDðGÞ þ 1Þ and ðDðGÞ þ
2Þ are called type 1 graph and type 2 graph, respectively. The
conjecture is still open for general graphs. However, it has
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been verified for many graph classes such as interval graphs
[2], dually chordal graphs [6], unicord-free graphs [9], split
graphs [3], bipartite graphs etc. The classification problem,
that is, to classify the graphs as type 1 and type 2 graphs,
for bipartite graphs is known to be NP-complete [10]. In
this paper, we investigate the classification problem in sub-
classes of bipartite graphs.

Let G ¼ ðV ,EÞ be a graph with order at least 2, k be a
positive integer and f be a total k-coloring of G. Define the set,
CðuÞ ¼ ff ðuÞg [ ff ðuvÞjuv 2 EðGÞg for each vertex u 2
VðGÞ: The coloring f is called an adjacent vertex distinguishing
(AVD) total k-coloring of graph G, if for every edge uv 2
EðGÞ,CðuÞ 6¼ CðvÞ: The least integer k such that there exists
an AVD-total k-coloring of G, is called adjacent vertex distin-
guishing (AVD) total chromatic number of G and denoted by
v0a0ðGÞ: This concept was introduced by Zhang et al. [18] in
2005. The authors also posed the AVD-total coloring conjecture
which states that, for any graph G, v0a0ðGÞ � DðGÞ þ 3: This
conjecture is open for general graphs. However, the conjecture
has known to be true for many families of graphs such as
complete graphs [18], hypercubes [4], indifference graphs [12],
planar graphs with DðGÞ � 14 [16], outerplanar graphs [17],
4-regular graphs [11], graphs with DðGÞ ¼ 3 [5, 8, 15].

The method of pullbacks for total colorings was first used
in [6] to establish total coloring results for dually chordal
graphs. We use this method in the next section to establish
result for biconvex bipartite graphs. First, we explain the
method of pullback here.

A pullback from G to G0 is a function f : VðGÞ ! VðG0Þ,
such that:

1. f is a homomorphism, i.e., if xy 2 EðGÞ then f ðxÞf ðyÞ 2
EðG0Þ:

2. f is injective when restricted to N(x), for all x 2 VðGÞ:
The main use of pullbacks is to transfer colorings.

Theorem 1.1. [6] If f is a pullback from G to G0 and s0 is a
total coloring of G0, then the color assignment s defined by:

sðxÞ ¼ s0ðf ðxÞÞ
sðxyÞ ¼ s0ðf ðxÞf ðyÞÞ is a total coloring of G.

The organization of the paper is as follows: In Section 2, we
study the total coloring in biconvex graphs and give an algo-
rithm to compute total chromatic number of chain graphs. In
Section 3, we validate the total coloring conjecture for central
graph of any graph. In Section 4, we investigate AVD-total col-
oring in central graph of path, cycle, star and complete graph.

2. Total coloring in subclasses of bipartite graphs

In this section, we study the total coloring problem for
chain graphs and biconvex graphs, which are subclasses of
bipartite graphs. We give a sufficient condition for a bicon-
vex bipartite graph to be type 1 graph.

Theorem 2.1. Let G ¼ ðX,Y ,EÞ be a bipartite biconvex
graph. If all the vertices of maximum degree D belong to the
same part, then v00ðGÞ ¼ DðGÞ þ 1:

Proof. Without loss of generality, assume that all the vertices
of maximum degree D belong to X. Let X ¼ fx1, x2, :::, xng
and Y ¼ fy1, y2, :::, ytg: To prove this result we are going to
use the method of pullbacks from the given graph G to
complete bipartite graph KD	1,D: We know that KD	1,D has
a total coloring using Dþ 1 colors. So if we can show a
valid pullback function, using Theorem 1.1 we are done.
Assume that KD	1,D ¼ ðU,V,EÞ where U ¼ fu1, u2, u3, :::,
uD	1g and V ¼ fv1, v2, v3, :::, vDg: Consider the following
pullback function f from G to KD	1,D:

f ðxiÞ ¼ ui mod D	1 for all i, 1 � i � n,
f ðyjÞ ¼ vj mod D for all j, 1 � j � t:

It is easy to see that f is a homomorphism as for any
edge uv 2 G, f ðuÞf ðvÞ 2 KD	1,D: Now we have to show that,
f is injective on N(v) for v 2 G: Note that since G is bicon-
vex, the neighbors of any vertex v in X (or Y) are consecu-
tive in Y (or X). From this, it follows that the indices of the
neighbors of v are always going to give different residues
modulo D, if v 2 X and modulo D	 1 if v 2 Y: It implies
that f is injective for any v 2 G: w

Next, we study the total coloring in chain graphs which
is a subclass of biconvex graphs.

