Distance antimagic labelings of Cartesian product of graphs

Nancy Jaseintha Cutinho, S. Sudha \& S. Arumugam

To cite this article: Nancy Jaseintha Cutinho, S. Sudha \& S. Arumugam (2020): Distance antimagic labelings of Cartesian product of graphs, AKCE International Journal of Graphs and Combinatorics

To link to this article: https://doi.org/10.1016/j.akcej.2019.08.005

Published online: 27 Apr 2020.

Submit your article to this journal

Article views: 121

View related articles

View Crossmark data \nearrow

Distance antimagic labelings of Cartesian product of graphs

Nancy Jaseintha Cutinho ${ }^{\text {a }}$, S. Sudha ${ }^{\text {b }}$, and S. Arumugam ${ }^{\text {c }}{ }^{\text { }}$
${ }^{\text {a }}$ St. Charles Women's PU College, Lingarajapuram, Bengaluru, India; ${ }^{\text {b }}$ Department of Mathematics, Mount Carmel College, Bengaluru, Karnataka, India; 'National Centre for Advanced Research in Discrete Mathematics, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, India

Abstract

Let $G=(V, E)$ be a graph of order n. Let $f: V \rightarrow\{1,2, \ldots, n\}$ be a bijection. The weight $w(v)$ of a vertex v with respect to the labeling f is defined by $w(v)=\sum_{u \in N(v)} f(u)$, where $N(v)$ is the open neighborhood of v. The labeling f is called a distance antimagic labeling if $w\left(v_{1}\right) \neq w\left(v_{2}\right)$ for any two distinct vertices v_{1}, v_{2} in V. In this paper we investigate the existence of distance antimagic labeling for the Cartesian product $G \square H$ where the graphs G and H are cycles or complete graphs.

KEYWORDS

Distance magic labeling; distance antimagic labeling; Cartesian product

2010 MATHEMATICS SUBJECT
CLASSIFICATION NUMBER
05C78

1. Introduction

By a graph $G=(V, E)$ we mean a finite, undirected graph with neither loops nor multiple edges. The order and size of G are denoted by n and m respectively. For graph theoretic terminology we refer to Chartrand and Lesniak [4].

Vilfred [8] in his doctoral thesis introduced the concept of sigma labelings. Acharya et al., [1] further studied the concept under the name of neibourhood magic graphs. The same concept was introduced by Miller et al., [6] under the name 1 -vertex magic vertex labeling. Sugeng et al., [7] introduced the term distance magic labeling for this concept.
Definition 1.1. [6] A distance magic labeling of a graph G of order n is a bijection $f: V \rightarrow\{1,2, \ldots, n\}$ with the property that there is a positive integer k such that $\sum_{y \in N(x)} f(y)=k$ for every $x \in V$. The constant k is called the magic constant of the labeling f.

The sum $\sum_{y \in N(x)} f(y)$ is called the weight of the vertex x and is denoted by $w(x)$.

For a recent survey and open problems on distance magic graphs we refer to Arumugam et al. [2].

Let G be a distance magic graph of order n with labeling f and magic constant k. Then $\sum_{u \in N_{G^{c}}(v)} f(u)=\frac{n(n+1)}{2}-k-$ $f(v)$, and hence the set of all vertex weights in G^{c} is $\left\{\frac{n(n+1)}{2}-k-i: 1 \leq i \leq n\right\}$, which is an arithmetic
progression with first term $a=\frac{n(n+1)}{2}-k-n$ and common difference $d=1$.

Motivated by this observation, Arumugam and Kamatchi [3] introduced the following concept of (a, d)-distance antimagic graph.

Definition 1.2. [3] A graph G is said to be (a, d)-distance antimagic if there exists a bijection $f: V \rightarrow\{1,2, \ldots, n\}$ such that the set of all vertex weights is $\{a, a+d, a+2 d, \ldots, a+$ $(n-1) d\}$ and any graph which admits such a labeling is called an (a, d)- distance antimagic graph.

Thus the complement of every distance magic graph is an ($a, 1$)-distance antimagic graph.

We observe that if a graph G is (a, d)-distance antimagic with $d>0$, then for any two distinct vertices u and v we have $w(u) \neq w(v)$. This observation naturally leads to the concept of distance antimagic labeling.

