

AKCE International Journal of Graphs and Combinatorics

ISSN: 0972-8600 (Print) 2543-3474 (Online) Journal homepage: https://www.tandfonline.com/loi/uakc20

Distance antimagic labelings of Cartesian product of graphs

Nancy Jaseintha Cutinho, S. Sudha & S. Arumugam

To cite this article: Nancy Jaseintha Cutinho, S. Sudha & S. Arumugam (2020): Distance antimagic labelings of Cartesian product of graphs, AKCE International Journal of Graphs and Combinatorics

To link to this article: https://doi.org/10.1016/j.akcej.2019.08.005

0

© 2020 The Author(s). Published with license by Taylor & Francis Group, LLC.

Published online: 27 Apr 2020.

ت

Submit your article to this journal 🗹

Article views: 121

🜔 View related articles 🗹

View Crossmark data 🗹

👌 OPEN ACCESS

Distance antimagic labelings of Cartesian product of graphs

Nancy Jaseintha Cutinho^a, S. Sudha^b, and S. Arumugam^{c†}

^aSt. Charles Women's PU College, Lingarajapuram, Bengaluru, India; ^bDepartment of Mathematics, Mount Carmel College, Bengaluru, Karnataka, India; ^cNational Centre for Advanced Research in Discrete Mathematics, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, India

ABSTRACT

Let G = (V, E) be a graph of order n. Let $f : V \to \{1, 2, ..., n\}$ be a bijection. The weight w(v) of a vertex v with respect to the labeling f is defined by $w(v) = \sum_{u \in N(v)} f(u)$, where N(v) is the open neighborhood of v. The labeling f is called a distance antimagic labeling if $w(v_1) \neq w(v_2)$ for any two distinct vertices v_1, v_2 in V. In this paper we investigate the existence of distance antimagic labeling for the Cartesian product $G \Box H$ where the graphs G and H are cycles or complete graphs.

KEYWORDS

Distance magic labeling; distance antimagic labeling; Cartesian product

Taylor & Francis

Check for updates

Taylor & Francis Group

2010 MATHEMATICS SUBJECT CLASSIFICATION NUMBER 05C78

1. Introduction

By a graph G = (V, E) we mean a finite, undirected graph with neither loops nor multiple edges. The order and size of *G* are denoted by *n* and *m* respectively. For graph theoretic terminology we refer to Chartrand and Lesniak [4].

Vilfred [8] in his doctoral thesis introduced the concept of sigma labelings. Acharya et al., [1] further studied the concept under the name of neibourhood magic graphs. The same concept was introduced by Miller et al., [6] under the name 1-vertex magic vertex labeling. Sugeng et al., [7] introduced the term distance magic labeling for this concept.

Definition 1.1. [6] A distance magic labeling of a graph G of order n is a bijection $f: V \to \{1, 2, ..., n\}$ with the property that there is a positive integer k such that $\sum_{y \in N(x)} f(y) = k$ for every $x \in V$. The constant k is called the magic constant of the labeling f.

The sum $\sum_{y \in N(x)} f(y)$ is called the *weight* of the vertex x and is denoted by w(x).

For a recent survey and open problems on distance magic graphs we refer to Arumugam et al. [2].

Let G be a distance magic graph of order n with labeling f and magic constant k. Then $\sum_{u \in N_{G^c}(v)} f(u) = \frac{n(n+1)}{2} - k - f(v)$, and hence the set of all vertex weights in G^c is $\left\{\frac{n(n+1)}{2} - k - i : 1 \le i \le n\right\}$, which is an arithmetic

progression with first term $a = \frac{n(n+1)}{2} - k - n$ and common difference d = 1.

Motivated by this observation, Arumugam and Kamatchi [3] introduced the following concept of (a, d)-distance antimagic graph.

Definition 1.2. [3] A graph G is said to be (a, d)- distance antimagic if there exists a bijection $f : V \rightarrow \{1, 2, ..., n\}$ such that the set of all vertex weights is $\{a, a + d, a + 2d, ..., a + (n-1)d\}$ and any graph which admits such a labeling is called an (a, d)- distance antimagic graph.

Thus the complement of every distance magic graph is an (a, 1)-distance antimagic graph.