Theorem 2.2. A connected chain graph G ¼ ðX,Y , EÞ with
jXj 6¼ jYj, is a type 1 graph.

Proof. Let G ¼ ðX,Y ,EÞ be a connected chain graph with
jXj 6¼ jYj: Let jXj ¼ n and jYj ¼ m, where n>m. It implies
that, DðGÞ ¼ n: We take a pullback function f which is iden-
tity function from graph G to complete graph Km, n: We know
that, v00ðKm, nÞ ¼ nþ 1 as n>m. Assume that s0 be the
ðnþ 1Þ-total coloring of Km, n: Therefore, the total coloring
obtained from s0, defined in Theorem 1.1 is a ðnþ 1Þ-total
coloring of graph G. Hence, G is type 1 graph. w

Lemma 2.1. Let G ¼ ðX,Y ,EÞ be a connected chain graph
such that jXj ¼ jYj. If G has a pendant vertex, then G is type
1 graph.

Proof. Let G ¼ ðX,Y , EÞ be a connected chain graph with
jXj ¼ jYj ¼ n: Let v be a pendant vertex of G. Note that
G0 ¼ G n fvg is a connected chain graph with partite sets of
different sizes. Therefore G0 can be total-colored using ðnþ
1Þ colors, by Theorem 2.2. Let u be the only vertex adjacent
to v in G. It follows that, u has at most n – 1 neighbors in
G0 and so at least one color is free on vertex u which can be
used to color the edge uv. Now vertex v can be colored with
any available color. Thus, we obtained a total coloring of G
using nþ 1 colors. Hence G is a type 1 graph. w

Lemma 2.2. In any total coloring of a complete bipartite
graph Kn, n	1 ¼ ðX,Y , EÞ, jXj ¼ n, with ðnþ 1Þ colors, the
vertices in X must all get distinct colors.

Proof. Let f be a total coloring of Kn, n	1 with ðnþ 1Þ colors.
Assume that the vertices u, v 2 X such that f ðuÞ ¼ f ðvÞ ¼ c:
Now, for any vertex w 2 Y , d(w) ¼ n and so f ðwÞ 6¼ c:
Therefore, exactly one of the edges incident on w will be
colored with color c. It follows that every vertex in Y must
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have an edge colored c incident on it because degree of each
vertex in Y is n and number of colors used is nþ 1. Note
that, none of the c colored edge is incident on u and v.
Since there are ðn	 2Þ vertices in X 	 fu, vg, two c colored
edges must be adjacent which is a contradiction. Thus, all
vertices in X get distinct colors. w

Next result we prove with the help of Lemma 2.2.

Theorem 2.3. Let G ¼ ðX,Y , EÞ be a connected chain graph
with jXj ¼ jYj ¼ n and G has no pendant vertex. If the min-
imum degree in any partite set is ðn	 1Þ, then G is type 2 graph.

Proof. Let the minimum degree in partite set X be ðn	 1Þ:
Therefore, all the vertices in Y except one will have degree
n. Let v 2 Y be such that d(v) < n. Note that the graph G	
fvg is complete bipartite graph Kn, n	1: It implies that, G be
type 1 and there exists a ðnþ 1Þ-total coloring of G. Using
the previous Lemma 2.2, all the vertices in X (the larger
part) get different colors. It implies that, all the vertices in
Y n fvg get the same color, say color 1. Also, d(v) > 1 as G
does not have a pendant vertex. Suppose that v is adjacent
to two vertices y, z 2 X: Now, 1 must be the only color
missing at both these vertices in the total coloring of G n
fvg: Thus, the edges vy and vz both must be colored with
color 1 which is a contradiction. Thus, G must be type 2. w

Theorem 2.4. Let G ¼ ðX,Y , EÞ be a connected chain graph
with jXj ¼ jYj ¼ n. If kth minimum degree in any partite set
is at most k for any k, 1 � k � n	 1, then G is type 1 graph.

