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ABSTRACT
Let G ¼ ðV, EÞ be a graph of order n. Let f : V ! f1, 2, :::, ng be a bijection. The weight w(v) of a
vertex v with respect to the labeling f is defined by wðvÞ ¼ P

u2NðvÞ fðuÞ, where N(v) is the open
neighborhood of v. The labeling f is called a distance antimagic labeling if wðv1Þ 6¼ wðv2Þ for any
two distinct vertices v1, v2 in V. In this paper we investigate the existence of distance antimagic
labeling for the Cartesian product GwH where the graphs G and H are cycles or complete graphs.
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1. Introduction

By a graph G ¼ ðV,EÞ we mean a finite, undirected graph
with neither loops nor multiple edges. The order and size of
G are denoted by n and m respectively. For graph theoretic
terminology we refer to Chartrand and Lesniak [4].

Vilfred [8] in his doctoral thesis introduced the concept
of sigma labelings. Acharya et al., [1] further studied the
concept under the name of neibourhood magic graphs.
The same concept was introduced by Miller et al., [6]
under the name 1-vertex magic vertex labeling. Sugeng
et al., [7] introduced the term distance magic labeling for
this concept.

Definition 1.1. [6] A distance magic labeling of a graph G
of order n is a bijection f : V ! f1, 2, :::, ng with the
property that there is a positive integer k such thatP

y2NðxÞ f ðyÞ ¼ k for every x 2 V: The constant k is called
the magic constant of the labeling f.

The sum
P

y2NðxÞ f ðyÞ is called the weight of the vertex x
and is denoted by wðxÞ:

For a recent survey and open problems on distance magic
graphs we refer to Arumugam et al. [2].

Let G be a distance magic graph of order n with labeling

f and magic constant k. Then
P

u2NGc ðvÞ f ðuÞ ¼
nðnþ1Þ

2 � k�
f ðvÞ, and hence the set of all vertex weights in Gc is

nðnþ1Þ
2 � k� i : 1 � i � n

n o
, which is an arithmetic

progression with first term a ¼ nðnþ1Þ
2 � k� n and common

difference d ¼ 1:
Motivated by this observation, Arumugam and Kamatchi

[3] introduced the following concept of (a, d)-distance anti-
magic graph.

Definition 1.2. [3] A graph G is said to be (a, d)- distance
antimagic if there exists a bijection f : V ! f1, 2, :::, ng such
that the set of all vertex weights is fa, aþ d, aþ 2d, :::, aþ
ðn� 1Þdg and any graph which admits such a labeling is
called an (a, d)- distance antimagic graph.

Thus the complement of every distance magic graph is
an ða, 1Þ-distance antimagic graph.

We observe that if a graph G is (a, d)-distance antimagic
with d > 0, then for any two distinct vertices u and v we
have wðuÞ 6¼ wðvÞ: This observation naturally leads to the
concept of distance antimagic labeling.

Definition 1.3. [5] Let G ¼ ðV, EÞ be a graph of order n.
Let f : V ! f1, 2, :::, ng be a bijection. If wðxÞ 6¼ wðyÞ for
any two distinct vertices x and y in V, then f is called a
distance antimagic labeling. Any graph G which admits a
distance antimagic labeling is called a distance antima-
gic graph.

Definition 1.4. The Cartesian product of G and H, written
GwH, is the graph with vertex set VðGwHÞ ¼ fðu, vÞ : u 2
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VðGÞandv 2 VðHÞg and edge set EðGwHÞ ¼ fðu, vÞðu0, v0Þ :
u ¼ u0andv v0 2 EðHÞorv ¼ v0anduu0 2 EðGÞg:

Kamatchi and Arumugam [5] posed the following problem.

Problem 1.5. If G is distance antimagic, is it true that the
graphs Gþ K1,Gþ K2, the Cartesian product GwK2 are dis-
tance antimagic?

In this paper we discuss the existence of distance antima-
gic labeling for the Cartesian product Kn wKn and K3 wCk:

2. Main results

In the following theorem we prove the existance of distance
antimagic labeling for G ¼ Kn wKn:

Theorem 2.1. The graph G ¼ Kn wKn is distance antimagic
if and only if n 6¼ 2:

Proof. Let G ¼ Kn wKn and suppose n 6¼ 2: Let VðKnÞ ¼
fv1, v2, :::, vng: We denote the vertex (vi, vj) in Kn wKn by
vij: Let X1,X2, :::,Xn and Y1,Y2, :::,Yn be the copies of Kn

in G.
Define f : VðGÞ ! f1, 2, :::, n2g by f ðvijÞ ¼ ði� 1Þnþ j:
Then wðXiÞ ¼ n

2 ½nð2i� 1Þ þ 1� and wðYjÞ ¼ n
2 ½2jþ nðn�

1Þ�: Hence

wðvijÞ ¼ wðXiÞ þ wðYjÞ � 2f ðvijÞ

¼ n3

2
þ n2 i� 1þ 1

2n

� �
þ 2nð1� iÞ þ jðn� 2Þ: (1)