Definition 1.3. [5] Let $G=(V, E)$ be a graph of order n. Let $f: V \rightarrow\{1,2, \ldots, n\}$ be a bijection. If $w(x) \neq w(y)$ for any two distinct vertices x and y in V, then f is called a distance antimagic labeling. Any graph G which admits a distance antimagic labeling is called a distance antimagic graph.

Definition 1.4. The Cartesian product of G and H, written $G \square H$, is the graph with vertex set $V(G \square H)=\{(u, v): u \in$
$V(G) a n d v \in V(H)\}$ and edge set $E(G \square H)=\left\{(u, v)\left(u^{\prime}, v^{\prime}\right):\right.$ $u=u^{\prime} a n d v v^{\prime} \in E(H)$ orv $\left.=v^{\prime} a n d u u^{\prime} \in E(G)\right\}$.

Kamatchi and Arumugam [5] posed the following problem.
Problem 1.5. If G is distance antimagic, is it true that the graphs $G+K_{1}, G+K_{2}$, the Cartesian product $G \square K_{2}$ are distance antimagic?

In this paper we discuss the existence of distance antimagic labeling for the Cartesian product $K_{n} \square K_{n}$ and $K_{3} \square C_{k}$.

2. Main results

In the following theorem we prove the existance of distance antimagic labeling for $G=K_{n} \square K_{n}$.

Theorem 2.1. The graph $G=K_{n} \square K_{n}$ is distance antimagic if and only if $n \neq 2$.
Proof. Let $G=K_{n} \square K_{n}$ and suppose $n \neq 2$. Let $V\left(K_{n}\right)=$ $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. We denote the vertex $\left(v_{i}, v_{j}\right)$ in $K_{n} \square K_{n}$ by $v_{i j}$. Let $X_{1}, X_{2}, \ldots, X_{n}$ and $Y_{1}, Y_{2}, \ldots, Y_{n}$ be the copies of K_{n} in G.

Define $f: V(G) \rightarrow\left\{1,2, \ldots, n^{2}\right\}$ by $f\left(v_{i j}\right)=(i-1) n+j$.
Then $w\left(X_{i}\right)=\frac{n}{2}[n(2 i-1)+1]$ and $w\left(Y_{j}\right)=\frac{n}{2}[2 j+n(n-$ 1)]. Hence

$$
\begin{align*}
w\left(v_{i j}\right) & =w\left(X_{i}\right)+w\left(Y_{j}\right)-2 f\left(v_{i j}\right) \\
& =\frac{n^{3}}{2}+n^{2}\left(i-1+\frac{1}{2 n}\right)+2 n(1-i)+j(n-2) . \tag{1}
\end{align*}
$$

Now let $v_{i j}$ and $v_{r s}$ be two distinct vertices in G. Suppose $w\left(v_{i j}\right)=w\left(v_{r s}\right)$.

We consider three cases.
Case 1. $i=r$ and $j \neq s$.
Since $w\left(v_{i j}\right)=w\left(v_{r s}\right)$, it follows from (1) that $j(n-2)=$ $s(n-2)$. Since $n \neq 2$, it follows that $j=s$ and so $v_{i j}=v_{r s}$, which is a contradiction.
Case 2. $i \neq r$ and $j=s$.
Since $w\left(v_{i j}\right)=w\left(v_{r s}\right)$, it follows from (1) that ($n^{2}-$ $2 n) i=\left(n^{2}-2 n\right) r$. Since $n \neq 2$, it follows that $i=r$ and so $v_{i j}=v_{r s}$, which is a contradiction.
Case 3. $i \neq r$ and $j \neq s$.
Since $w\left(v_{i j}\right)=w\left(v_{r s}\right)$, it follows from (1) that $(i-r) n=$ $s-j$. Hence $s=(i-r) n+j$. If $i-r$ is positive, then $s>n$ and if $i-r$ is negative, then s is negative, which is a contradiction. Hence $w\left(v_{i j}\right) \neq w\left(v_{r s}\right)$.

Thus G is distance antimagic when $n \neq 2$.
If $n=2$, then $G=C_{4}$ which is not distance antimagic.

In the following theorem we investigate the existence of distance antimagic labeling of the graph $G=K_{3} \square C_{k}$.

Theorem 2.2. For any odd integer $k \geq 3$, the graph $G=$ $K_{3} \square C_{k}$ is distance antimagic.

Proof. Let $V\left(K_{3}\right)=\left\{v_{1}, v_{2}, v_{3}\right\}$ and let $C_{k}=\left(u_{1}, u_{2}, \ldots\right.$, $\left.u_{k}, u_{1}\right)$. We denote the vertex $\left(v_{i}, u_{j}\right)$ by $v_{i j}$. If $k=3$, the result follows from Theroem 2.1. Suppose $k \geq 5$.