Proof. Let G be a chain graph with degree sequence of X being
DðXÞ ¼ ðk, k, :::kðk timesÞ, n, n, :::, nðn	 k timesÞÞ for any
k, 1 � k � n	 1: We show that the result holds for graph G.
Any other graph G0 satisfying the hypothesis of the theorem is
a subgraph of graph G, for some value of k, with same max-
imum degree and so G0 can be colored by restricting the total
coloring of G to G0: Observe that, the degree sequence of Y is
DðYÞ ¼ ðn, n, :::, nðk timesÞ, n	 k, n	 k, :::, ðn	 k timesÞÞ as
G is a chain graph. Therefore without loss of generality, k �
n=2: We partition the set X into two sets X1 and X2 where the
former has the vertices with degree n, and the latter has the
vertices with degree k. Now, we consider the subgraph of G	
GðX1,YÞ and totally color it using nþ 1 colors as follows:

The vertices in X1 get color nþ 1, the ith vertex in chain
ordering of Y gets color i and the edge xiyj gets color ðiþ
jÞðmod nÞ, for 1 � i � n	 k and 1 � j � n:

Now, we extend above coloring to a total coloring of G
as follows:

Color the edge yixj from Y to X2 with color ðiþ n	 kþ
jÞðmodðnþ 1ÞÞ and color the vertex xj in X2 with color n	
kþ j, for 1 � j � k:
Since k � n=2, the coloring is proper. Thus the graph G is
Type 1. w

Unfortunately, none of the above conditions is necessary
and thus the results presented above are only partial. The
complete result, i.e., a necessary and sufficient condition for
a chain graph to be type 1 turned out to be a little more
involved and could only be derived using Hilton’s [7] result
for Nearly Complete Graphs. Thus, we must take a detour

and briefly discuss his result before presenting the final
result for Chain graphs. A subset M 
 E of a graph G ¼
ðV, EÞ is called a matching if no two edges in M are adja-
cent. The matching problem for a graph is to find a match-
ing of maximum cardinality.

Theorem 2.5. [7] Let J be a subgraph of Kn, n with n � 1
and e ¼ jEðJÞj and j(J) be the maximum size (i.e., number of
edges) of a matching in J. Then v00ðKn, n n EðJÞÞ ¼ nþ 2 if
and only if eþ j � n	 1:

Hilton successfully linked the problem of total coloring in
bipartite graphs to the maximum matching problem in bipart-
ite graphs. Note that the maximum matching problem in
bipartite graphs can be solved in polynomial time. It can only
be used to determine the total chromatic number of subgraphs
of Kn, n with maximum degree n. But for general bipartite
graphs which have arbitrary maximum vertex degree, this
result is not useful. Fortunately for us, chain graphs are indeed
such graphs with maximum degree n. As a corollary of the
above result, we can easily get the following necessary and suf-
ficient condition for a chain graph to be type 1.

Corollary 2.1. A connected chain graph G ¼ ðX,Y , EÞ with
jXj ¼ jYj ¼ n is type 1 if and only if n2 	m � n	 jðKn, n n
EðGÞÞ where m is number of edges in G and jðKn, n n EðGÞÞ is
the size of maximum matching in graph Kn, n n EðGÞ:

In our problem, we need to only find the size of the max-
imum matching and that too in Kn, n n EðGÞ which can shown
to be a chain graph. Now the Hopcroft–Karp algorithm to find
a maximum matching in bipartite graph, takes O

ffiffiffiffiffiffiffi
nm

p� �
time,

where m ¼ jEj: For chain graphs, we can find the size of the
maximum matching faster as the vertices can be ordered by
inclusion. Therefore, we present a new approach for finding
the size of maximum matching in a chain graph.

We are given degree sequence of vertices of X as DðXÞ ¼
ðd1, d2, :::, dnÞ of chain graph G ¼ ðX,Y , EÞ: We first convert
degree sequence of vertices of X into a frequency map M ¼
fðd1, f1Þ, ðd2, f2Þ, :::, ðdk, fkÞg where di’s are strictly increasing
and fi’s denote the number of vertices in X with degree di.
This frequency map would be the input for our algorithm.