We observe that if a graph G is (a, d)-distance antimagic with d > 0, then for any two distinct vertices u and v we have $w(u) \neq w(v)$. This observation naturally leads to the concept of distance antimagic labeling.

Definition 1.3. [5] Let G = (V, E) be a graph of order *n*. Let $f: V \rightarrow \{1, 2, ..., n\}$ be a bijection. If $w(x) \neq w(y)$ for any two distinct vertices x and y in V, then f is called a *distance antimagic labeling*. Any graph G which admits a distance antimagic labeling is called a *distance antimagic graph*.

Definition 1.4. The *Cartesian product* of *G* and *H*, written $G\Box H$, is the graph with vertex set $V(G\Box H) = \{(u, v) : u \in U(U) \}$

© 2020 The Author(s). Published with license by Taylor & Francis Group, LLC.

CONTACT S. Arumugam 🐼 s.arumugam.klu@gmail.com 🗈 National Centre for Advanced Research in Discrete Mathematics, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, India.

⁺S. Arumugam is also at Department of Mathematics, Amrita Vishwa Vidyapeetham, Coimbatore, India; Department of Computer Science, Ball State University, USA; Department of Computer Science, Liverpool Hope University, Liverpool, UK.

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

V(G)and $v \in V(H)$ } and edge set $E(G \Box H) = \{(u, v)(u', v') : u = u'$ and $v v' \in E(H)$ orv = v'and $uu' \in E(G)\}.$

Kamatchi and Arumugam [5] posed the following problem.

Problem 1.5. If G is distance antimagic, is it true that the graphs $G + K_1$, $G + K_2$, the Cartesian product $G \Box K_2$ are distance antimagic?

In this paper we discuss the existence of distance antimagic labeling for the Cartesian product $K_n \Box K_n$ and $K_3 \Box C_k$.

2. Main results

In the following theorem we prove the existance of distance antimagic labeling for $G = K_n \Box K_n$.

Theorem 2.1. The graph $G = K_n \Box K_n$ is distance antimagic if and only if $n \neq 2$.

Proof. Let $G = K_n \Box K_n$ and suppose $n \neq 2$. Let $V(K_n) = \{v_1, v_2, ..., v_n\}$. We denote the vertex (v_i, v_j) in $K_n \Box K_n$ by v_{ij} . Let $X_1, X_2, ..., X_n$ and $Y_1, Y_2, ..., Y_n$ be the copies of K_n in G.

Define $f : V(G) \to \{1, 2, ..., n^2\}$ by $f(v_{ij}) = (i-1)n + j$. Then $w(X_i) = \frac{n}{2}[n(2i-1)+1]$ and $w(Y_j) = \frac{n}{2}[2j + n(n-1)]$. Hence

$$w(v_{ij}) = w(X_i) + w(Y_j) - 2f(v_{ij})$$

= $\frac{n^3}{2} + n^2 \left(i - 1 + \frac{1}{2n} \right) + 2n(1 - i) + j(n - 2).$ (1)

Now let v_{ij} and v_{rs} be two distinct vertices in *G*. Suppose $w(v_{ij}) = w(v_{rs})$.

We consider three cases.

Case 1. i = r and $j \neq s$.

Since $w(v_{ij}) = w(v_{rs})$, it follows from (1) that j(n-2) = s(n-2). Since $n \neq 2$, it follows that j=s and so $v_{ij} = v_{rs}$, which is a contradiction.

Case 2. $i \neq r$ and j = s.

Since $w(v_{ij}) = w(v_{rs})$, it follows from (1) that $(n^2 - 2n)i = (n^2 - 2n)r$. Since $n \neq 2$, it follows that i = r and so $v_{ij} = v_{rs}$, which is a contradiction.

Case 3. $i \neq r$ and $j \neq s$. Since $w(v_{ij}) = w(v_{rs})$, it follows from (1) that (i - r)n = s - j. Hence s = (i - r)n + j. If i - r is positive, then s > n

and if i - r is negative, then s is negative, which is a contradiction. Hence $w(v_{ij}) \neq w(v_{rs})$.

Thus G is distance antimagic when $n \neq 2$.

If n = 2, then $G = C_4$ which is not distance antimagic.

In the following theorem we investigate the existence of distance antimagic labeling of the graph $G = K_3 \Box C_k$.