Define $f: V(G) \rightarrow\{1,2, \ldots, 3 k\}$ by $f\left(v_{i j}\right)=(i-1) k+j$. Then

$$
w\left(v_{i j}\right)= \begin{cases}k(i+3)+4 & \text { if } j=1 \tag{2}\\ k(i+5)+2 & \text { if } j=k \\ k(i+2)+4 j & \text { if } 1<j<k\end{cases}
$$

Suppose there exist two distinct vertices $v_{i j}$ and $v_{r s}$ in G such that

$$
\begin{equation*}
w\left(v_{i j}\right)=w\left(v_{r s}\right) \tag{3}
\end{equation*}
$$

We consider three cases.
Case 1. $j=s$.
If $j=s=1$, then from (1) and (2) we get $k(i+3)+$ $4=k(r+3)+4$.

If $j=s=k$, then $k(i+5)+2=k(r+5)+2$.
If $j=s$ and $1<j<k$, then $k(i+2)+4 j=k(r+2)+4 j$.
In all these cases $i=r$ and hence $v_{i j}=v_{r s}$ which is a contradiction.
Case 2. $i=r$.
If $j=1$ and $s=k$, then from (1) and (2) we get $k(i+$
$3)+4=k(i+5)+2$. Hence $k=1$ which is a contradiction.
If $j=1$ and $s<k$, then $k(i+3)+4=k(i+2)+4 s$.
Hence $k=4(s-1)$. Thus k is even which is a contradiction.
If $1<j<k$ and $1<s<k$, then $k(i+2)+4 j=$ $k(i+2)+4 s$. Hence $j=s$ and so $v_{i j}=v_{r s}$, which is again a contradiction.
Case 3. $i \neq r$ and $j \neq s$.
If $j=1$ and $s=k$, then proceeding as in Case 1 , we get $k(r-i+2)=2$ which is a contradiction since $k \geq 5$.

If $j=1$ and $s<k$, then $k(i-r+1)=4(s-1)$.
If $1<j<k$ and $1<s<k$, then $k(i-r)=4(s-j)$.
Hence k divides $4(s-1)$ or $4(s-j)$. Since k is odd, it follows that k divides $s-1$ or k divides $s-j$. Since $s \leq k$, this again leads to a contradiction.

Hence it follows that $w\left(v_{i j}\right) \neq w\left(v_{r s}\right)$. Thus f is a distance antimagic labeling of G.

3. Conclusion and scope

The labeling defined in Theorem 2.2 is not a distance antimagic labeling for $G=K_{3} \square C_{4}$. Hence the following problem arises naturally.

Problem 3.1. Is $G=K_{3} \square C_{k}$ distance antimagic when k is even?

The investigation of the existence of distance antimagic labeling for $G \square H$ for other graphs G and H is another direction for further research.

Conflict of interest

No conflicts of interest have been reported by the author(s).

References

[1] Acharya, B. D., Rao, S. B., Singh, T, Parameswaran, V. (2004). Neighborhood magic graphs In National Conference on Graph Theory, Combinatorics and Algorithm.
[2] Arumugam, S., Fronček, D. D, Kamatchi, N. (2011). Distance magic graphs - a survey. J. Indones. Math. Soc. Special Edition 11-26.
[3] Arumugam, S, Kamatchi, N. (2012). On (a, d)-distance antimagic graphs. Australas. J. Combin. 54: 279-287.
[4] Chartrand, G, Lesniak, L. (2005). Graphs \& Digraphs, 4th ed. Boca Raton, FL: Chapman and Hall, CRC.
[5] Kamatchi, N, Arumugam, S. (2013). Distance antimagic graphs. J. Combin. Math. Combin. Comput. 84: 61-67.
[6] Miller, M., Rodger, C, Simanjuntak, R. (2003). Distance magic labelings of graphs. Australas. J. Combin. 28: 305-315.
[7] Sugeng, K. A., Fronček, D., Miller, M., Ryan, J, Walker, J. (2009). On distance magic labeling of graphs. J. Combin. Math. Combin. Comput. 71: 39-48.
[8] Vilfred, V. (1994). Σ-labelled graph and Circulant Graphs Ph.D. Thesis, University of Kerala, Trivandrum, India.