Algorithm 1: Algorithm for finding size of maximum
matching in chain graph

function MaxMatching (M);
Input: frequency map M ¼ fðd1, f1Þ, ðd2, f2Þ, :::, ðdk, fkÞg
Output: j, size of maximum matching in G
if jMj¼1 then

return minff1, d1g;
else

if d1 � f1 then
return d1þMaxMatchingðfðd2 	 d1, f2Þ, ðd3 	 d1, f3Þ, :::,
ðdk 	 d1, fkÞgÞ;

else
return f1þ MaxMatchingðfðd2 	 f1, f2Þ, ðd3 	 f1, f3Þ, :::,
ðdk 	 f1, fkÞgÞ;

The Algorithm 1 can be implemented in O(n) as the
same value needs to be deleted from each degree and can be
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separately stored. Thus it is indeed faster than Hopcroft-
Karp algorithm. Also, the algorithm is simple and easy to
implement and requires no extra space. Next, we argue the
correctness of our algorithm.

Theorem 2.6. The Algorithm 1 generates maximum match-
ing in chain graph G ¼ ðX,Y , EÞ where jXj ¼ jYj ¼ n:

Proof. At each step in the above algorithm, we take the
edges incident on minimum degree vertices of X, to the
matching M and then remove these vertices from G along
with their matched neighbors. We repeat this procedure on
the remaining graph. The proof is by induction on the num-
ber of distinct degrees of vertices in X. For base case, k¼ 1
and G is Kf1, d1 : Thus, the maximum matching size in G is j,
where j ¼ minff1, d1g: For the induction hypothesis, assume
that the algorithm gives the maximum matching of chain
graph G½fx1, x2, :::, xdiþfig� for all i, i � k:

Now, assume that number of distinct degrees of vertices
in X in a chain graph G is kþ 1. Consider the subgraph of
G induced by the minimum degree vertices of X and their
neighbors in Y, say this graph G0: It is easy to see from the
definition of chain graphs that G0 is Kf1, d1 : Note that, the
number of maximum degree vertices in Y is equal to min-
imum degree in X. Thus, the maximum matching size in G0

is j0, where j0 ¼ minff1, d1g: Also, observe that after remov-
ing the matched vertices from graph G, the new graph G00 is
again a chain graph and its frequency map is as given in the
algorithm and number of distinct degrees of vertices in X is
k. By Induction Hypothesis, the algorithm gives the correct
maximum matching of G00: Since j0 is the maximum number
of minimum degree vertices that can be included in a
matching, adding j0 to the size of maximum matching in G00

gives the maximum matching in G. w

Henceforth, given a chain graph we can compute its total
chromatic number from Theorem 2.2 and Corollary 2.1.
Therefore, next corollary immediately follows from Algorithm 1:

Corollary 2.2. Let G ¼ ðX,Y ,EÞ be a chain graph. Then
v00ðGÞ can be computed in O(n)-time.

3. Total coloring in central graph of a graph

Recently, in 2017 S. Sudha and K. Manikandan [13] studied
the total coloring of central graph and give the total chromatic
number for the central graph of some specific graph classes
such as star, path and cycle. In this section, we prove that the
total coloring conjecture holds for central graph of any graph.
Observe that, the maximum degree of the central graph of a
graph G is n – 1, where n is the order of the graph G.
Therefore, we need to show that the central graph C(G) of any
graph G can be totally colored with nþ 1 colors.

Theorem 3.1. For any graph G ¼ ðV, EÞ of order n such that
n � 5, v00ðCðGÞÞ � DðGÞ þ 2:

Proof. Let C(G) be the central graph of given graph G,
where V1 ¼ VðGÞ and V2 ¼ fuijui subdivide the edge ei
for every ei 2 EðGÞg: Note that, the structure of central

graph C(G) of any graph G can be seen as a complete
bipartite graph Kn, where some of the edges of Kn are subdi-
vided. We start with the total coloring f of Kn with optimal
number of colors. Now restrict this total coloring of Kn to
the central graph C(G) such that for any subdivided edge ei,
the edges incident on vertex ui get the same color as f ðeiÞ,
where ui is the vertex which subdivide the edge ei. The set
V1 in the central graph gets the same color as of the vertices
in Kn and the set of vertices in V2 uncolored. Now we know
that v00ðKnÞ ¼ n if n is odd, otherwise nþ 1 and DðCðGÞÞ ¼
n	 1: Therefore we have two cases:
Case 1: n is even