Now let vij and vrs be two distinct vertices in G.
Suppose wðvijÞ ¼ wðvrsÞ:

We consider three cases.
Case 1. i¼ r and j 6¼ s:

Since wðvijÞ ¼ wðvrsÞ, it follows from (1) that jðn� 2Þ ¼
sðn� 2Þ: Since n 6¼ 2, it follows that j¼ s and so vij ¼ vrs,
which is a contradiction.
Case 2. i 6¼ r and j ¼ s:

Since wðvijÞ ¼ wðvrsÞ, it follows from (1) that ðn2 �
2nÞi ¼ ðn2 � 2nÞr: Since n 6¼ 2, it follows that i¼ r and so
vij ¼ vrs, which is a contradiction.
Case 3. i 6¼ r and j 6¼ s:

Since wðvijÞ ¼ wðvrsÞ, it follows from (1) that ði� rÞn ¼
s� j: Hence s ¼ ði� rÞnþ j: If i – r is positive, then s> n
and if i – r is negative, then s is negative, which is a contra-
diction. Hence wðvijÞ 6¼ wðvrsÞ:

Thus G is distance antimagic when n 6¼ 2:
If n ¼ 2, then G ¼ C4 which is not distance

antimagic. w

In the following theorem we investigate the existence of
distance antimagic labeling of the graph G ¼ K3 wCk:

Theorem 2.2. For any odd integer k � 3, the graph G ¼
K3 wCk is distance antimagic.

Proof. Let VðK3Þ ¼ fv1, v2, v3g and let Ck ¼ ðu1, u2, :::,
uk, u1Þ: We denote the vertex (vi, uj) by vij: If k ¼ 3, the
result follows from Theroem 2.1. Suppose k � 5:

Define f : VðGÞ ! f1, 2, :::, 3kg by f ðvijÞ ¼ ði� 1Þkþ j:
Then

wðvijÞ ¼
kðiþ 3Þ þ 4 if j ¼ 1

kðiþ 5Þ þ 2 if j ¼ k

kðiþ 2Þ þ 4j if 1 < j < k

8><
>: (2)

Suppose there exist two distinct vertices vij and vrs in G such
that

wðvijÞ ¼ wðvrsÞ (3)

We consider three cases.
Case 1. j ¼ s:

If j ¼ s ¼ 1, then from (1) and (2) we get kðiþ 3Þ þ
4 ¼ kðr þ 3Þ þ 4:

If j ¼ s ¼ k, then kðiþ 5Þ þ 2 ¼ kðr þ 5Þ þ 2:
If j¼ s and 1 < j < k, then kðiþ 2Þ þ 4j ¼ kðr þ 2Þ þ 4j:
In all these cases i¼ r and hence vij ¼ vrs which is a

contradiction.
Case 2. i ¼ r:

If j¼ 1 and s ¼ k, then from (1) and (2) we get kðiþ
3Þ þ 4 ¼ kðiþ 5Þ þ 2: Hence k¼ 1 which is a contradiction.

If j¼ 1 and s < k, then kðiþ 3Þ þ 4 ¼ kðiþ 2Þ þ 4s:
Hence k ¼ 4ðs� 1Þ: Thus k is even which is a contradiction.

If 1 < j < k and 1 < s < k, then kðiþ 2Þ þ 4j ¼
kðiþ 2Þ þ 4s: Hence j¼ s and so vij ¼ vrs, which is again a
contradiction.
Case 3. i 6¼ r and j 6¼ s:

If j¼ 1 and s ¼ k, then proceeding as in Case 1, we get
kðr � iþ 2Þ ¼ 2 which is a contradiction since k � 5:

If j¼ 1 and s < k, then kði� r þ 1Þ ¼ 4ðs� 1Þ:
If 1 < j < k and 1 < s < k, then kði� rÞ ¼ 4ðs� jÞ:
Hence k divides 4ðs� 1Þ or 4ðs� jÞ: Since k is odd, it

follows that k divides s – 1 or k divides s� j: Since s � k,
this again leads to a contradiction.

Hence it follows that wðvijÞ 6¼ wðvrsÞ: Thus f is a distance
antimagic labeling of G. w

3. Conclusion and scope

The labeling defined in Theorem 2.2 is not a distance anti-
magic labeling for G ¼ K3 wC4: Hence the following prob-
lem arises naturally.

Problem 3.1. Is G ¼ K3 wCk distance antimagic when k
is even?

The investigation of the existence of distance antimagic
labeling for GwH for other graphs G and H is another dir-
ection for further research.
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