Theorem 2.2. For any odd integer $k \ge 3$, the graph $G = K_3 \Box C_k$ is distance antimagic.

Proof. Let $V(K_3) = \{v_1, v_2, v_3\}$ and let $C_k = (u_1, u_2, ..., u_k, u_1)$. We denote the vertex (v_i, u_j) by v_{ij} . If k = 3, the result follows from Theorem 2.1. Suppose $k \ge 5$.

Define $f: V(G) \to \{1, 2, ..., 3k\}$ by $f(v_{ij}) = (i-1)k + j$. Then

$$w(v_{ij}) = \begin{cases} k(i+3) + 4 & \text{if } j = 1\\ k(i+5) + 2 & \text{if } j = k\\ k(i+2) + 4j & \text{if } 1 < j < k \end{cases}$$
(2)

Suppose there exist two distinct vertices v_{ij} and v_{rs} in G such that

$$w(v_{ij}) = w(v_{rs}) \tag{3}$$

We consider three cases.

Case 1. j = s.

If j = s = 1, then from (1) and (2) we get k(i+3) + 4 = k(r+3) + 4.

If j = s = k, then k(i + 5) + 2 = k(r + 5) + 2.

If j = s and 1 < j < k, then k(i+2) + 4j = k(r+2) + 4j. In all these cases i = r and hence $v_{ij} = v_{rs}$ which is a contradiction.

Case 2. i = r.

If j=1 and s=k, then from (1) and (2) we get k(i+3)+4=k(i+5)+2. Hence k=1 which is a contradiction.

If j=1 and s < k, then k(i+3) + 4 = k(i+2) + 4s. Hence k = 4(s-1). Thus k is even which is a contradiction. If 1 < j < k and 1 < s < k, then k(i+2) + 4j = k(i+2) + 4s. Hence j = s and so $v_{ij} = v_{rs}$, which is again a contradiction.

Case 3. $i \neq r$ and $j \neq s$.

If j=1 and s = k, then proceeding as in Case 1, we get k(r-i+2) = 2 which is a contradiction since $k \ge 5$.

If j = 1 and s < k, then k(i - r + 1) = 4(s - 1).

If 1 < j < k and 1 < s < k, then k(i - r) = 4(s - j).

Hence k divides 4(s-1) or 4(s-j). Since k is odd, it follows that k divides s-1 or k divides s-j. Since $s \le k$, this again leads to a contradiction.

Hence it follows that $w(v_{ij}) \neq w(v_{rs})$. Thus f is a distance antimagic labeling of G.

3. Conclusion and scope

The labeling defined in Theorem 2.2 is not a distance antimagic labeling for $G = K_3 \Box C_4$. Hence the following problem arises naturally.

Problem 3.1. Is $G = K_3 \Box C_k$ distance antimagic when k is even?

The investigation of the existence of distance antimagic labeling for $G \Box H$ for other graphs G and H is another direction for further research.

Conflict of interest

No conflicts of interest have been reported by the author(s).

References

 Acharya, B. D., Rao, S. B., Singh, T, Parameswaran, V. (2004). Neighborhood magic graphs In National Conference on Graph Theory, Combinatorics and Algorithm.

- [3] Arumugam, S, Kamatchi, N. (2012). On (*a*, *d*)-distance antimagic graphs. *Australas. J. Combin.* 54: 279–287.
- [4] Chartrand, G, Lesniak, L. (2005). *Graphs & Digraphs*, 4th ed. Boca Raton, FL: Chapman and Hall, CRC.
- [5] Kamatchi, N, Arumugam, S. (2013). Distance antimagic graphs. J. Combin. Math. Combin. Comput. 84: 61–67.
- [6] Miller, M., Rodger, C, Simanjuntak, R. (2003). Distance magic labelings of graphs. Australas. J. Combin. 28: 305-315.
- [7] Sugeng, K. A., Fronček, D., Miller, M., Ryan, J, Walker, J. (2009). On distance magic labeling of graphs. J. Combin. Math. Combin. Comput. 71: 39–48.
- [8] Vilfred, V. (1994). Σ-labelled graph and Circulant Graphs Ph.D. Thesis, University of Kerala, Trivandrum, India.