In this case, v00ðKnÞ ¼ nþ 1: Now observe that the set of
vertices in V1 have degree n – 1. Therefore the color set of
any vertex in V1 have n colors, that is, exactly one color
would be missing from their color set. Now consider a sub-
divided edge, say vv0 2 EðGÞ and the vertex u subdivide the
edge vv0: Note that, the color of edge vu and uv0 is same,
and so it is not a valid total coloring a u. So we recolor the
edge vu with a color which is missing from the color set of
v. Now after this step, we need to color the vertex u. Since
we are assuming n � 5, there exists a color which is differ
from color of vu, uv0, v and v0: We color the given vertex u
with that available color. We can repeat the same process on
the graph till we recolor all the subdivided edges.
Case 2: n is odd

Therefore, v00ðKnÞ ¼ n: Now in this case, each vertex in
V1 has all the n colors present in their color set. So, we take
a new color nþ 1. Note that the color nþ 1 is missing from
the color set of every vertex. Now consider a subdivided
edge, say vv0 2 EðGÞ and the vertex u subdivide the edge
vv0: Note that, the color of edge vu and uv0 is same, and so
it is not a valid total coloring a u. So we recolor the edge vu
with color nþ 1. Since we are assuming n � 5, there exists
a color which is differ from color of vu, uv0, v and v0: We
color the given vertex u with that available color. We can
repeat the same process on the graph till we recolor all the
subdivided edges.

Thus we can always totally color the graph C(G)
with nþ 1 colors and because DðCðGÞÞ ¼ n	 1: Hence,
v00ðCðGÞÞ � Dþ 2: w

4. AVD-total coloring in central graphs

Now, we explore the problem of AVD-total coloring in cen-
tral graphs for some basic graph classes. Assume that, for
the central graph C(G) of any given graph G, V1 ¼ VðGÞ ¼
fv1, v2, :::, vng and V2 ¼ fu1, u2, :::, umg, where VðCðGÞÞ ¼
V1 [ V2, jVðGÞj ¼ n and jEðGÞj ¼ m:

Theorem 4.1. For a path Pn, v00aðCðPnÞÞ ¼ nþ 1 if n is even
and v00aðCðPnÞÞ � nþ 2 otherwise.

Proof. For this we first look at the total coloring of CðPnÞ:
Now it has been shown that v00ðCðPnÞÞ ¼ n if n is odd and
nþ 1 if n is even [13]. Suppose that, k is an odd integer.
Therefore, v00ðCðPkÞÞ ¼ k: Let f be a total coloring of CðPkÞÞ
using k colors. The coloring f is as follows:
f ðvkÞ ¼ k and f ðviÞ � ð2iþ 1Þðmod kÞ for 1 � i � k	 1:
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f ðuk	1Þ¼1 and f ðuiÞ�2ðiþ1Þðmod kÞ, for 1� i�ðk	2Þ:
For 1 � i, j, � k, f ðvivjÞ � ði þ jÞðmod kÞ, if ði þ jÞ 6�
0 ðmod kÞ, j > i þ 1 and f ðvivjÞ ¼ n, otherwise.
For 1 � i, j, � k, f ðviujÞ � ði þ jÞðmod kÞ, if ði þ jÞ 6�
0 ðmod kÞ and f ðviujÞ ¼ n, otherwise.

Note that the degree of each vertex vi in V1 is k – 1. It
implies that each vertex vi with respect to the coloring f
have the same set of colors used on vi and contain all the
colors. Now remove the vertices v1 and u1. Observe that the
edge u1v2 has a different color from the edges v1vj: Hence a
unique and distinct color is removed from the color set of
the vertices v2, :::, vk: Since their color sets were same earlier
same, now their color sets would be different. Hence, we
have obtained an AVD-total coloring for CðPk	1Þ where k is
odd. It follows that, v00aCððCnÞÞ ¼ nþ 1 where n is even as
the vertices of maximum degree are adjacent in this graph.

Now again delete the vertex v2 and u2. Our claim is that
it is still a valid AVD-total coloring of CðPk	2Þ with Dþ 3
colors, where k is odd. Now let us prove our claim. Suppose
that after the removal of the four vertices v1, u1, v2, u2, it is
not a valid AVD-total coloring. It implies that, there exists a
pair of adjacent vertices having the same color set. Observe
that, in the first operation a unique color was removed from
the color set of each of the vertices in V1, and similarly in
the second operation as well. Assume that the conflicting
vertices does not contain v3. Therefore, we have a cycle of
length 4 whose edges alternate in color. But we will prove
this case is not possible. Let the two colors be a, b and indi-
ces of the vertices in cycle would be 1, i, 2, j in the
same order.

If the edge v1vi is colored with a, then v2vj is also colored
with a. From the definition of the total coloring which we
have used,

ð1þ iÞðmod kÞ � aðmod kÞ
ð2þ jÞðmod kÞ � aðmod kÞ

i:e, ð1þ iþ 2þ jÞðmod kÞ � 2aðmod kÞ
Also if the edge viv2 is colored with b then vjv1 is also col-
ored with b. From the definition of the total coloring which
we have used,

ðiþ 2Þðmod kÞ � bðmod kÞ
ðjþ 1Þðmod kÞ � bðmod kÞ

i:e, ð1þ iþ 2þ jÞðmod kÞ � 2bðmod kÞ
Hence, 2aðmod kÞ � 2bðmod kÞ: Also, we know that k is
odd, which implies aðmod kÞ � bðmod kÞ: Since a and b
are both less than k, a¼ b which is a contradiction. Also
observe that the vertex v3 cannot be a conflicting vertex
because color 4 which is removed from its color set in the
first iteration has not been removed from the color set of
any other vertex. Therefore, it is a valid AVD-total coloring.
Thus, we obtained an AVD-total coloring for CðPk	2Þ with
Dþ 3 colors, where k is odd. Hence, v00aðCðPnÞÞ � Dþ 3
where n is odd. w

In the next theorem, we study the AVD-total chromatic
number of central graph of a cycle.

Theorem 4.2. For a cycle Cn, v00aðCðCnÞÞ ¼ nþ 1 if n is even
and v00aðCðCnÞÞ � nþ 2 otherwise.

Proof. It is known that v00ðCðCnÞÞ ¼ n if n is odd and nþ 1
if n is even (19). Assume that k is an odd integer. We look
at the total coloring of CðCkÞ: Define the total coloring f of
CðCkÞ as follows:
f ðviÞ � ð2iþ 1Þðmod kÞ for 1 � i � k	 1 and f ðvkÞ ¼ k:

f ðuiÞ � 2ðiþ 1Þðmod kÞ for 1 � i � k	 2 and f ðuk	1Þ ¼ k:

For 1 � i, j, � k, f ðvivjÞ � ði þ jÞðmod kÞ, if ði þ jÞ 6�
0 ðmod kÞ, j > i þ 1 and f ðvivjÞ ¼ n, otherwise.
For 1 � i, j, � k, f ðviujÞ � ði þ jÞðmod kÞ, if ði þ jÞ 6�
0 ðmod kÞ and f ðviujÞ ¼ n, otherwise.

The above coloring is a total coloring of the central graph
of Ck using k colors. Since the degree of vertices vi are k –
1, the color set of each vertex vi 2 V1 would be same and
contains all the colors. Now we remove the vertices v1, u1
and edge vkv2 and we add the edge ukv2 with the same color
as the color of the edge u1v2: Now observe the color sets of
v2 and vk are same, however the color set of all other verti-
ces are different, mutually. Note that, v2 and vk are not adja-
cent and so the obtained coloring is an AVD-total coloring
of CðCk	1Þ with k colors where k is odd. It follows that,
v00aðCðCnÞÞ ¼ Dþ 2 for n is even.

Now again we operate the same operation on the same
CðCk	1Þ as above. Our claim is that, it is still a valid AVD-
total coloring of obtained graph CðCk	2Þ where k is odd.
Suppose that, the obtained coloring of graph CðCk	2Þ is not a
valid AVD-total coloring. It implies that, there exists a pair
of adjacent vertices which have the same color set. Suppose
that, the conflicting vertices does not contain v3. Therefore,
there is a cycle of length four whose edges have alternate
colors. Let the two colors be a, b and indices of the vertices
in cycle would be 1, i, 2, j in the same order.

Let edge v1vi be colored with color a. Therefore, v2vj will
also be colored a. Now, from the definition of the total col-
oring which we have used,

ð1þ iÞðmod kÞ � aðmod kÞ
ð2þ jÞðmod kÞ � aðmod kÞ

i:e, ð1þ iþ 2þ jÞðmod kÞ � 2aðmod kÞ
Also the edge viv2 is colored with color b and the edge vjv1
is also colored with color b. Therefore, from the definition
of the total coloring which we have used,

ðiþ 2Þðmod kÞ � bðmod kÞ
ðjþ 1Þðmod kÞ � bðmod kÞ

i:e, ð1þ iþ 2þ jÞðmod kÞ � 2bðmod kÞ
Hence, 2aðmod kÞ � 2bðmod kÞ: Also we know that k is
odd, which implies that aðmod kÞ � bðmod kÞ: Since a and
b are both less than k, a¼ b which is a contradiction. Also
observe that the vertex v3 and vk cannot be a conflicting ver-
tex because color 3 which is removed from the color sets of
vertices v3 and vk in the second iteration but it has not been
removed from the color set of any other vertex. Therefore,
our claim is true. The obtained coloring is an AVD-total
coloring of CðCk	2Þ using k colors where k is odd. In other
words, v00aðCðCnÞÞ � Dþ 3 for n is odd. w

Theorem 4.3. For a star K1, n, v00aðCðK1, nÞ ¼ nþ 2:
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Proof. It is known that v00ðCðK1, nÞÞ ¼ nþ 1 [13]. We take a
total coloring f of CðK1, nÞ defined in [13] and construct an
AVD-total coloring from this. The total coloring f is defined
as follows:
f ðv0Þ ¼ nþ 1 and f ðviÞ ¼ i for 1 � i � n:
f ðu1Þ ¼ 3, f ðunÞ ¼ 1 and f ðuiÞ ¼ i	 1 for 2 � i � n	 1:

For 1 � i, � n, f ðv0uiÞ ¼ i, f ðviuiÞ � 2iðmod ðnþ 1ÞÞ if
2i 6� 0ðmod ðnþ 1ÞÞ and f ðviuiÞ ¼ nþ 1, otherwise.
For 1 � i, j, � n, f ðvivjÞ � ðiþ jÞðmod ðnþ 1ÞÞ, if 2i 6�
0ðmod ðnþ 1ÞÞ, j � i and f ðviujÞ ¼ nþ 1, otherwise.

Now, if we remove the vertex v1, then a unique color is
get removed from the color sets of each of the vertices
v2, :::, vn: Hence, the obtained coloring is an AVD-total col-
oring of the obtained graph CðK1, n	1Þ: Note that in
CðK1, n	1Þ there are vertices of maximum degree which are
adjacent. Therefore, the obtained coloring is optimal also.
Hence, v00aðK1, nÞ ¼ Dþ 2: w

Theorem 4.4. For a complete graph Kn, v00aðCðKnÞ ¼ n:

Proof. Observe that in graph CðKnÞ, no two vertices of same
degree are adjacent (n � 5). Hence, any total coloring would
also be AVD-total coloring. In fact, CðKnÞ is a bipartite
graph with partite sets V1 and V2 as there is no odd cycle
and the maximum degree D of this graph is n – 1.
Therefore it can be edge colored using n colors. So we take
an edge coloring of CðKnÞ: Since every vertex in V1 has
degree n – 1, there would be one color missing from the
color set of each of the vertex in V1. We color each vertex
vi 2 V1 with the missing color on the vi. Since n � 5 and ui
has degree two, give it a color out of n colors which is dif-
ferent from the color of its neighbors and edges incident on
it. Thus the obtained coloring is an AVD-total coloring of
CðKnÞ using n colors. w

5. Conclusion and open problems

In this paper, we study the total coloring and AVD-total
coloring problems. We obtained a sufficient condition for a
biconvex graph G to be type 1. Also, we proposed a linear
time algorithm to compute the total chromatic number of
chain graphs, a proper subclass of biconvex graphs. We
proved that the total coloring conjecture holds for the cen-
tral graph of any graph. Finally, we obtained the AVD-total
chromatic number of central graphs for basic graph classes
such as paths, cycles, stars and complete graphs. The total
coloring classification problem on central graph of any
graph remains open. It would be interesting to prove the
AVD-total coloring conjecture for central graph of any

graph and then to solve the AVD-total coloring classification
problem on central graph of any graph.
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